Spatially variable Rician noise in magnetic resonance imaging
[Display omitted] ► Spatially variable noise correction algorithm is applied with the Rician correction. ► Automatic detection of a regions with the Gaussian or Rician noise distributions. ► Improved noise correction scheme for the diffusion-weighted imaging. Magnetic resonance images tend to be inf...
Saved in:
Published in | Medical image analysis Vol. 16; no. 2; pp. 536 - 548 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.02.2012
|
Subjects | |
Online Access | Get full text |
ISSN | 1361-8415 1361-8423 1361-8423 |
DOI | 10.1016/j.media.2011.12.002 |
Cover
Abstract | [Display omitted]
► Spatially variable noise correction algorithm is applied with the Rician correction. ► Automatic detection of a regions with the Gaussian or Rician noise distributions. ► Improved noise correction scheme for the diffusion-weighted imaging.
Magnetic resonance images tend to be influenced by various random factors usually referred to as “noise”. The principal sources of noise and related artefacts can be divided into two types: arising from hardware (acquisition coil arrays, gradient coils, field inhomogeneity); and arising from the subject (physiological noise including body motion, cardiac pulsation or respiratory motion). These factors negatively affect the resolution and reproducibility of the images. Therefore, a proper noise treatment is important for improving the performance of clinical and research investigations. Noise reduction becomes especially critical for the images with a low signal-to-noise ratio, such as those typically acquired in diffusion tensor imaging at high diffusion weightings. The standard methods of signal correction usually assume a uniform distribution of the standard deviation of the noise across the image and evaluate a single correction parameter for the whole image. We pursue a more advanced approach based on the assumption of an inhomogeneous distribution of noise in space and evaluate correction factors for each voxel individually. The Rician nature of the underlying noise is considered for low and high signal-to-noise ratios. The approach developed here has been examined using numerical simulations and in vivo brain diffusion tensor imaging experiments. The efficacy and usefulness of this approach is demonstrated here and the resultant effective tool is described. |
---|---|
AbstractList | Magnetic resonance images tend to be influenced by various random factors usually referred to as "noise". The principal sources of noise and related artefacts can be divided into two types: arising from hardware (acquisition coil arrays, gradient coils, field inhomogeneity); and arising from the subject (physiological noise including body motion, cardiac pulsation or respiratory motion). These factors negatively affect the resolution and reproducibility of the images. Therefore, a proper noise treatment is important for improving the performance of clinical and research investigations. Noise reduction becomes especially critical for the images with a low signal-to-noise ratio, such as those typically acquired in diffusion tensor imaging at high diffusion weightings. The standard methods of signal correction usually assume a uniform distribution of the standard deviation of the noise across the image and evaluate a single correction parameter for the whole image. We pursue a more advanced approach based on the assumption of an inhomogeneous distribution of noise in space and evaluate correction factors for each voxel individually. The Rician nature of the underlying noise is considered for low and high signal-to-noise ratios. The approach developed here has been examined using numerical simulations and in vivo brain diffusion tensor imaging experiments. The efficacy and usefulness of this approach is demonstrated here and the resultant effective tool is described. Magnetic resonance images tend to be influenced by various random factors usually referred to as "noise". The principal sources of noise and related artefacts can be divided into two types: arising from hardware (acquisition coil arrays, gradient coils, field inhomogeneity); and arising from the subject (physiological noise including body motion, cardiac pulsation or respiratory motion). These factors negatively affect the resolution and reproducibility of the images. Therefore, a proper noise treatment is important for improving the performance of clinical and research investigations. Noise reduction becomes especially critical for the images with a low signal-to-noise ratio, such as those typically acquired in diffusion tensor imaging at high diffusion weightings. The standard methods of signal correction usually assume a uniform distribution of the standard deviation of the noise across the image and evaluate a single correction parameter for the whole image. We pursue a more advanced approach based on the assumption of an inhomogeneous distribution of noise in space and evaluate correction factors for each voxel individually. The Rician nature of the underlying noise is considered for low and high signal-to-noise