Spatially variable Rician noise in magnetic resonance imaging

[Display omitted] ► Spatially variable noise correction algorithm is applied with the Rician correction. ► Automatic detection of a regions with the Gaussian or Rician noise distributions. ► Improved noise correction scheme for the diffusion-weighted imaging. Magnetic resonance images tend to be inf...

Full description

Saved in:
Bibliographic Details
Published inMedical image analysis Vol. 16; no. 2; pp. 536 - 548
Main Authors Maximov, Ivan I., Farrher, Ezequiel, Grinberg, Farida, Jon Shah, N.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.02.2012
Subjects
Online AccessGet full text
ISSN1361-8415
1361-8423
1361-8423
DOI10.1016/j.media.2011.12.002

Cover

Abstract [Display omitted] ► Spatially variable noise correction algorithm is applied with the Rician correction. ► Automatic detection of a regions with the Gaussian or Rician noise distributions. ► Improved noise correction scheme for the diffusion-weighted imaging. Magnetic resonance images tend to be influenced by various random factors usually referred to as “noise”. The principal sources of noise and related artefacts can be divided into two types: arising from hardware (acquisition coil arrays, gradient coils, field inhomogeneity); and arising from the subject (physiological noise including body motion, cardiac pulsation or respiratory motion). These factors negatively affect the resolution and reproducibility of the images. Therefore, a proper noise treatment is important for improving the performance of clinical and research investigations. Noise reduction becomes especially critical for the images with a low signal-to-noise ratio, such as those typically acquired in diffusion tensor imaging at high diffusion weightings. The standard methods of signal correction usually assume a uniform distribution of the standard deviation of the noise across the image and evaluate a single correction parameter for the whole image. We pursue a more advanced approach based on the assumption of an inhomogeneous distribution of noise in space and evaluate correction factors for each voxel individually. The Rician nature of the underlying noise is considered for low and high signal-to-noise ratios. The approach developed here has been examined using numerical simulations and in vivo brain diffusion tensor imaging experiments. The efficacy and usefulness of this approach is demonstrated here and the resultant effective tool is described.
AbstractList Magnetic resonance images tend to be influenced by various random factors usually referred to as "noise". The principal sources of noise and related artefacts can be divided into two types: arising from hardware (acquisition coil arrays, gradient coils, field inhomogeneity); and arising from the subject (physiological noise including body motion, cardiac pulsation or respiratory motion). These factors negatively affect the resolution and reproducibility of the images. Therefore, a proper noise treatment is important for improving the performance of clinical and research investigations. Noise reduction becomes especially critical for the images with a low signal-to-noise ratio, such as those typically acquired in diffusion tensor imaging at high diffusion weightings. The standard methods of signal correction usually assume a uniform distribution of the standard deviation of the noise across the image and evaluate a single correction parameter for the whole image. We pursue a more advanced approach based on the assumption of an inhomogeneous distribution of noise in space and evaluate correction factors for each voxel individually. The Rician nature of the underlying noise is considered for low and high signal-to-noise ratios. The approach developed here has been examined using numerical simulations and in vivo brain diffusion tensor imaging experiments. The efficacy and usefulness of this approach is demonstrated here and the resultant effective tool is described.
Magnetic resonance images tend to be influenced by various random factors usually referred to as "noise". The principal sources of noise and related artefacts can be divided into two types: arising from hardware (acquisition coil arrays, gradient coils, field inhomogeneity); and arising from the subject (physiological noise including body motion, cardiac pulsation or respiratory motion). These factors negatively affect the resolution and reproducibility of the images. Therefore, a proper noise treatment is important for improving the performance of clinical and research investigations. Noise reduction becomes especially critical for the images with a low signal-to-noise ratio, such as those typically acquired in diffusion tensor imaging at high diffusion weightings. The standard methods of signal correction usually assume a uniform distribution of the standard deviation of the noise across the image and evaluate a single correction parameter for the whole image. We pursue a more advanced approach based on the assumption of an inhomogeneous distribution of noise in space and evaluate correction factors for each voxel individually. The Rician nature of the underlying noise is considered for low and high signal-to-noise ratios. The approach developed here has been examined using numerical simulations and in vivo brain diffusion tensor imaging experiments. The efficacy and usefulness of this approach is demonstrated here and the resultant effective tool is described.Magnetic resonance images tend to be influenced by various random factors usually referred to as "noise". The principal sources of noise and related artefacts can be divided into two types: arising from hardware (acquisition coil arrays, gradient coils, field inhomogeneity); and arising from the subject (physiological noise including body motion, cardiac pulsation or respiratory motion). These factors negatively affect the resolution and reproducibility of the images. Therefore, a proper noise treatment is important for improving the performance of clinical and research investigations. Noise reduction becomes especially critical for the images with a low signal-to-noise ratio, such as those typically acquired in diffusion tensor imaging at high diffusion weightings. The standard methods of signal correction usually assume a uniform distribution of the standard deviation of the noise across the image and evaluate a single correction parameter for the whole image. We pursue a more advanced approach based on the assumption of an inhomogeneous distribution of noise in space and evaluate correction factors for each voxel individually. The Rician nature of the underlying noise is considered for low and high signal-to-noise ratios. The approach developed here has been examined using numerical simulations and in vivo brain diffusion tensor imaging experiments. The efficacy and usefulness of this approach is demonstrated here and the resultant effective tool is described.
