In-situ two-step Raman thermometry for thermal characterization of monolayer graphene interface material
An in-situ two-step Raman thermometry is developed to measure both interfacial thermal conductance between graphene and substrate, and in-plane thermal conductivity of graphene. [Display omitted] •In-situ two-step Raman method is developed for interfacial thermal characterization.•Both in-plane ther...
Saved in:
Published in | Applied thermal engineering Vol. 113; pp. 481 - 489 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
25.02.2017
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | An in-situ two-step Raman thermometry is developed to measure both interfacial thermal conductance between graphene and substrate, and in-plane thermal conductivity of graphene.
[Display omitted]
•In-situ two-step Raman method is developed for interfacial thermal characterization.•Both in-plane thermal conductivity and interface thermal conductance can be characterized.•An unconstrained graphene/SiO2 interface material is successfully measured.•Small interface thermal conductance and in-plane thermal conductivity are obtained.
To date, accurate thermal property measurement of atomic-layer interface materials still remains as a challenge due to the extreme dimension of sample’s size and limitation of instruments. Raman thermometry emerges as the sole technique for direct measurement of unconstrained graphene interfacial thermal transport. In this work, an in-situ two-step Raman thermometry is developed to measure both interfacial thermal conductance between graphene and substrate, and in-plane thermal conductivity of supported graphene. This two-step Raman approach incorporates the first step: joule-heating experiment for interfacial thermal conductance characterization and the second step: laser-heating experiment for thermal conductivity measurement. Thermal conductance between monolayer graphene and SiO2 is characterized as 340-80+327W/m2K which is much smaller than reported values of sandwiched graphene interface structures, but agrees well with other unconstrained graphene interface structures. The in-plane thermal conductivity of supported graphene is obtained as 179-86+111W/mK. This value is consistent with previously reported data for thermal transport of supported graphene structures, which can be explained by phonons leakage and significant scattering at the interface. The successful measurement of graphene/SiO2 interfacial thermal properties proves that this technique can be well applied to graphene-like atomic-layer materials with Raman-active optical mode. |
---|---|
AbstractList | To date, accurate thermal property measurement of atomic-layer interface materials still remains as a challenge due to the extreme dimension of sample’s size and limitation of instruments. Raman thermometry emerges as the sole technique for direct measurement of unconstrained graphene interfacial thermal transport. In this work, an in-situ two-step Raman thermometry is developed to measure both interfacial thermal conductance between graphene and substrate, and in-plane thermal conductivity of supported graphene. This two-step Raman approach incorporates the first step: joule-heating experiment for interfacial thermal conductance characterization and the second step: laser-heating experiment for thermal conductivity measurement. Thermal conductance between monolayer graphene and SiO2 is characterized as ... W/m2K which is much smaller than reported values of sandwiched graphene interface structures, but agrees well with other unconstrained graphene interface structures. The in-plane thermal conductivity of supported graphene is obtained as ... W/m K. This value is consistent with previously reported data for thermal transport of supported graphene structures, which can be explained by phonons leakage and significant scattering at the interface. The successful measurement of graphene/SiO2 interfacial thermal properties proves that this technique can be well applied to graphene-like atomic-layer materials with Raman-active optical mode. An in-situ two-step Raman thermometry is developed to measure both interfacial thermal conductance between graphene and substrate, and in-plane thermal conductivity of graphene. [Display omitted] •In-situ two-step Raman method is developed for interfacial thermal characterization.•Both in-plane thermal conductivity and interface thermal conductance can be characterized.•An unconstrained graphene/SiO2 interface material is successfully measured.