ratios. The approach developed here has been examined using numerical simulations and in vivo brain diffusion tensor imaging experiments. The efficacy and usefulness of this approach is demonstrated here and the resultant effective tool is described.Magnetic resonance images tend to be influenced by various random factors usually referred to as "noise". The principal sources of noise and related artefacts can be divided into two types: arising from hardware (acquisition coil arrays, gradient coils, field inhomogeneity); and arising from the subject (physiological noise including body motion, cardiac pulsation or respiratory motion). These factors negatively affect the resolution and reproducibility of the images. Therefore, a proper noise treatment is important for improving the performance of clinical and research investigations. Noise reduction becomes especially critical for the images with a low signal-to-noise ratio, such as those typically acquired in diffusion tensor imaging at high diffusion weightings. The standard methods of signal correction usually assume a uniform distribution of the standard deviation of the noise across the image and evaluate a single correction parameter for the whole image. We pursue a more advanced approach based on the assumption of an inhomogeneous distribution of noise in space and evaluate correction factors for each voxel individually. The Rician nature of the underlying noise is considered for low and high signal-to-noise ratios. The approach developed here has been examined using numerical simulations and in vivo brain diffusion tensor imaging experiments. The efficacy and usefulness of this approach is demonstrated here and the resultant effective tool is described. [Display omitted] ► Spatially variable noise correction algorithm is applied with the Rician correction. ► Automatic detection of a regions with the Gaussian or Rician noise distributions. ► Improved noise correction scheme for the diffusion-weighted imaging. Magnetic resonance images tend to be influenced by various random factors usually referred to as “noise”. The principal sources of noise and related artefacts can be divided into two types: arising from hardware (acquisition coil arrays, gradient coils, field inhomogeneity); and arising from the subject (physiological noise including body motion, cardiac pulsation or respiratory motion). These factors negatively affect the resolution and reproducibility of the images. Therefore, a proper noise treatment is important for improving the performance of clinical and research investigations. Noise reduction becomes especially critical for the images with a low signal-to-noise ratio, such as those typically acquired in diffusion tensor imaging at high diffusion weightings. The standard methods of signal correction usually assume a uniform distribution of the standard deviation of the noise across the image and evaluate a single correction parameter for the whole image. We pursue a more advanced approach based on the assumption of an inhomogeneous distribution of noise in space and evaluate correction factors for each voxel individually. The Rician nature of the underlying noise is considered for low and high signal-to-noise ratios. The approach developed here has been examined using numerical simulations and in vivo brain diffusion tensor imaging experiments. The efficacy and usefulness of this approach is demonstrated here and the resultant effective tool is described. |
Author | Farrher, Ezequiel Grinberg, Farida Jon Shah, N. Maximov, Ivan I. |
Author_xml | – sequence: 1 givenname: Ivan I. surname: Maximov fullname: Maximov, Ivan I. email: i.maximov@fz-juelich.de organization: Institute of Neuroscience and Medicine (INM-4), Research Centre Jülich GmbH, 52425 Jülich, Germany – sequence: 2 givenname: Ezequiel surname: Farrher fullname: Farrher, Ezequiel organization: Institute of Neuroscience and Medicine (INM-4), Research Centre Jülich GmbH, 52425 Jülich, Germany – sequence: 3 givenname: Farida surname: Grinberg fullname: Grinberg, Farida organization: Institute of Neuroscience and Medicine (INM-4), Research Centre Jülich GmbH, 52425 Jülich, Germany – sequence: 4 givenname: N. surname: Jon Shah fullname: Jon Shah, N. organization: Institute of Neuroscience and Medicine (INM-4), Research Centre Jülich GmbH, 52425 Jülich, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22209560$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkMtKAzEUQIMo9qFfIMjsXHW8ecxkZtGFiC8QBB_rkKY3JWWaqcm00L83tbULF7pKuJwTcs-AHPvWIyEXFHIKtLye5wucOp0zoDSnLAdgR6RPeUlHlWD8-HCnRY8MYpwDgBQCTkmPMQZ1UUKfjN-WunO6aTbZWgenJw1mr8447TPfuoiZ89lCzzx2zmQBY-u1N2maZs7PzsiJ1U3E8_05JB_3d--3j6Pnl4en25vnkRFMdCNbghVCcksnrASB0hpAxnWhCyq0LQUHVhVMSjupdQE149xqqCQWdkqruuJDcrV7dxnazxXGTi1cNNg02mO7iqqmVSFlVclEXu7J1STlUcuQvho26mfjBPAdYEIbY0B7QCiobVc1V99d1barokylrsmqf1nGdSlc67ugXfOPO965mAqtHQYVjcNUceoCmk5NW_en_wXHD5KC |
