Effect of uncertainties in musculoskeletal modeling inputs on sensitivity of knee joint finite element simulations
•Analyzed the impact of various modeling assumptions on knee joint mechanics.•Constructed and tested five musculoskeletal models per subject plus a reference model.•Compared personalized gait inputs with literature-based non-personalized inputs.•Found up to 61% variation in finite element parameters...
Saved in:
Published in | Medical engineering & physics Vol. 138; p. 104313 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.04.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Analyzed the impact of various modeling assumptions on knee joint mechanics.•Constructed and tested five musculoskeletal models per subject plus a reference model.•Compared personalized gait inputs with literature-based non-personalized inputs.•Found up to 61% variation in finite element parameters with different modeling assumptions.•Highlighted the critical role of personalized gait data in accurate knee joint simulations.
Musculoskeletal finite element modeling is used to estimate mechanical responses of knee joint tissues but involves uncertainties in muscle activations, marker locations, cartilage stiffness, maximum isometric forces, and gait parameter personalization. This study investigates how these uncertainties affect cartilage mechanical responses in knee joint finite element models during walking. We selected three subjects and constructed five musculoskeletal models for each, representing different variations of modeling assumptions, along with a reference model using conventional assumptions. We then ran finite element simulations of knee joints using both personalized gait inputs (motion and loading boundary conditions) and non-personalized gait inputs from literature. Our results demonstrated that varying modeling assumptions, such as optimization function for muscle activation patterns, knee marker position, knee cartilage stiffness, and maximum isometric force, produced highly subject-specific effects. Differences between the reference and altered models ranged from 3% to 30% in musculoskeletal modeling and from 1% to 61% in finite element modeling results. The largest effects occurred with non-personalized gait data, resulting in up to 6- and 2-fold changes in musculoskeletal and finite element modeling results, respectively. This study highlights the sensitivity of knee mechanics to different modeling assumptions and underscores the importance of applying personalized gait parameters for accurate finite element simulations. |
---|---|
AbstractList | Musculoskeletal finite element modeling is used to estimate mechanical responses of knee joint tissues but involves uncertainties in muscle activations, marker locations, cartilage stiffness, maximum isometric forces, and gait parameter personalization. This study investigates how these uncertainties affect cartilage mechanical responses in knee joint finite element models during walking. We selected three subjects and constructed five musculoskeletal models for each, representing different variations of modeling assumptions, along with a reference model using conventional assumptions. We then ran finite element simulations of knee joints using both personalized gait inputs (motion and loading boundary conditions) and non-personalized gait inputs from literature. Our results demonstrated that varying modeling assumptions, such as optimization function for muscle activation patterns, knee marker position, knee cartilage stiffness, and maximum isometric force, produced highly subject-specific effects. Differences between the reference and altered models ranged from 3% to 30% in musculoskeletal modeling and from 1% to 61% in finite element modeling results. The largest effects occurred with non-personalized gait data, resulting in up to 6- and 2-fold changes in musculoskeletal and finite element modeling results, respectively. This study highlights the sensitivity of knee mechanics to different modeling assumptions and underscores the importance of applying personalized gait parameters for accurate finite element simulations. Musculoskeletal finite element modeling is used to estimate mechanical responses of knee joint tissues but involves uncertainties in muscle activations, marker locations, cartilage stiffness, maximum isometric forces, and gait parameter personalization. This study investigates how these uncertainties affect cartilage mechanical responses in knee joint finite element models during walking. We selected three subjects and constructed five musculoskeletal models for each, representing different variations of modeling assumptions, along with a reference model using conventional assumptions. We then ran finite element simulations of knee joints using both personalized gait inputs (motion and loading boundary conditions) and non-personalized gait inputs from literature. Our results demonstrated that varying modeling assumptions, such as optimization function for muscle activation patterns, knee marker position, knee cartilage stiffness, and maximum isometric force, produced highly subject-specific effects. Differences between the reference and altered models ranged from 3% to 30% in musculoskeletal modeling and from 1% to 61% in finite element modeling results. The largest effects occurred with non-personalized gait data, resulting in up to 6- and 2-fold changes in musculoskeletal and finite element modeling results, respectively. This study highlights the sensitivity of knee mechanics to different modeling assumptions and underscores the importance of applying personalized gait parameters for accurate finite element simulations.Musculoskeletal finite element modeling is used to estimate mechanical responses of knee joint tissues but involves uncertainties in muscle activations, marker locations, cartilage stiffness, maximum isometric forces, and gait parameter personalization. This study investigates how these uncertainties affect cartilage mechanical responses in knee joint finite element models during walking. We selected three subjects and constructed five musculoskeletal models for each, representing different variations of modeling assumptions, along with a reference model using conventional assumptions. We then ran finite element simulations of knee joints using both personalized gait inputs (motion and loading boundary conditions) and non-personalized gait inputs from literature. Our results demonstrated that varying modeling assumptions, such as optimization function for muscle activation patterns, knee marker position, knee cartilage stiffness, and maximum isometric force, produced highly subject-specific effects. Differences between the reference and altered models ranged from 3% to 30% in musculoskeletal modeling and from 1% to 61% in finite element modeling results. The largest effects occurred with non-personalized gait data, resulting in up to 6- and 2-fold changes in musculoskeletal and finite element modeling results, respectively. This study highlights the sensitivity of knee mechanics to different modeling assumptions and underscores the importance of applying personalized gait parameters for accurate finite element simulations. •Analyzed the impact of various modeling assumptions on knee joint mechanics.•Constructed and tested five musculoskeletal models per subject plus a reference model.•Compared personalized gait inputs with literature-based non-personalized inputs.•Found up to 61% variation in finite element parameters with different modeling assumptions.•Highlighted the critical role of personalized gait data in accurate knee joint simulations. Musculoskeletal finite element modeling is used to estimate mechanical responses of knee joint tissues but involves uncertainties in muscle activations, marker locations, cartilage stiffness, maximum isometric forces, and gait parameter personalization. This study investigates how these uncertainties affect cartilage mechanical responses in knee joint finite element models during walking. We selected three subjects and constructed five musculoskeletal models for each, representing different variations of modeling assumptions, along with a reference model using conventional assumptions. We then ran finite element simulations of knee joints using both personalized gait inputs (motion and loading boundary conditions) and non-personalized gait inputs from literature. Our results demonstrated that varying modeling assumptions, such as optimization function for muscle activation patterns, knee marker position, knee cartilage stiffness, and maximum isometric force, produced highly subject-specific effects. Differences between the reference and altered models ranged from 3% to 30% in musculoskeletal modeling and from 1% to 61% in finite element modeling results. The largest effects occurred with non-personalized gait data, resulting in up to 6- and 2-fold changes in musculoskeletal and finite element modeling results, respectively. This study highlights the sensitivity of knee mechanics to different modeling assumptions and underscores the importance of applying personalized gait parameters for accurate finite element simulations. |
ArticleNumber | 104313 |
Author | Henriksen, Marius Alkjær, Tine Esrafilian, Amir Stenroth, Lauri Bosch, Will Jahangir, Sana Tanska, Petri Mononen, Mika E. Korhonen, Rami K. |
Author_xml | – sequence: 1 givenname: Sana orcidid: 0000-0002-0570-861X surname: Jahangir fullname: Jahangir, Sana email: sanajahangirkayani@yahoo.com organization: Department of Technical Physics, University of Eastern Finland, Finland – sequence: 2 givenname: Will surname: Bosch fullname: Bosch, Will email: will.bosch.v@gmail.com organization: Department of Technical Physics, University of Eastern Finland, Finland – sequence: 3 givenname: Amir surname: Esrafilian fullname: Esrafilian, Amir organization: Department of Technical Physics, University of Eastern Finland, Finland – sequence: 4 givenname: Mika E. surname: Mononen fullname: Mononen, Mika E. organization: Department of Technical Physics, University of Eastern Finland, Finland – sequence: 5 givenname: Petri orcidid: 0000-0002-9684-6902 surname: Tanska fullname: Tanska, Petri organization: Department of Technical Physics, University of Eastern Finland, Finland – sequence: 6 givenname: Lauri orcidid: 0000-0002-7705-9188 surname: Stenroth fullname: Stenroth, Lauri organization: Department of Technical Physics, University of Eastern Finland, Finland – sequence: 7 givenname: Marius surname: Henriksen fullname: Henriksen, Marius organization: The Parker Institute, Copenhagen University Hospital, Bispebjerg, Frederiksberg, Denmark – sequence: 8 givenname: Tine orcidid: 0000-0002-9105-3882 surname: Alkjær fullname: Alkjær, Tine organization: The Parker Institute, Copenhagen University Hospital, Bispebjerg, Frederiksberg, Denmark – sequence: 9 givenname: Rami K. surname: Korhonen fullname: Korhonen, Rami K. email: rami.korhonen@uef.fi organization: Department of Technical Physics, University of Eastern Finland, Finland |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40180526$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc1uGyEUhVGVqPnrK7QsuxkXBgbjVRVFaRIpUjfZI8xc0msz4AITyW9fLKdZZJUVF-45n8Q5F-QkpgiEfONswRlXPzaLCUaIz7s_-0XP-qG9SsHFJ3LO9VJ0kgl20mYxsE4OQpyRi1I2jDEplfhMziTjmg29Oif51ntwlSZP5-ggV4uxIhSKkU5zcXNIZQsBqg10SiMEjM9tt5troSnSArFgxRes-wNiGwHoJjUE9RixAm3WCdq14DQHWzHFckVOvQ0Fvryel-Tp1-3TzX33-Pvu4eb6sXOyl7UDzcBJqZUVbHRKabvikjm95pLDqCTTjjlYra3q1yPnylq-4gNYz_To_SAuyfcjdpfT3xlKNRMWByHYCGkuRnCtxMCVWDbp11fpvG65ml3Gyea9-R9TEyyPApdTKRn8m4QzcyjEbMxbIeZQiDkW0pzXRye0n74gZFMcQkt6xNxyN2PCDzB-vmO4VgM6G7aw_xDhH5xVr-w |
Cites_doi | 10.1016/j.jbiomech.2018.07.008 10.1007/s10237-023-01814-2 10.2147/CIA.S290071 10.1177/1941738112445726 10.1016/j.jbiomech.2011.05.005 10.1016/j.jbiomech.2016.05.002 10.1186/s12891-018-2182-8 10.1007/s10439-015-1326-3 10.1123/jab.2012-0206 10.1016/j.jbiomech.2013.06.030 10.1115/1.4032379 10.1007/s10439-018-02184-y 10.1115/1.1385841 10.1023/B:ABME.0000017541.82498.37 10.1038/srep21415 10.1055/s-0035-1558858 10.1016/j.clinbiomech.2009.02.001 10.1007/s11044-015-9470-y 10.1016/j.berh.2011.11.013 10.1016/j.jbiomech.2016.10.025 10.1016/S0968-0160(02)00106-0 10.1371/journal.pone.0232064 10.1109/TNSRE.2020.3037411 10.1371/journal.pone.0262798 10.1371/journal.pone.0205842 10.1177/0954411911431516 10.1007/s10439-008-9515-y 10.1016/0268-0033(95)00046-1 10.1002/acr.20199 10.1016/j.jbiomech.2023.111800 10.1016/j.jbiomech.2015.01.048 10.1016/j.joca.2018.04.011 10.1177/0363546520966721 10.1007/s00371-010-0538-7 10.3390/jcm8111865 10.1109/TBME.2022.3156018 10.1016/j.cma.2015.08.014 10.3389/fbioe.2021.680257 10.1007/s00421-011-1975-3 10.1115/1.3138261 10.1016/j.euromechsol.2023.105071 10.1155/2022/1466478 10.1038/s41598-017-17228-x 10.3389/fbioe.2022.808027 10.1109/TBME.2016.2586891 10.1101/2021.07.02.21259710 10.1002/jor.23513 10.1016/j.knee.2023.01.012 10.1093/ptj/74.7.637 10.1002/cnm.3351 10.1115/1.4040943 10.1038/s41598-018-33759-3 10.1038/s41598-020-59602-2 10.1016/j.jbiomech.2018.12.020 10.1038/s41598-017-09013-7 10.1016/j.jbiomech.2020.109635 10.1016/j.jbiomech.2010.08.005 10.1016/S0021-9290(03)00267-7 10.1007/s00167-011-1818-0 10.1007/s11999-016-4732-4 10.1115/1.4026358 10.3389/fbioe.2014.00054 10.1002/jor.22601 10.1016/S0021-9290(98)00158-4 10.2106/00004623-200100021-00004 10.1016/j.biomaterials.2011.06.037 10.1016/j.jbiomech.2006.07.026 10.1002/jor.22175 10.1016/j.medengphy.2013.05.005 10.1016/j.gaitpost.2021.02.016 10.1098/rsif.2021.0864 10.3389/fbioe.2022.874725 10.1016/j.jbiomech.2005.04.024 10.1007/s10237-018-01113-1 10.1115/1.4033516 10.1016/j.jbiomech.2015.02.043 10.1177/1947603513495889 10.1080/23335432.2014.993706 10.1038/s41598-022-18546-5 10.1016/j.joca.2011.03.006 10.1016/j.gaitpost.2011.11.019 10.1016/j.jbiomech.2018.10.008 |
ContentType | Journal Article |
Copyright | 2025 The Author(s) Copyright © 2025 The Author(s). Published by Elsevier Ltd.. All rights reserved. |
Copyright_xml | – notice: 2025 The Author(s) – notice: Copyright © 2025 The Author(s). Published by Elsevier Ltd.. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.medengphy.2025.104313 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Chemistry |
EISSN | 1873-4030 |
ExternalDocumentID | 40180526 10_1016_j_medengphy_2025_104313 S1350453325000323 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN 9M8 AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEE HMK HMO HVGLF HZ~ IHE J1W JJJVA KOM LY7 M28 M31 M41 MO0 N9A O-L O9- OAUVE OI~ OU0 OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SDF SDG SDP SEL SES SET SEW SPC SPCBC SSH SST SSZ T5K TN5 WUQ YNT YQT Z5R ZGI ZY4 ~G- 6I. AACTN AAFTH AAXKI ABTAH AFCTW RIG AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c424t-e80ec4486a30dc668a9140c8b141ed6408c0ce9ba62bd116aa1915eaf08dff53 |
IEDL.DBID | .~1 |
ISSN | 1350-4533 1873-4030 |
IngestDate | Wed Jul 02 05:06:52 EDT 2025 Sat May 17 01:30:15 EDT 2025 Tue Jul 01 05:11:03 EDT 2025 Sat Apr 12 15:21:31 EDT 2025 Tue Aug 26 16:31:48 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Knee joint Musculoskeletal modeling Finite element modeling Modeling assumptions Personalized gait data |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2025 The Author(s). Published by Elsevier Ltd.. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c424t-e80ec4486a30dc668a9140c8b141ed6408c0ce9ba62bd116aa1915eaf08dff53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-7705-9188 0000-0002-0570-861X 0000-0002-9105-3882 0000-0002-9684-6902 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1350453325000323 |
PMID | 40180526 |
PQID | 3186351637 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3186351637 pubmed_primary_40180526 crossref_primary_10_1016_j_medengphy_2025_104313 elsevier_sciencedirect_doi_10_1016_j_medengphy_2025_104313 elsevier_clinicalkey_doi_10_1016_j_medengphy_2025_104313 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2025 2025-04-00 2025-Apr 20250401 |
PublicationDateYYYYMMDD | 2025-04-01 |
PublicationDate_xml | – month: 04 year: 2025 text: April 2025 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Medical engineering & physics |
PublicationTitleAlternate | Med Eng Phys |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Smith, Brandon, Thelen (bib0026) 2019; 82 Makris, Hadidi, Athanasiou (bib0069) 2011; 32 Halonen, Dzialo, Mannisi, Venäläinen, De Zee, Andersen (bib0003) 2017; 7 Smith, Lenhart, Kaiser, Vignos, Thelen (bib0023) 2015; 29 Alshami, Alhassany (bib0056) 2020; 15 Valente, Taddei, Jonkers (bib0058) 2013; 46 Orozco, Tanska, Florea, Grodzinsky, Korhonen (bib0005) 2018; 8 Dabiri, Li (bib0065) 2013; 35 Jahangir, Esrafilian, Ebrahimi, Stenroth, Alkjær, Henriksen (bib0077) 2023; 160 uk, MI, Hausdorff, Ferrucci (bib0032) 2011; 44 Navacchia, Myers, Rullkoetter, Shelburne (bib0078) 2016; 138 Kłodowski, Mononen, Kulmala, Valkeapää, Korhonen, Avela (bib0084) 2016; 37 Cappozzo, Catani, Leardini, Benedetti (bib0027) 1996; 11 Klets, Mononen, Tanska, Nieminen, Korhonen, Saarakkala (bib0047) 2016; 49 Sankaran, Grady, Taylor (bib0038) 2015; 297 Zevenbergen, Smith, Van Rossom, Thelen, Famaey, Vander (bib0029) 2018; 13 Mononen, Liukkonen, Korhonen (bib0006) 2019; 47 Alnahdi, Zeni, Snyder-Mackler (bib0051) 2012; 4 Lerner, Haight, DeMers, Board, Browning (bib0075) 2014; 30 Tanska, Mononen, Korhonen (bib0062) 2015; 48 Lenhart, Kaiser, Smith, Thelen (bib0043) 2015; 43 Groen, Geurts, Nienhuis, Duysens (bib0049) 2012; 35 Wilson, Van Donkelaar, Van Rietbergen, Ito, Huiskes (bib0067) 2005; 38 Machado, Santana, Brito, Maciel, Quintans Júnior, da Silva Junior (bib0053) 2022; 2022 Seo, Schiavazzi, Kahn, Marsden (bib0034) 2020; 36 Fonseca, Bergere, Candido, Leboeuf, Dumas, Armand (bib0019) 2022; 12 Dhaher, Kwon, Barry (bib0009) 2010; 43 Aaboe, Bliddal, Messier, Alkjær, Henriksen (bib0039) 2011; 19 Fisher, Pendergast, Gresham, Calkins (bib0054) 1991; 72 Galbusera, Freutel, Dürselen, D’Aiuto, Croce, Villa (bib0010) 2014; 2 Vicon Motion Systems. Plug-in Gait Reference Guide, revision 2. Hum nonhum bone Identif 2023:227–46. Kohn, Sassoon, Fernando (bib0041) 2016; 474 Li, Lopez, Rubash (bib0012) 2001; 123 Fonseca, Gasparutto, Leboeuf, Dumas, Armand (bib0018) 2020; 15 Halonen, Mononen, Jurvelin, Töyräs, Kłodowski, Kulmala (bib0060) 2016; 138 Demers, Pal, Delp (bib0025) 2014; 32 Liukkonen, Mononen, Klets, Arokoski, Saarakkala, Korhonen (bib0007) 2017; 7 Ghazwan, Wilson, Holt, Whatling (bib0057) 2022; 17 Wilson, van Donkelaar, van Rietbergen, Ito, Huiskes (bib0064) 2004; 37 Vaziri, Nayeb-Hashemi, Singh, Tafti (bib0070) 2008; 36 Heijink, Gomoll, Madry, Drobnič, Filardo, Espregueira-Mendes (bib0081) 2012; 20 Eskelinen, Mononen, Venäläinen, Korhonen, Tanska (bib0073) 2019; 18 Hinman, Hunt, Creaby, Wrigley, McManus, Bennell (bib0055) 2010; 62 Buckwalter, Anderson, Brown, Tochigi, Martin (bib0085) 2013; 4 Lund, de Zee, Andersen, Rasmussen (bib0016) 2012; 226 Antonini, Poletti, Pennati, Petrini (bib0036) 2023; 101 Navacchia, Hume, Rullkoetter, Shelburne (bib0002) 2019; 84 Meakin, Shrive, Frank, Hart (bib0011) 2003; 10 Räsänen, Mononen, Nieminen, Lammentausta, Jurvelin, Korhonen (bib0076) 2013; 31 Esrafilian, Stenroth, Mononen, Vartiainen, Tanska, Karjalainen (bib0004) 2022; 69 Luc-Harkey, Safran-Norton, Mandl, Katz, Losina (bib0052) 2018; 19 Shu, Yamamoto, Yao, Saraswat, Liu, Mitsuishi (bib0001) 2018; 77 Koller, Baca, Kainz (bib0024) 2021; 87 Halonen, Mononen, Töyräs, Kröger, Joukainen, Korhonen (bib0059) 2016; 49 Vignos, Smith, Roth, Kaiser, Baer, Kijowski (bib0022) 2020; 48 Lund, Andersen, de Zee, Rasmussen (bib0017) 2015; 2 McFadden, Daniels, Strike (bib0028) 2020; 101 Thelen, Choi, Schmitz (bib0042) 2014; 136 Amiri, Davis, Outerleys, Miller, Brandon, Astephen Wilson (bib0080) 2023; 41 Zeni, Higginson (bib0033) 2009; 24 Ye, Zun, Krzhizhanovskaya, Hoekstra (bib0037) 2022; 19 Guo, Santner, Lerner, Maher (bib0008) 2017; 35 Uchida, Seth (bib0020) 2022; 10 Sandholm, Schwartz, Pronost, De Zee, Voigt, Thalmann (bib0013) 2011; 27 Mieloch, Richter, Trzeciak, Giersig, Rybka (bib0050) 2019; 8 Esrafilian, Stenroth, Mononen, Tanska, Avela, Korhonen (bib0061) 2020; 10 Ostrosky, VanSwearingen, Burdett, Gee (bib0030) 1994; 74 Julkunen, Kiviranta, Wilson, Jurvelin, Korhonen (bib0063) 2007; 40 Kasović, Štefan, Štefan (bib0074) 2021; 16 Richards, Andersen, Harlaar, van den Noort (bib0014) 2018; 26 Danso, Mäkelä, Tanska, Mononen, Honkanen, Jurvelin (bib0068) 2015; 48 Harbo, Brincks, Andersen (bib0045) 2012; 112 Berggren, Jiang, Jack Wang, Bergquist, Rupp, Liu (bib0035) 2024; 23 Andriacchi, Mündermann, Smith, Alexander, Dyrby, Koo (bib0082) 2004; 32 Elahi, Tanska, Korhonen, Lories, Famaey, Jonkers (bib0015) 2021; 9 Akimoto T, Kawamura K, Wada T, Ishihara N, Yokota A, Suginoshita T, et al. Evaluation of gait cycle time variability in patients with knee osteoarthritis using a triaxial accelerometer. MedRxiv 2021:2021.07.02.21259710. Mononen, Tanska, Isaksson, Korhonen (bib0083) 2016; 6 D'Lima, Hashimoto, Chen, Lotz, Colwell (bib0072) 2001; 83-A Hosseini Nasab, Smith, Maas, Vollenweider, Dymke, Schütz (bib0021) 2022; 10 Rajagopal, Dembia, DeMers, Delp, Hicks, Delp (bib0046) 2016; 63 Lu, O'Connor (bib0044) 1999; 32 Żuk, Syczewska, Pezowicz (bib0079) 2018; 140 Lai, Mow, Roth (bib0066) 1981; 103 Esrafilian, Stenroth, Mononen, Tanska, Van Rossom, Lloyd (bib0048) 2021; 29 Guilak (bib0086) 2011; 25 Halonen (10.1016/j.medengphy.2025.104313_bib0003) 2017; 7 Aaboe (10.1016/j.medengphy.2025.104313_bib0039) 2011; 19 Richards (10.1016/j.medengphy.2025.104313_bib0014) 2018; 26 Orozco (10.1016/j.medengphy.2025.104313_bib0005) 2018; 8 10.1016/j.medengphy.2025.104313_bib0031 Halonen (10.1016/j.medengphy.2025.104313_bib0060) 2016; 138 Guo (10.1016/j.medengphy.2025.104313_bib0008) 2017; 35 D'Lima (10.1016/j.medengphy.2025.104313_bib0072) 2001; 83-A Andriacchi (10.1016/j.medengphy.2025.104313_bib0082) 2004; 32 Elahi (10.1016/j.medengphy.2025.104313_bib0015) 2021; 9 Liukkonen (10.1016/j.medengphy.2025.104313_bib0007) 2017; 7 Luc-Harkey (10.1016/j.medengphy.2025.104313_bib0052) 2018; 19 Fonseca (10.1016/j.medengphy.2025.104313_bib0018) 2020; 15 Räsänen (10.1016/j.medengphy.2025.104313_bib0076) 2013; 31 Antonini (10.1016/j.medengphy.2025.104313_bib0036) 2023; 101 Tanska (10.1016/j.medengphy.2025.104313_bib0062) 2015; 48 Kłodowski (10.1016/j.medengphy.2025.104313_bib0084) 2016; 37 Sandholm (10.1016/j.medengphy.2025.104313_bib0013) 2011; 27 Alnahdi (10.1016/j.medengphy.2025.104313_bib0051) 2012; 4 Ostrosky (10.1016/j.medengphy.2025.104313_bib0030) 1994; 74 Kohn (10.1016/j.medengphy.2025.104313_bib0041) 2016; 474 Amiri (10.1016/j.medengphy.2025.104313_bib0080) 2023; 41 Meakin (10.1016/j.medengphy.2025.104313_bib0011) 2003; 10 Demers (10.1016/j.medengphy.2025.104313_bib0025) 2014; 32 10.1016/j.medengphy.2025.104313_bib0040 Valente (10.1016/j.medengphy.2025.104313_bib0058) 2013; 46 Navacchia (10.1016/j.medengphy.2025.104313_bib0078) 2016; 138 Dhaher (10.1016/j.medengphy.2025.104313_bib0009) 2010; 43 Wilson (10.1016/j.medengphy.2025.104313_bib0067) 2005; 38 Żuk (10.1016/j.medengphy.2025.104313_bib0079) 2018; 140 Wilson (10.1016/j.medengphy.2025.104313_bib0064) 2004; 37 McFadden (10.1016/j.medengphy.2025.104313_bib0028) 2020; 101 Smith (10.1016/j.medengphy.2025.104313_bib0023) 2015; 29 Thelen (10.1016/j.medengphy.2025.104313_bib0042) 2014; 136 Eskelinen (10.1016/j.medengphy.2025.104313_bib0073) 2019; 18 Alshami (10.1016/j.medengphy.2025.104313_bib0056) 2020; 15 Zevenbergen (10.1016/j.medengphy.2025.104313_bib0029) 2018; 13 Cappozzo (10.1016/j.medengphy.2025.104313_bib0027) 1996; 11 Esrafilian (10.1016/j.medengphy.2025.104313_bib0004) 2022; 69 Galbusera (10.1016/j.medengphy.2025.104313_bib0010) 2014; 2 Groen (10.1016/j.medengphy.2025.104313_bib0049) 2012; 35 Navacchia (10.1016/j.medengphy.2025.104313_bib0002) 2019; 84 Ghazwan (10.1016/j.medengphy.2025.104313_bib0057) 2022; 17 Sankaran (10.1016/j.medengphy.2025.104313_bib0038) 2015; 297 Lenhart (10.1016/j.medengphy.2025.104313_bib0043) 2015; 43 Ye (10.1016/j.medengphy.2025.104313_bib0037) 2022; 19 uk (10.1016/j.medengphy.2025.104313_bib0032) 2011; 44 Machado (10.1016/j.medengphy.2025.104313_bib0053) 2022; 2022 Guilak (10.1016/j.medengphy.2025.104313_bib0086) 2011; 25 Li (10.1016/j.medengphy.2025.104313_bib0012) 2001; 123 Harbo (10.1016/j.medengphy.2025.104313_bib0045) 2012; 112 Kasović (10.1016/j.medengphy.2025.104313_bib0074) 2021; 16 Fisher (10.1016/j.medengphy.2025.104313_bib0054) 1991; 72 Makris (10.1016/j.medengphy.2025.104313_bib0069) 2011; 32 Mononen (10.1016/j.medengphy.2025.104313_bib0006) 2019; 47 Halonen (10.1016/j.medengphy.2025.104313_bib0059) 2016; 49 Rajagopal (10.1016/j.medengphy.2025.104313_bib0046) 2016; 63 Fonseca (10.1016/j.medengphy.2025.104313_bib0019) 2022; 12 Shu (10.1016/j.medengphy.2025.104313_bib0001) 2018; 77 Seo (10.1016/j.medengphy.2025.104313_bib0034) 2020; 36 Danso (10.1016/j.medengphy.2025.104313_bib0068) 2015; 48 Heijink (10.1016/j.medengphy.2025.104313_bib0081) 2012; 20 Zeni (10.1016/j.medengphy.2025.104313_bib0033) 2009; 24 Julkunen (10.1016/j.medengphy.2025.104313_bib0063) 2007; 40 Mononen (10.1016/j.medengphy.2025.104313_bib0083) 2016; 6 Berggren (10.1016/j.medengphy.2025.104313_bib0035) 2024; 23 Lund (10.1016/j.medengphy.2025.104313_bib0016) 2012; 226 Lai (10.1016/j.medengphy.2025.104313_bib0066) 1981; 103 Vaziri (10.1016/j.medengphy.2025.104313_bib0070) 2008; 36 Lerner (10.1016/j.medengphy.2025.104313_bib0075) 2014; 30 Dabiri (10.1016/j.medengphy.2025.104313_bib0065) 2013; 35 Vignos (10.1016/j.medengphy.2025.104313_bib0022) 2020; 48 Lu (10.1016/j.medengphy.2025.104313_bib0044) 1999; 32 Koller (10.1016/j.medengphy.2025.104313_bib0024) 2021; 87 Mieloch (10.1016/j.medengphy.2025.104313_bib0050) 2019; 8 Smith (10.1016/j.medengphy.2025.104313_bib0026) 2019; 82 Hosseini Nasab (10.1016/j.medengphy.2025.104313_bib0021) 2022; 10 Esrafilian (10.1016/j.medengphy.2025.104313_bib0061) 2020; 10 Uchida (10.1016/j.medengphy.2025.104313_bib0020) 2022; 10 Klets (10.1016/j.medengphy.2025.104313_bib0047) 2016; 49 Jahangir (10.1016/j.medengphy.2025.104313_bib0077) 2023; 160 Esrafilian (10.1016/j.medengphy.2025.104313_bib0048) 2021; 29 Lund (10.1016/j.medengphy.2025.104313_bib0017) 2015; 2 Buckwalter (10.1016/j.medengphy.2025.104313_bib0085) 2013; 4 Hinman (10.1016/j.medengphy.2025.104313_bib0055) 2010; 62 |
References_xml | – volume: 87 start-page: 65 year: 2021 end-page: 74 ident: bib0024 article-title: Impact of scaling errors of the thigh and shank segments on musculoskeletal simulation results publication-title: Gait Posture – volume: 136 year: 2014 ident: bib0042 article-title: Co-simulation of neuromuscular dynamics and knee mechanics during human walking publication-title: J Biomech Eng – volume: 32 start-page: 769 year: 2014 end-page: 776 ident: bib0025 article-title: Changes in tibiofemoral forces due to variations in muscle activity during walking publication-title: J Orthop Res – volume: 62 start-page: 1190 year: 2010 end-page: 1193 ident: bib0055 article-title: Hip muscle weakness in individuals with medial knee osteoarthritis publication-title: Arthritis Care Res – volume: 26 start-page: 1203 year: 2018 end-page: 1214 ident: bib0014 article-title: Relationship between knee joint contact forces and external knee joint moments in patients with medial knee osteoarthritis: effects of gait modifications publication-title: Osteoarthr Cartil – volume: 29 start-page: 123 year: 2021 end-page: 133 ident: bib0048 article-title: 12 Degrees of freedom muscle force driven fibril-reinforced poroviscoelastic finite element model of the knee joint publication-title: IEEE Trans Neural Syst Rehabil Eng – volume: 7 start-page: 9177 year: 2017 ident: bib0007 article-title: Simulation of subject-specific progression of knee Osteoarthritis and comparison to experimental follow-up data: data from the Osteoarthritis Initiative publication-title: Sci Rep – volume: 8 start-page: 15599 year: 2018 ident: bib0005 article-title: A novel mechanobiological model can predict how physiologically relevant dynamic loading causes proteoglycan loss in mechanically injured articular cartilage publication-title: Sci Rep – volume: 35 start-page: 517 year: 2012 end-page: 521 ident: bib0049 article-title: Sensitivity of the OLGA and VCM models to erroneous marker placement: effects on 3D-gait kinematics publication-title: Gait Posture – volume: 24 start-page: 372 year: 2009 end-page: 378 ident: bib0033 article-title: Differences in gait parameters between healthy subjects and persons with moderate and severe knee osteoarthritis: A result of altered walking speed? publication-title: Clin Biomech – volume: 19 start-page: 1 year: 2018 end-page: 11 ident: bib0052 article-title: Associations among knee muscle strength, structural damage, and pain and mobility in individuals with osteoarthritis and symptomatic meniscal tear publication-title: BMC Musculoskelet Disord – volume: 36 start-page: 1335 year: 2008 end-page: 1344 ident: bib0070 article-title: Influence of meniscectomy and meniscus replacement on the stress distribution in human knee joint publication-title: Ann Biomed Eng – reference: Akimoto T, Kawamura K, Wada T, Ishihara N, Yokota A, Suginoshita T, et al. Evaluation of gait cycle time variability in patients with knee osteoarthritis using a triaxial accelerometer. MedRxiv 2021:2021.07.02.21259710. – volume: 123 start-page: 341 year: 2001 end-page: 346 ident: bib0012 article-title: Variability of a three-dimensional finite element model constructed using magnetic resonance images of a knee for joint contact stress analysis publication-title: J Biomech Eng – volume: 226 start-page: 82 year: 2012 end-page: 94 ident: bib0016 article-title: On validation of multibody musculoskeletal models publication-title: Proc Inst Mech Eng Part H, J Eng Med – volume: 18 start-page: 753 year: 2019 end-page: 778 ident: bib0073 article-title: Maximum shear strain-based algorithm can predict proteoglycan loss in damaged articular cartilage publication-title: Biomech Model Mechanobiol – volume: 2 start-page: 54 year: 2014 ident: bib0010 article-title: Material models and properties in the finite element analysis of knee ligaments: A literature review publication-title: Front Bioeng Biotechnol – volume: 43 start-page: 3118 year: 2010 end-page: 3125 ident: bib0009 article-title: The effect of connective tissue material uncertainties on knee joint mechanics under isolated loading conditions publication-title: J Biomech – volume: 10 start-page: 33 year: 2003 end-page: 41 ident: bib0011 article-title: Finite element analysis of the meniscus: the influence of geometry and material properties on its behaviour publication-title: Knee – volume: 48 start-page: 1397 year: 2015 end-page: 1406 ident: bib0062 article-title: A multi-scale finite element model for investigation of chondrocyte mechanics in normal and medial meniscectomy human knee joint during walking publication-title: J Biomech – volume: 19 start-page: 822 year: 2011 end-page: 828 ident: bib0039 article-title: Effects of an intensive weight loss program on knee joint loading in obese adults with knee osteoarthritis publication-title: Osteoarthr Cartil – volume: 37 start-page: 357 year: 2004 end-page: 366 ident: bib0064 article-title: Stresses in the local collagen network of articular cartilage: a poroviscoelastic fibril-reinforced finite element study publication-title: J Biomech – volume: 474 start-page: 1886 year: 2016 end-page: 1893 ident: bib0041 article-title: Classifications in brief: Kellgren-Lawrence classification of osteoarthritis publication-title: Clin Orthop Relat Res – volume: 48 start-page: 1499 year: 2015 end-page: 1507 ident: bib0068 article-title: Characterization of site-specific biomechanical properties of human meniscus-importance of collagen and fluid on mechanical nonlinearities publication-title: J Biomech – volume: 4 start-page: 284 year: 2012 end-page: 292 ident: bib0051 article-title: Muscle impairments in patients with knee osteoarthritis publication-title: Sports Health – volume: 4 start-page: 286 year: 2013 end-page: 294 ident: bib0085 article-title: The roles of mechanical stresses in the pathogenesis of osteoarthritis: implications for treatment of joint injuries publication-title: Cartilage – reference: Vicon Motion Systems. Plug-in Gait Reference Guide, revision 2. Hum nonhum bone Identif 2023:227–46. – volume: 31 start-page: 10 year: 2013 end-page: 22 ident: bib0076 article-title: Implementation of subject-specific collagen architecture of cartilage into a 2D computational model of a knee joint—Data from the osteoarthritis initiative (OAI) publication-title: J Orthop Res – volume: 23 start-page: 927 year: 2024 end-page: 940 ident: bib0035 article-title: Influence of material parameter variability on the predicted coronary artery biomechanical environment via uncertainty quantification publication-title: Biomech Model Mechanobiol – volume: 49 start-page: 2566 year: 2016 end-page: 2576 ident: bib0059 article-title: Optimal graft stiffness and pre-strain restore normal joint motion and cartilage responses in ACL reconstructed knee publication-title: J Biomech – volume: 84 start-page: 94 year: 2019 end-page: 102 ident: bib0002 article-title: A computationally efficient strategy to estimate muscle forces in a finite element musculoskeletal model of the lower limb publication-title: J Biomech – volume: 48 start-page: 3503 year: 2020 end-page: 3514 ident: bib0022 article-title: Anterior cruciate ligament graft tunnel placement and graft angle are primary determinants of internal knee mechanics after reconstructive surgery publication-title: Am J Sports Med – volume: 138 year: 2016 ident: bib0078 article-title: Prediction of In vivo knee joint loads using a global probabilistic analysis publication-title: J Biomech Eng – volume: 12 start-page: 1 year: 2022 end-page: 8 ident: bib0019 article-title: The Conventional Gait Model's sensitivity to lower-limb marker placement publication-title: Sci Rep – volume: 6 start-page: 21415 year: 2016 ident: bib0083 article-title: A novel method to simulate the progression of collagen degeneration of cartilage in the knee: data from the Osteoarthritis Initiative publication-title: Sci Rep – volume: 11 start-page: 90 year: 1996 end-page: 100 ident: bib0027 article-title: Della Croce U. Position and orientation in space of bones during movement: experimental artefacts publication-title: Clin Biomech – volume: 15 start-page: 197 year: 2020 end-page: 202 ident: bib0056 article-title: Girth, strength, and flexibility of the calf muscle in patients with knee osteoarthritis: A case–control study publication-title: J Taibah Univ Med Sci – volume: 160 year: 2023 ident: bib0077 article-title: Sensitivity of simulated knee joint mechanics to selected human and bovine fibril-reinforced poroelastic material properties publication-title: J Biomech – volume: 83-A start-page: 19 year: 2001 end-page: 21 ident: bib0072 article-title: Cartilage injury induces chondrocyte apoptosis publication-title: J Bone Joint Surg Am – volume: 138 year: 2016 ident: bib0060 article-title: Importance of patella, quadriceps forces, and depthwise cartilage structure on knee joint motion and cartilage response during gait publication-title: J Biomech Eng – volume: 8 start-page: 1865 year: 2019 ident: bib0050 article-title: Osteoarthritis severely decreases the elasticity and hardness of knee joint cartilage: a nanoindentation study publication-title: J Clin Med – volume: 35 start-page: 1591 year: 2013 end-page: 1598 ident: bib0065 article-title: Influences of the depth-dependent material inhomogeneity of articular cartilage on the fluid pressurization in the human knee publication-title: Med Eng Phys – volume: 38 start-page: 2138 year: 2005 end-page: 2140 ident: bib0067 article-title: Erratum: A fibril-reinforced poroviscoelastic swelling model for articular cartilage publication-title: J Biomech – volume: 36 start-page: e3351 year: 2020 ident: bib0034 article-title: The effects of clinically-derived parametric data uncertainty in patient-specific coronary simulations with deformable walls publication-title: Int j Numer Method Biomed Eng – volume: 7 start-page: 1 year: 2017 end-page: 14 ident: bib0003 article-title: Workflow assessing the effect of gait alterations on stresses in the medial tibial cartilage - combined musculoskeletal modelling and finite element analysis publication-title: Sci Rep – volume: 25 start-page: 815 year: 2011 end-page: 823 ident: bib0086 article-title: Biomechanical factors in osteoarthritis publication-title: Best Pract Res Clin Rheumatol – volume: 32 start-page: 7411 year: 2011 end-page: 7431 ident: bib0069 article-title: The knee meniscus: structure-function, pathophysiology, current repair techniques, and prospects for regeneration publication-title: Biomaterials – volume: 13 start-page: 1 year: 2018 end-page: 22 ident: bib0029 article-title: Cartilage defect location and stiffness predispose the tibiofemoral joint to aberrant loading conditions during stance phase of gait publication-title: PLoS One – volume: 101 year: 2023 ident: bib0036 article-title: A review on the use of finite element simulations for structural analyses of coronary stenting: what can we do nowadays and what do we need to move forward? publication-title: Eur J Mech - A/Solids – volume: 20 start-page: 423 year: 2012 end-page: 435 ident: bib0081 article-title: Biomechanical considerations in the pathogenesis of osteoarthritis of the knee publication-title: Knee Surgery, Sport Traumatol Arthrosc – volume: 29 start-page: 099 year: 2015 end-page: 106 ident: bib0023 article-title: Influence of ligament properties on tibiofemoral mechanics in walking publication-title: J Knee Surg – volume: 63 start-page: 2068 year: 2016 end-page: 2079 ident: bib0046 article-title: Full-body musculoskeletal model for muscle-driven simulation of human gait publication-title: IEEE Trans Biomed Eng – volume: 30 start-page: 197 year: 2014 end-page: 205 ident: bib0075 article-title: The effects of walking speed on tibiofemoral loading estimated via musculoskeletal modeling publication-title: J Appl Biomech – volume: 77 start-page: 146 year: 2018 end-page: 154 ident: bib0001 article-title: A subject-specific finite element musculoskeletal framework for mechanics analysis of a total knee replacement publication-title: J Biomech – volume: 2 start-page: 1 year: 2015 end-page: 11 ident: bib0017 article-title: Scaling of musculoskeletal models from static and dynamic trials publication-title: Int Biomech – volume: 19 year: 2022 ident: bib0037 article-title: Uncertainty quantification of a three-dimensional in-stent restenosis model with surrogate modelling publication-title: J R Soc Interface – volume: 16 start-page: 225 year: 2021 end-page: 230 ident: bib0074 article-title: Normative data for gait speed and height norm speed in ≥ 60-year-old men and women publication-title: Clin Interv Aging – volume: 9 year: 2021 ident: bib0015 article-title: An in silico framework of cartilage degeneration that integrates fibril reorientation and degradation along with altered hydration and fixed charge density loss publication-title: Front Bioeng Biotechnol – volume: 72 start-page: 367 year: 1991 end-page: 374 ident: bib0054 article-title: Muscle rehabilitation: its effect on muscular and functional performance of patients with knee osteoarthritis publication-title: Arch Phys Med Rehabil – volume: 47 start-page: 813 year: 2019 end-page: 825 ident: bib0006 article-title: Utilizing atlas-based modeling to predict knee joint cartilage degeneration: data from the osteoarthritis initiative publication-title: Ann Biomed Eng – volume: 297 start-page: 167 year: 2015 end-page: 190 ident: bib0038 article-title: Impact of geometric uncertainty on hemodynamic simulations using machine learning publication-title: Comput Methods Appl Mech Eng – volume: 74 start-page: 637 year: 1994 end-page: 644 ident: bib0030 article-title: A comparison of gait characteristics in young and old subjects publication-title: Phys Ther – volume: 32 start-page: 129 year: 1999 end-page: 134 ident: bib0044 article-title: Bone position estimation from skin marker co-ordinates using global optimisation with joint constraints publication-title: J Biomech – volume: 43 start-page: 2675 year: 2015 end-page: 2685 ident: bib0043 article-title: Prediction and validation of load-dependent behavior of the tibiofemoral and patellofemoral joints during movement publication-title: Ann Biomed Eng – volume: 10 start-page: 3026 year: 2020 ident: bib0061 article-title: EMG-assisted muscle force driven finite element model of the knee joint with fibril-reinforced poroelastic cartilages and menisci publication-title: Sci Rep – volume: 82 start-page: 124 year: 2019 end-page: 133 ident: bib0026 article-title: Can altered neuromuscular coordination restore soft tissue loading patterns in anterior cruciate ligament and menisci deficient knees during walking? publication-title: J Biomech – volume: 37 start-page: 271 year: 2016 end-page: 290 ident: bib0084 article-title: Merge of motion analysis, multibody dynamics and finite element method for the subject-specific analysis of cartilage loading patterns during gait: differences between rotation and moment-driven models of human knee joint publication-title: Multibody Syst Dyn – volume: 40 start-page: 1862 year: 2007 end-page: 1870 ident: bib0063 article-title: Characterization of articular cartilage by combining microscopic analysis with a fibril-reinforced finite-element model publication-title: J Biomech – volume: 35 start-page: 2233 year: 2017 end-page: 2242 ident: bib0008 article-title: Reducing uncertainty when using knee-specific finite element models by assessing the effect of input parameters publication-title: J Orthop Res – volume: 17 year: 2022 ident: bib0057 article-title: Knee osteoarthritis alters peri-articular knee muscle strategies during gait publication-title: PLoS One – volume: 140 year: 2018 ident: bib0079 article-title: Influence of uncertainty in selected musculoskeletal model parameters on muscle forces estimated in inverse dynamics-based static optimization and hybrid approach publication-title: J Biomech Eng – volume: 41 start-page: 245 year: 2023 end-page: 256 ident: bib0080 article-title: High tibiofemoral contact and muscle forces during gait are associated with radiographic knee OA progression over 3 years publication-title: Knee – volume: 44 start-page: 1974 year: 2011 end-page: 1979 ident: bib0032 article-title: Sex-specific differences in gait patterns of healthy older adults: results from the Baltimore Longitudinal Study of Aging publication-title: J Biomech – volume: 10 year: 2022 ident: bib0020 article-title: Conclusion or illusion: quantifying uncertainty in inverse analyses from marker-based motion capture due to errors in marker registration and model scaling publication-title: Front Bioeng Biotechnol – volume: 101 year: 2020 ident: bib0028 article-title: The sensitivity of joint kinematics and kinetics to marker placement during a change of direction task publication-title: J Biomech – volume: 2022 start-page: 1 year: 2022 end-page: 6 ident: bib0053 article-title: Knee osteoarthritis: kinesiophobia and isometric strength of quadriceps in women publication-title: Pain Res Manag – volume: 27 start-page: 161 year: 2011 end-page: 171 ident: bib0013 article-title: Evaluation of a geometry-based knee joint compared to a planar knee joint publication-title: Vis Comput – volume: 112 start-page: 267 year: 2012 end-page: 275 ident: bib0045 article-title: Maximal isokinetic and isometric muscle strength of major muscle groups related to age, body mass, height, and sex in 178 healthy subjects publication-title: Eur J Appl Physiol – volume: 15 year: 2020 ident: bib0018 article-title: Impact of knee marker misplacement on gait kinematics of children with cerebral palsy using the Conventional Gait Model—a sensitivity study publication-title: PLoS One – volume: 10 start-page: 1 year: 2022 end-page: 14 ident: bib0021 article-title: Uncertainty in muscle–Tendon parameters can greatly influence the accuracy of knee contact force estimates of musculoskeletal models publication-title: Front Bioeng Biotechnol – volume: 103 start-page: 61 year: 1981 end-page: 66 ident: bib0066 article-title: Effects of nonlinear strain-dependent permeability and rate of compression on the stress behavior of articular cartilage publication-title: J Biomech Eng – volume: 49 start-page: 3891 year: 2016 end-page: 3900 ident: bib0047 article-title: Comparison of different material models of articular cartilage in 3D computational modeling of the knee: data from the Osteoarthritis Initiative (OAI) publication-title: J Biomech – volume: 69 start-page: 2860 year: 2022 end-page: 2871 ident: bib0004 article-title: An EMG-assisted muscle-force driven finite element