•Small interface thermal conductance and in-plane thermal conductivity are obtained. To date, accurate thermal property measurement of atomic-layer interface materials still remains as a challenge due to the extreme dimension of sample’s size and limitation of instruments. Raman thermometry emerges as the sole technique for direct measurement of unconstrained graphene interfacial thermal transport. In this work, an in-situ two-step Raman thermometry is developed to measure both interfacial thermal conductance between graphene and substrate, and in-plane thermal conductivity of supported graphene. This two-step Raman approach incorporates the first step: joule-heating experiment for interfacial thermal conductance characterization and the second step: laser-heating experiment for thermal conductivity measurement. Thermal conductance between monolayer graphene and SiO2 is characterized as 340-80+327W/m2K which is much smaller than reported values of sandwiched graphene interface structures, but agrees well with other unconstrained graphene interface structures. The in-plane thermal conductivity of supported graphene is obtained as 179-86+111W/mK. This value is consistent with previously reported data for thermal transport of supported graphene structures, which can be explained by phonons leakage and significant scattering at the interface. The successful measurement of graphene/SiO2 interfacial thermal properties proves that this technique can be well applied to graphene-like atomic-layer materials with Raman-active optical mode. |
Author | Yue, Yanan Wu, Shijing Zhao, Wenqiang Chen, Wen |
Author_xml | – sequence: 1 givenname: Wenqiang surname: Zhao fullname: Zhao, Wenqiang organization: School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei 430072, China – sequence: 2 givenname: Wen surname: Chen fullname: Chen, Wen organization: School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei 430072, China – sequence: 3 givenname: Yanan surname: Yue fullname: Yue, Yanan email: yyue@whu.edu.cn organization: School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei 430072, China – sequence: 4 givenname: Shijing surname: Wu fullname: Wu, Shijing email: wsj@whu.edu.cn organization: School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei 430072, China |
BookMark | eNqNkMFq3DAQhkVJoUnadxC0V7sa27Jl6KUNTRsIBEJ7FrPyKKvFllxJ27J5-mqzubSnnGYY_vmG-S7YmQ-eGPsAogYB_cddjes65y3FBWfyD3VTpjVALfr2FTsHNbSV7EV_VvpWjlXXArxhFynthIBGDd052974Krm85_lPqFKmld_jgp4_QcNCOR64DZE_H-FmixFNpugeMbvgebB8CT7MeKDIHyKuW_LEnS8Ri4b4gscwzm_Za4tzonfP9ZL9vP764-p7dXv37ebq821luqbL1SRHK0ahhl4qhWDVhkaA1jZ2gmHTGNGNGyksldck0tgNZlCSOgNKbKySU3vJ3p-4awy_9pSy3oV99OWkhhHGQm0aWVJfTikTQ0qRrDYuPz2UI7pZg9BHw3qn_zWsj4Y1gC6GC-TTf5A1ugXj4aXr16d1Kjp-O4o6GUfe0OQimayn4F4G-guA3qZI |
CitedBy_id | crossref_primary_10_1016_j_applthermaleng_2024_123929 crossref_primary_10_1063_5_0099383 crossref_primary_10_1063_5_0250249 crossref_primary_10_1088_1757_899X_1102_1_012010 crossref_primary_10_1007_s42493_019_00024_2 crossref_primary_10_1080_15567265_2017_1286421 crossref_primary_10_1080_10426914_2017_1303165 crossref_primary_10_1016_j_applthermaleng_2017_10_163 crossref_primary_10_1016_j_measurement_2024_114125 crossref_primary_10_1021_acs_jpcc_2c00732 crossref_primary_10_1038_s41699_019_0092_8 crossref_primary_10_1021_acsnano_0c06185 crossref_primary_10_3390_mi14112076 crossref_primary_10_1088_1674_1056_abc677 crossref_primary_10_1088_2053_1591_ab4492 crossref_primary_10_1007_s12633_021_00943_6 crossref_primary_10_1016_j_carbon_2017_11_008 crossref_primary_10_1016_j_applthermaleng_2018_04_076 crossref_primary_10_1039_C7NR01695F crossref_primary_10_1016_j_commatsci_2018_03_043 crossref_primary_10_1016_j_mtcomm_2023_105921 crossref_primary_10_1016_j_apcatb_2017_05_078 crossref_primary_10_1016_j_apsusc_2020_148390 crossref_primary_10_1016_j_ijheatmasstransfer_2020_119751 crossref_primary_10_1016_j_porgcoat_2022_107052 crossref_primary_10_34133_2021_8438614 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125810 crossref_primary_10_1063_5_0221352 crossref_primary_10_1016_j_applthermaleng_2017_11_033 crossref_primary_10_1016_j_surfin_2023_103538 crossref_primary_10_1088_2631_7990_aba17c crossref_primary_10_1063_5_0069466 crossref_primary_10_1016_j_ijheatmasstransfer_2019_01_012 crossref_primary_10_1016_j_molstruc_2020_128304 crossref_primary_10_1016_j_mtener_2020_100582 crossref_primary_10_1016_j_applthermaleng_2019_01_098 crossref_primary_10_1002_admi_201900275 |
Cites_doi | 10.1039/C2NR32949B 10.1126/science.1171245 10.1103/PhysRevB.84.075470 10.1557/mrs.2012.203 10.1063/1.4752437 10.1063/1.3610386 10.1021/am405388a 10.1063/1.3511537 10.1007/s00339-009-5352-6 10.1021/nn9016229 10.1063/1.112933 10.1088/0957-4484/15/4/019 10.1021/nl061702a 10.1088/0957-4484/23/11/112001 10.1021/nl9041966 10.1002/er.1598 10.1103/PhysRevB.83.081419 10.1063/1.4916985 10.1103/PhysRevB.74.125403 10.1038/ncomms4689 10.1007/s00339-015-9066-7 10.1021/nl0731872 10.1364/OE.20.014152 10.1021/nl102923q 10.1038/srep12422 10.1021/nn2011442 10.1016/j.physleta.2010.08.034 10.1063/1.4954677 10.1103/PhysRevB.82.115427 10.1063/1.3245315 10.1103/PhysRevB.84.075471 10.1016/j.carbon.2011.05.047 10.1038/nnano.2010.89 10.1021/nl101790k 10.1021/nn202972f 10.1364/AO.46.008118 10.1103/PhysRevB.80.033406 10.1126/science.1156965 10.1016/j.ssc.2012.04.022 10.1021/nl101613u 10.3402/nano.v3i0.11586 10.1038/nature05545 10.1021/nl104156y 10.5640/insc.010280 10.1126/science.1184014 10.1515/ntrev-2014-0024 10.1021/nl203060j 10.1021/nl201488g 10.1063/1.3435465 10.1002/smll.201101598 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Ltd Copyright Elsevier BV Feb 25, 2017 |
Copyright_xml | – notice: 2016 Elsevier Ltd – notice: Copyright Elsevier BV Feb 25, 2017 |
DBID | AAYXX CITATION 7TB 8FD FR3 KR7 |