CitedBy_id | crossref_primary_10_1109_TMI_2014_2380830 crossref_primary_10_1002_mrm_25351 crossref_primary_10_1080_21681163_2021_1944914 crossref_primary_10_1002_mrm_30208 crossref_primary_10_4015_S1016237223500370 crossref_primary_10_1016_j_mri_2014_03_004 crossref_primary_10_1016_j_media_2014_11_005 crossref_primary_10_1109_TMI_2018_2878509 crossref_primary_10_1590_2446_4740_02017 crossref_primary_10_1055_a_1762_5854 crossref_primary_10_1016_j_media_2021_102276 crossref_primary_10_1109_TPAMI_2016_2625789 crossref_primary_10_3233_THC_212882 crossref_primary_10_1002_mrm_24728 crossref_primary_10_1016_j_mri_2014_08_028 crossref_primary_10_1038_s41598_020_58212_2 crossref_primary_10_1186_s12880_015_0081_0 crossref_primary_10_1002_mrm_24529 crossref_primary_10_1002_hbm_24691 crossref_primary_10_1016_j_media_2014_08_004 crossref_primary_10_1016_j_jneumeth_2020_108951 crossref_primary_10_1002_ima_22682 crossref_primary_10_1002_mrm_28773 crossref_primary_10_1002_mrm_25165 crossref_primary_10_1007_s11760_016_0878_5 crossref_primary_10_31159_ksmrt_2023_33_4_13 crossref_primary_10_1016_j_neuroimage_2013_07_086 crossref_primary_10_1016_j_patrec_2018_02_007 crossref_primary_10_1016_j_ejmp_2017_07_002 crossref_primary_10_1002_mrm_26059 crossref_primary_10_1016_j_bspc_2021_102737 crossref_primary_10_1371_journal_pone_0094531 crossref_primary_10_1016_j_neuroimage_2020_116682 crossref_primary_10_3389_fcvm_2022_822269 crossref_primary_10_1002_mrm_24914 |
Cites_doi | 10.1016/0730-725X(93)90225-3 10.1016/j.media.2010.03.001 10.1002/mrm.22013 10.1016/S0167-9473(02)00078-6 10.1118/1.595711 10.1016/j.jmr.2011.09.035 10.1016/j.chemolab.2004.06.003 10.1118/1.597729 10.1016/j.jmr.2009.03.005 10.1109/83.791966 10.1002/hbm.10062 10.1016/j.mri.2006.11.003 10.1073/pnas.0601743103 10.1016/j.jmr.2009.01.019 10.1016/j.mri.2009.05.025 10.1016/j.jmr.2008.11.015 10.1016/S0730-725X(97)00199-9 10.1002/mrm.10118 10.1016/j.cplett.2010.02.026 10.1016/j.neuroimage.2011.04.050 10.1002/cem.1180050103 10.1002/mrm.20283 10.1016/j.jmr.2006.06.020 10.1016/j.mri.2009.01.001 10.1118/1.597004 10.1002/mrm.20426 10.1016/j.neuroimage.2008.05.053 10.2307/2291267 10.1002/1522-2594(200012)44:6<852::AID-MRM5>3.0.CO;2-A 10.1002/mrm.22407 10.1002/mrm.1910360607 10.1002/mrm.10728 10.1088/0031-9155/52/5/009 10.1002/mrm.21036 10.1002/jmri.22003 10.1002/mrm.1910340618 10.1016/j.jmr.2006.01.016 10.1002/mrm.1315 10.1002/1522-2594(200103)45:3<448::AID-MRM1059>3.0.CO;2-W 10.1002/j.1538-7305.1944.tb00874.x 10.1109/42.232244 10.1002/mrm.1910360327 |
ContentType | Journal Article |
Copyright | 2011 Elsevier B.V. Copyright © 2011 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2011 Elsevier B.V. – notice: Copyright © 2011 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.media.2011.12.002 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1361-8423 |
EndPage | 548 |
ExternalDocumentID | 22209560 10_1016_j_media_2011_12_002 S1361841511001721 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABBQC ABJNI ABLVK ABMAC ABMZM ABXDB ABYKQ ACDAQ ACGFS ACIUM ACIWK ACNNM ACPRK ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV C45 CAG COF CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HX~ HZ~ IHE J1W JJJVA KOM LCYCR M41 MO0 N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SEL SES SEW SPC SPCBC SSH SST SSV SSZ T5K TEORI UHS ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION CGR CUY CVF ECM EIF NPM 7X8 EFKBS |
ID | FETCH-LOGICAL-c424t-f60f4473f1b2604e7fc0e23a5a514af6430285277fb9a509233fa087e5fd18983 |
IEDL.DBID | AIKHN |
ISSN | 1361-8415 1361-8423 |
IngestDate | Thu Sep 04 18:25:59 EDT 2025 Thu Apr 03 07:01:46 EDT 2025 Thu Apr 24 23:04:06 EDT 2025 Tue Jul 01 02:49:22 EDT 2025 Fri Feb 23 02:28:17 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Spatially variable noise Gaussian noise Low signal-to-noise ratio Rician noise Diffusion weighted imaging |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 Copyright © 2011 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c424t-f60f4473f1b2604e7fc0e23a5a514af6430285277fb9a509233fa087e5fd18983 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 22209560 |
PQID | 918577887 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_918577887 pubmed_primary_22209560 crossref_primary_10_1016_j_media_2011_12_002 crossref_citationtrail_10_1016_j_media_2011_12_002 elsevier_sciencedirect_doi_10_1016_j_media_2011_12_002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2012 2012-2-00 2012-Feb 20120201 |
PublicationDateYYYYMMDD | 2012-02-01 |
PublicationDate_xml | – month: 02 year: 2012 text: February 2012 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Medical image analysis |
PublicationTitleAlternate | Med Image Anal |
