A Probabilistic Clustering Theory of the Organization of Visual Short-Term Memory

Experimental evidence suggests that the content of a memory for even a simple display encoded in visual short-term memory (VSTM) can be very complex. VSTM uses organizational processes that make the representation of an item dependent on the feature values of all displayed items as well as on these...

Full description

Saved in:
Bibliographic Details
Published inPsychological review Vol. 120; no. 2; pp. 297 - 328
Main Authors Orhan, A. Emin, Jacobs, Robert A
Format Journal Article
LanguageEnglish
Published United States American Psychological Association 01.04.2013
Subjects
Online AccessGet more information
ISSN0033-295X
1939-1471
DOI10.1037/a0031541

Cover

Abstract Experimental evidence suggests that the content of a memory for even a simple display encoded in visual short-term memory (VSTM) can be very complex. VSTM uses organizational processes that make the representation of an item dependent on the feature values of all displayed items as well as on these items' representations. Here, we develop a probabilistic clustering theory (PCT) for modeling the organization of VSTM for simple displays. PCT states that VSTM represents a set of items in terms of a probability distribution over all possible clusterings or partitions of those items. Because PCT considers multiple possible partitions, it can represent an item at multiple granularities or scales simultaneously. Moreover, using standard probabilistic inference, it automatically determines the appropriate partitions for the particular set of items at hand and the probabilities or weights that should be allocated to each partition. A consequence of these properties is that PCT accounts for experimental data that have previously motivated hierarchical models of VSTM, thereby providing an appealing alternative to hierarchical models with prespecified, fixed structures. We explore both an exact implementation of PCT based on Dirichlet process mixture models and approximate implementations based on Bayesian finite mixture models. We show that a previously proposed 2-level hierarchical model can be seen as a special case of PCT with a single cluster. We show how a wide range of previously reported results on the organization of VSTM can be understood in terms of PCT. In particular, we find that, consistent with empirical evidence, PCT predicts biases in estimates of the feature values of individual items and also predicts a novel form of dependence between estimates of the feature values of different items. We qualitatively confirm this last prediction in 3 novel experiments designed to directly measure biases and dependencies in subjects' estimates. (Contains 17 figures, 1 table and 1 footnote.)
AbstractList Experimental evidence suggests that the content of a memory for even a simple display encoded in visual short-term memory (VSTM) can be very complex. VSTM uses organizational processes that make the representation of an item dependent on the feature values of all displayed items as well as on these items' representations. Here, we develop a probabilistic clustering theory (PCT) for modeling the organization of VSTM for simple displays. PCT states that VSTM represents a set of items in terms of a probability distribution over all possible clusterings or partitions of those items. Because PCT considers multiple possible partitions, it can represent an item at multiple granularities or scales simultaneously. Moreover, using standard probabilistic inference, it automatically determines the appropriate partitions for the particular set of items at hand and the probabilities or weights that should be allocated to each partition. A consequence of these properties is that PCT accounts for experimental data that have previously motivated hierarchical models of VSTM, thereby providing an appealing alternative to hierarchical models with prespecified, fixed structures. We explore both an exact implementation of PCT based on Dirichlet process mixture models and approximate implementations based on Bayesian finite mixture models. We show that a previously proposed 2-level hierarchical model can be seen as a special case of PCT with a single cluster. We show how a wide range of previously reported results on the organization of VSTM can be understood in terms of PCT. In particular, we find that, consistent with empirical evidence, PCT predicts biases in estimates of the feature values of individual items and also predicts a novel form of dependence between estimates of the feature values of different items. We qualitatively confirm this last prediction in 3 novel experiments designed to directly measure biases and dependencies in subjects' estimates.
