A Real-Time Chinese Traffic Sign Detection Algorithm Based on Modified YOLOv2
Traffic sign detection is an important task in traffic sign recognition systems. Chinese traffic signs have their unique features compared with traffic signs of other countries. Convolutional neural networks (CNNs) have achieved a breakthrough in computer vision tasks and made great success in traff...
Saved in:
Published in | Algorithms Vol. 10; no. 4; p. 127 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.12.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Traffic sign detection is an important task in traffic sign recognition systems. Chinese traffic signs have their unique features compared with traffic signs of other countries. Convolutional neural networks (CNNs) have achieved a breakthrough in computer vision tasks and made great success in traffic sign classification. In this paper, we present a Chinese traffic sign detection algorithm based on a deep convolutional network. To achieve real-time Chinese traffic sign detection, we propose an end-to-end convolutional network inspired by YOLOv2. In view of the characteristics of traffic signs, we take the multiple 1 × 1 convolutional layers in intermediate layers of the network and decrease the convolutional layers in top layers to reduce the computational complexity. For effectively detecting small traffic signs, we divide the input images into dense grids to obtain finer feature maps. Moreover, we expand the Chinese traffic sign dataset (CTSD) and improve the marker information, which is available online. All experimental results evaluated according to our expanded CTSD and German Traffic Sign Detection Benchmark (GTSDB) indicate that the proposed method is the faster and more robust. The fastest detection speed achieved was 0.017 s per image. |
---|---|
AbstractList | Traffic sign detection is an important task in traffic sign recognition systems. Chinese traffic signs have their unique features compared with traffic signs of other countries. Convolutional neural networks (CNNs) have achieved a breakthrough in computer vision tasks and made great success in traffic sign classification. In this paper, we present a Chinese traffic sign detection algorithm based on a deep convolutional network. To achieve real-time Chinese traffic sign detection, we propose an end-to-end convolutional network inspired by YOLOv2. In view of the characteristics of traffic signs, we take the multiple 1 × 1 convolutional layers in intermediate layers of the network and decrease the convolutional layers in top layers to reduce the computational complexity. For effectively detecting small traffic signs, we divide the input images into dense grids to obtain finer feature maps. Moreover, we expand the Chinese traffic sign dataset (CTSD) and improve the marker information, which is available online. All experimental results evaluated according to our expanded CTSD and German Traffic Sign Detection Benchmark (GTSDB) indicate that the proposed method is the faster and more robust. The fastest detection speed achieved was 0.017 s per image. |
Author | Huang, Manting Jin, Xiaokang Zhang, Jianming Li, Xudong |
