Pervasive Genomic Signatures of Local Adaptation to Altitude Across Highland Specialist Andean Hummingbird Populations

Abstract Populations along steep environmental gradients are subject to differentiating selection that can result in local adaptation, despite countervailing gene flow, and genetic drift. In montane systems, where species are often restricted to narrow ranges of elevation, it is unclear whether the...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of heredity Vol. 112; no. 3; pp. 229 - 240
Main Authors Lim, Marisa C W, Bi, Ke, Witt, Christopher C, Graham, Catherine H, Dávalos, Liliana M
Format Journal Article
LanguageEnglish
Published US Oxford University Press 24.05.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract Populations along steep environmental gradients are subject to differentiating selection that can result in local adaptation, despite countervailing gene flow, and genetic drift. In montane systems, where species are often restricted to narrow ranges of elevation, it is unclear whether the selection is strong enough to influence functional differentiation of subpopulations differing by a few hundred meters in elevation. We used targeted capture of 12 501 exons from across the genome, including 271 genes previously implicated in altitude adaptation, to test for adaptation to local elevations for 2 highland hummingbird species, Coeligena violifer (n = 62) and Colibri coruscans (n = 101). For each species, we described population genetic structure across the complex geography of the Peruvian Andes and, while accounting for this structure, we tested whether elevational allele frequency clines in single nucleotide polymorphisms (SNPs) showed evidence for local adaptation to elevation. Although the 2 species exhibited contrasting population genetic structures, we found signatures of clinal genetic variation with shifts in elevation in both. The genes with SNP-elevation associations included candidate genes previously discovered for high-elevation adaptation as well as others not previously identified, with cellular functions related to hypoxia response, energy metabolism, and immune function, among others. Despite the homogenizing effects of gene flow and genetic drift, natural selection on parts of the genome evidently optimizes elevation-specific cellular function even within elevation range-restricted montane populations. Consequently, our results suggest local adaptation occurring in narrow elevation bands in tropical mountains, such as the Andes, may effectively make them “taller” biogeographic barriers.
AbstractList Populations along steep environmental gradients are subject to differentiating selection that can result in local adaptation, despite countervailing gene flow, and genetic drift. In montane systems, where species are often restricted to narrow ranges of elevation, it is unclear whether the selection is strong enough to influence functional differentiation of subpopulations differing by a few hundred meters in elevation. We used targeted capture of 12 501 exons from across the genome, including 271 genes previously implicated in altitude adaptation, to test for adaptation to local elevations for 2 highland hummingbird species, Coeligena violifer ( n = 62) and Colibri coruscans ( n = 101). For each species, we described population genetic structure across the complex geography of the Peruvian Andes and, while accounting for this structure, we tested whether elevational allele frequency clines in single nucleotide polymorphisms (SNPs) showed evidence for local adaptation to elevation. Although the 2 species exhibited contrasting population genetic structures, we found signatures of clinal genetic variation with shifts in elevation in both. The genes with SNP-elevation associations included candidate genes previously discovered for high-elevation adaptation as well as others not previously identified, with cellular functions related to hypoxia response, energy metabolism, and immune function, among others. Despite the homogenizing effects of gene flow and genetic drift, natural selection on parts of the genome evidently optimizes elevation-specific cellular function even within elevation range-restricted montane populations. Consequently, our results suggest local adaptation occurring in narrow elevation bands in tropical mountains, such as the Andes, may effectively make them “taller” biogeographic barriers.
Populations along steep environmental gradients are subject to differentiating selection that can result in local adaptation, despite countervailing gene flow, and genetic drift. In montane systems, where species are often restricted to narrow ranges of elevation, it is unclear whether the selection is strong enough to influence functional differentiation of subpopulations differing by a few hundred meters in elevation. We used targeted capture of 12 501 exons from across the genome, including 271 genes previously implicated in altitude adaptation, to test for adaptation to local elevations for 2 highland hummingbird species, Coeligena violifer (n = 62) and Colibri coruscans (n = 101). For each species, we described population genetic structure across the complex geography of the Peruvian Andes and, while accounting for this structure, we tested whether elevational allele frequency clines in single nucleotide polymorphisms (SNPs) showed evidence for local adaptation to elevation. Although the 2 species exhibited contrasting population genetic structures, we found signatures of clinal genetic variation with shifts in elevation in both. The genes with SNP-elevation associations included candidate genes previously discovered for high-elevation adaptation as well as others not previously identified, with cellular functions related to hypoxia response, energy metabolism, and immune function, among others. Despite the homogenizing effects of gene flow and genetic drift, natural selection on parts of the genome evidently optimizes elevation-specific cellular function even within elevation range-restricted montane populations. Consequently, our results suggest local adaptation occurring in narrow elevation bands in tropical mountains, such as the Andes, may effectively make them "taller" biogeographic barriers.
Abstract Populations along steep environmental gradients are subject to differentiating selection that can result in local adaptation, despite countervailing gene flow, and genetic drift. In montane systems, where species are often restricted to narrow ranges of elevation, it is unclear whether the selection is strong enough to influence functional differentiation of subpopulations differing by a few hundred meters in elevation. We used targeted capture of 12 501 exons from across the genome, including 271 genes previously implicated in altitude adaptation, to test for adaptation to local elevations for 2 highland hummingbird species, Coeligena violifer (n = 62) and Colibri coruscans (n = 101). For each species, we described population genetic structure across the complex geography of the Peruvian Andes and, while accounting for this structure, we tested whether elevational allele frequency clines in single nucleotide polymorphisms (SNPs) showed evidence for local adaptation to elevation. Although the 2 species exhibited contrasting population genetic structures, we found signatures of clinal genetic variation with shifts in elevation in both. The genes with SNP-elevation associations included candidate genes previously discovered for high-elevation adaptation as well as others not previously identified, with cellular functions related to hypoxia response, energy metabolism, and immune function, among others. Despite the homogenizing effects of gene flow and genetic drift, natural selection on parts of the genome evidently optimizes elevation-specific cellular function even within elevation range-restricted montane populations. Consequently, our results suggest local adaptation occurring in narrow elevation bands in tropical mountains, such as the Andes, may effectively make them “taller” biogeographic barriers.