PublicationYear | 2012 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Chang, Jones, Pierpaoli (b0035) 2005; 53 Nowak (b0165) 1999; 8 Rousseeuw, Verboven (b0195) 2002; 40 Abramowitz, Stegun (b0005) 1974 Maximov, Grinberg, Shah (b0135) 2011; 213 Koay, Chang, Carew, Pierpaoli, Basser (b0090) 2006; 182 Dietrich, Heiland, Sartor (b0060) 2001; 45 Rousseeuw, Croux (b0190) 1993; 88 Andersson (b0025) 2008; 42 Landman, Bazin, Smith, Prince (b0115) 2009; 62 Grinberg, Farrher, Kaffanke, Oros-Peusquens, Shah (b0070) 2011; 57 Prah, Paulson, Nencka, Schmainda (b0170) 2010; 64 Makovski (b0125) 1996; 36 Anderson (b0020) 2001; 46 Andersen, Kirsch (b0015) 1996; 23 Thunberg, Zetterberg (b0220) 2007; 25 Rice (b0180) 1944; 23 Koay, Oezarslan, Basser (b0100) 2009; 197 Smith (b0215) 2002; 17 Mueller, Jerschow (b0150) 2006; 103 Miller, Joseph (b0145) 1993; 11 Henkelman (b0080) 1985; 12 Rousseeuw (b0185) 1991; 5 Gudbjartsson, Patz (b0075) 1995; 34 Nausner, Schlagnitweit, Smrecki, Yang, Jerschow, Mueller (b0155) 2009; 198 Clark, Le Bihan (b0045) 2000; 44 Sijbers, Poot, den Dekker, Pintjens (b0210) 2007; 52 Koay (b0110) 2011 Sijbers, den Dekker, Van Audekerke, Verhoye, Van Dyck (b0200) 1998; 16 Sijbers, den Dekker (b0205) 2004; 51 Chang, Rohde, Pierpaoli (b0040) 2005; 5747 McGibney, Smith (b0140) 1993; 20 Niendorf, Dijkhuizen, Norris, van Lookeren Campagn, Nicolay (b0160) 1996; 36 Verboven, Hubert (b0225) 2005; 75 Aja-Fernandez, Tristan-Vega, Alberola-Lopez (b0010) 2009; 27 Press, Teukolsky, Vetterling, Flannery (b0175) 2007 Brummer, Mersereau, Eisner, Lewine (b0030) 1993; 12 Manjon, Coupe, Marti-Bonmati, Collins, Robles (b0130) 2010; 31 Wirestam, Bibic, Laett, Brockstedt, Staahlberg (b0230) 2006; 56 Coupe, Manjon, Gedamu, Arnold, Robles, Collins (b0055) 2010; 14 Giraudeau, Mueller, Jerschow, Frydman (b0065) 2010; 489 Landman, Bazin, Prince (b0120) 2009; 27 Clark, Hedehus, Moseley (b0050) 2002; 47 Jones, Basser (b0085) 2004; 52 Koay, Oezarslan, Pierpaoli (b0105) 2009; 199 Koay, Basser (b0095) 2006; 179 Clark (10.1016/j.media.2011.12.002_b0050) 2002; 47 Verboven (10.1016/j.media.2011.12.002_b0225) 2005; 75 Thunberg (10.1016/j.media.2011.12.002_b0220) 2007; 25 Prah (10.1016/j.media.2011.12.002_b0170) 2010; 64 Gudbjartsson (10.1016/j.media.2011.12.002_b0075) 1995; 34 Manjon (10.1016/j.media.2011.12.002_b0130) 2010; 31 Rice (10.1016/j.media.2011.12.002_b0180) 1944; 23 Smith (10.1016/j.media.2011.12.002_b0215) 2002; 17 Clark (10.1016/j.media.2011.12.002_b0045) 2000; 44 Coupe (10.1016/j.media.2011.12.002_b0055) 2010; 14 Rousseeuw (10.1016/j.media.2011.12.002_b0195) 2002; 40 Sijbers (10.1016/j.media.2011.12.002_b0200) 1998; 16 Koay (10.1016/j.media.2011.12.002_b0110) 2011 Press (10.1016/j.media.2011.12.002_b0175) 2007 Abramowitz (10.1016/j.media.2011.12.002_b0005) 1974 Miller (10.1016/j.media.2011.12.002_b0145) 1993; 11 Niendorf (10.1016/j.media.2011.12.002_b0160) 1996; 36 Mueller (10.1016/j.media.2011.12.002_b0150) 2006; 103 Wirestam (10.1016/j.media.2011.12.002_b0230) 2006; 56 Giraudeau (10.1016/j.media.2011.12.002_b0065) 2010; 489 Maximov (10.1016/j.media.2011.12.002_b0135) 2011; 213 Andersson (10.1016/j.media.2011.12.002_b0025) 2008; 42 Landman (10.1016/j.media.2011.12.002_b0120) 2009; 27 Koay (10.1016/j.media.2011.12.002_b0095) 2006; 179 Brummer (10.1016/j.media.2011.12.002_b0030) 1993; 12 Nausner (10.1016/j.media.2011.12.002_b0155) 2009; 198 Rousseeuw (10.1016/j.media.2011.12.002_b0185) 1991; 5 Anderson (10.1016/j.media.2011.12.002_b0020) 2001; 46 Chang (10.1016/j.media.2011.12.002_b0040) 2005; 5747 McGibney (10.1016/j.media.2011.12.002_b0140) 1993; 20 Aja-Fernandez (10.1016/j.media.2011.12.002_b0010) 2009; 27 Jones (10.1016/j.media.2011.12.002_b0085) 2004; 52 Koay (10.1016/j.media.2011.12.002_b0105) 2009; 199 Nowak (10.1016/j.media.2011.12.002_b0165) 1999; 8 Chang (10.1016/j.media.2011.12.002_b0035) 2005; 53 Sijbers (10.1016/j.media.2011.12.002_b0210) 2007; 52 Rousseeuw (10.1016/j.media.2011.12.002_b0190) 1993; 88 Dietrich (10.1016/j.media.2011.12.002_b0060) 2001; 45 Sijbers (10.1016/j.media.2011.12.002_b0205) 2004; 51 Koay (10.1016/j.media.2011.12.002_b0100) 2009; 197 Andersen (10.1016/j.media.2011.12.002_b0015) 1996; 23 Makovski (10.1016/j.media.2011.12.002_b0125) 1996; 36 Grinberg (10.1016/j.media.2011.12.002_b0070) 2011; 57 Koay (10.1016/j.media.2011.12.002_b0090) 2006; 182 Henkelman (10.1016/j.media.2011.12.002_b0080) 1985; 12 Landman (10.1016/j.media.2011.12.002_b0115) 2009; 62 |
References_xml | – year: 2011 ident: b0110 article-title: Least squares approaches to diffusion tensor estimation publication-title: Diffusion MRI: Theory, Methods, and Applications – volume: 51 start-page: 586 year: 2004 end-page: 594 ident: b0205 article-title: Maximum likelihood estimation of signal amplitude and noise variance from MR data publication-title: Magn. Reson. Med. – volume: 12 start-page: 232 year: 1985 end-page: 233 ident: b0080 article-title: Measurement of signal intensities in the presence of noise in MR images publication-title: Med. Phys. – volume: 8 start-page: 1408 year: 1999 end-page: 1419 ident: b0165 article-title: Wavelet-based Rician noise removal for magnetic resonance imaging publication-title: IEEE Trans. Image Process. – volume: 62 start-page: 500 year: 2009 end-page: 509 ident: b0115 article-title: Robust estimation of spatially variable noise fields publication-title: Magn. Reson. Med. – volume: 56 start-page: 1114 year: 2006 end-page: 1120 ident: b0230 article-title: Denoising of complex MRI data by wavelet-domain filtering: application to high-b-value diffusion-weighted imaging publication-title: Magn. Reson. Med. – volume: 489 start-page: 107 year: 2010 end-page: 112 ident: b0065 article-title: H-1 NMR noise measurements in hyperpolarized liquid samples publication-title: Chem. Phys. Lett. – volume: 103 start-page: 6790 year: 