Author_xml | – sequence: 1 givenname: Jianming orcidid: 0000-0002-4278-0805 surname: Zhang fullname: Zhang, Jianming – sequence: 2 givenname: Manting surname: Huang fullname: Huang, Manting – sequence: 3 givenname: Xiaokang surname: Jin fullname: Jin, Xiaokang – sequence: 4 givenname: Xudong surname: Li fullname: Li, Xudong |
BookMark | eNplUE1LAzEUDKJgrR78BwuePKxNNslucqz1E1oKWg-eQkxe2pTtpma3gv_e1KqIXt57zJsZhjlC-01oAKFTgi8olXigCcYMk6LaQz0ipcyZkHT_132Ijtp2iXHJZUl6aDLMHkDX-cyvIBstfAMtZLOonfMme_TzJruCDkznQ5MN63mIvlusskvdgs0SNAnWO5_u5-l4-lYcowOn6xZOvnYfPd1cz0Z3-Xh6ez8ajnPDCtblUHIB0jlgVSkYt5TZAouKVmChFBg05RRrMBwL7l4MdoXgXFJtBTb8JT376H7na4NeqnX0Kx3fVdBefQIhzpWOnTc1KExLSk2paVFRpkkhLYCh2LhUACXMJq-zndc6htcNtJ1ahk1sUnxFpBA8jbJKrMGOZWJo2whOGd_pbS1d1L5WBKtt_-qn_6Q4_6P4zvmf-wEqOoNX |
CitedBy_id | crossref_primary_10_32604_cmc_2024_051562 crossref_primary_10_3390_agriculture13071405 crossref_primary_10_3390_s19102288 crossref_primary_10_3390_su132212722 crossref_primary_10_3390_app13084793 crossref_primary_10_1088_1757_899X_646_1_012006 crossref_primary_10_29130_dubited_1214901 crossref_primary_10_1109_ACCESS_2020_2972338 crossref_primary_10_32604_csse_2023_039417 crossref_primary_10_1016_j_array_2021_100057 crossref_primary_10_1155_2020_8827310 crossref_primary_10_1109_TITS_2021_3062113 crossref_primary_10_1049_ipr2_13274 crossref_primary_10_3390_math12020297 crossref_primary_10_32604_iasc_2023_028444 crossref_primary_10_1109_ACCESS_2019_2924947 crossref_primary_10_1109_TITS_2018_2867183 crossref_primary_10_1177_0954407020950054 crossref_primary_10_1155_2020_2365076 crossref_primary_10_1109_TITS_2019_2941081 crossref_primary_10_1038_s41598_025_94610_0 crossref_primary_10_1109_ACCESS_2020_3021660 crossref_primary_10_1016_j_optlastec_2018_08_007 crossref_primary_10_1080_02533839_2019_1708801 crossref_primary_10_1186_s40537_020_00324_7 crossref_primary_10_1007_s11554_020_01003_9 crossref_primary_10_1016_j_scs_2020_102700 crossref_primary_10_1007_s11227_022_04670_6 crossref_primary_10_1007_s11227_021_04230_4 crossref_primary_10_1016_j_compag_2025_109944 crossref_primary_10_1155_2022_2752334 crossref_primary_10_3390_en13071765 crossref_primary_10_32604_cmc_2023_035415 crossref_primary_10_1111_coin_12558 crossref_primary_10_1088_1757_899X_787_1_012034 crossref_primary_10_47836_pjst_31_1_09 crossref_primary_10_1088_1742_6596_1880_1_012025 crossref_primary_10_1109_ACCESS_2023_3252499 crossref_primary_10_1155_2022_3825532 crossref_primary_10_3390_s23083871 crossref_primary_10_1007_s11042_023_17146_3 crossref_primary_10_1016_j_engappai_2025_110488 crossref_primary_10_1007_s10044_024_01406_5 crossref_primary_10_3390_s18103192 crossref_primary_10_2139_ssrn_3420232 crossref_primary_10_1007_s11119_020_09754_y crossref_primary_10_1088_1742_6596_1774_1_012045 crossref_primary_10_1155_2022_6942940 crossref_primary_10_36306_konjes_1531208 crossref_primary_10_51513_jitsa_957371 crossref_primary_10_1109_TITS_2020_3020556 crossref_primary_10_1109_TETCI_2024_3349464 crossref_primary_10_3389_fnbot_2023_1220443 crossref_primary_10_3390_su16198597 crossref_primary_10_1007_s11042_023_15109_2 crossref_primary_10_1109_ACCESS_2020_3031191 crossref_primary_10_1109_MITS_2019_2907630 crossref_primary_10_1109_ACCESS_2019_2909068 crossref_primary_10_1109_TITS_2019_2958486 crossref_primary_10_3390_s20226476 crossref_primary_10_1007_s11227_024_06800_8 