[Display omitted] ► Spatially variable noise correction algorithm is applied with the Rician correction. ► Automatic detection of a regions with the Gaussian or Rician noise distributions. ► Improved noise correction scheme for the diffusion-weighted imaging. Magnetic resonance images tend to be influenced by various random factors usually referred to as “noise”. The principal sources of noise and related artefacts can be divided into two types: arising from hardware (acquisition coil arrays, gradient coils, field inhomogeneity); and arising from the subject (physiological noise including body motion, cardiac pulsation or respiratory motion). These factors negatively affect the resolution and reproducibility of the images. Therefore, a proper noise treatment is important for improving the performance of clinical and research investigations. Noise reduction becomes especially critical for the images with a low signal-to-noise ratio, such as those typically acquired in diffusion tensor imaging at high diffusion weightings. The standard methods of signal correction usually assume a uniform distribution of the standard deviation of the noise across the image and evaluate a single correction parameter for the whole image. We pursue a more advanced approach based on the assumption of an inhomogeneous distribution of noise in space and evaluate correction factors for each voxel individually. The Rician nature of the underlying noise is considered for low and high signal-to-noise ratios. The approach developed here has been examined using numerical simulations and in vivo brain diffusion tensor imaging experiments. The efficacy and usefulness of this approach is demonstrated here and the resultant effective tool is described.
Author Farrher, Ezequiel
Grinberg, Farida
Jon Shah, N.
Maximov, Ivan I.
Author_xml – sequence: 1
  givenname: Ivan I.
  surname: Maximov
  fullname: Maximov, Ivan I.
  email: i.maximov@fz-juelich.de
  organization: Institute of Neuroscience and Medicine (INM-4), Research Centre Jülich GmbH, 52425 Jülich, Germany
– sequence: 2
  givenname: Ezequiel
  surname: Farrher
  fullname: Farrher, Ezequiel
  organization: Institute of Neuroscience and Medicine (INM-4), Research Centre Jülich GmbH, 52425 Jülich, Germany
– sequence: 3
  givenname: Farida
  surname: Grinberg
  fullname: Grinberg, Farida
  organization: Institute of Neuroscience and Medicine (INM-4), Research Centre Jülich GmbH, 52425 Jülich, Germany
– sequence: 4
  givenname: N.
  surname: Jon Shah
  fullname: Jon Shah, N.
  organization: Institute of Neuroscience and Medicine (INM-4), Research Centre Jülich GmbH, 52425 Jülich, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22209560$$D View this record in MEDLINE/PubMed
BookMark eNqFkMtKAzEUQIMo9qFfIMjsXHW8ecxkZtGFiC8QBB_rkKY3JWWaqcm00L83tbULF7pKuJwTcs-AHPvWIyEXFHIKtLye5wucOp0zoDSnLAdgR6RPeUlHlWD8-HCnRY8MYpwDgBQCTkmPMQZ1UUKfjN-WunO6aTbZWgenJw1mr8447TPfuoiZ89lCzzx2zmQBY-u1N2maZs7PzsiJ1U3E8_05JB_3d--3j6Pnl4en25vnkRFMdCNbghVCcksnrASB0hpAxnWhCyq0LQUHVhVMSjupdQE149xqqCQWdkqruuJDcrV7dxnazxXGTi1cNNg02mO7iqqmVSFlVclEXu7J1STlUcuQvho26mfjBPAdYEIbY0B7QCiobVc1V99d1barokylrsmqf1nGdSlc67ugXfOPO965mAqtHQYVjcNUceoCmk5NW_en_wXHD5KC
CitedBy_id crossref_primary_10_1109_TMI_2014_2380830
crossref_primary_10_1002_mrm_25351
crossref_primary_10_1080_21681163_2021_1944914
crossref_primary_10_1002_mrm_30208
crossref_primary_10_4015_S1016237223500370
crossref_primary_10_1016_j_mri_2014_03_004
crossref_primary_10_1016_j_media_2014_11_005
crossref_primary_10_1109_TMI_2018_2878509
crossref_primary_10_1590_2446_4740_02017
crossref_primary_10_1055_a_1762_5854
crossref_primary_10_1016_j_media_2021_102276
crossref_primary_10_1109_TPAMI_2016_2625789
crossref_primary_10_3233_THC_212882
crossref_primary_10_1002_mrm_24728
crossref_primary_10_1016_j_mri_2014_08_028
crossref_primary_10_1038_s41598_020_58212_2
crossref_primary_10_1186_s12880_015_0081_0
crossref_primary_10_1002_mrm_24529
crossref_primary_10_1002_hbm_24691
crossref_primary_10_1016_j_media_2014_08_004
crossref_primary_10_1016_j_jneumeth_2020_108951
crossref_primary_10_1002_ima_22682
crossref_primary_10_1002_mrm_28773
crossref_primary_10_1002_mrm_25165
crossref_primary_10_1007_s11760_016_0878_5
crossref_primary_10_31159_ksmrt_2023_33_4_13
crossref_primary_10_1016_j_neuroimage_2013_07_086
crossref_primary_10_1016_j_patrec_2018_02_007
crossref_primary_10_1016_j_ejmp_2017_07_002
crossref_primary_10_1002_mrm_26059
crossref_primary_10_1016_j_bspc_2021_102737
crossref_primary_10_1371_journal_pone_0094531
crossref_primary_10_1016_j_neuroimage_2020_116682
crossref_primary_10_3389_fcvm_2022_822269
crossref_primary_10_1002_mrm_24914
Cites_doi 10.1016/0730-725X(93)90225-3
10.1016/j.media.2010.03.001
10.1002/mrm.22013
10.1016/S0167-9473(02)00078-6
10.1118/1.595711
10.1016/j.jmr.2011.09.035
10.1016/j.chemolab.2004.06.003
10.1118/1.597729
10.1016/j.jmr.2009.03.005
10.1109/83.791966
10.1002/hbm.10062
10.1016/j.mri.2006.11.003
10.1073/pnas.0601743103
10.1016/j.jmr.2009.01.019
10.1016/j.mri.2009.05.025
10.1016/j.jmr.2008.11.015
10.1016/S0730-725X(97)00199-9
10.1002/mrm.10118
10.1016/j.cplett.2010.02.026
10.1016/j.neuroimage.2011.04.050
10.1002/cem.1180050103
10.1002/mrm.20283
10.1016/j.jmr.2006.06.020
10.1016/j.mri.2009.01.001
10.1118/1.597004
10.1002/mrm.20426
10.1016/j.neuroimage.2008.05.053
10.2307/2291267
10.1002/1522-2594(200012)44:6<852::AID-MRM5>3.0.CO;2-A
10.1002/mrm.22407
10.1002/mrm.1910360607
10.1002/mrm.10728
10.1088/0031-9155/52/5/009
10.1002/mrm.21036
10.1002/jmri.22003
10.1002/mrm.1910340618
10.1016/j.jmr.2006.01.016
10.1002/mrm.1315
10.1002/1522-2594(200103)45:3<448::AID-MRM1059>3.0.CO;2-W
10.1002/j.1538-7305.1944.tb00874.x
10.1109/42.232244
10.1002/mrm.1910360327
ContentType Journal Article
Copyright 2011 Elsevier B.V.