Experimental evidence suggests that the content of a memory for even a simple display encoded in visual short-term memory (VSTM) can be very complex. VSTM uses organizational processes that make the representation of an item dependent on the feature values of all displayed items as well as on these items' representations. Here, we develop a probabilistic clustering theory (PCT) for modeling the organization of VSTM for simple displays. PCT states that VSTM represents a set of items in terms of a probability distribution over all possible clusterings or partitions of those items. Because PCT considers multiple possible partitions, it can represent an item at multiple granularities or scales simultaneously. Moreover, using standard probabilistic inference, it automatically determines the appropriate partitions for the particular set of items at hand and the probabilities or weights that should be allocated to each partition. A consequence of these properties is that PCT accounts for experimental data that have previously motivated hierarchical models of VSTM, thereby providing an appealing alternative to hierarchical models with prespecified, fixed structures. We explore both an exact implementation of PCT based on Dirichlet process mixture models and approximate implementations based on Bayesian finite mixture models. We show that a previously proposed 2-level hierarchical model can be seen as a special case of PCT with a single cluster. We show how a wide range of previously reported results on the organization of VSTM can be understood in terms of PCT. In particular, we find that, consistent with empirical evidence, PCT predicts biases in estimates of the feature values of individual items and also predicts a novel form of dependence between estimates of the feature values of different items. We qualitatively confirm this last prediction in 3 novel experiments designed to directly measure biases and dependencies in subjects' estimates. (Contains 17 figures, 1 table and 1 footnote.)
Author Orhan, A. Emin
Jacobs, Robert A
Author_xml – sequence: 1
  fullname: Orhan, A. Emin
– sequence: 2
  fullname: Jacobs, Robert A
BackLink http://eric.ed.gov/ERICWebPortal/detail?accno=EJ1006400$$DView record in ERIC
https://www.ncbi.nlm.nih.gov/pubmed/23356778$$D View this record in MEDLINE/PubMed
BookMark eNo9j1tLwzAcxYNM3EXBL6DkC1ST_JOmeRxj88JkilV8G2marJFeRto-zE9vZep5OXDOjwNnikZ1U1uELim5oQTkrSYEqOD0BE2oAhVRLukITYYUIqbExxhN2_aTDKJKnaExAxCxlMkEvczxc2gynfnSt503eFH2bWeDr3c4LWwTDrhxuCss3oSdrv2X7nxT_2Tvvu11iV-LJnRRakOFn2w18Ofo1OmytRe_PkNvq2W6uI_Wm7uHxXwdGc54F1kVq1wBz5mWsRFCOme4UAJYwp1KiHRCWA5M0kxLBYnIEglg8pznzlgGbIauj7v7Pqtsvt0HX-lw2P59G4CrIzC8Mf_18pESEnNC2DcMDlos
CitedBy_id crossref_primary_10_1016_j_cognition_2016_03_020
crossref_primary_10_1016_j_cogpsych_2017_11_002
crossref_primary_10_1007_s10044_022_01057_4
crossref_primary_10_1177_0963721414529144
crossref_primary_10_3389_fpsyg_2019_02753
crossref_primary_10_1038_s41562_023_01559_z
crossref_primary_10_1038_srep19203
crossref_primary_10_3758_s13414_014_0649_8
crossref_primary_10_1152_jn_00778_2017
crossref_primary_10_1038_s41562_024_01871_2
crossref_primary_10_1523_JNEUROSCI_4097_14_2015
crossref_primary_10_1111_mila_12144
crossref_primary_10_1016_j_cognition_2020_104534
crossref_primary_10_1016_j_cognition_2015_10_005
crossref_primary_10_1080_13506285_2017_1339157
crossref_primary_10_7554_eLife_65588
crossref_primary_10_1016_j_neucom_2016_09_126
crossref_primary_10_1167_jov_24_2_10
crossref_primary_10_1038_s44159_024_00276_2
crossref_primary_10_1371_journal_pcbi_1007047
crossref_primary_10_1016_j_cogpsych_2020_101330
crossref_primary_10_1038_s44271_023_00048_3
crossref_primary_10_1038_s41467_019_13592_6
crossref_primary_10_3758_s13414_015_0834_4
crossref_primary_10_3758_s13414_023_02687_4
crossref_primary_10_1167_19_2_11
crossref_primary_10_1016_j_cognition_2021_104763
crossref_primary_10_1080_13506285_2013_844963
crossref_primary_10_1080_13506285_2022_2162173
crossref_primary_10_3758_s13414_017_1404_8
crossref_primary_10_15446_rce_v37n2spe_47940
crossref_primary_10_1371_journal_pone_0281445
crossref_primary_10_1371_journal_pcbi_1004003
crossref_primary_10_1167_19_1_2
crossref_primary_10_1167_jov_24_7_16
crossref_primary_10_1167_19_5_3
crossref_primary_10_1080_13506285_2018_1435596
crossref_primary_10_3389_fpsyg_2014_00584
crossref_primary_10_3758_s13414_014_0633_3
crossref_primary_10_3758_s13414_019_01913_2