crossref_primary_10_3390_app10093280 crossref_primary_10_1088_1742_6596_2337_1_012001 crossref_primary_10_1007_s00138_023_01417_y crossref_primary_10_1049_ipr2_13204 crossref_primary_10_1007_s11042_021_11413_x crossref_primary_10_1155_2021_9500304 crossref_primary_10_3390_su16010171 crossref_primary_10_1007_s11063_019_10115_8 crossref_primary_10_1109_JSTARS_2020_2966543 crossref_primary_10_1109_TASE_2021_3116040 crossref_primary_10_1007_s00371_023_02801_5 crossref_primary_10_1108_IJIUS_09_2023_0113 crossref_primary_10_1007_s11042_022_13805_z crossref_primary_10_3390_data8010016 crossref_primary_10_3390_a14040114 crossref_primary_10_1007_s13369_022_06818_1 crossref_primary_10_3390_app12146831 crossref_primary_10_1049_itr2_12257 crossref_primary_10_3390_math6100213 crossref_primary_10_3390_electronics7100216 crossref_primary_10_1109_ACCESS_2024_3417023 crossref_primary_10_1016_j_aei_2024_102674 crossref_primary_10_3390_app10196997 crossref_primary_10_3390_s22239345 crossref_primary_10_3390_electronics7110302 crossref_primary_10_1109_TITS_2018_2886283 crossref_primary_10_1007_s00371_023_02813_1 crossref_primary_10_51513_jitsa_1527571 crossref_primary_10_1016_j_neucom_2019_12_144 crossref_primary_10_1109_ACCESS_2022_3198954 crossref_primary_10_1016_j_image_2022_116783 crossref_primary_10_3934_mbe_2023282 crossref_primary_10_3390_s18103415 crossref_primary_10_1049_iet_its_2019_0475 crossref_primary_10_1016_j_aap_2022_106594 crossref_primary_10_35377_saucis___1073355 crossref_primary_10_3390_rs11070786 crossref_primary_10_3390_app12083835 crossref_primary_10_1145_3434398 crossref_primary_10_1007_s11227_023_05547_y crossref_primary_10_3390_s20226532 crossref_primary_10_1007_s11042_023_14895_z crossref_primary_10_1134_S1054661822020110 crossref_primary_10_1063_5_0202721 crossref_primary_10_1002_cpe_6234 crossref_primary_10_1007_s11760_024_03108_1 crossref_primary_10_1109_TITS_2018_2868168 crossref_primary_10_1109_TITS_2019_2931429 crossref_primary_10_3233_IDA_230075 crossref_primary_10_1109_ACCESS_2020_2989758 crossref_primary_10_26634_jdp_7_1_16445 crossref_primary_10_1109_TSMC_2023_3283021 crossref_primary_10_3390_s24144725 crossref_primary_10_2478_ttj_2020_0002 crossref_primary_10_1111_exsy_12781 crossref_primary_10_1016_j_neucom_2021_03_049 crossref_primary_10_1007_s11042_022_12531_w crossref_primary_10_3788_LOP240672 crossref_primary_10_1109_ACCESS_2022_3230282 crossref_primary_10_1007_s00521_022_08077_5 crossref_primary_10_1016_j_procs_2021_02_066 crossref_primary_10_1016_j_cmpb_2021_106608 crossref_primary_10_1109_TITS_2023_3309644 crossref_primary_10_3233_JIFS_210838 crossref_primary_10_1155_2022_7877032 crossref_primary_10_3390_wevj15070285 crossref_primary_10_1109_ACCESS_2021_3069205 crossref_primary_10_3233_MGS_200330 crossref_primary_10_1080_10298436_2020_1765241 crossref_primary_10_1016_j_heliyon_2024_e26182 crossref_primary_10_1109_TITS_2020_3009186 crossref_primary_10_3390_info11100475 crossref_primary_10_3390_axioms12020160 |
Cites_doi | 10.1109/IJCNN.2013.6706812 10.1109/TPAMI.2016.2577031 10.1109/TNNLS.2016.2582746 10.1109/TITS.2012.2209421 10.1109/IJCNN.2013.6706811 10.1109/CVPR.2016.90 10.2991/iccsee.2013.359 10.1109/CVPR.2016.91 10.3390/info8020045 10.1109/5.726791 10.1109/CVPR.2017.690 10.1109/ICCV.2015.169 10.1109/TITS.2015.2433019 10.1007/978-3-319-46448-0_2 10.1109/CVPR.2014.81 10.1109/TCYB.2016.2539546 10.1145/3065386 10.1109/CMVIT.2017.26 10.1007/978-3-662-45643-9_58 10.1007/978-3-319-10590-1_53 10.1109/TITS.2015.2482461 10.1109/IJCNN.2013.6706810 10.1109/TPAMI.2015.2389824 10.1109/CVPR.2016.232 10.1155/2014/481312 10.1109/TPAMI.2016.2608901 10.1109/CVPR.2015.7298594 10.1016/j.robot.2016.07.003 |
ContentType | Journal Article |
Copyright | Copyright MDPI AG 2017 |
Copyright_xml | – notice: Copyright MDPI AG 2017 |
DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U DOA |
DOI | 10.3390/a10040127 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database ProQuest Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection ProQuest Central Basic Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1999-4893 |
ExternalDocumentID | oai_doaj_org_article_03633c6a32734a129deec30cf659314d 10_3390_a10040127 |
GroupedDBID | 23M 2WC 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABUWG ACUHS ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO E3Z ESX GNUQQ GROUPED_DOAJ HCIFZ J9A K6V K7- KQ8 L6V M7S MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PQQKQ PROAC PTHSS TR2 TUS 3V. 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQGLB PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-c424t-e658e9ffe476845d34d208737ede680ea3530aec5085fbc0f285593ad80c5b353 |
IEDL.DBID | BENPR |
ISSN | 1999-4893 |
IngestDate | Wed Aug 27 01:25:55 EDT 2025 Fri Jul 25 12:07:25 EDT 2025 Thu Apr 24 23:04:22 EDT 2025 Tue Jul 01 03:23:03 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c424t-e658e9ffe476845d34d208737ede680ea3530aec5085fbc0f285593ad80c5b353 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4278-0805 |
OpenAccessLink | https://www.proquest.com/docview/1988519867?pq-origsite=%requestingapplication% |
PQID | 1988519867 |
PQPubID | 2032439 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_03633c6a32734a129deec30cf659314d proquest_journals_1988519867 crossref_citationtrail_10_3390_a10040127 crossref_primary_10_3390_a10040127 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-12-01 |
PublicationDateYYYYMMDD | 2017-12-01 |
PublicationDate_xml | – month: 12 year: 2017 text: 2017-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Algorithms |
PublicationYear | 2017 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_13 ref_12 ref_11 ref_33 ref_10 ref_32 Yang (ref_6) 2016; 17 Krizhevsky (ref_29) 2017; 60 ref_31 ref_30 ref_19 ref_17 Chang (ref_22) 2017; 28 ref_15 Chang (ref_20) 2017; 47 Chang (ref_21) 2017; 39 Hamed (ref_23) 2016; 84 Mogelmose (ref_14) 2015; 16 ref_25 Lecun (ref_28) 1998; 86 ref_24 Ren (ref_18) 2017; 39 ref_3 ref_2 ref_27 ref_26 ref_9 He (ref_16) 2015; 37 ref_8 ref_5 ref_4 Mogelmose (ref_1) 2012; 13 ref_7 |
References_xml | – ident: ref_12 doi: 10.1109/IJCNN.2013.6706812 – volume: 39 start-page: 1137 year: 2017 ident: ref_18 article-title: Faster R-CNN: Towards real-time object detection with region proposal networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2577031 – ident: ref_30 – ident: ref_5 – ident: ref_24 – volume: 28 start-page: 2294 year: 2017 ident: ref_22 article-title: Semi-supervised feature analysis by mining correlations among multiple tasks publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2016.2582746 – ident: ref_26 – volume: 13 start-page: 1484 year: 2012 ident: ref_1 article-title: Vision-based traffic sign detection and analysis for intelligent driver assistance systems: Perspectives and survey publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2012.2209421 – ident: ref_3 doi: 10.1109/IJCNN.2013.6706811 – ident: ref_32 doi: 10.1109/CVPR.2016.90 – ident: ref_8 doi: 10.2991/iccsee.2013.359 – ident: ref_4 doi: 10.1109/CVPR.2016.91 – ident: ref_2 doi: 10.3390/info8020045 – volume: 86 start-page: 2278 year: 1998 ident: ref_28 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE doi: 10.1109/5.726791 – ident: ref_7 doi: 10.1109/CVPR.2017.690 – ident: ref_17 doi: 10.1109/ICCV.2015.169 – ident: ref_33 – volume: 16 start-page: 3116 year: 2015 ident: ref_14 article-title: Detection of U.S. traffic signs publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2015.2433019 – ident: ref_19 doi: 10.1007/978-3-319-46448-0_2 – ident: ref_15 doi: 10.1109/CVPR.2014.81 – volume: 47 start-page: 1180 year: 2017 ident: ref_20 article-title: Bi-level semantic representation analysis for multimedia event detection publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2016.2539546 – volume: 60 start-page: 84 year: 2017 ident: ref_29 article-title: ImageNet classification with deep convolutional neural networks publication-title: Commun. ACM doi: 10.1145/3065386 – ident: ref_13 doi: 10.1109/CMVIT.2017.26 – ident: ref_9 doi: 10.1007/978-3-662-45643-9_58 – ident: ref_27 doi: 10.1007/978-3-319-10590-1_53 – volume: 17 start-page: 2022 year: 2016 ident: ref_6 article-title: Towards real-time traffic sign detection and classification publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2015.2482461 – ident: ref_11 doi: 10.1109/IJCNN.2013.6706810 – volume: 37 start-page: 1904 year: 2015 ident: ref_16 article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2015.2389824 – ident: ref_25 doi: 10.1109/CVPR.2016.232 – ident: ref_10 doi: 10.1155/2014/481312 – volume: 39 start-page: 1617 year: 2017 ident: ref_21 article-title: Semantic Pooling for Complex Event Analysis in Untrimmed Videos publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2608901 – ident: ref_31 doi: 10.1109/CVPR.2015.7298594 – volume: 84 start-page: 97 year: 2016 ident: ref_23 article-title: A practical approach for detection and classification of traffic signs using Convolutional Neural Networks publication-title: Robot. Autom. Syst. doi: 10.1016/j.robot.2016.07.003 |
SSID | ssj0065961 |
Score | 2.5501938 |
Snippet | Traffic sign detection is an important task in traffic sign recognition systems. Chinese traffic signs have their unique features compared with traffic signs... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 127 |
SubjectTerms | Artificial neural networks Chinese traffic sign CNNs Computer vision CTSD Feature maps GTSDB Image detection object detection Real time Signs Street signs Traffic accidents & safety Traffic control Traffic signs YOLOv2 |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSwMxEA3iyYvfYrVKEA9elqabTTZ7bNVSxFpQC_W0pMmkFupW7Orvd7IfpaDgxWsS2GUmmTePTN4QcglOmEgxGzgukKDEQgYKUTMAiS4xlsUa_GvkwYPsj6K7sRivtfryNWGlPHBpuJa_aORGau51WDSikwUwnBknRcLbkfXRFzGvJlNlDMY52S51hDiS-pb2umisaB2zhj6FSP-PGFwAS2-XbFcZIe2Uf7JHNiDbJzt1twVaHb4DMujQR8zqAv9og_q217AEilDjNSDo02ya0RvIi8KqjHbm0wWy_tc32kWUshSHBgs7c5hv0pfh_fArPCSj3u3zdT-omiEEJgqjHI0nFCTOQeSvzoTlkQ2ZinkMFqRioLngTIPBhEu4iWEuVEgWuLaKGTHBySOymS0yOCaUCc1kYsK2RTqiQ66ViCPntJEKGDe8Qa5qI6WmUgr3DSvmKTIGb890Zc8GuVgtfS_lMX5b1PWWXi3witbFAPo5rfyc_uXnBmnWfkqrY7ZM24nCjDFRMj75j2-ckq3Qo3ZRrdIkm_nHJ5xhzpFPzovt9Q01ltBC priority: 102 providerName: Directory of Open Access Journals |
Title | A Real-Time Chinese Traffic Sign Detection Algorithm Based on Modified YOLOv2 |
URI | https://www.proquest.com/docview/1988519867 https://doaj.org/article/03633c6a32734a129deec30cf659314d |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NTxsxEB1BuPTCV1sRoJGFeuhlhbNee50TSigBIQIVLRI9rRx7nEaiGyALv5_xxpsiFXG1ffGMPfOeP94AfEUvbaa5S7yQRFByqRJNWTNBRS6xjucGw2_k0aU6u8nOb-VtPHCbx2eVTUysA7Wb2XBGfkjkmMBBT6v86P4hCVWjwu1qLKGxCmsUgrVuwdrg5PLHdROLleyp7kJPSBC5PzRBH43XJWReZaFarP-_WFwnmOEmrEdkyPoLV27BCpbbsNFUXWBxE36EUZ9dE7pLwucNFspf4xwZpZygBcF-Ticl-45V_cCqZP27Cc2h-vOXDShbOUZNo5mbesKd7PfVxdVz-gluhie_js-SWBQhsVmaVWREqbHnPWbhCk06kbmU61zk6FBpjkZIwQ1aAl7Sjy33qSbSIIzT3MoxdX6GVjkrcQcYl4arnk27jmiJSYXRMs-8N1Zp5MKKNnxrjFTYqBgeClfcFcQcgj2LpT3bcLAcer-QyXhr0CBYejkgKFvXDbPHSRE3ShEuloVVRgTdHUNoxCFawa0nX4pu5tqw3_ipiNttXvxbHLvvd-_BhzTk5fo9yj60qscn_EKoohp3YFUPTztxAXVqbv4CthvL6w |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaqcoALb0RooRYCicuqjl_rHBBKaUNKk1aCViqnrWOPQ6WyaZulFX-K38jMZjcggbj1avuwmuc3a898jL2CZIJ2ImZJGSxQcmMzh1kzA4sqCVHkHqgbebxvh0f647E5XmE_214YelbZxsQ6UMdZoH_km1gcIzjoOZu_O7_IiDWKbldbCo2FWezBj2ss2eZvd7dRv6-lHOwcvh9mDatAFrTUFX6FcdBLCTTdQZmodJTC5SqHCNYJ8Moo4SEgcjFpEkSSDlG38tGJYCY1SwSG_FtaYSanzvTBhzbyW9Oz3cX0ItwUm56msYmasOaPnFdTA_wV-et0NrjP7jY4lPcXhvOArUD5kN1rOR544_KP2LjPPyGWzKhVhBPZNsyBY4KjyRP88-m05NtQ1c-5St4_m6LEqq_f-BbmxshxaTyLpwlRLv9yMDq4ko_Z0Y0I6wlbLWclPGVcGC9sL8huxCLIS-WdyXVKPlgHQgXVYW9aIRWhmU9ONBlnBdYpJM9iKc8Oe7k8er4YyvGvQ1sk6eUBmqNdL8wup0XjlgVdY6tgvaIpPx6xTwQISoSEulRdHTtsvdVT0Tj3vPhtis_-v73Bbg8Px6NitLu_t8buSEIE9UuYdbZaXX6H54hnqsmL2og4O7lpq_0FLlgFLQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELamTkK88BtRNsBCIPES1bVjx3lAqKWrNrZ202DSeAqufS6TtnSsAcS_xl_HXZoUJBBve038EN2d776Lz9_H2AuI2qdWhCQqjQ1Kpk1isWomYNAlPojMAd1GnkzN7kn67lSfbrCf7V0YGqtsc2KdqMPC0z_yHjbHCA5ya7JebMYijkbjN5dfElKQopPWVk5jFSL78OM7tm_L13sj9PVLKcc7H97uJo3CQOJTmVb4RdpCHiOkdB6lg0qDFDZTGQQwVoBTWgkHHlGMjjMvorSIwJULVng9qxUjMP1vZtQVddjmcGd6dNzWAaNz019xGSmVi54jbjZRy9f8UQFroYC_6kBd3MZ32K0GlfLBKozusg0o77HbreIDbxLAfTYZ8GNElgldHOEkvQ1L4FjuiIeCvz-bl3wEVT3cVfLB-RxtVn2-4EOslIHjo8kinEXEvPzj4cHhN_mAnVyLuR6yTrko4RHjQjthci_7AVsiJ5WzOktjdN5YEMqrLnvVGqnwDVs5iWacF9i1kD2LtT277Pl66eWKouNfi4Zk6fUCYtWuHyyu5kWzSQs61FbeOEWcPw6RUADwSviIvlT9NHTZduunotnqy-J3YD7-_-tn7AZGbHGwN93fYjclwYN6LGabdaqrr_AEwU01e9pEEWefrjtwfwGy6Qq_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Real-Time+Chinese+Traffic+Sign+Detection+Algorithm+Based+on+Modified+YOLOv2&rft.jtitle=Algorithms&rft.au=Zhang%2C+Jianming&rft.au=Huang%2C+Manting&rft.au=Jin%2C+Xiaokang&rft.au=Li%2C+Xudong&rft.date=2017-12-01&rft.pub=MDPI+AG&rft.eissn=1999-4893&rft.volume=10&rft.issue=4&rft.spage=127&rft_id=info:doi/10.3390%2Fa10040127&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4893&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4893&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4893&client=summon |