Copyright © 2011 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2011 Elsevier B.V.
– notice: Copyright © 2011 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.media.2011.12.002
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1361-8423
EndPage 548
ExternalDocumentID 22209560
10_1016_j_media_2011_12_002
S1361841511001721
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABBQC
ABJNI
ABLVK
ABMAC
ABMZM
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
C45
CAG
COF
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HX~
HZ~
IHE
J1W
JJJVA
KOM
LCYCR
M41
MO0
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
TEORI
UHS
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
ID FETCH-LOGICAL-c424t-f60f4473f1b2604e7fc0e23a5a514af6430285277fb9a509233fa087e5fd18983
IEDL.DBID AIKHN
ISSN 1361-8415
1361-8423
IngestDate Thu Sep 04 18:25:59 EDT 2025
Thu Apr 03 07:01:46 EDT 2025
Thu Apr 24 23:04:06 EDT 2025
Tue Jul 01 02:49:22 EDT 2025
Fri Feb 23 02:28:17 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Spatially variable noise
Gaussian noise
Low signal-to-noise ratio
Rician noise
Diffusion weighted imaging
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
Copyright © 2011 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c424t-f60f4473f1b2604e7fc0e23a5a514af6430285277fb9a509233fa087e5fd18983
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 22209560
PQID 918577887
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_918577887
pubmed_primary_22209560
crossref_primary_10_1016_j_media_2011_12_002
crossref_citationtrail_10_1016_j_media_2011_12_002
elsevier_sciencedirect_doi_10_1016_j_media_2011_12_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2012
2012-2-00
2012-Feb
20120201
PublicationDateYYYYMMDD 2012-02-01
PublicationDate_xml – month: 02
  year: 2012
  text: February 2012
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Medical image analysis
PublicationTitleAlternate Med Image Anal
PublicationYear 2012
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Chang, Jones, Pierpaoli (b0035) 2005; 53
Nowak (b0165) 1999; 8
Rousseeuw, Verboven (b0195) 2002; 40
Abramowitz, Stegun (b0005) 1974
Maximov, Grinberg, Shah (b0135) 2011; 213
Koay, Chang, Carew, Pierpaoli, Basser (b0090) 2006; 182
Dietrich, Heiland, Sartor (b0060) 2001; 45
Rousseeuw, Croux (b0190) 1993; 88
Andersson (b0025) 2008; 42
Landman, Bazin, Smith, Prince (b0115) 2009; 62
Grinberg, Farrher, Kaffanke, Oros-Peusquens, Shah (b0070) 2011; 57
Prah, Paulson, Nencka, Schmainda (b0170) 2010; 64
Makovski (b0125) 1996; 36
Anderson (b0020) 2001; 46
Andersen, Kirsch (b0015) 1996; 23
Thunberg, Zetterberg (b0220) 2007; 25
Rice (b0180) 1944; 23
Koay, Oezarslan, Basser (b0100) 2009; 197
Smith (b0215) 2002; 17
Mueller, Jerschow (b0150) 2006; 103
Miller, Joseph (b0145) 1993; 11
Henkelman (b0080) 1985; 12
Rousseeuw (b0185) 1991; 5
Gudbjartsson, Patz (b0075) 1995; 34
Nausner, Schlagnitweit, Smrecki, Yang, Jerschow, Mueller (b0155) 2009; 198
Clark, Le Bihan (b0045) 2000; 44
Sijbers, Poot, den Dekker, Pintjens (b0210) 2007; 52
Koay (b0110) 2011
Sijbers, den Dekker, Van Audekerke, Verhoye, Van Dyck (b0200) 1998; 16
Sijbers, den Dekker (b0205) 2004; 51
Chang, Rohde, Pierpaoli (b0040) 2005; 5747
McGibney, Smith (b0140) 1993; 20
Niendorf, Dijkhuizen, Norris, van Lookeren Campagn, Nicolay (b0160) 1996; 36
Verboven, Hubert (b0225) 2005; 75
Aja-Fernandez, Tristan-Vega, Alberola-Lopez (b0010) 2009; 27
Press, Teukolsky, Vetterling, Flannery (b0175) 2007
Brummer, Mersereau, Eisner, Lewine (b0030) 1993; 12
Manjon, Coupe, Marti-Bonmati, Collins, Robles (b0130) 2010; 31
Wirestam, Bibic, Laett, Brockstedt, Staahlberg (b0230) 2006; 56
Coupe, Manjon, Gedamu, Arnold, Robles, Collins (b0055) 2010; 14
Giraudeau, Mueller, Jerschow, Frydman (b0065) 2010; 489
Landman, Bazin, Prince (b0120) 2009; 27
Clark, Hedehus, Moseley (b0050) 2002; 47
Jones, Basser (b0085) 2004; 52
Koay, Oezarslan, Pierpaoli (b0105) 2009; 199
Koay, Basser (b0095) 2006; 179
Clark (10.1016/j.media.2011.12.002_b0050) 2002; 47
Verboven (10.1016/j.media.2011.12.002_b0225) 2005; 75
Thunberg (10.1016/j.media.2011.12.002_b0220) 2007; 25
Prah (10.1016/j.media.2011.12.002_b0170) 2010; 64
Gudbjartsson (10.1016/j.media.2011.12.002_b0075) 1995; 34