Populations along steep environmental gradients are subject to differentiating selection that can result in local adaptation, despite countervailing gene flow, and genetic drift. In montane systems, where species are often restricted to narrow ranges of elevation, it is unclear whether the selection is strong enough to influence functional differentiation of subpopulations differing by a few hundred meters in elevation. We used targeted capture of 12 501 exons from across the genome, including 271 genes previously implicated in altitude adaptation, to test for adaptation to local elevations for 2 highland hummingbird species, Coeligena violifer (n = 62) and Colibri coruscans (n = 101). For each species, we described population genetic structure across the complex geography of the Peruvian Andes and, while accounting for this structure, we tested whether elevational allele frequency clines in single nucleotide polymorphisms (SNPs) showed evidence for local adaptation to elevation. Although the 2 species exhibited contrasting population genetic structures, we found signatures of clinal genetic variation with shifts in elevation in both. The genes with SNP-elevation associations included candidate genes previously discovered for high-elevation adaptation as well as others not previously identified, with cellular functions related to hypoxia response, energy metabolism, and immune function, among others. Despite the homogenizing effects of gene flow and genetic drift, natural selection on parts of the genome evidently optimizes elevation-specific cellular function even within elevation range-restricted montane populations. Consequently, our results suggest local adaptation occurring in narrow elevation bands in tropical mountains, such as the Andes, may effectively make them "taller" biogeographic barriers.Populations along steep environmental gradients are subject to differentiating selection that can result in local adaptation, despite countervailing gene flow, and genetic drift. In montane systems, where species are often restricted to narrow ranges of elevation, it is unclear whether the selection is strong enough to influence functional differentiation of subpopulations differing by a few hundred meters in elevation. We used targeted capture of 12 501 exons from across the genome, including 271 genes previously implicated in altitude adaptation, to test for adaptation to local elevations for 2 highland hummingbird species, Coeligena violifer (n = 62) and Colibri coruscans (n = 101). For each species, we described population genetic structure across the complex geography of the Peruvian Andes and, while accounting for this structure, we tested whether elevational allele frequency clines in single nucleotide polymorphisms (SNPs) showed evidence for local adaptation to elevation. Although the 2 species exhibited contrasting population genetic structures, we found signatures of clinal genetic variation with shifts in elevation in both. The genes with SNP-elevation associations included candidate genes previously discovered for high-elevation adaptation as well as others not previously identified, with cellular functions related to hypoxia response, energy metabolism, and immune function, among others. Despite the homogenizing effects of gene flow and genetic drift, natural selection on parts of the genome evidently optimizes elevation-specific cellular function even within elevation range-restricted montane populations. Consequently, our results suggest local adaptation occurring in narrow elevation bands in tropical mountains, such as the Andes, may effectively make them "taller" biogeographic barriers.
Author Graham, Catherine H
Dávalos, Liliana M
Witt, Christopher C
Bi, Ke
Lim, Marisa C W
AuthorAffiliation 1 Department of Ecology and Evolution, Stony Brook University , Stony Brook, NY
4 Museum of Southwestern Biology and Department of Biology, University of New Mexico , Albuquerque, NM
2 Museum of Vertebrate Zoology, University of California , Berkeley, CA
5 Swiss Federal Research Institute (WSL) , Birmensdorf , Switzerland
3 California Institute for Quantitative Biosciences, University of California Berkeley , Berkeley, CA (Bi)
6 Consortium for Inter-Disciplinary Environmental Research, Stony Brook University , Stony Brook, NY
AuthorAffiliation_xml – name: 1 Department of Ecology and Evolution, Stony Brook University , Stony Brook, NY
– name: 2 Museum of Vertebrate Zoology, University of California , Berkeley, CA
– name: 4 Museum of Southwestern Biology and Department of Biology, University of New Mexico , Albuquerque, NM
– name: 3 California Institute for Quantitative Biosciences, University of California Berkeley , Berkeley, CA (Bi)
– name: 6 Consortium for Inter-Disciplinary Environmental Research, Stony Brook University , Stony Brook, NY
– name: 5 Swiss Federal Research Institute (WSL) , Birmensdorf , Switzerland
Author_xml – sequence: 1
  givenname: Marisa C W
  orcidid: 0000-0003-2097-8818
  surname: Lim
  fullname: Lim, Marisa C W
  email: marisa_lim@pacbell.net
  organization: Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY
– sequence: 2
  givenname: Ke
  surname: Bi
  fullname: Bi, Ke
  organization: Museum of Vertebrate Zoology, University of California, Berkeley, CA
– sequence: 3
  givenname: Christopher C
  surname: Witt
  fullname: Witt, Christopher C
  organization: Museum of Southwestern Biology and Department of Biology, University of New Mexico, Albuquerque, NM
– sequence: 4
  givenname: Catherine H
  surname: Graham
  fullname: Graham, Catherine H
  organization: Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY
– sequence: 5
  givenname: Liliana M
  orcidid: 0000-0002-4327-7697