DOI | 10.1016/j.applthermaleng.2016.11.063 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-5606 |
EndPage | 489 |
ExternalDocumentID | 10_1016_j_applthermaleng_2016_11_063 S1359431116331441 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFNM ABJNI ABMAC ABNUV ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHIDL AHJVU AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE J1W JARJE JJJVA KOM M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSR SST SSZ T5K TN5 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FGOYB HZ~ R2- SEW SSH 7TB 8FD EFKBS FR3 KR7 |
ID | FETCH-LOGICAL-c424t-d59f090876588a1f8be9113f2fd17b2c049b50fe8735ae947c785e4c180bf85d3 |
IEDL.DBID | .~1 |
ISSN | 1359-4311 |
IngestDate | Fri Jul 25 03:37:54 EDT 2025 Tue Jul 01 02:27:23 EDT 2025 Thu Apr 24 22:56:21 EDT 2025 Fri Feb 23 02:45:49 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Raman thermometry Thermal conductivity Interfacial thermal conductance Graphene |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c424t-d59f090876588a1f8be9113f2fd17b2c049b50fe8735ae947c785e4c180bf85d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1919588225 |
PQPubID | 2045278 |
PageCount | 9 |
ParticipantIDs | proquest_journals_1919588225 crossref_citationtrail_10_1016_j_applthermaleng_2016_11_063 crossref_primary_10_1016_j_applthermaleng_2016_11_063 elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2016_11_063 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-02-25 |
PublicationDateYYYYMMDD | 2017-02-25 |
PublicationDate_xml | – month: 02 year: 2017 text: 2017-02-25 day: 25 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Applied thermal engineering |
PublicationYear | 2017 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Lindsay, Broido, Mingo (b0020) 2010; 82 Kong, Paul, Nardelli, Kim (b0030) 2009; 80 Zhang, Hong, Yue (b0185) 2015; 117 Pettes, Jo, Yao, Shi (b0225) 2011; 11 Graf, Molitor, Ensslin, Stampfer, Jungen, Hierold, Wirtz (b0150) 2007; 7 Li, Cai, An, Kim, Nah, Yang, Piner, Velamakanni (b0155) 2016; 324 Balandin, Ghosh, Bao, Calizo, Teweldebrhan, Miao, Chun (b0035) 2008; 8 Meyer, Geim, Katsnelson, Novoselov, Booth, Roth (b0195) 2007; 446 Zhong, Lukes (b0200) 2006; 74 Cai, Moore, Zhu, Li, Chen, Shi, Ruoff (b0105) 2010; 10 Mak, Lui, Heinz (b9000) 2010; 97 Paronyan, Pigos, Chen, Harutyunyan (b0190) 2011; 5 Li, Zhang, Hu, Yue (b0085) 2015; 119 Forshaw, Stadler, Crawley, Nikoli (b0005) 2004; 15 Guo, Zhang, Gong (b0215) 2011; 84 Yue, Huang, Wang (b0120) 2010; 374 Ong, Pop (b0220) 2011; 84 Yue, Zhang, Tang, Xu, Wang (b0205) 2015; 4 Yue, Wang (b0135) 2012; 3 Bergman, Incropera, DeWitt, Lavine (b0115) 2011 Pop, Varshney, Roy (b0060) 2012; 37 Yoon, Son, Cheong (b0165) 2011; 11 Jo, Choe, Lee, Park, Kahng, Lee (b0055) 2012; 23 Mao, Kong, Kim, Jayasekera, Calzolari, Buongiorno Nardelli (b0080) 2012; 101 Hu, Desai, Keblinski (b0025) 2011; 110 Tang, Xu, Zhang, Wang (b0100) 2014; 6 Wang, Xie, Bui, Liu, Ni, Li, Thong (b9030) 2011; 11 Liu, Li, Xu, Khatami, Banerjee (b0160) 2011; 49 Judek, Gertych, Swiniarski, Lapinska, Duzynska, Zdrojek (b0110) 2015; 5 Hopkins, Baraket, Barnat, Beechem, Kearney, Duda, Robinson, Walton (b9005) 2012; 12 Jang, Chen, Bao, Lau, Dames (b0070) 2010; 10 Wang, Kurata, Fukunaga, Ago, Takamatsu, Zhang, Ikuta, Takahashi, Nishiyama, Takata (b9010) 2016; 119 Evans, Hu, Keblinski (b0040) 2010; 96 Sadeghi, Pettes, Shi (b0015) 2012; 152 Nair, Blake, Grigorenko, Novoselov, Booth, Stauber, Peres, Geim (b0210) 2008; 320 Chen, Zhang, Li (b0075) 2013; 5 Yue, Zhang, Wang (b0170) 2011; 7 Koh, Bae, Cahill, Pop (b0095) 2010; 10 Schwierz (b0045) 2010; 5 Seol, Jo, Moore, Lindsay, Aitken, Pettes, Li, Yao, Huang, Broido (b0065) 2010; 328 Yue, Chen, Wang (b0140) 2011; 5 Kitamura, Pilon, Jonasz (b0145) 2007; 46 Lee, Yoon, Kim, Lee, Cheong (b9015) 2011; 83 Chen, Jang, Bao, Lau, Dames (b0090) 2009; 95 Faugeras, Faugeras, Orlita, Potemski, Nair, Geim (b9025) 2010; 4 Yue, Eres, Wang, Guo (b0125) 2009; 97 Guo, Fang, Zhang, Gong (b0010) 2011 Käding, Skurk, Goodson (b0180) 1994; 65 Liang, Luo, Zhi (b0050) 2009; 33 Xu, Pereira, Wang, Wu, Zhang, Zhao, Bae, Tinh Bui, Xie, Thong, Hong, Loh, Donadio, Li, Ozyilmaz (b9020) 2014; 5 Tang, Yue, Chen, Wang (b0130) 2012; 20 Tang, Yue, Chen, Wang (b0175) 2012; 20 Mak (10.1016/j.applthermaleng.2016.11.063_b9000) 2010; 97 Tang (10.1016/j.applthermaleng.2016.11.063_b0100) 2014; 6 Tang (10.1016/j.applthermaleng.2016.11.063_b0130) 2012; 20 Tang (10.1016/j.applthermaleng.2016.11.063_b0175) 2012; 20 Yue (10.1016/j.applthermaleng.2016.11.063_b0120) 2010; 374 Guo (10.1016/j.applthermaleng.2016.11.063_b0010) 2011 Seol (10.1016/j.applthermaleng.2016.11.063_b0065) 2010; 328 Forshaw (10.1016/j.applthermaleng.2016.11.063_b0005) 2004; 15 Nair (10.1016/j.applthermaleng.2016.11.063_b0210) 2008; 320 Ong (10.1016/j.applthermaleng.2016.11.063_b0220) 2011; 84 Mao (10.1016/j.applthermaleng.2016.11.063_b0080) 2012; 101 Evans (10.1016/j.applthermaleng.2016.11.063_b0040) 2010; 96 Hopkins (10.1016/j.applthermaleng.2016.11.063_b9005) 2012; 12 Li (10.1016/j.applthermaleng.2016.11.063_b0155) 2016; 324 Faugeras (10.1016/j.applthermaleng.2016.11.063_b9025) 2010; 4 Cai (10.1016/j.applthermaleng.2016.11.063_b0105) 2010; 10 Lindsay (10.1016/j.applthermaleng.2016.11.063_b0020) 2010; 82 Yue (10.1016/j.applthermaleng.2016.11.063_b0205) 2015; 4 Judek (10.1016/j.applthermaleng.2016.11.063_b0110) 2015; 5 Kitamura (10.1016/j.applthermaleng.2016.11.063_b0145) 2007; 46 Kong (10.1016/j.applthermaleng.2016.11.063_b0030) 2009; 80 Yue (10.1016/j.applthermaleng.2016.11.063_b0170) 2011; 7 Jo (10.1016/j.applthermaleng.2016.11.063_b0055) 2012; 23 Paronyan (10.1016/j.applthermaleng.2016.11.063_b0190) 2011; 5 Lee (10.1016/j.applthermaleng.2016.11.063_b9015) 2011; 83 Pettes (10.1016/j.applthermaleng.2016.11.063_b0225) 2011; 11 Liang (10.1016/j.applthermaleng.2016.11.063_b0050) 2009; 33 Meyer (10.1016/j.applthermaleng.2016.11.063_b0195) 2007; 446 Sadeghi (10.1016/j.applthermaleng.2016.11.063_b0015) 2012; 152 Hu (10.1016/j.applthermaleng.2016.11.063_b0025) 2011; 110 Balandin (10.1016/j.applthermaleng.2016.11.063_b0035) 2008; 8 Yue (10.1016/j.applthermaleng.2016.11.063_b0140) 2011; 5 Jang (10.1016/j.applthermaleng.2016.11.063_b0070) 2010; 10 Zhang (10.1016/j.applthermaleng.2016.11.063_b0185) 2015; 117 Koh (10.1016/j.applthermaleng.2016.11.063_b0095) 2010; 10 Liu (10.1016/j.applthermaleng.2016.11.063_b0160) 2011; 49 Yue (10.1016/j.applthermaleng.2016.11.063_b0125) 2009; 97 Zhong (10.1016/j.applthermaleng.2016.11.063_b0200) 2006; 74 Chen (10.1016/j.applthermaleng.2016.11.063_b0075) 2013; 5 Guo (10.1016/j.applthermaleng.2016.11.063_b0215) 2011; 84 Chen (10.1016/j.applthermaleng.2016.11.063_b0090) 2009; 95 Graf (10.1016/j.applthermaleng.2016.11.063_b0150) 2007; 7 Xu (10.1016/j.applthermaleng.2016.11.063_b9020) 2014; 5 Schwierz (10.1016/j.applthermaleng.2016.11.063_b0045) 2010; 5 Li (10.1016/j.applthermaleng.2016.11.063_b0085) 2015; 119 Bergman (10.1016/j.applthermaleng.2016.11.063_b0115) 2011 Pop (10.1016/j.applthermaleng.2016.11.063_b0060) 2012; 37 Käding (10.1016/j.applthermaleng.2016.11.063_b0180) 1994; 65 Yue (10.1016/j.applthermaleng.2016.11.063_b0135) 2012; 3 Yoon (10.1016/j.applthermaleng.2016.11.063_b0165) 2011; 11 Wang (10.1016/j.applthermaleng.2016.11.063_b9010) 2016; 119 Wang (10.1016/j.applthermaleng.2016.11.063_b9030) 2011; 11 |
References_xml | – volume: 96 start-page: 203112 year: 2010 ident: b0040 article-title: Thermal conductivity of graphene ribbons from equilibrium molecular dynamics: effect of ribbon width, edge roughness, and hydrogen termination publication-title: Appl. Phys. Lett. – volume: 117 start-page: 134307 year: 2015 ident: b0185 article-title: Thermal transport across graphene and single layer hexagonal boron nitride publication-title: J. Appl. Phys. – volume: 152 start-page: 1321 year: 2012 end-page: 1330 ident: b0015 article-title: Thermal transport in graphene publication-title: Solid State Commun. – year: 2011 ident: b0115 article-title: Fundamentals of Heat and Mass Transfer – volume: 11 start-page: 3227 year: 2011 end-page: 3231 ident: b0165 article-title: Negative thermal expansion coefficient of graphene measured by Raman spectroscopy publication-title: Nano Lett. – volume: 49 start-page: 4122 year: 2011 end-page: 4130 ident: b0160 article-title: Synthesis of high-quality monolayer and bilayer graphene on copper using chemical vapor deposition publication-title: Carbon – volume: 84 start-page: 075470 year: 2011 ident: b0215 article-title: Manipulating thermal conductivity through substrate coupling publication-title: Phys. Rev. B – volume: 80 start-page: 033406 year: 2009 ident: b0030 article-title: First-principles analysis of lattice thermal conductivity in monolayer and bilayer graphene publication-title: Phys. Rev. B – volume: 12 start-page: 590 year: 2012 end-page: 595 ident: b9005 article-title: Manipulating thermal conductance at metal-graphene contacts via chemical functionalization publication-title: Nano Lett. – volume: 4 start-page: 533 year: 2015 end-page: 555 ident: b0205 article-title: Thermal transport across atomic-layer material interfaces publication-title: Nanotechnol. Rev. – volume: 97 start-page: 221904 year: 2010 ident: b9000 article-title: Measurement of the thermal conductance of the graphene/SiO publication-title: Appl. Phys. Lett. – volume: 10 start-page: 3909 year: 2010 end-page: 3913 ident: b0070 article-title: Thickness-dependent thermal conductivity of encased graphene and ultrathin graphite publication-title: Nano Lett. – volume: 5 start-page: 532 year: 2013 end-page: 536 ident: b0075 article-title: Substrate coupling suppresses size dependence of thermal conductivity in supported graphene publication-title: Nanoscale – volume: 5 start-page: 9619 year: 2011 end-page: 9627 ident: b0190 article-title: Formation of ripples in graphene as a result of interfacial instabilities publication-title: ACS Nano – volume: 101 start-page: 113111 year: 2012 ident: b0080 article-title: Phonon engineering in nanostructures: controlling interfacial thermal resistance in multilayer-graphene/dielectric heterojunctions publication-title: Appl. Phys. Lett. – volume: 374 start-page: 4144 year: 2010 end-page: 4151 ident: b0120 article-title: Thermal transport in multiwall carbon nanotube buckypapers publication-title: Phys. Lett. A – volume: 15 start-page: S220 year: 2004 end-page: S223 ident: b0005 article-title: A short