Manjon (10.1016/j.media.2011.12.002_b0130) 2010; 31
Rice (10.1016/j.media.2011.12.002_b0180) 1944; 23
Smith (10.1016/j.media.2011.12.002_b0215) 2002; 17
Clark (10.1016/j.media.2011.12.002_b0045) 2000; 44
Coupe (10.1016/j.media.2011.12.002_b0055) 2010; 14
Rousseeuw (10.1016/j.media.2011.12.002_b0195) 2002; 40
Sijbers (10.1016/j.media.2011.12.002_b0200) 1998; 16
Koay (10.1016/j.media.2011.12.002_b0110) 2011
Press (10.1016/j.media.2011.12.002_b0175) 2007
Abramowitz (10.1016/j.media.2011.12.002_b0005) 1974
Miller (10.1016/j.media.2011.12.002_b0145) 1993; 11
Niendorf (10.1016/j.media.2011.12.002_b0160) 1996; 36
Mueller (10.1016/j.media.2011.12.002_b0150) 2006; 103
Wirestam (10.1016/j.media.2011.12.002_b0230) 2006; 56
Giraudeau (10.1016/j.media.2011.12.002_b0065) 2010; 489
Maximov (10.1016/j.media.2011.12.002_b0135) 2011; 213
Andersson (10.1016/j.media.2011.12.002_b0025) 2008; 42
Landman (10.1016/j.media.2011.12.002_b0120) 2009; 27
Koay (10.1016/j.media.2011.12.002_b0095) 2006; 179
Brummer (10.1016/j.media.2011.12.002_b0030) 1993; 12
Nausner (10.1016/j.media.2011.12.002_b0155) 2009; 198
Rousseeuw (10.1016/j.media.2011.12.002_b0185) 1991; 5
Anderson (10.1016/j.media.2011.12.002_b0020) 2001; 46
Chang (10.1016/j.media.2011.12.002_b0040) 2005; 5747
McGibney (10.1016/j.media.2011.12.002_b0140) 1993; 20
Aja-Fernandez (10.1016/j.media.2011.12.002_b0010) 2009; 27
Jones (10.1016/j.media.2011.12.002_b0085) 2004; 52
Koay (10.1016/j.media.2011.12.002_b0105) 2009; 199
Nowak (10.1016/j.media.2011.12.002_b0165) 1999; 8
Chang (10.1016/j.media.2011.12.002_b0035) 2005; 53
Sijbers (10.1016/j.media.2011.12.002_b0210) 2007; 52
Rousseeuw (10.1016/j.media.2011.12.002_b0190) 1993; 88
Dietrich (10.1016/j.media.2011.12.002_b0060) 2001; 45
Sijbers (10.1016/j.media.2011.12.002_b0205) 2004; 51
Koay (10.1016/j.media.2011.12.002_b0100) 2009; 197
Andersen (10.1016/j.media.2011.12.002_b0015) 1996; 23
Makovski (10.1016/j.media.2011.12.002_b0125) 1996; 36
Grinberg (10.1016/j.media.2011.12.002_b0070) 2011; 57
Koay (10.1016/j.media.2011.12.002_b0090) 2006; 182
Henkelman (10.1016/j.media.2011.12.002_b0080) 1985; 12
Landman (10.1016/j.media.2011.12.002_b0115) 2009; 62
References_xml – year: 2011
  ident: b0110
  article-title: Least squares approaches to diffusion tensor estimation
  publication-title: Diffusion MRI: Theory, Methods, and Applications
– volume: 51
  start-page: 586
  year: 2004
  end-page: 594
  ident: b0205
  article-title: Maximum likelihood estimation of signal amplitude and noise variance from MR data
  publication-title: Magn. Reson. Med.
– volume: 12
  start-page: 232
  year: 1985
  end-page: 233
  ident: b0080
  article-title: Measurement of signal intensities in the presence of noise in MR images
  publication-title: Med. Phys.
– volume: 8
  start-page: 1408
  year: 1999
  end-page: 1419
  ident: b0165
  article-title: Wavelet-based Rician noise removal for magnetic resonance imaging
  publication-title: IEEE Trans. Image Process.
– volume: 62
  start-page: 500
  year: 2009
  end-page: 509
  ident: b0115
  article-title: Robust estimation of spatially variable noise fields
  publication-title: Magn. Reson. Med.
– volume: 56
  start-page: 1114
  year: 2006
  end-page: 1120
  ident: b0230
  article-title: Denoising of complex MRI data by wavelet-domain filtering: application to high-b-value diffusion-weighted imaging
  publication-title: Magn. Reson. Med.
– volume: 489
  start-page: 107
  year: 2010
  end-page: 112
  ident: b0065
  article-title: H-1 NMR noise measurements in hyperpolarized liquid samples
  publication-title: Chem. Phys. Lett.
– volume: 103
  start-page: 6790
  year: 2006
  end-page: 6792
  ident: b0150
  article-title: Nuclear spin noise imaging
  publication-title: PNAS
– year: 1974
  ident: b0005
  article-title: Handbook of Mathematical Functions
– volume: 14
  start-page: 483
  year: 2010
  end-page: 493
  ident: b0055
  article-title: Robust Rician noise estimation for MR images
  publication-title: Med. Image Anal.
– volume: 5747
  start-page: 1136
  year: 2005
  end-page: 1142
  ident: b0040
  article-title: An automatic method for estimating noise-induced signal variance in magnitude-reconstructed magnetic resonance images
  publication-title: Proc. Soc. Photo. Opt. Inst. Eng.