  surname: Dávalos
  fullname: Dávalos, Liliana M
  organization: Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33631009$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9LHDEcxUOx1NV67bHk2B5Gk0nm16UwiHULCxX0HjLJN7uRmWSaZBb87x2dVbRQesrh-97nkfdO0JHzDhD6Qsk5JQ27uN9BAH0BUXaE1B_QivKyyCrG2BFaEZLnGS0IO0YnMd4TQmjRkE_omLGSUUKaFdrfQNjLaPeAr8H5wSp8a7dOpilAxN7gjVeyx62WY5LJeoeTx22fbJo04FYFHyNe2-2ul07j2xGUlb2NCbdOg3R4PQ2DddvOBo1v_Dj1z5D4GX00so9wdnhP0d3Pq7vLdbb5ff3rst1kiuc8ZUClAmmMLBUry9pUhDY0r3Lgmhted6yoG24I6KowUkswtdEUSE64gbKr2Cn6sWDHqRtAK3ApyF6MwQ4yPAgvrXh_cXYntn4vap5XFX0CfDsAgv8zQUxisFFBP_8W_BRFzhueN2XF6Cz9-jbrNeSl61nAF8FzaQGMUHbpdI62vaBEPE0qlknFYdLZdv6X7YX8T8P3xeCn8X_aR45IuNs
CitedBy_id crossref_primary_10_1093_icb_icae059
crossref_primary_10_1093_jhered_esab019
crossref_primary_10_1093_molbev_msad214
crossref_primary_10_1111_eff_12713
crossref_primary_10_3389_fgene_2022_824424
crossref_primary_10_1086_723222
crossref_primary_10_1590_1678_4685_gmb_2023_0331
crossref_primary_10_1098_rspb_2022_1783
crossref_primary_10_1093_isd_ixac025
crossref_primary_10_1101_cshperspect_a041452
crossref_primary_10_1093_ornithology_ukae030
Cites_doi 10.1093/molbev/mst089
10.1016/j.tree.2007.09.011
10.1111/zsc.12191
10.1016/j.ympev.2010.04.034
10.1101/pdb.prot5448
10.1111/mec.12516
10.1038/nmeth.1923
10.1093/gbe/evx253
10.1089/cmb.2012.0021
10.2307/40168278
10.1111/j.1600-0587.1999.tb00455.x
10.1126/science.1190371
10.1016/j.ajhg.2013.07.011
10.1130/0016-7606(2000)112<1091:UHOTCA>2.0.CO;2
10.1093/bioinformatics/btr507
10.1676/14-178.1
10.1073/pnas.1507300112
10.7312/nei-92038
10.1016/j.cub.2014.03.016
10.1111/j.1365-294X.2009.04251.x
10.1093/molbev/mst168
10.1111/mec.12151
10.1111/j.0906-7590.2008.05333.x
10.1186/s12859-014-0356-4
10.1073/pnas.0905224106
10.1186/s12862-016-0595-2
10.1093/molbev/mst063
10.1093/gbe/evw032
10.1073/pnas.1803908115
10.3417/2008011
10.1111/bij.12249
10.1534/genetics.113.154138
10.18637/jss.v076.i13
10.1093/gbe/evu025
10.1111/evo.13251
10.1093/gbe/evz101
10.1073/pnas.1002443107
10.1371/journal.pone.0191598
10.1111/mec.12796
10.1126/science.1194585
10.1038/nrg3522
10.1016/0040-5809(75)90020-9
10.1086/282487
10.1111/j.1558-5646.2011.01269.x
10.1371/journal.pone.0114367
10.1093/bioinformatics/btv509
10.1146/annurev-ecolsys-120213-091851
10.1093/bioinformatics/btp352
10.1101/gr.107524.110
10.1111/j.1558-5646.2009.00644.x
10.1073/pnas.1315456110
10.1111/jbi.12452
10.1038/s41437-018-0173-z
10.1111/j.1420-9101.2012.02524.x
10.1093/bioinformatics/btu170
10.1093/gbe/evu162
10.1038/ncomms3071
10.1111/evo.13502
10.1126/science.aaf9070
10.1093/molbev/msq205
10.1093/bioinformatics/btu041
10.1093/genetics/74.1.175
10.1146/annurev-ecolsys-102710-145113
10.1126/science.224.4645.171
10.1007/s00439-011-1109-3
10.1038/nrg1226
10.1038/ng.3464
10.1111/bij.12511
10.1038/ng.3615
10.1186/1471-2164-13-403
10.1016/S0169-5347(02)02497-7
10.1038/srep14256
10.1093/molbev/msv033
10.1093/nar/gky1038
10.1371/journal.pgen.1004466
10.1111/mec.12164
10.1111/j.1755-0998.2008.02355.x
10.1111/mec.14877
ContentType Journal Article
Copyright The American Genetic Association. 2021. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2021
The American Genetic Association. 2021. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Copyright_xml – notice: The American Genetic Association. 2021. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2021
– notice: The American Genetic Association. 2021. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1093/jhered/esab008
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Biology
EISSN 1465-7333
EndPage 240
ExternalDocumentID PMC8427717
33631009
10_1093_jhered_esab008
10.1093/jhered/esab008
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Peru
GeographicLocations_xml – name: Peru
GrantInformation_xml – fundername: NIH HHS
  grantid: S10 OD018174
– fundername: ;
– fundername: ;
  grantid: NSF DEB-1601477; DEB-1442142; DEB-1146491
GroupedDBID ---
-DZ
-E4
-~X
.2P
.55
.I3
0R~
0WA
186
18M
1KJ
1TH
29K
2KS
2WC
3O-
4.4
482
48X
53G
5GY
5RE
5VS
5WA
5WD
6.Y
70D
79B
85S
9M8
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AASNB
AAUAY
AAUQX
AAVAP
AAVLN
AAWDT
AAYJJ
ABEUO
ABGFU
ABIXL
ABJNI
ABLJU
ABMNT
ABNKS
ABPPZ
ABPTD
ABQLI
ABQTQ
ABSAR
ABSMQ
ABWST
ABXVV
ABZBJ
ACBTR
ACFRR
ACGFO
ACGFS
ACGOD
ACKOT
ACNCT
ACPQN
ACPRK
ACUFI
ACUTJ
ACZBC
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADOCK
ADQBN
ADRIX
ADRTK
ADVEK
ADYKR
ADYVW
ADZTZ
ADZXQ
AEGPL
AEGXH
AEJOX
AEKPW
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AETEA
AEWNT
AFFDN
AFFZL
AFGWE
AFHKK
AFIYH
AFOFC
AFRAH
AFSHK
AFSWV
AFXEN
AFYAG
AGINJ
AGKEF
AGKRT
AGMDO
AGNAY
AGQXC
AGSYK
AHMBA
AHXPO
AIAGR
AIDAL
AIJHB
AJEEA
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ANFBD
APIBT
APJGH
APWMN
AQDSO
ARIXL
ASAOO
ASPBG
ATDFG
ATGXG
ATTQO
AVWKF
AXUDD
AYOIW
AZFZN
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BKOMP
BQDIO
BSWAC
CAG
CDBKE
COF
CQJDY
CS3
CXTWN
CZ4
D-I
D0L
DAKXR
DFGAJ
DIK
DILTD
DU5
D~K
E3Z
EBS
EE~
EJD
ELUNK
EMOBN
F20
F5P
F9B
FA8
FEDTE
FHSFR
FLUFQ
FOEOM
FQBLK
G8K
GAUVT
GJXCC
GX1
H13
H5~
HAR
HVGLF
HW0
HZ~
H~9
IOX
J21
JXSIZ
KAQDR
KBUDW
KC5
KOP
KQ8
KSI
KSN
L7B
M-Z
M49
MBTAY
ML0
MVM
N9A
NEJ
NGC
NHB
NLBLG
NOMLY
NTWIH
NU-
NVLIB
O0~
O9-
OAWHX
OBOKY
ODMLO
OHT
OJQWA
OJZSN
OK1
OMK
OVD
OWPYF
O~Y
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
QBD
QZG
R44
RD5
RIG
RNI
ROL
ROX
ROZ
RUSNO
RW1
RXO
RZF
RZO
S10
TAE
TCN
TEORI
TLC
TN5
TR2
TWZ
UBC
UHB
UKR
UPT
UQL
VQA
W8F
WH7
WHG
WOQ
X7H
X7M
XJT
XOL
XSW
Y6R
YAYTL
YKOAZ
YQI
YQJ
YQT
YROCO
YSK
YXANX
YYQ
YZZ
ZCA
ZGI
ZHY
ZKB
ZKX
ZUP
ZXP
~02
~91
~KM
AAILS
AAYXX
ABDFA
ABEJV
ABGNP
ABPQP
ABVGC
ABXZS
ADCFL
ADNBA
AEHKS
AGORE
AHGBF
AJBYB
AJNCP
ALXQX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c424t-e1aceaffa6c3668f70191272e4d4f48b35894f0ed75fadaef8fd1e0204fe6b73
ISSN 0022-1503
1465-7333
IngestDate Thu Aug 21 18:14:03 EDT 2025
Thu Jul 10 19:01:41 EDT 2025
Thu Jul 10 06:32:04 EDT 2025
Thu Jul 10 08:43:33 EDT 2025
Thu Apr 24 23:08:39 EDT 2025
Wed Aug 28 03:17:32 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords gene flow
clinal variation
high-elevation
exon capture
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/pages/standard-publication-reuse-rights
The American Genetic Association. 2021. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c424t-e1aceaffa6c3668f70191272e4d4f48b35894f0ed75fadaef8fd1e0204fe6b73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4327-7697
0000-0003-2097-8818
OpenAccessLink https://academic.oup.com/jhered/article-pdf/112/3/229/40336021/esab008.pdf
PMID 33631009
PQID 2494296731
PQPubID 23479
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8427717
proquest_miscellaneous_2494296731
pubmed_primary_33631009
crossref_citationtrail_10_1093_jhered_esab008
crossref_primary_10_1093_jhered_esab008
oup_primary_10_1093_jhered_esab008
PublicationCentury 2000
PublicationDate 2021-05-24
PublicationDateYYYYMMDD 2021-05-24
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-24
  day: 24
PublicationDecade 2020
PublicationPlace US
PublicationPlace_xml – name: US
– name: United States
PublicationTitle The Journal of heredity
PublicationTitleAlternate J Hered
PublicationYear 2021
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Parra (2025070720014132600_CIT0056) 2008
Yu (2025070720014132600_CIT0085) 2016; 48
Qu (2025070720014132600_CIT0060) 2015; 5
Zhang (2025070720014132600_CIT0086) 2016; 8
Bankevich (2025070720014132600_CIT0004) 2012; 19
Zhou (2025070720014132600_CIT0088) 2013; 93
Prieto-Torres (2025070720014132600_CIT0058) 2018; 13
Hosner (2025070720014132600_CIT0034) 2015; 127
Cheviron (2025070720014132600_CIT0014) 2009; 63
Luikart (2025070720014132600_CIT0045) 2003; 4
Korneliussen (2025070720014132600_CIT0039) 2015; 31
Langmead (2025070720014132600_CIT0040) 2012; 9
Hazzi (2025070720014132600_CIT0031) 2018; 115
Simonson (2025070720014132600_CIT0069) 2012; 131
Fajardo (2025070720014132600_CIT0018) 2014; 9
Fjeldså (2025070720014132600_CIT0019) 2012; 43
Welch (2025070720014132600_CIT0081) 2014; 6
Rosenblum (2025070720014132600_CIT0063) 2014; 45
Beall (2025070720014132600_CIT0005) 2010; 107
Muñoz-Fuentes (2025070720014132600_CIT0053) 2013; 22
Natarajan (2025070720014132600_CIT0054) 2016; 354
Herman (2025070720014132600_CIT0032) 2018; 27
Bolger (2025070720014132600_CIT0011) 2014; 30
Wallace (2025070720014132600_CIT0077) 2012
Züchner (2025070720014132600_CIT0089) 2020
Storey (2025070720014132600_CIT0072) 2015
Zhang (2025070720014132600_CIT0087) 2014; 10
Lenormand (2025070720014132600_CIT0041) 2002; 17
Cracraft (2025070720014132600_CIT0015) 1985
Weir (2025070720014132600_CIT0080) 2009; 96
Anderson (2025070720014132600_CIT0001) 2008; 8
McKenna (2025070720014132600_CIT0049) 2010; 20
IUCN (2025070720014132600_CIT0036) 2016
Lim (2025070720014132600_CIT0044) 2019; 11
Schulenberg (2025070720014132600_CIT0067) 2007
Blanquart (2025070720014132600_CIT0010) 2012; 25
Frichot (2025070720014132600_CIT0021) 2013; 30
Chapman (2025070720014132600_CIT0012) 1926; 55
Korneliussen (2025070720014132600_CIT0038) 2014; 15
McGuire (2025070720014132600_CIT0048) 2014; 24
van Etten (2025070720014132600_CIT0075) 2017; 76
Savolainen (2025070720014132600_CIT0065) 2013; 14
Projecto-Garcia (2025070720014132600_CIT0059) 2013; 110
Scott (2025070720014132600_CIT0068) 2011; 28
Vieira (2025070720014132600_CIT0076) 2016; 117
Winger (2025070720014132600_CIT0082) 2017; 71
Benham (2025070720014132600_CIT0007) 2016; 16
Arendt (2025070720014132600_CIT0002) 2008; 23
Bailey (2025070720014132600_CIT0003) 2015; 32
Benham (2025070720014132600_CIT0006) 2015; 42
Smit (2025070720014132600_CIT0071) 2015
Li (2025070720014132600_CIT0043) 2009; 25
Turchetto-Zolet (2025070720014132600_CIT0074) 2013; 22
Gregory-Wodzicki (2025070720014132600_CIT0028) 2000; 112
Gutiérrez-Pinto (2025070720014132600_CIT0029) 2014; 111
Fjeldså (2025070720014132600_CIT0020) 1999; 22
Ruggiero (2025070720014132600_CIT0064) 2008; 31
Bi (2025070720014132600_CIT0008) 2013; 22
Cruickshank (2025070720014132600_CIT0016) 2014; 23
Magoč (2025070720014132600_CIT0046) 2011; 27
Petkova (2025070720014132600_CIT0057) 2016; 48
Mi (2025070720014132600_CIT0051) 2019; 47
Milá (2025070720014132600_CIT0052) 2009; 18
Huerta-Sánchez (2025070720014132600_CIT0035) 2013; 30
Yi (2025070720014132600_CIT0084) 2010; 329
Hoorn (2025070720014132600_CIT0033) 2010; 330
Remsen (2025070720014132600_CIT0062) 1984; 224
Graham (2025070720014132600_CIT0026) 2018; 10
Gilbert (2025070720014132600_CIT0025) 2014
Graham (2025070720014132600_CIT0027) 2019; 122
Yeaman (2025070720014132600_CIT0083) 2011; 65
Hämälä (2025070720014132600_CIT0030) 2018; 72
Skotte (2025070720014132600_CIT0070) 2013; 195
Storz (2025070720014132600_CIT0073) 2009; 106
Fumagalli (2025070720014132600_CIT0023) 2014; 30
Nei (2025070720014132600_CIT0055) 1987
Bi (2025070720014132600_CIT0009) 2012; 13
del Hoyo (2025070720014132600_CIT0017) 2020
Galen (2025070720014132600_CIT0024) 2015; 112
Wang (2025070720014132600_CIT0078) 2014; 6
McCracken (2025070720014132600_CIT0047) 2010; 56
Janzen (2025070720014132600_CIT0037) 1967; 101
Lewontin (2025070720014132600_CIT0042) 1973; 74
Chapman (2025070720014132600_CIT0013) 2013; 30
Watterson (2025070720014132600_CIT0079) 1975; 7
Fuchs (2025070720014132600_CIT0022) 2017; 46
Meyer (2025070720014132600_CIT0050) 2010; 2010
Qu (2025070720014132600_CIT0061) 2013; 4
Schuchmann (2025070720014132600_CIT0066) 1997; 24
40626346 - J Hered. 2025 Jul 08:esaf044. doi: 10.1093/jhered/esaf044.