review of nanoelectronic architectures publication-title: Nanotechnology – volume: 11 start-page: 1195 year: 2011 end-page: 1200 ident: b0225 article-title: Influence of polymeric residue on the thermal conductivity of suspended bilayer graphene publication-title: Nano Lett. – volume: 119 start-page: 244306 year: 2016 ident: b9010 article-title: Simultaneous measurement of electrical and thermal conductivities of suspended monolayer graphene publication-title: J. Appl. Phys. – volume: 6 start-page: 2809 year: 2014 end-page: 2818 ident: b0100 article-title: Five orders of magnitude reduction in energy coupling across corrugated graphene/substrate interfaces publication-title: ACS Appl. Mater. Interfaces – volume: 84 start-page: 075471 year: 2011 ident: b0220 article-title: Effect of substrate modes on thermal transport in supported graphene publication-title: Phys. Rev. B – volume: 5 start-page: 12422 year: 2015 ident: b0110 article-title: High accuracy determination of the thermal properties of supported 2D materials publication-title: Sci. Rep. – volume: 23 start-page: 112001 year: 2012 ident: b0055 article-title: The application of graphene as electrodes in electrical and optical devices publication-title: Nanotechnology – volume: 7 start-page: 3324 year: 2011 end-page: 3333 ident: b0170 article-title: Micro/nanoscale spatial resolution temperature probing for the interfacial thermal characterization of epitaxial graphene on 4H-SiC publication-title: Small – volume: 10 start-page: 4363 year: 2010 end-page: 4368 ident: b0095 article-title: Heat conduction across monolayer and few-layer graphenes publication-title: Nano Lett. – volume: 97 start-page: 19 year: 2009 end-page: 23 ident: b0125 article-title: Characterization of thermal transport in micro/nanoscale wires by steady-state electro-Raman-thermal technique publication-title: Appl. Phys. A – volume: 5 start-page: 3689 year: 2014 ident: b9020 article-title: Length-dependent thermal conductivity in suspended single-layer graphene publication-title: Nat. Commun. – start-page: 80 year: 2011 end-page: 89 ident: b0010 article-title: Graphene doping: a review publication-title: Insciences J. – volume: 4 start-page: 1889 year: 2010 end-page: 1892 ident: b9025 article-title: Thermal conductivity of graphene in corbino membrane geometry publication-title: ACS Nano. – volume: 7 start-page: 238 year: 2007 end-page: 242 ident: b0150 article-title: Spatially resolved Raman spectroscopy of single- and few-layer graphene publication-title: Nano Lett. – volume: 11 start-page: 113 year: 2011 end-page: 118 ident: b9030 article-title: Thermal transport in suspended and supported few-layer graphene publication-title: Nano Lett. – volume: 37 start-page: 1273 year: 2012 end-page: 1281 ident: b0060 article-title: Thermal properties of graphene: fundamentals and applications publication-title: MRS Bull. – volume: 119 start-page: 415 year: 2015 end-page: 424 ident: b0085 article-title: Thermal transport across graphene/SiC interface: effects of atomic bond and crystallinity of substrate publication-title: Appl. Phys. A – volume: 10 start-page: 1645 year: 2010 end-page: 1651 ident: b0105 article-title: Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition publication-title: Nano Lett. – volume: 5 start-page: 487 year: 2010 end-page: 496 ident: b0045 article-title: Graphene transistors publication-title: Nat. Nanotechnol. – volume: 65 start-page: 1629 year: 1994 ident: b0180 article-title: Thermal conduction in metallized silicon-dioxide layers on silicon publication-title: Appl. Phys. Lett. – volume: 33 start-page: 1161 year: 2009 end-page: 1170 ident: b0050 article-title: Application of graphene and graphene-based materials in clean energy-related devices publication-title: Int. J. Energy Res. – volume: 320 start-page: 1308 year: 2008 ident: b0210 article-title: Fine structure constant defines visual transparency of graphene publication-title: Science – volume: 83 start-page: 081419 year: 2011 ident: b9015 article-title: Thermal conductivity of suspended pristine graphene measured by Raman spectroscopy publication-title: Phys. Rev. B – volume: 82 start-page: 115427 year: 2010 ident: b0020 article-title: Flexural phonons and thermal transport in graphene publication-title: Phys. Rev. B – volume: 5 start-page: 4466 year: 2011 end-page: 4475 ident: b0140 article-title: Noncontact sub-10 nm temperature measurement in near-field laser heating publication-title: ACS Nano – volume: 74 start-page: 125403 year: 2006 ident: b0200 article-title: Interfacial thermal resistance between carbon nanotubes: molecular dynamics simulations and analytical thermal modeling publication-title: Phys. Rev. B – volume: 20 start-page: 14152 year: 2012 end-page: 14167 ident: b0130 article-title: Sub-wavelength temperature probing in near-field laser heating by particles publication-title: Opt. Express – volume: 46 start-page: 8118 year: 2007 end-page: 8133 ident: b0145 article-title: Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature publication-title: Appl. Opt. – volume: 110 start-page: 033517 year: 2011 ident: b0025 article-title: Thermal transport in graphene-based nanocomposite publication-title: J. Appl. Phys. – volume: 8 start-page: 902 year: 2008 end-page: 907 ident: b0035 article-title: Superior thermal conductivity of single-layer graphene publication-title: Nano Lett. – volume: 446 start-page: 60 year: 2007 end-page: 63 ident: b0195 article-title: The structure of suspended graphene sheets publication-title: Nature – volume: 328 start-page: 213 year: 2010 end-page: 216 ident: b0065 article-title: Two-dimensional phonon transport in supported graphene publication-title: Science – volume: 20 start-page: 14152 year: 2012 end-page: 14167 ident: b0175 article-title: Sub-wavelength temperature probing in nearfield laser heating by particles publication-title: Opt. Express – volume: 3 start-page: 11586 year: 2012 ident: b0135 article-title: Nanoscale thermal probing publication-title: Nano Rev. – volume: 95 start-page: 161910 year: 2009 ident: b0090 article-title: Thermal contact resistance between graphene and silicon dioxide publication-title: Appl. Phys. Lett. – volume: 324 start-page: 1312 year: 2016 end-page: 1314 ident: b0155 article-title: Large-area synthesis of high-quality and uniform graphene films on copper foils publication-title: Science – volume: 5 start-page: 532 year: 2013 ident: 10.1016/j.applthermaleng.2016.11.063_b0075 article-title: Substrate coupling suppresses size dependence of thermal conductivity in supported graphene publication-title: Nanoscale doi: 10.1039/C2NR32949B – volume: 324 start-page: 1312 year: 2016 ident: 10.1016/j.applthermaleng.2016.11.063_b0155 article-title: Large-area synthesis of high-quality and uniform graphene films on copper foils publication-title: Science doi: 10.1126/science.1171245 – volume: 84 start-page: 075470 year: 2011 ident: 10.1016/j.applthermaleng.2016.11.063_b0215 article-title: Manipulating thermal conductivity through substrate coupling publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.84.075470 – volume: 37 start-page: 1273 year: 2012 ident: 10.1016/j.applthermaleng.2016.11.063_b0060 article-title: Thermal properties of graphene: fundamentals and applications publication-title: MRS Bull. doi: 10.1557/mrs.2012.203 – volume: 101 start-page: 113111 year: 2012 ident: 10.1016/j.applthermaleng.2016.11.063_b0080 article-title: Phonon engineering in nanostructures: controlling interfacial thermal resistance in multilayer-graphene/dielectric heterojunctions publication-title: Appl. Phys. Lett. doi: 10.1063/1.4752437 – volume: 110 start-page: 033517 year: 2011 ident: 10.1016/j.applthermaleng.2016.11.063_b0025 article-title: Thermal transport in graphene-based nanocomposite publication-title: J. Appl. Phys. doi: 10.1063/1.3610386 – volume: 6 start-page: 2809 year: 2014 ident: 10.1016/j.applthermaleng.2016.11.063_b0100 article-title: Five orders of magnitude reduction in energy coupling across corrugated graphene/substrate interfaces publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am405388a – volume: 97 start-page: 221904 year: 2010 ident: 10.1016/j.applthermaleng.2016.11.063_b9000 article-title: Measurement of the thermal conductance of the graphene/SiO2 interface publication-title: Appl. Phys. Lett. doi: 10.1063/1.3511537 – year: 2011 ident: 10.1016/j.applthermaleng.2016.11.063_b0115 – volume: 97 start-page: 19 year: 2009 ident: 10.1016/j.applthermaleng.2016.11.063_b0125 article-title: Characterization of thermal transport in micro/nanoscale wires by steady-state electro-Raman-thermal technique publication-title: Appl. Phys. A doi: 10.1007/s00339-009-5352-6 – volume: 4 start-page: 1889 year: 2010 ident: 10.1016/j.applthermaleng.2016.11.063_b9025 article-title: Thermal conductivity of graphene in corbino membrane geometry publication-title: ACS Nano. doi: 10.1021/nn9016229 – volume: 65 start-page: 1629 year: 1994 ident: 10.1016/j.applthermaleng.2016.11.063_b0180 article-title: Thermal conduction in metallized silicon-dioxide layers on silicon publication-title: Appl. Phys. Lett. doi: 10.1063/1.112933 – volume: 15 start-page: S220 year: 2004 ident: 10.1016/j.applthermaleng.2016.11.063_b0005 article-title: A short review of nanoelectronic architectures publication-title: Nanotechnology doi: 10.1088/0957-4484/15/4/019 – volume: 7 start-page: 238 year: 2007 ident: 10.1016/j.applthermaleng.2016.11.063_b0150 article-title: Spatially resolved Raman spectroscopy of single- and few-layer graphene publication-title: Nano Lett. doi: 10.1021/nl061702a – volume: 23 start-page: 112001 year: 2012 ident: 10.1016/j.applthermaleng.2016.11.063_b0055 article-title: The application of graphene as electrodes in electrical and optical devices publication-title: Nanotechnology doi: 10.1088/0957-4484/23/11/112001 – volume: 10 start-page: 1645 year: 2010 ident: 10.1016/j.applthermaleng.2016.11.063_b0105 article-title: Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition publication-title: Nano Lett. doi: 10.1021/nl9041966 – volume: 33 start-page: 1161 year: 2009 ident: 10.1016/j.applthermaleng.2016.11.063_b0050 article-title: Application of graphene and graphene-based materials in clean energy-related devices publication-title: Int. J. Energy Res. doi: 10.1002/er.1598 – volume: 83 start-page: 081419 year: 2011 ident: 