– volume: 57
  start-page: 1087
  year: 2011
  end-page: 1102
  ident: b0070
  article-title: Non-Gaussian diffusion in human brain tissue at high b-factors as examined by a combined diffusion kurtosis and biexponential diffusion tensor analysis
  publication-title: NeuroImage
– volume: 199
  start-page: 94
  year: 2009
  end-page: 103
  ident: b0105
  article-title: Probabilistic identification and estimation of noise (PIESNO): a self-consistent approach and its application in MRI
  publication-title: J. Magn. Reson.
– volume: 40
  start-page: 741
  year: 2002
  end-page: 758
  ident: b0195
  article-title: Robust estimation in very small samples
  publication-title: Comp. Stat. Data Anal.
– volume: 36
  start-page: 847
  year: 1996
  end-page: 857
  ident: b0160
  article-title: Biexponential diffusion attenuation in various states of brain tissue: implications for diffusion-weighted imaging
  publication-title: Magn. Reson. Med.
– volume: 23
  start-page: 857
  year: 1996
  end-page: 869
  ident: b0015
  article-title: Analysis of noise in phase contrast MR images
  publication-title: Med. Phys.
– volume: 64
  start-page: 418
  year: 2010
  end-page: 429
  ident: b0170
  article-title: A simple method for rectified noise floor suppression: phase-corrected real data reconstruction with application to diffusion-weighted imaging
  publication-title: Magn. Reson. Med.
– volume: 213
  start-page: 136
  year: 2011
  end-page: 144
  ident: b0135
  article-title: Robust tensor estimation in diffusion tensor imaging
  publication-title: J. Magn. Reson.
– volume: 31
  start-page: 192
  year: 2010
  end-page: 203
  ident: b0130
  article-title: Adaptive non-local means denoising of MR images with spatially varying noise levels
  publication-title: J. Magn. Reson. Imag.
– volume: 47
  start-page: 623
  year: 2002
  end-page: 628
  ident: b0050
  article-title: In vivo mapping of the fast and slow diffusion tensors in human brain
  publication-title: Magn. Reson. Med.
– volume: 17
  start-page: 143
  year: 2002
  end-page: 155
  ident: b0215
  article-title: Fast robust automated brain extraction
  publication-title: Human Brain Mapp.
– volume: 12
  start-page: 153
  year: 1993
  end-page: 219
  ident: b0030
  article-title: Automatic detection of brain contours in MRI data sets
  publication-title: IEEE Trans. Med. Imag.
– volume: 5
  start-page: 1
  year: 1991
  end-page: 20
  ident: b0185
  article-title: Tutorial to robust statistics
  publication-title: J. Chemometrics
– volume: 52
  start-page: 979
  year: 2004
  end-page: 993
  ident: b0085
  article-title: Squashing peanuts and smashing pumpkins: how noise distorts diffusion-weighted MR data
  publication-title: Magn. Reson. Med.
– volume: 45
  start-page: 448
  year: 2001
  end-page: 453
  ident: b0060
  article-title: Noise correction for the exact determination of apparent diffusion coefficients at low SNR
  publication-title: Magn. Reson. Med.
– volume: 179
  start-page: 317
  year: 2006
  end-page: 322
  ident: b0095
  article-title: Analytically exact correction scheme for signal extraction from noisy magnitude MR signals
  publication-title: J. Magn. Reson.
– volume: 182
  start-page: 115
  year: 2006
  end-page: 125
  ident: b0090
  article-title: A unifying theoretical and algorithmic framework for least squares methods of estimation in diffusion tensor imaging
  publication-title: J. Magn. Reson.
– volume: 27
  start-page: 1397
  year: 2009
  end-page: 1409
  ident: b0010
  article-title: Noise estimation in single- and multiple-coil magnetic resonance data based on statistical models
  publication-title: Magn. Reson. Imag.
– volume: 197
  start-page: 108
  year: 2009
  end-page: 119
  ident: b0100
  article-title: A signal transformational framework for breaking the noise floor and its application in MRI
  publication-title: J. Magn. Reson.
– volume: 42
  start-page: 1340
  year: 2008
  end-page: 1356
  ident: b0025
  article-title: Maximum a posteriori estimation of diffusion tensor parameters using a Rician noise model: why, how and but
  publication-title: NeuroImage
– volume: 27
  start-page: 741
  year: 2009
  end-page: 751
  ident: b0120
  article-title: Estimation and application of spatially variable noise fields in diffusion tensor imaging
  publication-title: Magn. Reson. Imag.
– volume: 34
  start-page: 910
  year: 1995
  end-page: 914
  ident: b0075
  article-title: The Rician distribution of noisy MRI data
  publication-title: Magn. Reson. Med.
– volume: 46
  start-page: 1174
  year: 2001
  end-page: 1188
  ident: b0020
  article-title: Theoretical analysis of the effects of noise on diffusion tensor imaging
  publication-title: Magn. Reson. Med.
– volume: 53
  start-page: 1088
  year: 2005
  end-page: 1095
  ident: b0035
  article-title: RESTORE: robust estimation of tensors by outlier rejection
  publication-title: Magn. Reson. Med.
– year: 2007
  ident: b0175
  article-title: Numerical Recipes, The Art of Scientific Computing
– volume: 23
  start-page: 282
  year: 1944
  end-page: 444
  ident: b0180
  article-title: Mathematical analysis of random noise
  publication-title: Bell Syst. Tech. J.
– volume: 25
  start-page: 1089
  year: 2007
  end-page: 1094
  ident: b0220
  article-title: Noise distribution in SENSE- and GRAPPA-reconstructed images: a computer simulation study
  publication-title: Magn. Reson. Imag.
– volume: 44
  start-page: 852
  year: 2000
  end-page: 859
  ident: b0045
  article-title: Water diffusion compartmentation and anisotropy at high b values in the human brain
  publication-title: Magn. Reson. Med.
– volume: 198
  start-page: 73
  year: 2009
  end-page: 79
  ident: b0155
  article-title: Non-linearity and frequency shifts of nuclear magnetic spin-noise
  publication-title: J. Magn. Reson.
– volume: 52
  start-page: 1335
  year: 2007
  end-page: 1348
  ident: b0210
  article-title: Automatic estimation of the noise variance from the histogram of a magnetic resonance image
  publication-title: Phys. Med. Biol.
– volume: 36
  start-page: 494
  year: 1996
  end-page: 497
  ident: b0125
  article-title: Noise in MRI
  publication-title: Magn. Reson. Med.
– volume: 88
  start-page: 1273
  year: 1993
  end-page: 1356
  ident: b0190
  article-title: Alternatives to the median absolute deviation
  publication-title: J. Am. Stat. Assoc.
– volume: 16
  start-page: 87
  year: 1998
  end-page: 90
  ident: b0200
  article-title: Estimation of the noise in magnitude MR images
  publication-title: Magn. Reson. Imag.
– volume: 11
  start-page: 1051
  year: 1993
  end-page: 1056
  ident: b0145
  article-title: The use of power images to perform quantitative analysis on low SNR MR images
  publication-title: Magn. Reson. Imag.
– volume: 75
  start-page: 127
  year: 2005
  end-page: 136
  ident: b0225
  article-title: LIBRA: a MATLAB library for robust analysis
  publication-title: Chemomet. Intell. Lab. Syst.
– volume: 20
  start-page: 1077
  year: 1993
  end-page: 1078
  ident: b0140
  article-title: An unbiased signal-to-noise ratio measure for magnetic resonance images
  publication-title: Med. Phys.
– volume: 11
  start-page: 1051
  year: 1993
  ident: 10.1016/j.media.2011.12.002_b0145
  article-title: The use of power images to perform quantitative analysis on low SNR MR images
  publication-title: Magn. Reson. Imag.
  doi: 10.1016/0730-725X(93)90225-3
– volume: 14
  start-page: 483
  year: 2010
  ident: 10.1016/j.media.2011.12.002_b0055
  article-title: Robust Rician noise estimation for MR images
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2010.03.001
– volume: 62
  start-page: 500
  year: 2009
  ident: 10.1016/j.media.2011.12.002_b0115
  article-title: Robust estimation of spatially variable noise fields
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.22013
– volume: 40
  start-page: 741
  year: 2002
  ident: 10.1016/j.media.2011.12.002_b0195
  article-title: Robust estimation in very small samples
  publication-title: Comp. Stat. Data Anal.
  doi: 10.1016/S0167-9473(02)00078-6
– volume: 12
  start-page: 232
  year: 1985
  ident: 10.1016/j.media.2011.12.002_b0080
  article-title: Measurement of signal intensities in the presence of noise in MR images
  publication-title: Med. Phys.
  doi: 10.1118/1.595711
– volume: 213
  start-page: 136
  year: 2011
  ident: 10.1016/j.media.2011.12.002_b0135
  article-title: Robust tensor estimation in diffusion tensor imaging
  publication-title: J. Magn. Reson.
  doi: 10.1016/j.jmr.2011.09.035
– volume: 75
  start-page: 127
  year: 2005
  ident: 10.1016/j.media.2011.12.002_b0225
  article-title: LIBRA: a MATLAB library for robust analysis
  publication-title: Chemomet. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2004.06.003
– volume: 23
  start-page: 857
  year: 1996
  ident: 10.1016/j.media.2011.12.002_b0015
  article-title: Analysis of noise in phase contrast MR images
  publication-title: Med. Phys.
  doi: 10.1118/1.597729
– volume: 199
  start-page: 94
  year: 2009
  ident: 10.1016/j.media.2011.12.002_b0105
  article-title: Probabilistic identification and estimation of noise (PIESNO): a self-consistent approach and its application in MRI
  publication-title: J. Magn. Reson.
  doi: 10.1016/j.jmr.2009.03.005
– volume: 8
  start-page: 1408
  year: 1999
  ident: 10.1016/j.media.2011.12.002_b0165
  article-title: Wavelet-based Rician noise removal for magnetic resonance imaging
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.791966
– volume: 17
  start-page: 143
  year: 2002
  ident: 10.1016/j.media.2011.12.002_b0215
  article-title: Fast robust automated brain extraction
  publication-title: Human Brain Mapp.
  doi: 10.1002/hbm.10062
– volume: 25
  start-page: 1089
  year: 2007
  ident: 10.1016/j.media.2011.12.002_b0220
  article-title: Noise distribution in SENSE- and GRAPPA-reconstructed images: a computer simulation study
  publication-title: Magn. Reson. Imag.
  doi: 10.1016/j.mri.2006.11.003
– volume: 103
  start-page: 6790
  year: 2006
  ident: 10.1016/j.media.2011.12.002_b0150
  article-title: Nuclear spin noise imaging
  publication-title: PNAS
  doi: 10.1073/pnas.0601743103
– volume: 198
  start-page: 73
  year: 2009
  ident: 10.1016/j.media.2011.12.002_b0155
  article-title: Non-linearity and frequency shifts of nuclear magnetic spin-noise
  publication-title: J. Magn. Reson.
  doi: 10.1016/j.jmr.2009.01.019
– volume: 27
  start-page: 1397
  year: 2009
  ident: 10.1016/j.media.2011.12.002_b0010
  article-title: Noise estimation in single- and multiple-coil magnetic resonance data based on statistical models
  publication-title: Magn. Reson. Imag.
  doi: 10.1016/j.mri.2009.05.025
– volume: 197
  start-page: 108
  year: 2009
  ident: 10.1016/j.media.2011.12.002_b0100
  article-title: A signal transformational framework for breaking the noise floor and its application in MRI
  publication-title: J. Magn. Reson.