2006 end-page: 6792 ident: b0150 article-title: Nuclear spin noise imaging publication-title: PNAS – year: 1974 ident: b0005 article-title: Handbook of Mathematical Functions – volume: 14 start-page: 483 year: 2010 end-page: 493 ident: b0055 article-title: Robust Rician noise estimation for MR images publication-title: Med. Image Anal. – volume: 5747 start-page: 1136 year: 2005 end-page: 1142 ident: b0040 article-title: An automatic method for estimating noise-induced signal variance in magnitude-reconstructed magnetic resonance images publication-title: Proc. Soc. Photo. Opt. Inst. Eng. – volume: 57 start-page: 1087 year: 2011 end-page: 1102 ident: b0070 article-title: Non-Gaussian diffusion in human brain tissue at high b-factors as examined by a combined diffusion kurtosis and biexponential diffusion tensor analysis publication-title: NeuroImage – volume: 199 start-page: 94 year: 2009 end-page: 103 ident: b0105 article-title: Probabilistic identification and estimation of noise (PIESNO): a self-consistent approach and its application in MRI publication-title: J. Magn. Reson. – volume: 40 start-page: 741 year: 2002 end-page: 758 ident: b0195 article-title: Robust estimation in very small samples publication-title: Comp. Stat. Data Anal. – volume: 36 start-page: 847 year: 1996 end-page: 857 ident: b0160 article-title: Biexponential diffusion attenuation in various states of brain tissue: implications for diffusion-weighted imaging publication-title: Magn. Reson. Med. – volume: 23 start-page: 857 year: 1996 end-page: 869 ident: b0015 article-title: Analysis of noise in phase contrast MR images publication-title: Med. Phys. – volume: 64 start-page: 418 year: 2010 end-page: 429 ident: b0170 article-title: A simple method for rectified noise floor suppression: phase-corrected real data reconstruction with application to diffusion-weighted imaging publication-title: Magn. Reson. Med. – volume: 213 start-page: 136 year: 2011 end-page: 144 ident: b0135 article-title: Robust tensor estimation in diffusion tensor imaging publication-title: J. Magn. Reson. – volume: 31 start-page: 192 year: 2010 end-page: 203 ident: b0130 article-title: Adaptive non-local means denoising of MR images with spatially varying noise levels publication-title: J. Magn. Reson. Imag. – volume: 47 start-page: 623 year: 2002 end-page: 628 ident: b0050 article-title: In vivo mapping of the fast and slow diffusion tensors in human brain publication-title: Magn. Reson. Med. – volume: 17 start-page: 143 year: 2002 end-page: 155 ident: b0215 article-title: Fast robust automated brain extraction publication-title: Human Brain Mapp. – volume: 12 start-page: 153 year: 1993 end-page: 219 ident: b0030 article-title: Automatic detection of brain contours in MRI data sets publication-title: IEEE Trans. Med. Imag. – volume: 5 start-page: 1 year: 1991 end-page: 20 ident: b0185 article-title: Tutorial to robust statistics publication-title: J. Chemometrics – volume: 52 start-page: 979 year: 2004 end-page: 993 ident: b0085 article-title: Squashing peanuts and smashing pumpkins: how noise distorts diffusion-weighted MR data publication-title: Magn. Reson. Med. – volume: 45 start-page: 448 year: 2001 end-page: 453 ident: b0060 article-title: Noise correction for the exact determination of apparent diffusion coefficients at low SNR publication-title: Magn. Reson. Med. – volume: 179 start-page: 317 year: 2006 end-page: 322 ident: b0095 article-title: Analytically exact correction scheme for signal extraction from noisy magnitude MR signals publication-title: J. Magn. Reson. – volume: 182 start-page: 115 year: 2006 end-page: 125 ident: b0090 article-title: A unifying theoretical and algorithmic framework for least squares methods of estimation in diffusion tensor imaging publication-title: J. Magn. Reson. – volume: 27 start-page: 1397 year: 2009 end-page: 1409 ident: b0010 article-title: Noise estimation in single- and multiple-coil magnetic resonance data based on statistical models publication-title: Magn. Reson. Imag. – volume: 197 start-page: 108 year: 2009 end-page: 119 ident: b0100 article-title: A signal transformational framework for breaking the noise floor and its application in MRI publication-title: J. Magn. Reson. – volume: 42 start-page: 1340 year: 2008 end-page: 1356 ident: b0025 article-title: Maximum a posteriori estimation of diffusion tensor parameters using a Rician noise model: why, how and but publication-title: NeuroImage – volume: 27 start-page: 741 year: 2009 end-page: 751 ident: b0120 article-title: Estimation and application of spatially variable noise fields in diffusion tensor imaging publication-title: Magn. Reson. Imag. – volume: 34 start-page: 910 year: 1995 end-page: 914 ident: b0075 article-title: The Rician distribution of noisy MRI data publication-title: Magn. Reson. Med. – volume: 46 start-page: 1174 year: 2001 end-page: 1188 ident: b0020 article-title: Theoretical analysis of the effects of noise on diffusion tensor imaging publication-title: Magn. Reson. Med. – volume: 53 start-page: 1088 year: 2005 end-page: 1095 ident: b0035 article-title: RESTORE: robust estimation of tensors by outlier rejection publication-title: Magn. Reson. Med. – year: 2007 ident: b0175 article-title: Numerical Recipes, The Art of Scientific Computing – volume: 23 start-page: 282 year: 1944 end-page: 444 ident: b0180 article-title: Mathematical analysis of random noise publication-title: Bell Syst. Tech. J. – volume: 25 start-page: 1089 year: 2007 end-page: 1094 ident: b0220 article-title: Noise distribution in SENSE- and GRAPPA-reconstructed images: a computer simulation study publication-title: Magn. Reson. Imag. – volume: 44 start-page: 852 year: 2000 end-page: 859 ident: b0045 article-title: Water diffusion compartmentation and anisotropy at high b values in the human brain publication-title: Magn. Reson. Med. – volume: 198 start-page: 73 year: 2009 end-page: 79 ident: b0155 article-title: Non-linearity and frequency shifts of nuclear magnetic spin-noise publication-title: J. Magn. Reson. – volume: 52 start-page: 1335 year: 2007 end-page: 1348 ident: b0210 article-title: Automatic estimation of the noise variance from the histogram of a magnetic resonance image publication-title: Phys. Med. Biol. – volume: 36 start-page: 494 year: 1996 end-page: 497 ident: b0125 article-title: Noise in MRI publication-title: Magn. Reson. Med. – volume: 88 start-page: 1273 year: 1993 end-page: 1356 ident: b0190 article-title: Alternatives to the median absolute deviation publication-title: J. Am. Stat. Assoc. – volume: 16 start-page: 87 year: 1998 end-page: 90 ident: b0200 article-title: Estimation of the noise in magnitude MR images publication-title: Magn. Reson. Imag. – volume: 11 start-page: 1051 year: 1993 end-page: 1056 ident: b0145 article-title: The use of power images to perform quantitative analysis on low SNR MR images publication-title: Magn. Reson. Imag. – volume: 75 start-page: 127 year: 2005 end-page: 136 ident: b0225 article-title: LIBRA: a MATLAB library for robust analysis publication-title: Chemomet. Intell. Lab. Syst. – volume: 20 start-page: 1077 year: 1993 end-page: 1078 ident: b0140 article-title: An unbiased signal-to-noise ratio measure for magnetic resonance images publication-title: Med. Phys. – volume: 11 start-page: 1051 year: 1993 ident: 10.1016/j.media.2011.12.002_b0145 article-title: The use of power images to perform quantitative analysis on low SNR MR images publication-title: Magn. Reson. Imag. doi: 10.1016/0730-725X(93)90225-3 – volume: 14 start-page: 483 year: 2010 ident: 10.1016/j.media.2011.12.002_b0055 article-title: Robust Rician noise estimation for MR images publication-title: Med. Image Anal. doi: 10.1016/j.media.2010.03.001 – volume: 62 start-page: 500 year: 2009 ident: 10.1016/j.media.2011.12.002_b0115 article-title: Robust estimation of spatially variable noise fields publication-title: Magn. Reson. Med. doi: 10.1002/mrm.22013 – volume: 40 start-page: 741 year: 2002 ident: 10.1016/j.media.2011.12.002_b0195 article-title: Robust estimation in very small samples publication-title: Comp. Stat. Data Anal. doi: 10.1016/S0167-9473(02)00078-6 – volume: 12 start-page: 232 year: 1985 ident: 10.1016/j.media.2011.12.002_b0080 article-title: Measurement of signal intensities in the presence of noise in MR images publication-title: Med. Phys. doi: 10.1118/1.595711 – volume: 213 start-page: 136 year: 2011 ident: 10.1016/j.media.2011.12.002_b0135 article-title: Robust tensor estimation in diffusion tensor imaging publication-title: J. Magn. Reson. doi: 10.1016/j.jmr.2011.09.035 – volume: 75 start-page: 127 year: 2005 ident: 10.1016/j.media.2011.12.002_b0225 article-title: LIBRA: a MATLAB library for robust analysis publication-title: Chemomet. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2004.06.003 – volume: 23 start-page: 857 year: 1996 ident: 10.1016/j.media.2011.12.002_b0015 article-title: Analysis of noise in phase contrast MR images publication-title: Med. Phys. doi: 10.1118/1.597729 – volume: 199 start-page: 94 year: 2009 ident: 10.1016/j.media.2011.12.002_b0105 article-title: Probabilistic identification and estimation of noise (PIESNO): a self-consistent approach and its application in MRI publication-title: J. Magn. Reson. doi: 10.1016/j.jmr.2009.03.005 – volume: 8 start-page: 1408 year: 1999 ident: 10.1016/j.media.2011.12.002_b0165 article-title: Wavelet-based Rician noise removal for magnetic resonance imaging publication-title: IEEE Trans. Image Process. doi: 10.1109/83.791966 – volume: 17 start-page: 143 year: 2002 ident: 10.1016/j.media.2011.12.002_b0215 article-title: Fast robust automated brain extraction publication-title: Human Brain Mapp. doi: 10.1002/hbm.10062 – volume: 25 start-page: 1089 year: 2007 ident: 10.1016/j.media.2011.12.002_b0220 article-title: Noise distribution in SENSE- and GRAPPA-reconstructed images: a computer simulation study publication-title: Magn. Reson. Imag. doi: 10.1016/j.mri.2006.11.003 – volume: 103 start-page: 6790 year: 2006 ident: 10.1016/j.media.2011.12.002_b0150 article-title: Nuclear spin noise imaging publication-title: PNAS doi: 10.1073/pnas.0601743103 – volume: 198 start-page: 73 year: 2009 ident: 10.1016/j.media.2011.12.002_b0155 article-title: Non-linearity and frequency shifts of nuclear magnetic spin-noise publication-title: J. Magn. Reson. doi: 10.1016/j.jmr.2009.01.019 – volume: 27 start-page: 1397 year: 2009 ident: 10.1016/j.media.2011.12.002_b0010 article-title: Noise estimation in single- and multiple-coil magnetic resonance data based on statistical models publication-title: Magn. Reson. Imag. doi: 10.1016/j.mri.2009.05.025 – volume: 197 start-page: 108 year: 2009 ident: 10.1016/j.media.2011.12.002_b0100 article-title: A signal transformational framework for breaking the noise floor and its application in MRI publication-title: J. Magn. Reson. doi: 10.1016/j.jmr.2008.11.015 – volume: 16 start-page: 87 year: 1998 ident: 10.1016/j.media.2011.12.002_b0200 article-title: Estimation of the noise in magnitude MR images publication-title: Magn. Reson. Imag. doi: 10.1016/S0730-725X(97)00199-9 – volume: 47 start-page: 623 year: 2002 ident: 10.1016/j.media.2011.12.002_b0050 article-title: In vivo mapping of the fast and slow diffusion tensors in human brain publication-title: Magn. Reson. Med. doi: 10.1002/mrm.10118 – year: 2007 ident: 10.1016/j.media.2011.12.002_b0175 – volume: 489 start-page: 107 year: 2010 ident: 10.1016/j.media.2011.12.002_b0065 article-title: H-1 NMR noise measurements in hyperpolarized liquid samples publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2010.02.026 – volume: 57 start-page: 1087 year: 2011 ident: 10.1016/j.media.2011.12.002_b0070 article-title: Non-Gaussian diffusion in human brain tissue at high b-factors as examined by a combined diffusion kurtosis and biexponential diffusion tensor analysis publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.04.050 – volume: 5 start-page: 1 year: 1991 ident: 10.1016/j.media.2011.12.002_b0185 article-title: Tutorial to robust statistics publication-title: J. Chemometrics doi: 10.1002/cem.1180050103 – volume: 52 start-page: 979 year: 2004 ident: 10.1016/j.media.2011.12.002_b0085 article-title: Squashing peanuts and smashing pumpkins: how noise distorts diffusion-weighted MR data publication-title: Magn. Reson. Med. doi: 10.1002/mrm.20283 – volume: 182 start-page: 115 year: 2006 ident: 10.1016/j.media.2011.12.002_b0090 article-title: A unifying theoretical and algorithmic framework for least squares methods of estimation in diffusion tensor imaging publication-title: J. Magn. Reson. doi: 10.1016/j.jmr.2006.06.020 – volume: 27 start-page: 741 year: 2009 ident: 10.1016/j.media.2011.12.002_b0120 article-title: Estimation and application of spatially variable noise fields in diffusion tensor imaging publication-title: Magn. Reson. Imag. doi: 10.1016/j.mri.2009.01.001 – volume: 20 start-page: 1077 year: 1993 ident: 10.1016/j.media.2011.12.002_b0140 article-title: An unbiased signal-to-noise ratio measure for magnetic resonance images publication-title: Med. Phys. doi: 10.1118/1.597004 – volume: 53 start-page: 1088 year: 2005 ident: 10.1016/j.media.2011.12.002_b0035 article-title: RESTORE: robust estimation of tensors by outlier rejection publication-title: Magn. Reson. Med. doi: 10.1002/mrm.20426 – volume: 42 start-page: 1340 year: 2008 ident: 10.1016/j.media.2011.12.002_b0025 article-title: Maximum a posteriori estimation of diffusion tensor parameters using a Rician noise model: why, how and but publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.05.053 – volume: 88 start-page: 1273 year: 1993 ident: 10.1016/j.media.2011.12.002_b0190 article-title: Alternatives to the median absolute deviation publication-title: J. Am. Stat. Assoc. doi: 10.2307/2291267 – volume: 44 start-page: 852 year: 2000 ident: 10.1016/j.media.2011.12.002_b0045 article-title: Water diffusion compartmentation and anisotropy at high b values in the human brain publication-title: Magn. Reson. Med. doi: 10.1002/1522-2594(200012)44:6<852::AID-MRM5>3.0.CO;2-A – volume: 64 start-page: 418 year: 2010 ident: 10.1016/j.media.2011.12.002_b0170 article-title: A simple method for rectified noise floor suppression: phase-corrected real data reconstruction with application to diffusion-weighted imaging publication-title: Magn. Reson. Med. doi: 10.1002/mrm.22407 – year: 2011 ident: 10.1016/j.media.2011.12.002_b0110 article-title: Least squares approaches to diffusion tensor estimation – volume: 36 start-page: 847 year: 1996 ident: 10.1016/j.media.2011.12.002_b0160 article-title: Biexponential diffusion attenuation in various states of brain tissue: implications for diffusion-weighted imaging publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910360607 – volume: 51 start-page: 586 year: 2004 ident: 10.1016/j.media.2011.12.002_b0205 article-title: Maximum likelihood estimation of signal amplitude and noise variance from MR data publication-title: Magn. Reson. Med. doi: 10.1002/mrm.10728 – volume: 52 start-page: 1335 year: 2007 ident: 10.1016/j.media.2011.12.002_b0210 article-title: Automatic estimation of the noise variance from the histogram of a magnetic resonance image publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/52/5/009 – volume: 5747 start-page: 1136 year: 2005 ident: 10.1016/j.media.2011.12.002_b0040 article-title: An automatic method for estimating noise-induced signal variance in magnitude-reconstructed magnetic resonance images publication-title: Proc. Soc. Photo. Opt. Inst. Eng. – year: 1974 ident: 10.1016/j.media.2011.12.002_b0005 – volume: 56 start-page: 1114 year: 2006 ident: 10.1016/j.media.2011.12.002_b0230 article-title: Denoising of complex MRI data by wavelet-domain filtering: application to high-b-value diffusion-weighted imaging publication-title: Magn. Reson. Med. doi: 10.1002/mrm.21036 – volume: 31 start-page: 192 year: 2010 ident: 10.1016/j.media.2011.12.002_b0130 article-title: Adaptive non-local means denoising of MR images with spatially varying noise levels publication-title: J. Magn. Reson. Imag. doi: 10.1002/jmri.22003 – volume: 34 start-page: 910 year: 1995 ident: 10.1016/j.media.2011.12.002_b0075 article-title: The Rician distribution of noisy MRI data publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910340618 – volume: 179 start-page: 317 year: 2006 ident: 10.1016/j.media.2011.12.002_b0095 article-title: Analytically exact correction scheme for signal extraction from noisy magnitude MR signals publication-title: J. Magn. Reson. doi: 10.1016/j.jmr.2006.01.016 – volume: 46 start-page: 1174 year: 2001 ident: 10.1016/j.media.2011.12.002_b0020 article-title: Theoretical analysis of the effects of noise on diffusion tensor imaging publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1315 – volume: 45 start-page: 448 year: 2001 ident: 10.1016/j.media.2011.12.002_b0060 article-title: Noise correction for the exact determination of apparent diffusion coefficients at low SNR publication-title: Magn. Reson. Med. doi: 10.1002/1522-2594(200103)45:3<448::AID-MRM1059>3.0.CO;2-W – volume: 23 start-page: 282 year: 1944 ident: 10.1016/j.media.2011.12.002_b0180 article-title: Mathematical analysis of random noise publication-title: Bell Syst. Tech. J. doi: 10.1002/j.1538-7305.1944.tb00874.x – volume: 12 start-page: 153 year: 1993 ident: 10.1016/j.media.2011.12.002_b0030 article-title: Automatic detection of brain contours in MRI data sets publication-title: IEEE Trans. Med. Imag. doi: 10.1109/42.232244 – volume: 36 start-page: 494 year: 1996 ident: 10.1016/j.media.2011.12.002_b0125 article-title: Noise in MRI publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910360327 |
SSID | ssj0007440 |
Score | 2.193314 |
Snippet | [Display omitted]
► Spatially variable noise correction algorithm is applied with the Rician correction. ► Automatic detection of a regions with the Gaussian... Magnetic resonance images tend to be influenced by various random factors usually referred to as "noise". The principal sources of noise and related artefacts... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 536 |
SubjectTerms | Algorithms Artificial Intelligence Brain - anatomy & histology Diffusion Magnetic Resonance Imaging - methods Diffusion weighted imaging Gaussian noise Humans Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Low signal-to-noise ratio Pattern Recognition, Automated - methods Reproducibility of Results Rician noise Sensitivity and Specificity Spatially variable noise |
Title | Spatially variable Rician noise in magnetic resonance imaging |
URI | https://dx.doi.org/10.1016/j.media.2011.12.002 https://www.ncbi.nlm.nih.gov/pubmed/22209560 https://www.proquest.com/docview/918577887 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB6FRELtoaK8mrZEPvTIEq8f8e4RoaIACocWJG6W17FRUNggCEhc-ts79nojkAqHHtday9bYnvnGnvkG4AcLyZxyWmYOzQ86KNJklZAqo8xYtCdW0ZghNzkfjS_F6ZW86sBRmwsTwiqT7m90etTWqWWYpDm8m82Gv3MeipWgxcobR2YNejjySHahd3hyNj5fKeTAgdekX-VZ6NCSD8Uwr5ig0VB5hmvBdL3yDwP1FgCNhuh4Az4lBEkOm0l-ho6rN-HjC17BTVifpBfzLYg1h3GPzZ_JE7rFIVGK_IpXGaRezB4cmdXk1lzXIZeRoOu9CAQc2Hobqxdtw-Xxz4ujcZZKJmRWMLHM_Ih6IRT3eYWOinDKW-oYN9IgMDIe4QfiCcmU8lVpECswzr2hhXLST_OiLPgOdOtF7b4AmRpb2aJw3iouuC0qJQzlVkxpWUhqWR9YKydtE594KGsx123g2I2OwtVBuDpnGoXbh_1Vp7uGTuP930ftAuhXu0Kjwn-_I2mXS-N5CY8gpnaLxwddBvKrEELZh91mGVcTQagUaBnp1_8d9Rt8wC_WBHV_h-7y_tHtIWZZVgNYO_iTD9LO_Atjr-dU |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB5RkNpyqCgtJVBaH3rsNl4_4t0jiooCJDnwkLhZXsdGi2ATkVCpF347Y-9uClLhwNVra62xPfONPfMNwA8WkjnlJE8cmh90UKRJCiFVQpmxaE-sojFDbjTuDc7F0YW8WIF-mwsTwiob3V_r9Kitm5ZuI83urCy7pykPxUrQYqW1I_MG1oTkKsT1_br_F-cRGPDq5Ks0Cd1b6qEY5BXTM2oiz3Ap2Fyu_Mc8PQc_oxk62IAPDX4k-_UUP8KKqzZh_RGr4Ca8HTXv5Z8gVhzGHXb9l_xBpzikSZGTeJFBqmk5d6SsyI25rEImI0HHexroN7D1JtYu-gznB7_P-oOkKZiQWMHEIvE96oVQ3KcFuinCKW-pY9xIg7DIeAQfiCYkU8oXuUGkwDj3hmbKST9JszzjW7BaTSu3DWRibGGzzHmruOA2K5QwlFsxoXkmqWUdYK2ctG3YxENRi2vdho1d6ShcHYSrU6ZRuB34uRw0q8k0Xu7eaxdAP9kTGtX9ywNJu1waT0t4AjGVm97NdR6or0IAZQe-1Mu4nAgCpUDKSHde-9fv8G5wNhrq4eH4eBfe4xdWh3d_hdXF7Z3bQ_SyKL7F3fkAUlToHw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatially+variable+Rician+noise+in+magnetic+resonance+imaging&rft.jtitle=Medical+image+analysis&rft.au=Maximov%2C+Ivan+I.&rft.au=Farrher%2C+Ezequiel&rft.au=Grinberg%2C+Farida&rft.au=Jon+Shah%2C+N.&rft.date=2012-02-01&rft.issn=1361-8415&rft.volume=16&rft.issue=2&rft.spage=536&rft.epage=548&rft_id=info:doi/10.1016%2Fj.media.2011.12.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_media_2011_12_002 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon |