A Real-Time Chinese Traffic Sign Detection Algorithm Based on Modified YOLOv2

Traffic sign detection is an important task in traffic sign recognition systems. Chinese traffic signs have their unique features compared with traffic signs of other countries. Convolutional neural networks (CNNs) have achieved a breakthrough in computer vision tasks and made great success in traff...

Full description

Saved in:
Bibliographic Details
Published inAlgorithms Vol. 10; no. 4; p. 127
Main Authors Zhang, Jianming, Huang, Manting, Jin, Xiaokang, Li, Xudong
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.12.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Traffic sign detection is an important task in traffic sign recognition systems. Chinese traffic signs have their unique features compared with traffic signs of other countries. Convolutional neural networks (CNNs) have achieved a breakthrough in computer vision tasks and made great success in traffic sign classification. In this paper, we present a Chinese traffic sign detection algorithm based on a deep convolutional network. To achieve real-time Chinese traffic sign detection, we propose an end-to-end convolutional network inspired by YOLOv2. In view of the characteristics of traffic signs, we take the multiple 1 × 1 convolutional layers in intermediate layers of the network and decrease the convolutional layers in top layers to reduce the computational complexity. For effectively detecting small traffic signs, we divide the input images into dense grids to obtain finer feature maps. Moreover, we expand the Chinese traffic sign dataset (CTSD) and improve the marker information, which is available online. All experimental results evaluated according to our expanded CTSD and German Traffic Sign Detection Benchmark (GTSDB) indicate that the proposed method is the faster and more robust. The fastest detection speed achieved was 0.017 s per image.
AbstractList Traffic sign detection is an important task in traffic sign recognition systems. Chinese traffic signs have their unique features compared with traffic signs of other countries. Convolutional neural networks (CNNs) have achieved a breakthrough in computer vision tasks and made great success in traffic sign classification. In this paper, we present a Chinese traffic sign detection algorithm based on a deep convolutional network. To achieve real-time Chinese traffic sign detection, we propose an end-to-end convolutional network inspired by YOLOv2. In view of the characteristics of traffic signs, we take the multiple 1 × 1 convolutional layers in intermediate layers of the network and decrease the convolutional layers in top layers to reduce the computational complexity. For effectively detecting small traffic signs, we divide the input images into dense grids to obtain finer feature maps. Moreover, we expand the Chinese traffic sign dataset (CTSD) and improve the marker information, which is available online. All experimental results evaluated according to our expanded CTSD and German Traffic Sign Detection Benchmark (GTSDB) indicate that the proposed method is the faster and more robust. The fastest detection speed achieved was 0.017 s per image.
Author Huang, Manting
Jin, Xiaokang
Zhang, Jianming
Li, Xudong
Author_xml – sequence: 1
  givenname: Jianming
  orcidid: 0000-0002-4278-0805
  surname: Zhang
  fullname: Zhang, Jianming
– sequence: 2
  givenname: Manting
  surname: Huang
  fullname: Huang, Manting
– sequence: 3
  givenname: Xiaokang
  surname: Jin
  fullname: Jin, Xiaokang
– sequence: 4
  givenname: Xudong
  surname: Li
  fullname: Li, Xudong