  doi: 10.1016/j.jmr.2008.11.015
– volume: 16
  start-page: 87
  year: 1998
  ident: 10.1016/j.media.2011.12.002_b0200
  article-title: Estimation of the noise in magnitude MR images
  publication-title: Magn. Reson. Imag.
  doi: 10.1016/S0730-725X(97)00199-9
– volume: 47
  start-page: 623
  year: 2002
  ident: 10.1016/j.media.2011.12.002_b0050
  article-title: In vivo mapping of the fast and slow diffusion tensors in human brain
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.10118
– year: 2007
  ident: 10.1016/j.media.2011.12.002_b0175
– volume: 489
  start-page: 107
  year: 2010
  ident: 10.1016/j.media.2011.12.002_b0065
  article-title: H-1 NMR noise measurements in hyperpolarized liquid samples
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2010.02.026
– volume: 57
  start-page: 1087
  year: 2011
  ident: 10.1016/j.media.2011.12.002_b0070
  article-title: Non-Gaussian diffusion in human brain tissue at high b-factors as examined by a combined diffusion kurtosis and biexponential diffusion tensor analysis
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.04.050
– volume: 5
  start-page: 1
  year: 1991
  ident: 10.1016/j.media.2011.12.002_b0185
  article-title: Tutorial to robust statistics
  publication-title: J. Chemometrics
  doi: 10.1002/cem.1180050103
– volume: 52
  start-page: 979
  year: 2004
  ident: 10.1016/j.media.2011.12.002_b0085
  article-title: Squashing peanuts and smashing pumpkins: how noise distorts diffusion-weighted MR data
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.20283
– volume: 182
  start-page: 115
  year: 2006
  ident: 10.1016/j.media.2011.12.002_b0090
  article-title: A unifying theoretical and algorithmic framework for least squares methods of estimation in diffusion tensor imaging
  publication-title: J. Magn. Reson.
  doi: 10.1016/j.jmr.2006.06.020
– volume: 27
  start-page: 741
  year: 2009
  ident: 10.1016/j.media.2011.12.002_b0120
  article-title: Estimation and application of spatially variable noise fields in diffusion tensor imaging
  publication-title: Magn. Reson. Imag.
  doi: 10.1016/j.mri.2009.01.001
– volume: 20
  start-page: 1077
  year: 1993
  ident: 10.1016/j.media.2011.12.002_b0140
  article-title: An unbiased signal-to-noise ratio measure for magnetic resonance images
  publication-title: Med. Phys.
  doi: 10.1118/1.597004
– volume: 53
  start-page: 1088
  year: 2005
  ident: 10.1016/j.media.2011.12.002_b0035
  article-title: RESTORE: robust estimation of tensors by outlier rejection
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.20426
– volume: 42
  start-page: 1340
  year: 2008
  ident: 10.1016/j.media.2011.12.002_b0025
  article-title: Maximum a posteriori estimation of diffusion tensor parameters using a Rician noise model: why, how and but
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.05.053
– volume: 88
  start-page: 1273
  year: 1993
  ident: 10.1016/j.media.2011.12.002_b0190
  article-title: Alternatives to the median absolute deviation
  publication-title: J. Am. Stat. Assoc.
  doi: 10.2307/2291267
– volume: 44
  start-page: 852
  year: 2000
  ident: 10.1016/j.media.2011.12.002_b0045
  article-title: Water diffusion compartmentation and anisotropy at high b values in the human brain
  publication-title: Magn. Reson. Med.
  doi: 10.1002/1522-2594(200012)44:6<852::AID-MRM5>3.0.CO;2-A
– volume: 64
  start-page: 418
  year: 2010
  ident: 10.1016/j.media.2011.12.002_b0170
  article-title: A simple method for rectified noise floor suppression: phase-corrected real data reconstruction with application to diffusion-weighted imaging
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.22407
– year: 2011
  ident: 10.1016/j.media.2011.12.002_b0110
  article-title: Least squares approaches to diffusion tensor estimation
– volume: 36
  start-page: 847
  year: 1996
  ident: 10.1016/j.media.2011.12.002_b0160
  article-title: Biexponential diffusion attenuation in various states of brain tissue: implications for diffusion-weighted imaging
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910360607
– volume: 51
  start-page: 586
  year: 2004
  ident: 10.1016/j.media.2011.12.002_b0205
  article-title: Maximum likelihood estimation of signal amplitude and noise variance from MR data
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.10728
– volume: 52
  start-page: 1335
  year: 2007
  ident: 10.1016/j.media.2011.12.002_b0210
  article-title: Automatic estimation of the noise variance from the histogram of a magnetic resonance image
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/52/5/009
– volume: 5747
  start-page: 1136
  year: 2005
  ident: 10.1016/j.media.2011.12.002_b0040
  article-title: An automatic method for estimating noise-induced signal variance in magnitude-reconstructed magnetic resonance images
  publication-title: Proc. Soc. Photo. Opt. Inst. Eng.
– year: 1974
  ident: 10.1016/j.media.2011.12.002_b0005
– volume: 56
  start-page: 1114
  year: 2006
  ident: 10.1016/j.media.2011.12.002_b0230
  article-title: Denoising of complex MRI data by wavelet-domain filtering: application to high-b-value diffusion-weighted imaging
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.21036
– volume: 31
  start-page: 192
  year: 2010
  ident: 10.1016/j.media.2011.12.002_b0130
  article-title: Adaptive non-local means denoising of MR images with spatially varying noise levels
  publication-title: J. Magn. Reson. Imag.
  doi: 10.1002/jmri.22003
– volume: 34
  start-page: 910
  year: 1995
  ident: 10.1016/j.media.2011.12.002_b0075
  article-title: The Rician distribution of noisy MRI data
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910340618
– volume: 179
  start-page: 317
  year: 2006
  ident: 10.1016/j.media.2011.12.002_b0095
  article-title: Analytically exact correction scheme for signal extraction from noisy magnitude MR signals
  publication-title: J. Magn. Reson.
  doi: 10.1016/j.jmr.2006.01.016
– volume: 46
  start-page: 1174
  year: 2001
  ident: 10.1016/j.media.2011.12.002_b0020
  article-title: Theoretical analysis of the effects of noise on diffusion tensor imaging
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1315
– volume: 45
  start-page: 448
  year: 2001
  ident: 10.1016/j.media.2011.12.002_b0060
  article-title: Noise correction for the exact determination of apparent diffusion coefficients at low SNR
  publication-title: Magn. Reson. Med.
  doi: 10.1002/1522-2594(200103)45:3<448::AID-MRM1059>3.0.CO;2-W
– volume: 23
  start-page: 282
  year: 1944
  ident: 10.1016/j.media.2011.12.002_b0180
  article-title: Mathematical analysis of random noise
  publication-title: Bell Syst. Tech. J.
  doi: 10.1002/j.1538-7305.1944.tb00874.x
– volume: 12
  start-page: 153
  year: 1993
  ident: 10.1016/j.media.2011.12.002_b0030
  article-title: Automatic detection of brain contours in MRI data sets
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/42.232244
– volume: 36
  start-page: 494
  year: 1996
  ident: 10.1016/j.media.2011.12.002_b0125
  article-title: Noise in MRI
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910360327
SSID ssj0007440
Score 2.193314
Snippet [Display omitted] ► Spatially variable noise correction algorithm is applied with the Rician correction. ► Automatic detection of a regions with the Gaussian...
Magnetic resonance images tend to be influenced by various random factors usually referred to as "noise". The principal sources of noise and related artefacts...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 536
SubjectTerms Algorithms
Artificial Intelligence
Brain - anatomy & histology
Diffusion Magnetic Resonance Imaging - methods
Diffusion weighted imaging
Gaussian noise
Humans
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Low signal-to-noise ratio
Pattern Recognition, Automated - methods
Reproducibility of Results
Rician noise
Sensitivity and Specificity
Spatially variable noise
Title Spatially variable Rician noise in magnetic resonance imaging
URI https://dx.doi.org/10.1016/j.media.2011.12.002
https://www.ncbi.nlm.nih.gov/pubmed/22209560
https://www.proquest.com/docview/918577887
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB6FRELtoaK8mrZEPvTIEq8f8e4RoaIACocWJG6W17FRUNggCEhc-ts79nojkAqHHtday9bYnvnGnvkG4AcLyZxyWmYOzQ86KNJklZAqo8xYtCdW0ZghNzkfjS_F6ZW86sBRmwsTwiqT7m90etTWqWWYpDm8m82Gv3MeipWgxcobR2YNejjySHahd3hyNj5fKeTAgdekX-VZ6NCSD8Uwr5ig0VB5hmvBdL3yDwP1FgCNhuh4Az4lBEkOm0l-ho6rN-HjC17BTVifpBfzLYg1h3GPzZ_JE7rFIVGK_IpXGaRezB4cmdXk1lzXIZeRoOu9CAQc2Hobqxdtw-Xxz4ujcZZKJmRWMLHM_Ih6IRT3eYWOinDKW-oYN9IgMDIe4QfiCcmU8lVpECswzr2hhXLST_OiLPgOdOtF7b4AmRpb2aJw3iouuC0qJQzlVkxpWUhqWR9YKydtE594KGsx123g2I2OwtVBuDpnGoXbh_1Vp7uGTuP930ftAuhXu0Kjwn-_I2mXS-N5CY8gpnaLxwddBvKrEELZh91mGVcTQagUaBnp1_8d9Rt8wC_WBHV_h-7y_tHtIWZZVgNYO_iTD9LO_Atjr-dU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB5RkNpyqCgtJVBaH3rsNl4_4t0jiooCJDnwkLhZXsdGi2ATkVCpF347Y-9uClLhwNVra62xPfONPfMNwA8WkjnlJE8cmh90UKRJCiFVQpmxaE-sojFDbjTuDc7F0YW8WIF-mwsTwiob3V_r9Kitm5ZuI83urCy7pykPxUrQYqW1I_MG1oTkKsT1_br_F-cRGPDq5Ks0Cd1b6qEY5BXTM2oiz3Ap2Fyu_Mc8PQc_oxk62IAPDX4k-_UUP8KKqzZh_RGr4Ca8HTXv5Z8gVhzGHXb9l_xBpzikSZGTeJFBqmk5d6SsyI25rEImI0HHexroN7D1JtYu-gznB7_P-oOkKZiQWMHEIvE96oVQ3KcFuinCKW-pY9xIg7DIeAQfiCYkU8oXuUGkwDj3hmbKST9JszzjW7BaTSu3DWRibGGzzHmruOA2K5QwlFsxoXkmqWUdYK2ctG3YxENRi2vdho1d6ShcHYSrU6ZRuB34uRw0q8k0Xu7eaxdAP9kTGtX9ywNJu1waT0t4AjGVm97NdR6or0IAZQe-1Mu4nAgCpUDKSHde-9fv8G5wNhrq4eH4eBfe4xdWh3d_hdXF7Z3bQ_SyKL7F3fkAUlToHw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatially+variable+Rician+noise+in+magnetic+resonance+imaging&rft.jtitle=Medical+image+analysis&rft.au=Maximov%2C+Ivan+I.&rft.au=Farrher%2C+Ezequiel&rft.au=Grinberg%2C+Farida&rft.au=Jon+Shah%2C+N.&rft.date=2012-02-01&rft.issn=1361-8415&rft.volume=16&rft.issue=2&rft.spage=536&rft.epage=548&rft_id=info:doi/10.1016%2Fj.media.2011.12.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_media_2011_12_002
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon