A Probabilistic Clustering Theory of the Organization of Visual Short-Term Memory
Experimental evidence suggests that the content of a memory for even a simple display encoded in visual short-term memory (VSTM) can be very complex. VSTM uses organizational processes that make the representation of an item dependent on the feature values of all displayed items as well as on these...
Saved in:
Published in | Psychological review Vol. 120; no. 2; pp. 297 - 328 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
American Psychological Association
01.04.2013
|
Subjects | |
Online Access | Get more information |
ISSN | 0033-295X 1939-1471 |
DOI | 10.1037/a0031541 |
Cover
Abstract | Experimental evidence suggests that the content of a memory for even a simple display encoded in visual short-term memory (VSTM) can be very complex. VSTM uses organizational processes that make the representation of an item dependent on the feature values of all displayed items as well as on these items' representations. Here, we develop a probabilistic clustering theory (PCT) for modeling the organization of VSTM for simple displays. PCT states that VSTM represents a set of items in terms of a probability distribution over all possible clusterings or partitions of those items. Because PCT considers multiple possible partitions, it can represent an item at multiple granularities or scales simultaneously. Moreover, using standard probabilistic inference, it automatically determines the appropriate partitions for the particular set of items at hand and the probabilities or weights that should be allocated to each partition. A consequence of these properties is that PCT accounts for experimental data that have previously motivated hierarchical models of VSTM, thereby providing an appealing alternative to hierarchical models with prespecified, fixed structures. We explore both an exact implementation of PCT based on Dirichlet process mixture models and approximate implementations based on Bayesian finite mixture models. We show that a previously proposed 2-level hierarchical model can be seen as a special case of PCT with a single cluster. We show how a wide range of previously reported results on the organization of VSTM can be understood in terms of PCT. In particular, we find that, consistent with empirical evidence, PCT predicts biases in estimates of the feature values of individual items and also predicts a novel form of dependence between estimates of the feature values of different items. We qualitatively confirm this last prediction in 3 novel experiments designed to directly measure biases and dependencies in subjects' estimates. (Contains 17 figures, 1 table and 1 footnote.) |
---|---|
AbstractList | Experimental evidence suggests that the content of a memory for even a simple display encoded in visual short-term memory (VSTM) can be very complex. VSTM uses organizational processes that make the representation of an item dependent on the feature values of all displayed items as well as on these items' representations. Here, we develop a probabilistic clustering theory (PCT) for modeling the organization of VSTM for simple displays. PCT states that VSTM represents a set of items in terms of a probability distribution over all possible clusterings or partitions of those items. Because PCT considers multiple possible partitions, it can represent an item at multiple granularities or scales simultaneously. Moreover, using standard probabilistic inference, it automatically determines the appropriate partitions for the particular set of items at hand and the probabilities or weights that should be allocated to each partition. A consequence of these properties is that PCT accounts for experimental data that have previously motivated hierarchical models of VSTM, thereby providing an appealing alternative to hierarchical models with prespecified, fixed structures. We explore both an exact implementation of PCT based on Dirichlet process mixture models and approximate implementations based on Bayesian finite mixture models. We show that a previously proposed 2-level hierarchical model can be seen as a special case of PCT with a single cluster. We show how a wide range of previously reported results on the organization of VSTM can be understood in terms of PCT. In particular, we find that, consistent with empirical evidence, PCT predicts biases in estimates of the feature values of individual items and also predicts a novel form of dependence between estimates of the feature values of different items. We qualitatively confirm this last prediction in 3 novel experiments designed to directly measure biases and dependencies in subjects' estimates. Experimental evidence suggests that the content of a memory for even a simple display encoded in visual short-term memory (VSTM) can be very complex. VSTM uses organizational processes that make the representation of an item dependent on the feature values of all displayed items as well as on these items' representations. Here, we develop a probabilistic clustering theory (PCT) for modeling the organization of VSTM for simple displays. PCT states that VSTM represents a set of items in terms of a probability distribution over all possible clusterings or partitions of those items. Because PCT considers multiple possible partitions, it can represent an item at multiple granularities or scales simultaneously. Moreover, using standard probabilistic inference, it automatically determines the appropriate partitions for the particular set of items at hand and the probabilities or weights that should be allocated to each partition. A consequence of these properties is that PCT accounts for experimental data that have previously motivated hierarchical models of VSTM, thereby providing an appealing alternative to hierarchical models with prespecified, fixed structures. We explore both an exact implementation of PCT based on Dirichlet process mixture models and approximate implementations based on Bayesian finite mixture models. We show that a previously proposed 2-level hierarchical model can be seen as a special case of PCT with a single cluster. We show how a wide range of previously reported results on the organization of VSTM can be understood in terms of PCT. In particular, we find that, consistent with empirical evidence, PCT predicts biases in estimates of the feature values of individual items and also predicts a novel form of dependence between estimates of the feature values of different items. We qualitatively confirm this last prediction in 3 novel experiments designed to directly measure biases and dependencies in subjects' estimates. (Contains 17 figures, 1 table and 1 footnote.) |
Author | Orhan, A. Emin Jacobs, Robert A |
Author_xml | – sequence: 1 fullname: Orhan, A. Emin – sequence: 2 fullname: Jacobs, Robert A |
BackLink | http://eric.ed.gov/ERICWebPortal/detail?accno=EJ1006400$$DView record in ERIC https://www.ncbi.nlm.nih.gov/pubmed/23356778$$D View this record in MEDLINE/PubMed |
BookMark | eNo9j1tLwzAcxYNM3EXBL6DkC1ST_JOmeRxj88JkilV8G2marJFeRto-zE9vZep5OXDOjwNnikZ1U1uELim5oQTkrSYEqOD0BE2oAhVRLukITYYUIqbExxhN2_aTDKJKnaExAxCxlMkEvczxc2gynfnSt503eFH2bWeDr3c4LWwTDrhxuCss3oSdrv2X7nxT_2Tvvu11iV-LJnRRakOFn2w18Ofo1OmytRe_PkNvq2W6uI_Wm7uHxXwdGc54F1kVq1wBz5mWsRFCOme4UAJYwp1KiHRCWA5M0kxLBYnIEglg8pznzlgGbIauj7v7Pqtsvt0HX-lw2P59G4CrIzC8Mf_18pESEnNC2DcMDlos |
CitedBy_id | crossref_primary_10_1016_j_cognition_2016_03_020 crossref_primary_10_1016_j_cogpsych_2017_11_002 crossref_primary_10_1007_s10044_022_01057_4 crossref_primary_10_1177_0963721414529144 crossref_primary_10_3389_fpsyg_2019_02753 crossref_primary_10_1038_s41562_023_01559_z crossref_primary_10_1038_srep19203 crossref_primary_10_3758_s13414_014_0649_8 crossref_primary_10_1152_jn_00778_2017 crossref_primary_10_1038_s41562_024_01871_2 crossref_primary_10_1523_JNEUROSCI_4097_14_2015 crossref_primary_10_1111_mila_12144 crossref_primary_10_1016_j_cognition_2020_104534 crossref_primary_10_1016_j_cognition_2015_10_005 crossref_primary_10_1080_13506285_2017_1339157 crossref_primary_10_7554_eLife_65588 crossref_primary_10_1016_j_neucom_2016_09_126 crossref_primary_10_1167_jov_24_2_10 crossref_primary_10_1038_s44159_024_00276_2 crossref_primary_10_1371_journal_pcbi_1007047 crossref_primary_10_1016_j_cogpsych_2020_101330 crossref_primary_10_1038_s44271_023_00048_3 crossref_primary_10_1038_s41467_019_13592_6 crossref_primary_10_3758_s13414_015_0834_4 crossref_primary_10_3758_s13414_023_02687_4 crossref_primary_10_1167_19_2_11 crossref_primary_10_1016_j_cognition_2021_104763 crossref_primary_10_1080_13506285_2013_844963 crossref_primary_10_1080_13506285_2022_2162173 crossref_primary_10_3758_s13414_017_1404_8 crossref_primary_10_15446_rce_v37n2spe_47940 crossref_primary_10_1371_journal_pone_0281445 crossref_primary_10_1371_journal_pcbi_1004003 crossref_primary_10_1167_19_1_2 crossref_primary_10_1167_jov_24_7_16 crossref_primary_10_1167_19_5_3 crossref_primary_10_1080_13506285_2018_1435596 crossref_primary_10_3389_fpsyg_2014_00584 crossref_primary_10_3758_s13414_014_0633_3 crossref_primary_10_3758_s13414_019_01913_2 crossref_primary_10_1016_j_cognition_2021_104739 crossref_primary_10_1038_s41467_025_56700_5 crossref_primary_10_1177_0956797616671524 crossref_primary_10_3758_s13414_020_02231_8 crossref_primary_10_1007_s00426_024_02017_9 crossref_primary_10_1038_nn_3655 crossref_primary_10_3758_s13414_020_02209_6 crossref_primary_10_1167_jov_21_5_3 crossref_primary_10_1371_journal_pone_0225068 crossref_primary_10_1027_1618_3169_a000480 crossref_primary_10_1016_j_visres_2020_05_005 |
ContentType | Journal Article |
DBID | 7SW BJH BNH BNI BNJ BNO ERI PET REK WWN CGR CUY CVF ECM EIF NPM |
DOI | 10.1037/a0031541 |
DatabaseName | ERIC ERIC (Ovid) ERIC ERIC ERIC (Legacy Platform) ERIC( SilverPlatter ) ERIC ERIC PlusText (Legacy Platform) Education Resources Information Center (ERIC) ERIC Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | ERIC MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE ERIC |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: ERI name: ERIC url: https://eric.ed.gov/ sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Psychology |
EISSN | 1939-1471 |
ERIC | EJ1006400 |
ExternalDocumentID | 23356778 EJ1006400 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GroupedDBID | --- --Z -DZ -ET -~X .-4 .GJ 07C 0R~ 123 186 29P 354 3EH 41~ 53G 5RE 5VS 7RZ 7SW 85S 9M8 AAAHA AAIKC AAMNW ABCQX ABDPE ABIVO ABNCP ABPPZ ABVOZ ACGFO ACHQT ACNCT ACPQG ACTDY ADMHG ADXHL AEHFB AENEX AETEA AFFNX AGNAY AIDAL AJUXI ALEEW ALMA_UNASSIGNED_HOLDINGS AWKKM AZXWR BJH BKOMP BNH BNI BNJ BNO CGNQK CS3 EPA ERI F5P FTD HVGLF HZ~ H~9 ISO L7B LPU LW5 MVM NHB O9- OHT OPA OVD P-O P2P PET PHGZM PHGZT PQQKQ PUEGO QZG REK ROL RXW SES SPA TAE TEORI TN5 TWZ UBC UHB UHS WH7 WWN X7L XJT XKC XOL XZL YNT YR5 YXB YYP YYQ ZCA ZCG ZGI ZHY ZPI ZXP ZY4 ~A~ CGR CUY CVF ECM EIF NPM |
ID | FETCH-LOGICAL-c424t-e969d934d2a76c557ffc45953284f9807f55e43271ba79385b8733cdd4dfce232 |
IEDL.DBID | ERI |
ISSN | 0033-295X |
IngestDate | Mon Jul 21 06:03:27 EDT 2025 Tue Sep 02 19:25:30 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | false |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c424t-e969d934d2a76c557ffc45953284f9807f55e43271ba79385b8733cdd4dfce232 |
PMID | 23356778 |
PageCount | 32 |
ParticipantIDs | pubmed_primary_23356778 eric_primary_EJ1006400 |
PublicationCentury | 2000 |
PublicationDate | 2013-04-01 |
PublicationDateYYYYMMDD | 2013-04-01 |
PublicationDate_xml | – month: 04 year: 2013 text: 2013-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Psychological review |
PublicationTitleAlternate | Psychol Rev |
PublicationYear | 2013 |
Publisher | American Psychological Association |
Publisher_xml | – name: American Psychological Association |
SSID | ssj0000199 |
Score | 2.363067 |
Snippet | Experimental evidence suggests that the content of a memory for even a simple display encoded in visual short-term memory (VSTM) can be very complex. VSTM uses... |
SourceID | pubmed eric |
SourceType | Index Database |
StartPage | 297 |
SubjectTerms | Attention Bayesian Statistics Bias Cluster Analysis Cognitive Processes Humans Memory, Short-Term - physiology Models, Statistical Photic Stimulation - methods Probability Probability Theory Psychomotor Performance - physiology Recall (Psychology) Short Term Memory Theories Visual Perception Visual Perception - physiology |
Title | A Probabilistic Clustering Theory of the Organization of Visual Short-Term Memory |
URI | http://eric.ed.gov/ERICWebPortal/detail?accno=EJ1006400 https://www.ncbi.nlm.nih.gov/pubmed/23356778 |
Volume | 120 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07b8IwED71McBS9UVLX_LQNSqOfXE8IlSEkEBUhYoNJX6olSpALQz8-54TSNuhUpcMiWwp53y-z_Hn7wDueWKIDGEWOccxkpkmzAUHWmVRt6yVaAsnpsEw6U1kf4rT718X_1VU9nmxBUVr9X2C3G7VU7lG6ZL1FmXKcLrznBXqIQsfMUpeg1rVR6V0_sUri_zSPYajLTFk7XIkT2DPzU-hXs1PmzN4arPRB8EvyFmDuzLrvK-DzQElH1YesWcLz4jQsZ8HLMO9l7fPNfX9_EovGY1pLmaDILDdnMOk-zju9KJtRYTIyFiuIqcTbbWQNs5UYhCV90aiRkFJxuu0pTyikyJWPM8IeCnmqRLCUMytN47IUwMO5ou5uwSmTYZIfMcRgZF5Kw0uPtSA25gba6RtQiNEZbYsTS9mVbiacFHGqXoUC4HBh-7qrybXUI-LKhJB8HIDh56Q5W4pma_yu2Lo6DocDb4AeSWZAA |
linkProvider | ERIC Clearinghouse on Information & Technology |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+probabilistic+clustering+theory+of+the+organization+of+visual+short-term+memory&rft.jtitle=Psychological+review&rft.au=Orhan%2C+A+Emin&rft.au=Jacobs%2C+Robert+A&rft.date=2013-04-01&rft.eissn=1939-1471&rft.volume=120&rft.issue=2&rft.spage=297&rft_id=info:doi/10.1037%2Fa0031541&rft_id=info%3Apmid%2F23356778&rft_id=info%3Apmid%2F23356778&rft.externalDocID=23356778 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0033-295X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0033-295X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0033-295X&client=summon |