BookMark eNplUE1LAzEUDKJgrR78BwuePKxNNslucqz1E1oKWg-eQkxe2pTtpma3gv_e1KqIXt57zJsZhjlC-01oAKFTgi8olXigCcYMk6LaQz0ipcyZkHT_132Ijtp2iXHJZUl6aDLMHkDX-cyvIBstfAMtZLOonfMme_TzJruCDkznQ5MN63mIvlusskvdgs0SNAnWO5_u5-l4-lYcowOn6xZOvnYfPd1cz0Z3-Xh6ez8ajnPDCtblUHIB0jlgVSkYt5TZAouKVmChFBg05RRrMBwL7l4MdoXgXFJtBTb8JT376H7na4NeqnX0Kx3fVdBefQIhzpWOnTc1KExLSk2paVFRpkkhLYCh2LhUACXMJq-zndc6htcNtJ1ahk1sUnxFpBA8jbJKrMGOZWJo2whOGd_pbS1d1L5WBKtt_-qn_6Q4_6P4zvmf-wEqOoNX
CitedBy_id crossref_primary_10_32604_cmc_2024_051562
crossref_primary_10_3390_agriculture13071405
crossref_primary_10_3390_s19102288
crossref_primary_10_3390_su132212722
crossref_primary_10_3390_app13084793
crossref_primary_10_1088_1757_899X_646_1_012006
crossref_primary_10_29130_dubited_1214901
crossref_primary_10_1109_ACCESS_2020_2972338
crossref_primary_10_32604_csse_2023_039417
crossref_primary_10_1016_j_array_2021_100057
crossref_primary_10_1155_2020_8827310
crossref_primary_10_1109_TITS_2021_3062113
crossref_primary_10_1049_ipr2_13274
crossref_primary_10_3390_math12020297
crossref_primary_10_32604_iasc_2023_028444
crossref_primary_10_1109_ACCESS_2019_2924947
crossref_primary_10_1109_TITS_2018_2867183
crossref_primary_10_1177_0954407020950054
crossref_primary_10_1155_2020_2365076
crossref_primary_10_1109_TITS_2019_2941081
crossref_primary_10_1038_s41598_025_94610_0
crossref_primary_10_1109_ACCESS_2020_3021660
crossref_primary_10_1016_j_optlastec_2018_08_007
crossref_primary_10_1080_02533839_2019_1708801
crossref_primary_10_1186_s40537_020_00324_7
crossref_primary_10_1007_s11554_020_01003_9
crossref_primary_10_1016_j_scs_2020_102700
crossref_primary_10_1007_s11227_022_04670_6
crossref_primary_10_1007_s11227_021_04230_4
crossref_primary_10_1016_j_compag_2025_109944
crossref_primary_10_1155_2022_2752334
crossref_primary_10_3390_en13071765
crossref_primary_10_32604_cmc_2023_035415
crossref_primary_10_1111_coin_12558
crossref_primary_10_1088_1757_899X_787_1_012034
crossref_primary_10_47836_pjst_31_1_09
crossref_primary_10_1088_1742_6596_1880_1_012025
crossref_primary_10_1109_ACCESS_2023_3252499
crossref_primary_10_1155_2022_3825532
crossref_primary_10_3390_s23083871
crossref_primary_10_1007_s11042_023_17146_3
crossref_primary_10_1016_j_engappai_2025_110488
crossref_primary_10_1007_s10044_024_01406_5
crossref_primary_10_3390_s18103192
crossref_primary_10_2139_ssrn_3420232
crossref_primary_10_1007_s11119_020_09754_y
crossref_primary_10_1088_1742_6596_1774_1_012045
crossref_primary_10_1155_2022_6942940
crossref_primary_10_36306_konjes_1531208
crossref_primary_10_51513_jitsa_957371
crossref_primary_10_1109_TITS_2020_3020556
crossref_primary_10_1109_TETCI_2024_3349464
crossref_primary_10_3389_fnbot_2023_1220443
crossref_primary_10_3390_su16198597
crossref_primary_10_1007_s11042_023_15109_2
crossref_primary_10_1109_ACCESS_2020_3031191
crossref_primary_10_1109_MITS_2019_2907630
crossref_primary_10_1109_ACCESS_2019_2909068
crossref_primary_10_1109_TITS_2019_2958486
crossref_primary_10_3390_s20226476
crossref_primary_10_1007_s11227_024_06800_8
crossref_primary_10_3390_app10093280
crossref_primary_10_1088_1742_6596_2337_1_012001
crossref_primary_10_1007_s00138_023_01417_y
crossref_primary_10_1049_ipr2_13204
crossref_primary_10_1007_s11042_021_11413_x
crossref_primary_10_1155_2021_9500304
crossref_primary_10_3390_su16010171
crossref_primary_10_1007_s11063_019_10115_8
crossref_primary_10_1109_JSTARS_2020_2966543
crossref_primary_10_1109_TASE_2021_3116040
crossref_primary_10_1007_s00371_023_02801_5
crossref_primary_10_1108_IJIUS_09_2023_0113
crossref_primary_10_1007_s11042_022_13805_z
crossref_primary_10_3390_data8010016
crossref_primary_10_3390_a14040114
crossref_primary_10_1007_s13369_022_06818_1
crossref_primary_10_3390_app12146831
crossref_primary_10_1049_itr2_12257
crossref_primary_10_3390_math6100213
crossref_primary_10_3390_electronics7100216
crossref_primary_10_1109_ACCESS_2024_3417023
crossref_primary_10_1016_j_aei_2024_102674
crossref_primary_10_3390_app10196997
crossref_primary_10_3390_s22239345
crossref_primary_10_3390_electronics7110302