crossref_primary_10_1016_j_cognition_2021_104739
crossref_primary_10_1038_s41467_025_56700_5
crossref_primary_10_1177_0956797616671524
crossref_primary_10_3758_s13414_020_02231_8
crossref_primary_10_1007_s00426_024_02017_9
crossref_primary_10_1038_nn_3655
crossref_primary_10_3758_s13414_020_02209_6
crossref_primary_10_1167_jov_21_5_3
crossref_primary_10_1371_journal_pone_0225068
crossref_primary_10_1027_1618_3169_a000480
crossref_primary_10_1016_j_visres_2020_05_005
ContentType Journal Article
DBID 7SW
BJH
BNH
BNI
BNJ
BNO
ERI
PET
REK
WWN
CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1037/a0031541
DatabaseName ERIC
ERIC (Ovid)
ERIC
ERIC
ERIC (Legacy Platform)
ERIC( SilverPlatter )
ERIC
ERIC PlusText (Legacy Platform)
Education Resources Information Center (ERIC)
ERIC
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle ERIC
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
ERIC
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: ERI
  name: ERIC
  url: https://eric.ed.gov/
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Psychology
EISSN 1939-1471
ERIC EJ1006400
ExternalDocumentID 23356778
EJ1006400
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
.GJ
07C
0R~
123
186
29P
354
3EH
41~
53G
5RE
5VS
7RZ
7SW
85S
9M8
AAAHA
AAIKC
AAMNW
ABCQX
ABDPE
ABIVO
ABNCP
ABPPZ
ABVOZ
ACGFO
ACHQT
ACNCT
ACPQG
ACTDY
ADMHG
ADXHL
AEHFB
AENEX
AETEA
AFFNX
AGNAY
AIDAL
AJUXI
ALEEW
ALMA_UNASSIGNED_HOLDINGS
AWKKM
AZXWR
BJH
BKOMP
BNH
BNI
BNJ
BNO
CGNQK
CS3
EPA
ERI
F5P
FTD
HVGLF
HZ~
H~9
ISO
L7B
LPU
LW5
MVM
NHB
O9-
OHT
OPA
OVD
P-O
P2P
PET
PHGZM
PHGZT
PQQKQ
PUEGO
QZG
REK
ROL
RXW
SES
SPA
TAE
TEORI
TN5
TWZ
UBC
UHB
UHS
WH7
WWN
X7L
XJT
XKC
XOL
XZL
YNT
YR5
YXB
YYP
YYQ
ZCA
ZCG
ZGI
ZHY
ZPI
ZXP
ZY4
~A~
CGR
CUY
CVF
ECM
EIF
NPM
ID FETCH-LOGICAL-c424t-e969d934d2a76c557ffc45953284f9807f55e43271ba79385b8733cdd4dfce232
IEDL.DBID ERI
ISSN 0033-295X
IngestDate Mon Jul 21 06:03:27 EDT 2025
Tue Sep 02 19:25:30 EDT 2025
IsDoiOpenAccess false
IsOpenAccess false
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c424t-e969d934d2a76c557ffc45953284f9807f55e43271ba79385b8733cdd4dfce232
PMID 23356778
PageCount 32
ParticipantIDs pubmed_primary_23356778
eric_primary_EJ1006400
PublicationCentury 2000
PublicationDate 2013-04-01
PublicationDateYYYYMMDD 2013-04-01
PublicationDate_xml – month: 04
  year: 2013
  text: 2013-04-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Psychological review
PublicationTitleAlternate Psychol Rev
PublicationYear 2013
Publisher American Psychological Association
Publisher_xml – name: American Psychological Association
SSID ssj0000199
Score 2.363067
Snippet Experimental evidence suggests that the content of a memory for even a simple display encoded in visual short-term memory (VSTM) can be very complex. VSTM uses...
SourceID pubmed
eric
SourceType Index Database
StartPage 297
SubjectTerms Attention
Bayesian Statistics
Bias
Cluster Analysis
Cognitive Processes
Humans
Memory, Short-Term - physiology
Models, Statistical
Photic Stimulation - methods
Probability
Probability Theory
Psychomotor Performance - physiology
Recall (Psychology)
Short Term Memory
Theories
Visual Perception
Visual Perception - physiology
Title A Probabilistic Clustering Theory of the Organization of Visual Short-Term Memory
URI http://eric.ed.gov/ERICWebPortal/detail?accno=EJ1006400
https://www.ncbi.nlm.nih.gov/pubmed/23356778
Volume 120
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07b8IwED71McBS9UVLX_LQNSqOfXE8IlSEkEBUhYoNJX6olSpALQz8-54TSNuhUpcMiWwp53y-z_Hn7wDueWKIDGEWOccxkpkmzAUHWmVRt6yVaAsnpsEw6U1kf4rT718X_1VU9nmxBUVr9X2C3G7VU7lG6ZL1FmXKcLrznBXqIQsfMUpeg1rVR6V0_sUri_zSPYajLTFk7XIkT2DPzU-hXs1PmzN4arPRB8EvyFmDuzLrvK-DzQElH1YesWcLz4jQsZ8HLMO9l7fPNfX9_EovGY1pLmaDILDdnMOk-zju9KJtRYTIyFiuIqcTbbWQNs5UYhCV90aiRkFJxuu0pTyikyJWPM8IeCnmqRLCUMytN47IUwMO5ou5uwSmTYZIfMcRgZF5Kw0uPtSA25gba6RtQiNEZbYsTS9mVbiacFHGqXoUC4HBh-7qrybXUI-LKhJB8HIDh56Q5W4pma_yu2Lo6DocDb4AeSWZAA
linkProvider ERIC Clearinghouse on Information & Technology
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+probabilistic+clustering+theory+of+the+organization+of+visual+short-term+memory&rft.jtitle=Psychological+review&rft.au=Orhan%2C+A+Emin&rft.au=Jacobs%2C+Robert+A&rft.date=2013-04-01&rft.eissn=1939-1471&rft.volume=120&rft.issue=2&rft.spage=297&rft_id=info:doi/10.1037%2Fa0031541&rft_id=info%3Apmid%2F23356778&rft_id=info%3Apmid%2F23356778&rft.externalDocID=23356778
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0033-295X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0033-295X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0033-295X&client=summon