analysis pipeline to investigate joint- and tissue-level mechanical responses in functional activities: towards a rapid assessment toolbox publication-title: IEEE Trans Biomed Eng – volume: 46 start-page: 2186 year: 2013 end-page: 2193 ident: bib0058 article-title: Influence of weak hip abductor muscles on joint contact forces during normal walking: probabilistic modeling analysis publication-title: J Biomech – volume: 32 start-page: 447 year: 2004 end-page: 457 ident: bib0082 article-title: A framework for the in vivo pathomechanics of osteoarthritis at the knee publication-title: Ann Biomed Eng – volume: 77 start-page: 146 year: 2018 ident: 10.1016/j.medengphy.2025.104313_bib0001 article-title: A subject-specific finite element musculoskeletal framework for mechanics analysis of a total knee replacement publication-title: J Biomech doi: 10.1016/j.jbiomech.2018.07.008 – volume: 23 start-page: 927 year: 2024 ident: 10.1016/j.medengphy.2025.104313_bib0035 article-title: Influence of material parameter variability on the predicted coronary artery biomechanical environment via uncertainty quantification publication-title: Biomech Model Mechanobiol doi: 10.1007/s10237-023-01814-2 – volume: 16 start-page: 225 year: 2021 ident: 10.1016/j.medengphy.2025.104313_bib0074 article-title: Normative data for gait speed and height norm speed in ≥ 60-year-old men and women publication-title: Clin Interv Aging doi: 10.2147/CIA.S290071 – volume: 4 start-page: 284 year: 2012 ident: 10.1016/j.medengphy.2025.104313_bib0051 article-title: Muscle impairments in patients with knee osteoarthritis publication-title: Sports Health doi: 10.1177/1941738112445726 – volume: 44 start-page: 1974 year: 2011 ident: 10.1016/j.medengphy.2025.104313_bib0032 article-title: Sex-specific differences in gait patterns of healthy older adults: results from the Baltimore Longitudinal Study of Aging publication-title: J Biomech doi: 10.1016/j.jbiomech.2011.05.005 – volume: 49 start-page: 2566 year: 2016 ident: 10.1016/j.medengphy.2025.104313_bib0059 article-title: Optimal graft stiffness and pre-strain restore normal joint motion and cartilage responses in ACL reconstructed knee publication-title: J Biomech doi: 10.1016/j.jbiomech.2016.05.002 – volume: 19 start-page: 1 year: 2018 ident: 10.1016/j.medengphy.2025.104313_bib0052 article-title: Associations among knee muscle strength, structural damage, and pain and mobility in individuals with osteoarthritis and symptomatic meniscal tear publication-title: BMC Musculoskelet Disord doi: 10.1186/s12891-018-2182-8 – volume: 43 start-page: 2675 year: 2015 ident: 10.1016/j.medengphy.2025.104313_bib0043 article-title: Prediction and validation of load-dependent behavior of the tibiofemoral and patellofemoral joints during movement publication-title: Ann Biomed Eng doi: 10.1007/s10439-015-1326-3 – volume: 30 start-page: 197 year: 2014 ident: 10.1016/j.medengphy.2025.104313_bib0075 article-title: The effects of walking speed on tibiofemoral loading estimated via musculoskeletal modeling publication-title: J Appl Biomech doi: 10.1123/jab.2012-0206 – volume: 46 start-page: 2186 year: 2013 ident: 10.1016/j.medengphy.2025.104313_bib0058 article-title: Influence of weak hip abductor muscles on joint contact forces during normal walking: probabilistic modeling analysis publication-title: J Biomech doi: 10.1016/j.jbiomech.2013.06.030 – volume: 138 year: 2016 ident: 10.1016/j.medengphy.2025.104313_bib0078 article-title: Prediction of In vivo knee joint loads using a global probabilistic analysis publication-title: J Biomech Eng doi: 10.1115/1.4032379 – volume: 47 start-page: 813 year: 2019 ident: 10.1016/j.medengphy.2025.104313_bib0006 article-title: Utilizing atlas-based modeling to predict knee joint cartilage degeneration: data from the osteoarthritis initiative publication-title: Ann Biomed Eng doi: 10.1007/s10439-018-02184-y – volume: 123 start-page: 341 year: 2001 ident: 10.1016/j.medengphy.2025.104313_bib0012 article-title: Variability of a three-dimensional finite element model constructed using magnetic resonance images of a knee for joint contact stress analysis publication-title: J Biomech Eng doi: 10.1115/1.1385841 – volume: 32 start-page: 447 year: 2004 ident: 10.1016/j.medengphy.2025.104313_bib0082 article-title: A framework for the in vivo pathomechanics of osteoarthritis at the knee publication-title: Ann Biomed Eng doi: 10.1023/B:ABME.0000017541.82498.37 – volume: 6 start-page: 21415 year: 2016 ident: 10.1016/j.medengphy.2025.104313_bib0083 article-title: A novel method to simulate the progression of collagen degeneration of cartilage in the knee: data from the Osteoarthritis Initiative publication-title: Sci Rep doi: 10.1038/srep21415 – volume: 29 start-page: 099 year: 2015 ident: 10.1016/j.medengphy.2025.104313_bib0023 article-title: Influence of ligament properties on tibiofemoral mechanics in walking publication-title: J Knee Surg doi: 10.1055/s-0035-1558858 – ident: 10.1016/j.medengphy.2025.104313_bib0040 – volume: 24 start-page: 372 year: 2009 ident: 10.1016/j.medengphy.2025.104313_bib0033 article-title: Differences in gait parameters between healthy subjects and persons with moderate and severe knee osteoarthritis: A result of altered walking speed? publication-title: Clin Biomech doi: 10.1016/j.clinbiomech.2009.02.001 – volume: 37 start-page: 271 year: 2016 ident: 10.1016/j.medengphy.2025.104313_bib0084 article-title: Merge of motion analysis, multibody dynamics and finite element method for the subject-specific analysis of cartilage loading patterns during gait: differences between rotation and moment-driven models of human knee joint publication-title: Multibody Syst Dyn doi: 10.1007/s11044-015-9470-y – volume: 25 start-page: 815 year: 2011 ident: 10.1016/j.medengphy.2025.104313_bib0086 article-title: Biomechanical factors in osteoarthritis publication-title: Best Pract Res Clin Rheumatol doi: 10.1016/j.berh.2011.11.013 – volume: 49 start-page: 3891 year: 2016 ident: 10.1016/j.medengphy.2025.104313_bib0047 article-title: Comparison of different material models of articular cartilage in 3D computational modeling of the knee: data from the Osteoarthritis Initiative (OAI) publication-title: J Biomech doi: 10.1016/j.jbiomech.2016.10.025 – volume: 10 start-page: 33 year: 2003 ident: 10.1016/j.medengphy.2025.104313_bib0011 article-title: Finite element analysis of the meniscus: the influence of geometry and material properties on its behaviour publication-title: Knee doi: 10.1016/S0968-0160(02)00106-0 – volume: 15 year: 2020 ident: 10.1016/j.medengphy.2025.104313_bib0018 article-title: Impact of knee marker misplacement on gait kinematics of children with cerebral palsy using the Conventional Gait Model—a sensitivity study publication-title: PLoS One doi: 10.1371/journal.pone.0232064 – volume: 29 start-page: 123 year: 2021 ident: 10.1016/j.medengphy.2025.104313_bib0048 article-title: 12 Degrees of freedom muscle force driven fibril-reinforced poroviscoelastic finite element model of the knee joint publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2020.3037411 – volume: 17 year: 2022 ident: 10.1016/j.medengphy.2025.104313_bib0057 article-title: Knee osteoarthritis alters peri-articular knee muscle strategies during gait publication-title: PLoS One doi: 10.1371/journal.pone.0262798 – volume: 13 start-page: 1 year: 2018 ident: 10.1016/j.medengphy.2025.104313_bib0029 article-title: Cartilage defect location and stiffness predispose the tibiofemoral joint to aberrant loading conditions during stance phase of gait publication-title: PLoS One doi: 10.1371/journal.pone.0205842 – volume: 226 start-page: 82 year: 2012 ident: 10.1016/j.medengphy.2025.104313_bib0016 article-title: On validation of multibody musculoskeletal models publication-title: Proc Inst Mech Eng Part H, J Eng Med doi: 10.1177/0954411911431516 – volume: 36 start-page: 1335 year: 2008 ident: 10.1016/j.medengphy.2025.104313_bib0070 article-title: Influence of meniscectomy and meniscus replacement on the stress distribution in human knee joint publication-title: Ann Biomed Eng doi: 10.1007/s10439-008-9515-y – volume: 11 start-page: 90 year: 1996 ident: 10.1016/j.medengphy.2025.104313_bib0027 article-title: Della Croce U. Position and orientation in space of bones during movement: experimental artefacts publication-title: Clin Biomech doi: 10.1016/0268-0033(95)00046-1 – volume: 62 start-page: 1190 year: 2010 ident: 10.1016/j.medengphy.2025.104313_bib0055 article-title: Hip muscle weakness in individuals with medial knee osteoarthritis publication-title: Arthritis Care Res doi: 10.1002/acr.20199 – volume: 160 year: 2023 ident: 10.1016/j.medengphy.2025.104313_bib0077 article-title: Sensitivity of simulated knee joint mechanics to selected human and bovine fibril-reinforced poroelastic material properties publication-title: J Biomech doi: 10.1016/j.jbiomech.2023.111800 – volume: 48 start-page: 1499 year: 2015 ident: 10.1016/j.medengphy.2025.104313_bib0068 article-title: Characterization of site-specific biomechanical properties of human meniscus-importance of collagen and fluid on mechanical nonlinearities publication-title: J Biomech doi: 10.1016/j.jbiomech.2015.01.048 – volume: 26 start-page: 1203 year: 2018 ident: 10.1016/j.medengphy.2025.104313_bib0014 article-title: Relationship between knee joint contact forces and external knee joint moments in patients with medial knee osteoarthritis: effects of gait modifications publication-title: Osteoarthr Cartil doi: 10.1016/j.joca.2018.04.011 – volume: 48 start-page: 3503 year: 2020 ident: 10.1016/j.medengphy.2025.104313_bib0022 article-title: Anterior cruciate ligament graft tunnel placement and graft angle are primary determinants of internal knee mechanics after reconstructive surgery publication-title: Am J Sports Med doi: 10.1177/0363546520966721 – volume: 27 start-page: 161 year: 2011 ident: 10.1016/j.medengphy.2025.104313_bib0013 article-title: Evaluation of a geometry-based knee joint compared to a planar knee joint publication-title: Vis Comput doi: 10.1007/s00371-010-0538-7 – volume: 8 start-page: 1865 year: 2019 ident: 10.1016/j.medengphy.2025.104313_bib0050 article-title: Osteoarthritis severely decreases the elasticity and hardness of knee joint cartilage: a nanoindentation study publication-title: J Clin Med doi: 10.3390/jcm8111865 – volume: 69 start-page: 2860 year: 2022 ident: 10.1016/j.medengphy.2025.104313_bib0004 article-title: An EMG-assisted muscle-force driven finite element analysis pipeline to investigate joint- and tissue-level mechanical responses in functional activities: towards a rapid assessment toolbox publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2022.3156018 – volume: 297 start-page: 167 year: 2015 ident: 10.1016/j.medengphy.2025.104313_bib0038 article-title: Impact of geometric uncertainty on hemodynamic simulations using machine learning publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2015.08.014 – volume: 9 year: 2021 ident: 10.1016/j.medengphy.2025.104313_bib0015 article-title: An in silico framework of cartilage degeneration that integrates fibril reorientation and degradation along with altered hydration and fixed charge density loss publication-title: Front Bioeng Biotechnol doi: 10.3389/fbioe.2021.680257 – volume: 112 start-page: 267 year: 2012 ident: 10.1016/j.medengphy.2025.104313_bib0045 article-title: Maximal isokinetic and isometric muscle strength of major muscle groups related to age, body mass, height, and sex in 178 healthy subjects publication-title: Eur J Appl Physiol doi: 10.1007/s00421-011-1975-3 – volume: 103 start-page: 61 year: 1981 ident: 10.1016/j.medengphy.2025.104313_bib0066 article-title: Effects of nonlinear strain-dependent permeability and rate of compression on the stress behavior of articular cartilage publication-title: J Biomech Eng doi: 10.1115/1.3138261 – volume: 101 year: 2023 ident: 10.1016/j.medengphy.2025.104313_bib0036 article-title: A review on the use of finite element simulations for structural analyses of coronary stenting: what can we do nowadays and what do we need to move forward? publication-title: Eur J Mech - A/Solids doi: 10.1016/j.euromechsol.2023.105071 – volume: 2022 start-page: 1 year: 2022 ident: 10.1016/j.medengphy.2025.104313_bib0053 article-title: Knee osteoarthritis: kinesiophobia and isometric strength of quadriceps in women publication-title: Pain Res Manag doi: 10.1155/2022/1466478 – volume: 7 start-page: 1 year: 2017 ident: 10.1016/j.medengphy.2025.104313_bib0003 article-title: Workflow assessing the effect of gait alterations on stresses in the medial tibial cartilage - combined musculoskeletal modelling and finite element analysis publication-title: Sci Rep doi: 10.1038/s41598-017-17228-x – volume: 10 start-page: 1 year: 2022 ident: 10.1016/j.medengphy.2025.104313_bib0021 article-title: Uncertainty in muscle–Tendon parameters can greatly influence the accuracy of knee contact force estimates of musculoskeletal models publication-title: Front Bioeng Biotechnol doi: 10.3389/fbioe.2022.808027 – volume: 63 start-page: 2068 year: 2016 ident: 10.1016/j.medengphy.2025.104313_bib0046 article-title: Full-body musculoskeletal model for muscle-driven simulation of human gait publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2016.2586891 – ident: 10.1016/j.medengphy.2025.104313_bib0031 doi: 10.1101/2021.07.02.21259710 – volume: 35 start-page: 2233 year: 2017 ident: 10.1016/j.medengphy.2025.104313_bib0008 article-title: Reducing uncertainty when using knee-specific finite element models by assessing the effect of input parameters publication-title: J Orthop Res doi: 10.1002/jor.23513 – volume: 41 start-page: 245 year: 2023 ident: 10.1016/j.medengphy.2025.104313_bib0080 article-title: High tibiofemoral contact and muscle forces during gait are associated with radiographic knee OA progression over 3 years publication-title: Knee doi: 10.1016/j.knee.2023.01.012 – volume: 74 start-page: 637 year: 1994 ident: 10.1016/j.medengphy.2025.104313_bib0030 article-title: A comparison of gait characteristics in young and old subjects publication-title: Phys Ther doi: 10.1093/ptj/74.7.637 – volume: 36 start-page: e3351 year: 2020 ident: 10.1016/j.medengphy.2025.104313_bib0034 article-title: The effects of clinically-derived parametric data uncertainty in patient-specific coronary simulations with deformable walls publication-title: Int j Numer Method Biomed Eng doi: 10.1002/cnm.3351 – volume: 72 start-page: 367 year: 1991 ident: 10.1016/j.medengphy.2025.104313_bib0054 article-title: Muscle rehabilitation: its effect on muscular and functional performance of patients with knee osteoarthritis publication-title: Arch Phys Med Rehabil – volume: 140 year: 2018 ident: 10.1016/j.medengphy.2025.104313_bib0079 article-title: Influence of uncertainty in selected musculoskeletal model parameters on muscle forces estimated in inverse dynamics-based static optimization and hybrid approach publication-title: J Biomech Eng doi: 10.1115/1.4040943 – volume: 8 start-page: 15599 year: 2018 ident: 10.1016/j.medengphy.2025.104313_bib0005 article-title: A novel mechanobiological model can predict how physiologically relevant dynamic loading causes proteoglycan loss in mechanically injured articular cartilage publication-title: Sci Rep doi: 10.1038/s41598-018-33759-3 – volume: 10 start-page: 3026 year: 2020 ident: 10.1016/j.medengphy.2025.104313_bib0061 article-title: EMG-assisted muscle force driven finite element model of the knee joint with fibril-reinforced poroelastic cartilages and menisci publication-title: Sci Rep doi: 10.1038/s41598-020-59602-2 – volume: 84 start-page: 94 year: 2019 ident: 10.1016/j.medengphy.2025.104313_bib0002 article-title: A computationally efficient strategy to estimate muscle forces in a finite element musculoskeletal model of the lower limb publication-title: J Biomech doi: 10.1016/j.jbiomech.2018.12.020 – volume: 7 start-page: 9177 year: 2017 ident: 10.1016/j.medengphy.2025.104313_bib0007 article-title: Simulation of subject-specific progression of knee Osteoarthritis and comparison to experimental follow-up data: data from the Osteoarthritis Initiative publication-title: Sci Rep doi: 10.1038/s41598-017-09013-7 – volume: 101 year: 2020 ident: 10.1016/j.medengphy.2025.104313_bib0028 article-title: The sensitivity of joint kinematics and kinetics to marker placement during a change of direction task publication-title: J Biomech doi: 10.1016/j.jbiomech.2020.109635 – volume: 43 start-page: 3118 year: 2010 ident: 10.1016/j.medengphy.2025.104313_bib0009 article-title: The effect of connective tissue material uncertainties on knee joint mechanics under isolated loading conditions publication-title: J Biomech doi: 10.1016/j.jbiomech.2010.08.005 – volume: 37 start-page: 357 year: 2004 ident: 10.1016/j.medengphy.2025.104313_bib0064 article-title: Stresses in the local collagen network of articular cartilage: a poroviscoelastic fibril-reinforced finite element study publication-title: J Biomech doi: 10.1016/S0021-9290(03)00267-7 – volume: 20 start-page: 423 year: 2012 ident: 10.1016/j.medengphy.2025.104313_bib0081 article-title: Biomechanical considerations in the pathogenesis of osteoarthritis of the knee publication-title: Knee Surgery, Sport Traumatol Arthrosc doi: 10.1007/s00167-011-1818-0 – volume: 474 start-page: 1886 year: 2016 ident: 10.1016/j.medengphy.2025.104313_bib0041 article-title: Classifications in brief: Kellgren-Lawrence classification of osteoarthritis publication-title: Clin Orthop Relat Res doi: 10.1007/s11999-016-4732-4 – volume: 136 year: 2014 ident: 10.1016/j.medengphy.2025.104313_bib0042 article-title: Co-simulation of neuromuscular dynamics and knee mechanics during human walking publication-title: J Biomech Eng doi: 10.1115/1.4026358 – volume: 2 start-page: 54 year: 2014 ident: 10.1016/j.medengphy.2025.104313_bib0010 article-title: Material models and properties in the finite element analysis of knee ligaments: A literature review publication-title: Front Bioeng Biotechnol doi: 10.3389/fbioe.2014.00054 – volume: 32 start-page: 769 year: 2014 ident: 10.1016/j.medengphy.2025.104313_bib0025 article-title: Changes in tibiofemoral forces due to variations in muscle activity during walking publication-title: J Orthop Res doi: 10.1002/jor.22601 – volume: 32 start-page: 129 year: 1999 ident: 10.1016/j.medengphy.2025.104313_bib0044 article-title: Bone position estimation from skin marker co-ordinates using global optimisation with joint constraints publication-title: J Biomech doi: 10.1016/S0021-9290(98)00158-4 – volume: 83-A start-page: 19 issue: Suppl year: 2001 ident: 10.1016/j.medengphy.2025.104313_bib0072 article-title: Cartilage injury induces chondrocyte apoptosis publication-title: J Bone Joint Surg Am doi: 10.2106/00004623-200100021-00004 – volume: 32 start-page: 7411 year: 2011 ident: 10.1016/j.medengphy.2025.104313_bib0069 article-title: The knee meniscus: structure-function, pathophysiology, current repair techniques, and prospects for regeneration publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.06.037 – volume: 40 start-page: 1862 year: 2007 ident: 10.1016/j.medengphy.2025.104313_bib0063 article-title: Characterization of articular cartilage by combining microscopic analysis with a fibril-reinforced finite-element model publication-title: J Biomech doi: 10.1016/j.jbiomech.2006.07.026 – volume: 31 start-page: 10 year: 2013 ident: 10.1016/j.medengphy.2025.104313_bib0076 article-title: Implementation of subject-specific collagen architecture of cartilage into a 2D computational model of a knee joint—Data from the osteoarthritis initiative (OAI) publication-title: J Orthop Res doi: 10.1002/jor.22175 – volume: 35 start-page: 1591 year: 2013 ident: 10.1016/j.medengphy.2025.104313_bib0065 article-title: Influences of the depth-dependent material inhomogeneity of articular cartilage on the fluid pressurization in the human knee publication-title: Med Eng Phys doi: 10.1016/j.medengphy.2013.05.005 – volume: 87 start-page: 65 year: 2021 ident: 10.1016/j.medengphy.2025.104313_bib0024 article-title: Impact of scaling errors of the thigh and shank segments on musculoskeletal simulation results publication-title: Gait Posture doi: 10.1016/j.gaitpost.2021.02.016 – volume: 19 year: 2022 ident: 10.1016/j.medengphy.2025.104313_bib0037 article-title: Uncertainty quantification of a three-dimensional in-stent restenosis model with surrogate modelling publication-title: J R Soc Interface doi: 10.1098/rsif.2021.0864 – volume: 10 year: 2022 ident: 10.1016/j.medengphy.2025.104313_bib0020 article-title: Conclusion or illusion: quantifying uncertainty in inverse analyses from marker-based motion capture due to errors in marker registration and model scaling publication-title: Front Bioeng Biotechnol doi: 10.3389/fbioe.2022.874725 – volume: 38 start-page: 2138 year: 2005 ident: 10.1016/j.medengphy.2025.104313_bib0067 article-title: Erratum: A fibril-reinforced poroviscoelastic swelling model for articular cartilage publication-title: J Biomech doi: 10.1016/j.jbiomech.2005.04.024 – volume: 18 start-page: 753 year: 2019 ident: 10.1016/j.medengphy.2025.104313_bib0073 article-title: Maximum shear strain-based algorithm can predict proteoglycan loss in damaged articular cartilage publication-title: Biomech Model Mechanobiol doi: 10.1007/s10237-018-01113-1 – volume: 138 year: 2016 ident: 10.1016/j.medengphy.2025.104313_bib0060 article-title: Importance of patella, quadriceps forces, and depthwise cartilage structure on knee joint motion and cartilage response during gait publication-title: J Biomech Eng doi: 10.1115/1.4033516 – volume: 48 start-page: 1397 year: 2015 ident: 10.1016/j.medengphy.2025.104313_bib0062 article-title: A multi-scale finite element model for investigation of chondrocyte mechanics in normal and medial meniscectomy human knee joint during walking publication-title: J Biomech doi: 10.1016/j.jbiomech.2015.02.043 – volume: 4 start-page: 286 year: 2013 ident: 10.1016/j.medengphy.2025.104313_bib0085 article-title: The roles of mechanical stresses in the pathogenesis of osteoarthritis: implications for treatment of joint injuries publication-title: Cartilage doi: 10.1177/1947603513495889 – volume: 2 start-page: 1 year: 2015 ident: 10.1016/j.medengphy.2025.104313_bib0017 article-title: Scaling of musculoskeletal models from static and dynamic trials publication-title: Int Biomech doi: 10.1080/23335432.2014.993706 – volume: 12 start-page: 1 year: 2022 ident: 10.1016/j.medengphy.2025.104313_bib0019 article-title: The Conventional Gait Model's sensitivity to lower-limb marker placement publication-title: Sci Rep doi: 10.1038/s41598-022-18546-5 – volume: 19 start-page: 822 year: 2011 ident: 10.1016/j.medengphy.2025.104313_bib0039 article-title: Effects of an intensive weight loss program on knee joint loading in obese adults with knee osteoarthritis publication-title: Osteoarthr Cartil doi: 10.1016/j.joca.2011.03.006 – volume: 35 start-page: 517 year: 2012 ident: 10.1016/j.medengphy.2025.104313_bib0049 article-title: Sensitivity of the OLGA and VCM models to erroneous marker placement: effects on 3D-gait kinematics publication-title: Gait Posture doi: 10.1016/j.gaitpost.2011.11.019 – volume: 15 start-page: 197 year: 2020 ident: 10.1016/j.medengphy.2025.104313_bib0056 article-title: Girth, strength, and flexibility of the calf muscle in patients with knee osteoarthritis: A case–control study publication-title: J Taibah Univ Med Sci – volume: 82 start-page: 124 year: 2019 ident: 10.1016/j.medengphy.2025.104313_bib0026 article-title: Can altered neuromuscular coordination restore soft tissue loading patterns in anterior cruciate ligament and menisci deficient knees during walking? publication-title: J Biomech doi: 10.1016/j.jbiomech.2018.10.008 |
SSID | ssj0004463 |
Score | 2.4291477 |
Snippet | •Analyzed the impact of various modeling assumptions on knee joint mechanics.•Constructed and tested five musculoskeletal models per subject plus a reference... Musculoskeletal finite element modeling is used to estimate mechanical responses of knee joint tissues but involves uncertainties in muscle activations, marker... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 104313 |
SubjectTerms | Adult Biomechanical Phenomena Finite Element Analysis Finite element modeling Gait Humans Knee joint Knee Joint - physiology Male Mechanical Phenomena Modeling assumptions Models, Biological Musculoskeletal modeling Personalized gait data Uncertainty |
Title | Effect of uncertainties in musculoskeletal modeling inputs on sensitivity of knee joint finite element simulations |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1350453325000323 https://dx.doi.org/10.1016/j.medengphy.2025.104313 https://www.ncbi.nlm.nih.gov/pubmed/40180526 https://www.proquest.com/docview/3186351637 |
Volume | 138 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5VReJxqGCBsgUqI3ENm_iVhFu1olpA7YUi9WY58RilVZNVs3vltzOOk4UeKpA4JvGMY89oHvLnGYD3HJ2UlcXES0UJiitdUlLkkKjKK8p7nMQ8XE4-O9er7_LLpbrcg-V0FybAKkfbH236YK3HN4txNxfrpll8y4QirkLwUNNf8FDxU8o8aPmHn79hHpTuDCB7GpyE0XcwXuRwsP1B66FEkatw3ikycZ-Hui8CHTzR6VM4GENIdhL_8hnsYTuDR8upc9sMnvxRZHAGD8_G4_PncBtrFbPOM3JnEQwQCqqypmU32wBJ7fpr8kMUkLOhRQ4xoG_r7aZnXcv6AHaP3SYCi2uagl11xIL5JoSuDCMWnfXNzdgVrH8BF6efLparZGy6kNSSy02CRYo15WzaitTVWhe2pBysLqpMZui0TIs6rbGsrOaVyzJtLWV8Cq1PC-e9Ei9hv-1afAUMRW4doqycdlLUvsg9LzOizYq05tzNIZ322axjaQ0zYc6uzE40JojGRNHMoZjkYaabo2TrDJn_v5N-3JHeUbB_I343Cd-QLMOZim2x2_aGTCKFbBTU5nM4jFqxW4wMxdEU10f_M_VreByeIljoDexvbrf4luKgTXU8KPoxPDj5_HV1_gtxiArc |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VRaJwQLC8lqeR4Bg2sR2vg8QBFaot7fbCIvVmJfG4Sqsmq2ZXiAs_il_IOE4WeqhAQr3G8jiZcWbmkz_PALzmaKUscoycTAmg2MxGGWUOUVq4lHCPlTj1l5PnR2r2VX4-To-34OdwF8bTKnvfH3x65637J5Nem5NlVU2-JCIlqUJwX9Nf8KGD9QF-_0a4rX2__5GM_IbzvU-L3VnUtxaISsnlKkIdY0nIROUitqVSOs8IaZS6SGSCVslYl3GJWZErXtgkUXlOuCbF3MXaOuc7RZDbv0Gra9814e2P37QSglcdqZ9eLvJvd4lTRgEO6xPSHwFTnvrzVZGIqyLiVRlvF_n27sKdPmVlH4JW7sEW1iPY2R06xY3g9h9FDUdwc94f19-Hi1AbmTWOUfgM5ANfwJVVNTtfewps055R3CMAwLqWPCSAxpbrVcuamrWeXB-6W3gRZ7QEO21IBHOVT5UZBu47a6vzvgtZ-wAW12GJh7BdNzU-BoZimltEWVhlpSidnjqeJTQ30XHJuR1DPOjZLEMpDzNw3E7NxjTGm8YE04xBD_Yww01V8q2Gws3fp77bTL20of9t8qvB-IZs6c9w8hqbdWvIBVOKSEn0dAyPwq7YfIz0xdhSrp78z9IvYWe2mB-aw_2jg6dwy48EotIz2F5drPE55WCr4kW36RmYa_7JfgHowEZw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+uncertainties+in+musculoskeletal+modeling+inputs+on+sensitivity+of+knee+joint+finite+element+simulations&rft.jtitle=Medical+engineering+%26+physics&rft.au=Jahangir%2C+Sana&rft.au=Bosch%2C+Will&rft.au=Esrafilian%2C+Amir&rft.au=Mononen%2C+Mika+E.&rft.date=2025-04-01&rft.pub=Elsevier+Ltd&rft.issn=1350-4533&rft.volume=138&rft_id=info:doi/10.1016%2Fj.medengphy.2025.104313&rft.externalDocID=S1350453325000323 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1350-4533&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1350-4533&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1350-4533&client=summon |