References_xml – volume: 30
  start-page: 1877
  year: 2013
  ident: 2025070720014132600_CIT0035
  article-title: Genetic signatures reveal high-altitude adaptation in a set of ethiopian populations
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/mst089
– year: 2016
  ident: 2025070720014132600_CIT0036
– year: 2020
  ident: 2025070720014132600_CIT0089
  article-title: Sparkling Violetear
– volume: 23
  start-page: 26
  year: 2008
  ident: 2025070720014132600_CIT0002
  article-title: Convergence and parallelism reconsidered: what have we learned about the genetics of adaptation?
  publication-title: Trends Ecol Evol
  doi: 10.1016/j.tree.2007.09.011
– volume: 46
  start-page: 27
  year: 2017
  ident: 2025070720014132600_CIT0022
  article-title: Diversification across major biogeographic breaks in the African Shining/Square-tailed Drongos complex (Passeriformes: Dicruridae)
  publication-title: Zoologica Scripta
  doi: 10.1111/zsc.12191
– volume: 56
  start-page: 649
  year: 2010
  ident: 2025070720014132600_CIT0047
  article-title: Phylogenetic and structural analysis of the HbA (alphaA/betaA) and HbD (alphaD/betaA) hemoglobin genes in two high-altitude waterfowl from the Himalayas and the Andes: Bar-headed goose (Anser indicus) and Andean goose (Chloephaga melanoptera)
  publication-title: Mol Phylogenet Evol
  doi: 10.1016/j.ympev.2010.04.034
– volume: 2010
  start-page: pdb.prot5448
  year: 2010
  ident: 2025070720014132600_CIT0050
  article-title: Illumina sequencing library preparation for highly multiplexed target capture and sequencing
  publication-title: Cold Spring Harb Protoc
  doi: 10.1101/pdb.prot5448
– volume: 22
  start-page: 6018
  year: 2013
  ident: 2025070720014132600_CIT0008
  article-title: Unlocking the vault: next-generation museum population genomics
  publication-title: Mol Ecol
  doi: 10.1111/mec.12516
– volume: 9
  start-page: 357
  year: 2012
  ident: 2025070720014132600_CIT0040
  article-title: Fast gapped-read alignment with Bowtie 2
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1923
– volume-title: qvalue: Q-value estimation for false discovery rate control
  year: 2015
  ident: 2025070720014132600_CIT0072
– volume: 10
  start-page: 14
  year: 2018
  ident: 2025070720014132600_CIT0026
  article-title: Migration-selection balance drives genetic differentiation in genes associated with high-altitude function in the speckled teal (Anas flavirostris) in the Andes
  publication-title: Genome Biol Evol
  doi: 10.1093/gbe/evx253
– volume: 19
  start-page: 455
  year: 2012
  ident: 2025070720014132600_CIT0004
  article-title: SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing
  publication-title: J Comput Biol
  doi: 10.1089/cmb.2012.0021
– start-page: 49
  year: 1985
  ident: 2025070720014132600_CIT0015
  article-title: Historical biogeography and patterns of differentiation within the South American avifauna: Areas of endemism
  publication-title: Ornithological Monographs
  doi: 10.2307/40168278
– volume: 22
  start-page: 63
  year: 1999
  ident: 2025070720014132600_CIT0020
  article-title: Correlation between endemism and local ecoclimatic stability documented by comparing Andean bird distributions and remotely sensed land surface data
  publication-title: Ecography
  doi: 10.1111/j.1600-0587.1999.tb00455.x
– volume: 329
  start-page: 75
  year: 2010
  ident: 2025070720014132600_CIT0084
  article-title: Sequencing of 50 human exomes reveals adaptation to high altitude
  publication-title: Science
  doi: 10.1126/science.1190371
– volume: 93
  start-page: 452
  year: 2013
  ident: 2025070720014132600_CIT0088
  article-title: Whole-genome sequencing uncovers the genetic basis of chronic mountain sickness in Andean highlanders
  publication-title: Am J Hum Genet
  doi: 10.1016/j.ajhg.2013.07.011
– volume: 112
  start-page: 1091
  year: 2000
  ident: 2025070720014132600_CIT0028
  article-title: Uplift history of the Central and Northern Andes: a review
  publication-title: Geol Soc Am Bull
  doi: 10.1130/0016-7606(2000)112<1091:UHOTCA>2.0.CO;2
– volume: 27
  start-page: 2957
  year: 2011
  ident: 2025070720014132600_CIT0046
  article-title: FLASH: fast length adjustment of short reads to improve genome assemblies
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr507
– volume: 127
  start-page: 563
  year: 2015
  ident: 2025070720014132600_CIT0034
  article-title: Avifaunal surveys of the upper Apurímac River Valley, Ayacucho and Cuzco Departments, Peru: new distributional records and biogeographic, taxonomic, and conservation implications
  publication-title: The Wilson Journal of Ornithology
  doi: 10.1676/14-178.1
– volume: 112
  start-page: 13958
  year: 2015
  ident: 2025070720014132600_CIT0024
  article-title: Contribution of a mutational hot spot to hemoglobin adaptation in high-altitude Andean house wrens
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1507300112
– volume-title: Molecular evolutionary genetics
  year: 1987
  ident: 2025070720014132600_CIT0055
  doi: 10.7312/nei-92038
– volume: 24
  start-page: 910
  year: 2014
  ident: 2025070720014132600_CIT0048
  article-title: Molecular phylogenetics and the diversification of hummingbirds
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2014.03.016
– volume: 18
  start-page: 2979
  year: 2009
  ident: 2025070720014132600_CIT0052
  article-title: Divergence with gene flow and fine-scale phylogeographical structure in the wedge-billed woodcreeper, Glyphorynchus spirurus, a Neotropical rainforest bird
  publication-title: Mol Ecol
  doi: 10.1111/j.1365-294X.2009.04251.x
– volume: 30
  start-page: 2553
  year: 2013
  ident: 2025070720014132600_CIT0013
  article-title: Genomic divergence during speciation driven by adaptation to altitude
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/mst168
– volume: 22
  start-page: 1231
  year: 2013
  ident: 2025070720014132600_CIT0053
  article-title: Stepwise colonization of the Andes by ruddy ducks and the evolution of novel β-globin variants
  publication-title: Mol Ecol
  doi: 10.1111/mec.12151
– volume: 31
  start-page: 306
  year: 2008
  ident: 2025070720014132600_CIT0064
  article-title: Why do mountains support so many species of birds ?
  publication-title: Ecography
  doi: 10.1111/j.0906-7590.2008.05333.x
– volume: 15
  start-page: 356
  year: 2014
  ident: 2025070720014132600_CIT0038
  article-title: ANGSD: analysis of next generation sequencing data
  publication-title: BMC Bioinf
  doi: 10.1186/s12859-014-0356-4
– volume: 106
  start-page: 14450
  year: 2009
  ident: 2025070720014132600_CIT0073
  article-title: Evolutionary and functional insights into the mechanism underlying high-altitude adaptation of deer mouse hemoglobin
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0905224106
– volume: 16
  start-page: 22
  year: 2016
  ident: 2025070720014132600_CIT0007
  article-title: The dual role of Andean topography in primary divergence: functional and neutral variation among populations of the hummingbird, Metallura tyrianthina
  publication-title: BMC Evol Biol
  doi: 10.1186/s12862-016-0595-2
– volume: 30
  start-page: 1687
  year: 2013
  ident: 2025070720014132600_CIT0021
  article-title: Testing for associations between loci and environmental gradients using latent factor mixed models
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/mst063
– volume: 8
  start-page: 765
  year: 2016
  ident: 2025070720014132600_CIT0086
  article-title: Genome resequencing identifies unique adaptations of Tibetan chickens to hypoxia and high-dose ultraviolet radiation in high-altitude environments
  publication-title: Genome Biol Evol
  doi: 10.1093/gbe/evw032
– volume: 115
  start-page: 7985
  year: 2018
  ident: 2025070720014132600_CIT0031
  article-title: Biogeographic regions and events of isolation and diversification of the endemic biota of the tropical Andes
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1803908115
– volume: 96
  start-page: 410
  year: 2009
  ident: 2025070720014132600_CIT0080
  article-title: Implications of genetic differentiation in Neotropical montane birds
  publication-title: Ann Mo Bot Gard
  doi: 10.3417/2008011
– volume: 111
  start-page: 850
  year: 2014
  ident: 2025070720014132600_CIT0029
  article-title: The validity of ecogeographical rules is context-dependent: testing for Bergmann’s and Allen’s rules by latitude and elevation in a widespread Andean duck
  publication-title: Biol J Linn Soc
  doi: 10.1111/bij.12249
– volume: 195
  start-page: 693
  year: 2013
  ident: 2025070720014132600_CIT0070
  article-title: Estimating individual admixture proportions from next generation sequencing data
  publication-title: Genetics
  doi: 10.1534/genetics.113.154138
– volume: 76
  start-page: 1
  year: 2017
  ident: 2025070720014132600_CIT0075
  article-title: R Package gdistance: distances and routes on geographical grids
  publication-title: J Stat Soft
  doi: 10.18637/jss.v076.i13
– year: 2012
  ident: 2025070720014132600_CIT0077
– volume: 6
  start-page: 433
  year: 2014
  ident: 2025070720014132600_CIT0081
  article-title: Polar bears exhibit genome-wide signatures of bioenergetic adaptation to life in the arctic environment
  publication-title: Genome Biol Evol
  doi: 10.1093/gbe/evu025
– volume: 71
  start-page: 1815
  year: 2017
  ident: 2025070720014132600_CIT0082
  article-title: Consequences of divergence and introgression for speciation in Andean cloud forest birds
  publication-title: Evolution
  doi: 10.1111/evo.13251
– volume: 11
  start-page: 1552
  year: 2019
  ident: 2025070720014132600_CIT0044
  article-title: Parallel molecular evolution in pathways, genes, and sites in high-elevation hummingbirds revealed by comparative transcriptomics
  publication-title: Genome Biol Evol
  doi: 10.1093/gbe/evz101
– volume: 107
  start-page: 11459
  year: 2010
  ident: 2025070720014132600_CIT0005
  article-title: Natural selection on EPAS1 (HIF2α) associated with low hemoglobin concentration in Tibetan highlanders
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1002443107
– volume: 13
  start-page: e0191598
  year: 2018
  ident: 2025070720014132600_CIT0058
  article-title: On geographic barriers and Pleistocene glaciations: tracing the diversification of the Russet-crowned Warbler (Myiothlypis coronata) along the Andes
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0191598
– volume-title: Birds of Peru
  year: 2007
  ident: 2025070720014132600_CIT0067
– volume: 23
  start-page: 3133
  year: 2014
  ident: 2025070720014132600_CIT0016
  article-title: Reanalysis suggests that genomic islands of speciation are due to reduced diversity, not reduced gene flow
  publication-title: Mol Ecol
  doi: 10.1111/mec.12796
– volume: 330
  start-page: 927
  year: 2010
  ident: 2025070720014132600_CIT0033
  article-title: Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity
  publication-title: Science
  doi: 10.1126/science.1194585
– volume: 14
  start-page: 807
  year: 2013
  ident: 2025070720014132600_CIT0065
  article-title: Ecological genomics of local adaptation
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg3522
– volume: 7
  start-page: 256
  year: 1975
  ident: 2025070720014132600_CIT0079
  article-title: On the number of segregating sites in genetical models without recombination
  publication-title: Theor Popul Biol
  doi: 10.1016/0040-5809(75)90020-9
– year: 2020
  ident: 2025070720014132600_CIT0017
  article-title: Violet-throated Starfrontlet (Coeligena violifer), version 1.0. In Billerman SM, Keeney BK, Rodewald PG, Schulenberg TS, editors. Birds of the world. Ithaca, NY: Cornell Lab of Ornithology
– volume: 101
  start-page: 233
  year: 1967
  ident: 2025070720014132600_CIT0037
  article-title: Why mountain passes are higher in the tropics
  publication-title: Am Naturalist
  doi: 10.1086/282487
– volume: 65
  start-page: 1897
  year: 2011
  ident: 2025070720014132600_CIT0083
  article-title: The genetic architecture of adaptation under migration-selection balance
  publication-title: Evolution
  doi: 10.1111/j.1558-5646.2011.01269.x
– year: 2014
  ident: 2025070720014132600_CIT0025
  article-title: Genomic data of the Anna’s Hummingbird (Calypte anna)
  publication-title: GigaScience Database
– volume: 9
  start-page: e114367
  year: 2014
  ident: 2025070720014132600_CIT0018
  article-title: Combined use of systematic conservation planning, species distribution modelling, and connectivity analysis reveals severe conservation gaps in a megadiverse country (Peru)
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0114367
– volume-title: Color evolution in Andean hummingbirds (dissertation)
  year: 2008
  ident: 2025070720014132600_CIT0056
– volume: 31
  start-page: 4009
  year: 2015
  ident: 2025070720014132600_CIT0039
  article-title: NgsRelate: a software tool for estimating pairwise relatedness from next-generation sequencing data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv509
– volume: 45
  start-page: 203
  year: 2014
  ident: 2025070720014132600_CIT0063
  article-title: The molecular basis of phenotypic convergence
  publication-title: Annu Rev Ecol Evol Syst
  doi: 10.1146/annurev-ecolsys-120213-091851
– volume: 55
  start-page: 1
  year: 1926
  ident: 2025070720014132600_CIT0012
  article-title: The distribution of bird-life in Ecuador: a contribution to a study of the origin of Andean bird-life
  publication-title: Bull. Amer. Mus. Nat. Hist
– volume: 25
  start-page: 2078
  year: 2009
  ident: 2025070720014132600_CIT0043
  article-title: The sequence alignment/map format and SAMtools
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp352
– volume: 20
  start-page: 1297
  year: 2010
  ident: 2025070720014132600_CIT0049
  article-title: The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data
  publication-title: Genome Res
  doi: 10.1101/gr.107524.110
– volume: 63
  start-page: 1593
  year: 2009
  ident: 2025070720014132600_CIT0014
  article-title: Migration-selection balance and local adaptation of mitochondrial haplotypes in rufous-collared sparrows (Zonotrichia capensis) along an elevational gradient
  publication-title: Evolution
  doi: 10.1111/j.1558-5646.2009.00644.x
– volume: 110
  start-page: 20669
  year: 2013
  ident: 2025070720014132600_CIT0059
  article-title: Repeated elevational transitions in hemoglobin function during the evolution of Andean hummingbirds
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1315456110
– volume: 42
  start-page: 763
  year: 2015
  ident: 2025070720014132600_CIT0006
  article-title: Biogeography of the Andean metaltail hummingbirds: contrasting evolutionary histories of tree line and habitat-generalist clades
  publication-title: J Biogeogr
  doi: 10.1111/jbi.12452
– volume: 122
  start-page: 819
  year: 2019
  ident: 2025070720014132600_CIT0027
  article-title: Convergent evolution on the hypoxia-inducible factor (HIF) pathway genes EGLN1 and EPAS1 in high-altitude ducks
  publication-title: Heredity (Edinb)
  doi: 10.1038/s41437-018-0173-z
– year: 2015
  ident: 2025070720014132600_CIT0071
– volume: 24
  start-page: 247
  year: 1997
  ident: 2025070720014132600_CIT0066
  article-title: Coeligena violifer albicaudata (Aves, Trochilidae): a new hummingbird subspecies from the Southern Peruvian Andes
  publication-title: Ornitol Neotrop
– volume: 25
  start-page: 1351
  year: 2012
  ident: 2025070720014132600_CIT0010
  article-title: The effects of migration and drift on local adaptation to a heterogeneous environment
  publication-title: J Evol Biol
  doi: 10.1111/j.1420-9101.2012.02524.x
– volume: 30
  start-page: 2114
  year: 2014
  ident: 2025070720014132600_CIT0011
  article-title: Trimmomatic: a flexible trimmer for Illumina sequence data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu170
– volume: 6
  start-page: 2122
  year: 2014
  ident: 2025070720014132600_CIT0078
  article-title: Genetic convergence in the adaptation of dogs and humans to the high-altitude environment of the Tibetan plateau
  publication-title: Genome Biol Evol
  doi: 10.1093/gbe/evu162
– volume: 4
  start-page: 2071
  year: 2013
  ident: 2025070720014132600_CIT0061
  article-title: Ground tit genome reveals avian adaptation to living at high altitudes in the Tibetan plateau
  publication-title: Nat Commun
  doi: 10.1038/ncomms3071
– volume: 72
  start-page: 1373
  year: 2018
  ident: 2025070720014132600_CIT0030
  article-title: Local adaptation and ecological differentiation under selection, migration, and drift in Arabidopsis lyrata
  publication-title: Evolution
  doi: 10.1111/evo.13502
– volume: 354
  start-page: 336
  year: 2016
  ident: 2025070720014132600_CIT0054
  article-title: Predictable convergence in hemoglobin function has unpredictable molecular underpinnings
  publication-title: Science
  doi: 10.1126/science.aaf9070
– volume: 28
  start-page: 351
  year: 2011
  ident: 2025070720014132600_CIT0068
  article-title: Molecular evolution of cytochrome C oxidase underlies high-altitude adaptation in the bar-headed goose
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msq205
– volume: 30
  start-page: 1486
  year: 2014
  ident: 2025070720014132600_CIT0023
  article-title: ngsTools: methods for population genetics analyses from next-generation sequencing data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu041
– volume: 74
  start-page: 175
  year: 1973
  ident: 2025070720014132600_CIT0042
  article-title: Distribution of gene frequency as a test of the theory of the selective neutrality of polymorphisms
  publication-title: Genetics
  doi: 10.1093/genetics/74.1.175
– volume: 43
  start-page: 249
  year: 2012
  ident: 2025070720014132600_CIT0019
  article-title: The role of mountain ranges in the diversification of birds
  publication-title: Annu Rev Ecol Evol Syst
  doi: 10.1146/annurev-ecolsys-102710-145113
– volume: 224
  start-page: 171
  year: 1984
  ident: 2025070720014132600_CIT0062
  article-title: High incidence of “leapfrog” pattern of geographic variation in andean birds: implications for the speciation process
  publication-title: Science
  doi: 10.1126/science.224.4645.171
– volume: 131
  start-page: 527
  year: 2012
  ident: 2025070720014132600_CIT0069
  article-title: Genetic determinants of Tibetan high-altitude adaptation
  publication-title: Hum Genet
  doi: 10.1007/s00439-011-1109-3
– volume: 4
  start-page: 981
  year: 2003
  ident: 2025070720014132600_CIT0045
  article-title: The power and promise of population genomics: from genotyping to genome typing
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg1226
– volume: 48
  start-page: 94
  year: 2016
  ident: 2025070720014132600_CIT0057
  article-title: Visualizing spatial population structure with estimated effective migration surfaces
  publication-title: Nat Genet
  doi: 10.1038/ng.3464
– volume: 117
  start-page: 139
  year: 2016
  ident: 2025070720014132600_CIT0076
  article-title: Improving the estimation of genetic distances from Next-Generation Sequencing data
  publication-title: Biol J Linn Soc
  doi: 10.1111/bij.12511
– volume: 48
  start-page: 947
  year: 2016
  ident: 2025070720014132600_CIT0085
  article-title: Genomic analysis of snub-nosed monkeys (Rhinopithecus) identifies genes and processes related to high-altitude adaptation
  publication-title: Nat Genet
  doi: 10.1038/ng.3615
– volume: 13
  start-page: 403
  year: 2012
  ident: 2025070720014132600_CIT0009
  article-title: Transcriptome-based exon capture enables highly cost-effective comparative genomic data collection at moderate evolutionary scales
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-13-403
– volume: 17
  start-page: 183
  year: 2002
  ident: 2025070720014132600_CIT0041
  article-title: Gene flow and the limits to natural selection
  publication-title: Trends Ecol Evol
  doi: 10.1016/S0169-5347(02)02497-7
– volume: 5
  start-page: 14256
  year: 2015
  ident: 2025070720014132600_CIT0060
  article-title: Genetic responses to seasonal variation in altitudinal stress: whole-genome resequencing of great tit in Eastern Himalayas
  publication-title: Sci Rep
  doi: 10.1038/srep14256
– volume: 32
  start-page: 1436
  year: 2015
  ident: 2025070720014132600_CIT0003
  article-title: The effect of selection environment on the probability of parallel evolution
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msv033
– volume: 47
  start-page: D419
  year: 2019
  ident: 2025070720014132600_CIT0051
  article-title: PANTHER version 14: more genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gky1038
– volume: 10
  start-page: e1004466
  year: 2014
  ident: 2025070720014132600_CIT0087
  article-title: Hypoxia adaptations in the grey wolf (Canis lupus chanco) from Qinghai-Tibet plateau
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1004466
– volume: 22
  start-page: 1193
  year: 2013
  ident: 2025070720014132600_CIT0074
  article-title: Phylogeographical patterns shed light on evolutionary process in South America
  publication-title: Mol Ecol
  doi: 10.1111/mec.12164
– volume: 8
  start-page: 1219
  year: 2008
  ident: 2025070720014132600_CIT0001
  article-title: The influence of family groups on inferences made with the program structure
  publication-title: Mol Ecol Resour
  doi: 10.1111/j.1755-0998.2008.02355.x
– volume: 27
  start-page: 4397
  year: 2018
  ident: 2025070720014132600_CIT0032
  article-title: The role of gene flow in rapid and repeated evolution of cave-related traits in Mexican tetra, Astyanax mexicanus
  publication-title: Mol Ecol
  doi: 10.1111/mec.14877
– reference: 40626346 - J Hered. 2025 Jul 08:esaf044. doi: 10.1093/jhered/esaf044.
SSID ssj0001590
Score 2.3731334
Snippet Abstract Populations along steep environmental gradients are subject to differentiating selection that can result in local adaptation, despite countervailing...
Populations along steep environmental gradients are subject to differentiating selection that can result in local adaptation, despite countervailing gene flow,...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 229
SubjectTerms Acclimatization - genetics
Altitude
Animals
Birds - genetics
Editor's Choice
Gene Flow
Genomics
Original
Peru
Polymorphism, Single Nucleotide
Title Pervasive Genomic Signatures of Local Adaptation to Altitude Across Highland Specialist Andean Hummingbird Populations
URI https://www.ncbi.nlm.nih.gov/pubmed/33631009
https://www.proquest.com/docview/2494296731
https://pubmed.ncbi.nlm.nih.gov/PMC8427717
Volume 112
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKEGg8IBiXlZsMQuKhCmtsx0kfq3EZsKJKFGlvkRPbo1PXVm2KBH-PP8bxJU4KTMBe0ip1EzXfV5_j4_Odg9BzIsHKDLI4KmkpYYFCVVRIUkSUl0xqlZC-VXiPPvKjz-z9SXLS6fxoZS1tquJl-f2PupLLoArnAFejkv0PZMNF4QS8B3zhCAjD8Z8wHpuIqs0_f6usvLj3aXrqSnXaDI3jhUVAiqXPKQRHc2gEtxupekNrIG2ix8zmb7pO9AC7yXI0AXqA-hwsWzFdyd44NPpat_3ZRlk2c27nCoxhFcL0x65X88h0OhQ9n83nYvJOFNSEfdwmVavWQRO_bdTcQa_oNRU-XEFis9NOmnDlBTLI9hQNq2PwUt2sp9yszHgSpdRVzAjTdkxa_KTtSdjHUJw9J64c1G-mwpXROrMPxrBnLWAGytpDAezluaUOpdxshAwaoxlSGcejw4yRFFbFV9BVeCWmjcardx-COwD-Yr8uWW9-V6gcSg_czQ_8rXfR9fo-W07SlvCytf75NY235RdNbqGbHnw8dOy8jTpqvoduDE9XvqiL2kPXXMPTb3fQ18BY7BmLG8bihcaWsbhhLK4WuGYsdozFNWNxw1jsGItbjMUtxt5FkzevJ4dHke_8EZWMsCpSsSiV0FrwknKeadMzICYpUUwyzbKCJtmA6b6SaaKFFEpnWsbK6Ly14kVK76Gd-WKu9hEWqSiLIpWExwUTusySkqZUkj7PBpor0kVR_aTz0lfFN81ZZrnLzqC5Ayn3IHXRizB-6erBXDjyGQD310FPa1xzmNfNZp2Yq8VmnRM2AFeRpzTuovsO53CtmiZdlG4xIAwwNeO3P5lPv9ja8Z6rDy79zYdot_lbP0I71WqjHoNfXhVPLO9_Av8E7gM
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pervasive+Genomic+Signatures+of+Local+Adaptation+to+Altitude+Across+Highland+Specialist+Andean+Hummingbird+Populations&rft.jtitle=The+Journal+of+heredity&rft.au=Lim%2C+Marisa+C+W&rft.au=Bi%2C+Ke&rft.au=Witt%2C+Christopher+C&rft.au=Graham%2C+Catherine+H&rft.date=2021-05-24&rft.pub=Oxford+University+Press&rft.issn=0022-1503&rft.eissn=1465-7333&rft.volume=112&rft.issue=3&rft.spage=229&rft.epage=240&rft_id=info:doi/10.1093%2Fjhered%2Fesab008&rft_id=info%3Apmid%2F33631009&rft.externalDocID=PMC8427717
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1503&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1503&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1503&client=summon