crossref_primary_10_1109_TITS_2018_2886283
crossref_primary_10_1007_s00371_023_02813_1
crossref_primary_10_51513_jitsa_1527571
crossref_primary_10_1016_j_neucom_2019_12_144
crossref_primary_10_1109_ACCESS_2022_3198954
crossref_primary_10_1016_j_image_2022_116783
crossref_primary_10_3934_mbe_2023282
crossref_primary_10_3390_s18103415
crossref_primary_10_1049_iet_its_2019_0475
crossref_primary_10_1016_j_aap_2022_106594
crossref_primary_10_35377_saucis___1073355
crossref_primary_10_3390_rs11070786
crossref_primary_10_3390_app12083835
crossref_primary_10_1145_3434398
crossref_primary_10_1007_s11227_023_05547_y
crossref_primary_10_3390_s20226532
crossref_primary_10_1007_s11042_023_14895_z
crossref_primary_10_1134_S1054661822020110
crossref_primary_10_1063_5_0202721
crossref_primary_10_1002_cpe_6234
crossref_primary_10_1007_s11760_024_03108_1
crossref_primary_10_1109_TITS_2018_2868168
crossref_primary_10_1109_TITS_2019_2931429
crossref_primary_10_3233_IDA_230075
crossref_primary_10_1109_ACCESS_2020_2989758
crossref_primary_10_26634_jdp_7_1_16445
crossref_primary_10_1109_TSMC_2023_3283021
crossref_primary_10_3390_s24144725
crossref_primary_10_2478_ttj_2020_0002
crossref_primary_10_1111_exsy_12781
crossref_primary_10_1016_j_neucom_2021_03_049
crossref_primary_10_1007_s11042_022_12531_w
crossref_primary_10_3788_LOP240672
crossref_primary_10_1109_ACCESS_2022_3230282
crossref_primary_10_1007_s00521_022_08077_5
crossref_primary_10_1016_j_procs_2021_02_066
crossref_primary_10_1016_j_cmpb_2021_106608
crossref_primary_10_1109_TITS_2023_3309644
crossref_primary_10_3233_JIFS_210838
crossref_primary_10_1155_2022_7877032
crossref_primary_10_3390_wevj15070285
crossref_primary_10_1109_ACCESS_2021_3069205
crossref_primary_10_3233_MGS_200330
crossref_primary_10_1080_10298436_2020_1765241
crossref_primary_10_1016_j_heliyon_2024_e26182
crossref_primary_10_1109_TITS_2020_3009186
crossref_primary_10_3390_info11100475
crossref_primary_10_3390_axioms12020160
Cites_doi 10.1109/IJCNN.2013.6706812
10.1109/TPAMI.2016.2577031
10.1109/TNNLS.2016.2582746
10.1109/TITS.2012.2209421
10.1109/IJCNN.2013.6706811
10.1109/CVPR.2016.90
10.2991/iccsee.2013.359
10.1109/CVPR.2016.91
10.3390/info8020045
10.1109/5.726791
10.1109/CVPR.2017.690
10.1109/ICCV.2015.169
10.1109/TITS.2015.2433019
10.1007/978-3-319-46448-0_2
10.1109/CVPR.2014.81
10.1109/TCYB.2016.2539546
10.1145/3065386
10.1109/CMVIT.2017.26
10.1007/978-3-662-45643-9_58
10.1007/978-3-319-10590-1_53
10.1109/TITS.2015.2482461
10.1109/IJCNN.2013.6706810
10.1109/TPAMI.2015.2389824
10.1109/CVPR.2016.232
10.1155/2014/481312
10.1109/TPAMI.2016.2608901
10.1109/CVPR.2015.7298594
10.1016/j.robot.2016.07.003
ContentType Journal Article
Copyright Copyright MDPI AG 2017
Copyright_xml – notice: Copyright MDPI AG 2017
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.3390/a10040127
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1999-4893
ExternalDocumentID oai_doaj_org_article_03633c6a32734a129deec30cf659314d
10_3390_a10040127
GroupedDBID 23M
2WC
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABUWG
ACUHS
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
E3Z
ESX
GNUQQ
GROUPED_DOAJ
HCIFZ
J9A
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PTHSS
TR2
TUS
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c424t-e658e9ffe476845d34d208737ede680ea3530aec5085fbc0f285593ad80c5b353
IEDL.DBID BENPR
ISSN 1999-4893
IngestDate Wed Aug 27 01:25:55 EDT 2025
Fri Jul 25 12:07:25 EDT 2025
Thu Apr 24 23:04:22 EDT 2025
Tue Jul 01 03:23:03 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c424t-e658e9ffe476845d34d208737ede680ea3530aec5085fbc0f285593ad80c5b353
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4278-0805
OpenAccessLink https://www.proquest.com/docview/1988519867?pq-origsite=%requestingapplication%
PQID 1988519867
PQPubID 2032439
ParticipantIDs doaj_primary_oai_doaj_org_article_03633c6a32734a129deec30cf659314d
proquest_journals_1988519867
crossref_citationtrail_10_3390_a10040127
crossref_primary_10_3390_a10040127
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-12-01
PublicationDateYYYYMMDD 2017-12-01
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Algorithms
PublicationYear 2017
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_13
ref_12
ref_11
ref_33
ref_10
ref_32
Yang (ref_6) 2016; 17
Krizhevsky (ref_29) 2017; 60
ref_31
ref_30
ref_19
ref_17
Chang (ref_22) 2017; 28
ref_15
Chang (ref_20) 2017; 47
Chang (ref_21) 2017; 39
Hamed (ref_23) 2016; 84
Mogelmose (ref_14) 2015; 16
ref_25
Lecun (ref_28) 1998; 86
ref_24
Ren (ref_18) 2017; 39
ref_3
ref_2
ref_27
ref_26
ref_9
He (ref_16) 2015; 37
ref_8
ref_5
ref_4
Mogelmose (ref_1) 2012; 13
ref_7
References_xml – ident: ref_12
  doi: 10.1109/IJCNN.2013.6706812
– volume: 39
  start-page: 1137
  year: 2017
  ident: ref_18
  article-title: Faster R-CNN: Towards real-time object detection with region proposal networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2577031
– ident: ref_30
– ident: ref_5
– ident: ref_24
– volume: 28
  start-page: 2294
  year: 2017
  ident: ref_22
  article-title: Semi-supervised feature analysis by mining correlations among multiple tasks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2016.2582746
– ident: ref_26
– volume: 13
  start-page: 1484
  year: 2012
  ident: ref_1
  article-title: Vision-based traffic sign detection and analysis for intelligent driver assistance systems: Perspectives and survey
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2012.2209421
– ident: ref_3
  doi: 10.1109/IJCNN.2013.6706811
– ident: ref_32
  doi: 10.1109/CVPR.2016.90
– ident: ref_8
  doi: 10.2991/iccsee.2013.359
– ident: ref_4
  doi: 10.1109/CVPR.2016.91
– ident: ref_2
  doi: 10.3390/info8020045
– volume: 86
  start-page: 2278
  year: 1998
  ident: ref_28
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– ident: ref_7
  doi: 10.1109/CVPR.2017.690
– ident: ref_17
  doi: 10.1109/ICCV.2015.169
– ident: ref_33
– volume: 16
  start-page: 3116
  year: 2015
  ident: ref_14
  article-title: Detection of U.S. traffic signs
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2015.2433019
– ident: ref_19
  doi: 10.1007/978-3-319-46448-0_2
– ident: ref_15
  doi: 10.1109/CVPR.2014.81
– volume: 47
  start-page: 1180
  year: 2017
  ident: ref_20
  article-title: Bi-level semantic representation analysis for multimedia event detection
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2016.2539546
– volume: 60
  start-page: 84
  year: 2017
  ident: ref_29
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Commun. ACM
  doi: 10.1145/3065386
– ident: ref_13
  doi: 10.1109/CMVIT.2017.26
– ident: ref_9
  doi: 10.1007/978-3-662-45643-9_58
– ident: ref_27
  doi: 10.1007/978-3-319-10590-1_53
– volume: 17
  start-page: 2022
  year: 2016
  ident: ref_6
  article-title: Towards real-time traffic sign detection and classification
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2015.2482461
– ident: ref_11
  doi: 10.1109/IJCNN.2013.6706810
– volume: 37
  start-page: 1904
  year: 2015
  ident: ref_16
  article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2389824
– ident: ref_25
  doi: 10.1109/CVPR.2016.232
– ident: ref_10
  doi: 10.1155/2014/481312
– volume: 39
  start-page: 1617
  year: 2017
  ident: ref_21
  article-title: Semantic Pooling for Complex Event Analysis in Untrimmed Videos
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2608901
– ident: ref_31
  doi: 10.1109/CVPR.2015.7298594
– volume: 84
  start-page: 97
  year: 2016
  ident: ref_23
  article-title: A practical approach for detection and classification of traffic signs using Convolutional Neural Networks
  publication-title: Robot. Autom. Syst.
  doi: 10.1016/j.robot.2016.07.003
SSID ssj0065961
Score 2.5501938
Snippet Traffic sign detection is an important task in traffic sign recognition systems. Chinese traffic signs have their unique features compared with traffic signs...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 127
SubjectTerms Artificial neural networks
Chinese traffic sign
CNNs
Computer vision
CTSD
Feature maps
GTSDB
Image detection
object detection
Real time
Signs
Street signs
Traffic accidents & safety
Traffic control
Traffic signs
YOLOv2
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSwMxEA3iyYvfYrVKEA9elqabTTZ7bNVSxFpQC_W0pMmkFupW7Orvd7IfpaDgxWsS2GUmmTePTN4QcglOmEgxGzgukKDEQgYKUTMAiS4xlsUa_GvkwYPsj6K7sRivtfryNWGlPHBpuJa_aORGau51WDSikwUwnBknRcLbkfXRFzGvJlNlDMY52S51hDiS-pb2umisaB2zhj6FSP-PGFwAS2-XbFcZIe2Uf7JHNiDbJzt1twVaHb4DMujQR8zqAv9og_q217AEilDjNSDo02ya0RvIi8KqjHbm0wWy_tc32kWUshSHBgs7c5hv0pfh_fArPCSj3u3zdT-omiEEJgqjHI0nFCTOQeSvzoTlkQ2ZinkMFqRioLngTIPBhEu4iWEuVEgWuLaKGTHBySOymS0yOCaUCc1kYsK2RTqiQ66ViCPntJEKGDe8Qa5qI6WmUgr3DSvmKTIGb890Zc8GuVgtfS_lMX5b1PWWXi3witbFAPo5rfyc_uXnBmnWfkqrY7ZM24nCjDFRMj75j2-ckq3Qo3ZRrdIkm_nHJ5xhzpFPzovt9Q01ltBC
  priority: 102
  providerName: Directory of Open Access Journals
Title A Real-Time Chinese Traffic Sign Detection Algorithm Based on Modified YOLOv2
URI https://www.proquest.com/docview/1988519867
https://doaj.org/article/03633c6a32734a129deec30cf659314d
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NTxsxEB1BuPTCV1sRoJGFeuhlhbNee50TSigBIQIVLRI9rRx7nEaiGyALv5_xxpsiFXG1ffGMPfOeP94AfEUvbaa5S7yQRFByqRJNWTNBRS6xjucGw2_k0aU6u8nOb-VtPHCbx2eVTUysA7Wb2XBGfkjkmMBBT6v86P4hCVWjwu1qLKGxCmsUgrVuwdrg5PLHdROLleyp7kJPSBC5PzRBH43XJWReZaFarP-_WFwnmOEmrEdkyPoLV27BCpbbsNFUXWBxE36EUZ9dE7pLwucNFspf4xwZpZygBcF-Ticl-45V_cCqZP27Cc2h-vOXDShbOUZNo5mbesKd7PfVxdVz-gluhie_js-SWBQhsVmaVWREqbHnPWbhCk06kbmU61zk6FBpjkZIwQ1aAl7Sjy33qSbSIIzT3MoxdX6GVjkrcQcYl4arnk27jmiJSYXRMs-8N1Zp5MKKNnxrjFTYqBgeClfcFcQcgj2LpT3bcLAcer-QyXhr0CBYejkgKFvXDbPHSRE3ShEuloVVRgTdHUNoxCFawa0nX4pu5tqw3_ipiNttXvxbHLvvd-_BhzTk5fo9yj60qscn_EKoohp3YFUPTztxAXVqbv4CthvL6w
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaqcoALb0RooRYCicuqjl_rHBBKaUNKk1aCViqnrWOPQ6WyaZulFX-K38jMZjcggbj1avuwmuc3a898jL2CZIJ2ImZJGSxQcmMzh1kzA4sqCVHkHqgbebxvh0f647E5XmE_214YelbZxsQ6UMdZoH_km1gcIzjoOZu_O7_IiDWKbldbCo2FWezBj2ss2eZvd7dRv6-lHOwcvh9mDatAFrTUFX6FcdBLCTTdQZmodJTC5SqHCNYJ8Moo4SEgcjFpEkSSDlG38tGJYCY1SwSG_FtaYSanzvTBhzbyW9Oz3cX0ItwUm56msYmasOaPnFdTA_wV-et0NrjP7jY4lPcXhvOArUD5kN1rOR544_KP2LjPPyGWzKhVhBPZNsyBY4KjyRP88-m05NtQ1c-5St4_m6LEqq_f-BbmxshxaTyLpwlRLv9yMDq4ko_Z0Y0I6wlbLWclPGVcGC9sL8huxCLIS-WdyXVKPlgHQgXVYW9aIRWhmU9ONBlnBdYpJM9iKc8Oe7k8er4YyvGvQ1sk6eUBmqNdL8wup0XjlgVdY6tgvaIpPx6xTwQISoSEulRdHTtsvdVT0Tj3vPhtis_-v73Bbg8Px6NitLu_t8buSEIE9UuYdbZaXX6H54hnqsmL2og4O7lpq_0FLlgFLQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELamTkK88BtRNsBCIPES1bVjx3lAqKWrNrZ202DSeAqufS6TtnSsAcS_xl_HXZoUJBBve038EN2d776Lz9_H2AuI2qdWhCQqjQ1Kpk1isWomYNAlPojMAd1GnkzN7kn67lSfbrCf7V0YGqtsc2KdqMPC0z_yHjbHCA5ya7JebMYijkbjN5dfElKQopPWVk5jFSL78OM7tm_L13sj9PVLKcc7H97uJo3CQOJTmVb4RdpCHiOkdB6lg0qDFDZTGQQwVoBTWgkHHlGMjjMvorSIwJULVng9qxUjMP1vZtQVddjmcGd6dNzWAaNz019xGSmVi54jbjZRy9f8UQFroYC_6kBd3MZ32K0GlfLBKozusg0o77HbreIDbxLAfTYZ8GNElgldHOEkvQ1L4FjuiIeCvz-bl3wEVT3cVfLB-RxtVn2-4EOslIHjo8kinEXEvPzj4cHhN_mAnVyLuR6yTrko4RHjQjthci_7AVsiJ5WzOktjdN5YEMqrLnvVGqnwDVs5iWacF9i1kD2LtT277Pl66eWKouNfi4Zk6fUCYtWuHyyu5kWzSQs61FbeOEWcPw6RUADwSviIvlT9NHTZduunotnqy-J3YD7-_-tn7AZGbHGwN93fYjclwYN6LGabdaqrr_AEwU01e9pEEWefrjtwfwGy6Qq_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Real-Time+Chinese+Traffic+Sign+Detection+Algorithm+Based+on+Modified+YOLOv2&rft.jtitle=Algorithms&rft.au=Zhang%2C+Jianming&rft.au=Huang%2C+Manting&rft.au=Jin%2C+Xiaokang&rft.au=Li%2C+Xudong&rft.date=2017-12-01&rft.pub=MDPI+AG&rft.eissn=1999-4893&rft.volume=10&rft.issue=4&rft.spage=127&rft_id=info:doi/10.3390%2Fa10040127&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4893&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4893&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4893&client=summon