10.1016/j.applthermaleng.2016.11.063_b9015 article-title: Thermal conductivity of suspended pristine graphene measured by Raman spectroscopy publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.83.081419 – volume: 117 start-page: 134307 year: 2015 ident: 10.1016/j.applthermaleng.2016.11.063_b0185 article-title: Thermal transport across graphene and single layer hexagonal boron nitride publication-title: J. Appl. Phys. doi: 10.1063/1.4916985 – volume: 74 start-page: 125403 year: 2006 ident: 10.1016/j.applthermaleng.2016.11.063_b0200 article-title: Interfacial thermal resistance between carbon nanotubes: molecular dynamics simulations and analytical thermal modeling publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.74.125403 – volume: 5 start-page: 3689 year: 2014 ident: 10.1016/j.applthermaleng.2016.11.063_b9020 article-title: Length-dependent thermal conductivity in suspended single-layer graphene publication-title: Nat. Commun. doi: 10.1038/ncomms4689 – volume: 119 start-page: 415 year: 2015 ident: 10.1016/j.applthermaleng.2016.11.063_b0085 article-title: Thermal transport across graphene/SiC interface: effects of atomic bond and crystallinity of substrate publication-title: Appl. Phys. A doi: 10.1007/s00339-015-9066-7 – volume: 8 start-page: 902 year: 2008 ident: 10.1016/j.applthermaleng.2016.11.063_b0035 article-title: Superior thermal conductivity of single-layer graphene publication-title: Nano Lett. doi: 10.1021/nl0731872 – volume: 20 start-page: 14152 year: 2012 ident: 10.1016/j.applthermaleng.2016.11.063_b0175 article-title: Sub-wavelength temperature probing in nearfield laser heating by particles publication-title: Opt. Express doi: 10.1364/OE.20.014152 – volume: 11 start-page: 113 year: 2011 ident: 10.1016/j.applthermaleng.2016.11.063_b9030 article-title: Thermal transport in suspended and supported few-layer graphene publication-title: Nano Lett. doi: 10.1021/nl102923q – volume: 5 start-page: 12422 year: 2015 ident: 10.1016/j.applthermaleng.2016.11.063_b0110 article-title: High accuracy determination of the thermal properties of supported 2D materials publication-title: Sci. Rep. doi: 10.1038/srep12422 – volume: 5 start-page: 4466 year: 2011 ident: 10.1016/j.applthermaleng.2016.11.063_b0140 article-title: Noncontact sub-10 nm temperature measurement in near-field laser heating publication-title: ACS Nano doi: 10.1021/nn2011442 – volume: 374 start-page: 4144 year: 2010 ident: 10.1016/j.applthermaleng.2016.11.063_b0120 article-title: Thermal transport in multiwall carbon nanotube buckypapers publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2010.08.034 – volume: 119 start-page: 244306 year: 2016 ident: 10.1016/j.applthermaleng.2016.11.063_b9010 article-title: Simultaneous measurement of electrical and thermal conductivities of suspended monolayer graphene publication-title: J. Appl. Phys. doi: 10.1063/1.4954677 – volume: 82 start-page: 115427 year: 2010 ident: 10.1016/j.applthermaleng.2016.11.063_b0020 article-title: Flexural phonons and thermal transport in graphene publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.82.115427 – volume: 95 start-page: 161910 year: 2009 ident: 10.1016/j.applthermaleng.2016.11.063_b0090 article-title: Thermal contact resistance between graphene and silicon dioxide publication-title: Appl. Phys. Lett. doi: 10.1063/1.3245315 – volume: 84 start-page: 075471 year: 2011 ident: 10.1016/j.applthermaleng.2016.11.063_b0220 article-title: Effect of substrate modes on thermal transport in supported graphene publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.84.075471 – volume: 49 start-page: 4122 year: 2011 ident: 10.1016/j.applthermaleng.2016.11.063_b0160 article-title: Synthesis of high-quality monolayer and bilayer graphene on copper using chemical vapor deposition publication-title: Carbon doi: 10.1016/j.carbon.2011.05.047 – volume: 5 start-page: 487 year: 2010 ident: 10.1016/j.applthermaleng.2016.11.063_b0045 article-title: Graphene transistors publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.89 – volume: 10 start-page: 4363 year: 2010 ident: 10.1016/j.applthermaleng.2016.11.063_b0095 article-title: Heat conduction across monolayer and few-layer graphenes publication-title: Nano Lett. doi: 10.1021/nl101790k – volume: 5 start-page: 9619 year: 2011 ident: 10.1016/j.applthermaleng.2016.11.063_b0190 article-title: Formation of ripples in graphene as a result of interfacial instabilities publication-title: ACS Nano doi: 10.1021/nn202972f – volume: 46 start-page: 8118 year: 2007 ident: 10.1016/j.applthermaleng.2016.11.063_b0145 article-title: Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature publication-title: Appl. Opt. doi: 10.1364/AO.46.008118 – volume: 80 start-page: 033406 year: 2009 ident: 10.1016/j.applthermaleng.2016.11.063_b0030 article-title: First-principles analysis of lattice thermal conductivity in monolayer and bilayer graphene publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.80.033406 – volume: 320 start-page: 1308 year: 2008 ident: 10.1016/j.applthermaleng.2016.11.063_b0210 article-title: Fine structure constant defines visual transparency of graphene publication-title: Science doi: 10.1126/science.1156965 – volume: 152 start-page: 1321 year: 2012 ident: 10.1016/j.applthermaleng.2016.11.063_b0015 article-title: Thermal transport in graphene publication-title: Solid State Commun. doi: 10.1016/j.ssc.2012.04.022 – volume: 10 start-page: 3909 year: 2010 ident: 10.1016/j.applthermaleng.2016.11.063_b0070 article-title: Thickness-dependent thermal conductivity of encased graphene and ultrathin graphite publication-title: Nano Lett. doi: 10.1021/nl101613u – volume: 3 start-page: 11586 year: 2012 ident: 10.1016/j.applthermaleng.2016.11.063_b0135 article-title: Nanoscale thermal probing publication-title: Nano Rev. doi: 10.3402/nano.v3i0.11586 – volume: 446 start-page: 60 year: 2007 ident: 10.1016/j.applthermaleng.2016.11.063_b0195 article-title: The structure of suspended graphene sheets publication-title: Nature doi: 10.1038/nature05545 – volume: 11 start-page: 1195 year: 2011 ident: 10.1016/j.applthermaleng.2016.11.063_b0225 article-title: Influence of polymeric residue on the thermal conductivity of suspended bilayer graphene publication-title: Nano Lett. doi: 10.1021/nl104156y – start-page: 80 year: 2011 ident: 10.1016/j.applthermaleng.2016.11.063_b0010 article-title: Graphene doping: a review publication-title: Insciences J. doi: 10.5640/insc.010280 – volume: 328 start-page: 213 year: 2010 ident: 10.1016/j.applthermaleng.2016.11.063_b0065 article-title: Two-dimensional phonon transport in supported graphene publication-title: Science doi: 10.1126/science.1184014 – volume: 4 start-page: 533 year: 2015 ident: 10.1016/j.applthermaleng.2016.11.063_b0205 article-title: Thermal transport across atomic-layer material interfaces publication-title: Nanotechnol. Rev. doi: 10.1515/ntrev-2014-0024 – volume: 20 start-page: 14152 year: 2012 ident: 10.1016/j.applthermaleng.2016.11.063_b0130 article-title: Sub-wavelength temperature probing in near-field laser heating by particles publication-title: Opt. Express doi: 10.1364/OE.20.014152 – volume: 12 start-page: 590 year: 2012 ident: 10.1016/j.applthermaleng.2016.11.063_b9005 article-title: Manipulating thermal conductance at metal-graphene contacts via chemical functionalization publication-title: Nano Lett. doi: 10.1021/nl203060j – volume: 11 start-page: 3227 year: 2011 ident: 10.1016/j.applthermaleng.2016.11.063_b0165 article-title: Negative thermal expansion coefficient of graphene measured by Raman spectroscopy publication-title: Nano Lett. doi: 10.1021/nl201488g – volume: 96 start-page: 203112 year: 2010 ident: 10.1016/j.applthermaleng.2016.11.063_b0040 article-title: Thermal conductivity of graphene ribbons from equilibrium molecular dynamics: effect of ribbon width, edge roughness, and hydrogen termination publication-title: Appl. Phys. Lett. doi: 10.1063/1.3435465 – volume: 7 start-page: 3324 year: 2011 ident: 10.1016/j.applthermaleng.2016.11.063_b0170 article-title: Micro/nanoscale spatial resolution temperature probing for the interfacial thermal characterization of epitaxial graphene on 4H-SiC publication-title: Small doi: 10.1002/smll.201101598 |
SSID | ssj0012874 |
Score | 2.3738458 |
Snippet | An in-situ two-step Raman thermometry is developed to measure both interfacial thermal conductance between graphene and substrate, and in-plane thermal... To date, accurate thermal property measurement of atomic-layer interface materials still remains as a challenge due to the extreme dimension of sample’s size... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 481 |
SubjectTerms | Graphene Graphite Heat conductivity Heat transfer Interfacial thermal conductance Laser beam heating Phonons Raman thermometry Resistance Scattering Silicon dioxide Thermal conductivity Thermodynamic properties Thermometry Transport |
Title | In-situ two-step Raman thermometry for thermal characterization of monolayer graphene interface material |
URI | https://dx.doi.org/10.1016/j.applthermaleng.2016.11.063 https://www.proquest.com/docview/1919588225 |
Volume | 113 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA6iIHoQn_iokkOvsftIugkeRMTSKvbgA3oLmzTBit2WukW8-Nud2e5WKwiC12WzGyaz33yzmflCSD0wDliQ5wz3zBg3PmRGABga7p1RIgUOjT_0b7vN9iO_7oneErmsemGwrLLE_hmmF2hdXmmU1myMB4PGfRgLBeEvBEYRY1qAHew8QS8__ZiXeYSo514kXUIxvHuV1L9qvHCTGHnWMMVjS7DQq3mKmp7N-Lcw9QOwiyjU2iQbJX2kF7MZbpEll22T9W-igjvkqZOx10E-pfnbiMEajuldOkwzWsxgNHT55J0CU6XljKidSzbPOjLpyFPwTUh5gY3TQtAa8JCirsTEp9ZR4LiF2-6Sx9bVw2WblecpMMsjnrO-UD5QqEEnpExDL40DqIt95PthYiILyYIRgXcyiUXqFE9sIoXjNpSB8VL04z2ynI0yt09oH4ibCp2FuBdz6bhyMnBANkTkE2tidUDOKvNpW4qN45kXL7qqKnvWi8bXaHzIRzQY_4CI-ejxTHTjj-POq5XSC06kIT788Qm1aoF1-TG_akhpFVgMkO_w3y84ImsREgNsihc1spxPpu4YaE1uTgq_PSErF52bdvcTF7T7-g |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVoJyQC0PUSjFh_boZh921hZCCEGrhD4O0Eq9mbVji6BmEyVbVb3wp_iDzGy8oUWqVAn1upJ3rc-emW_W428AthPrkQUFwenMjAsbUm4lOkMrgrdalsih6Yf-0XG3dyq-nMmzJfjd3oWhssro--c-vfHW8UknotmZDIedb2kuNYa_FBlFTmlBrKw88FeXmLfN3vc_4yLvZNn-3smnHo-tBbgTmaj5QOqQaJJjk0qVaVDWo9XnIQuDtLCZQ95sZRK8KnJZei0KVyjphUtVYoOSgxzf-wBWBLoLapuw-2tRV5KSgHyT5UnNaXoPYftvURmdShOxG5XUJ4Uqy7q7JCLazW-Li_9EiCbs7a_Bk8hX2cc5JOuw5Kun8PiaiuEz-NGv-GxYX7D6csxx00zY13JUVqyZwXjk6-kVQ2rM4oyYW2hEz6-AsnFgaAyYYyP9Z42CNjpgRkIW01A6z5BUN3byHE7vBeUXsFyNK_8S2ACZok69w0CbC-WF9irxyG5kFgpnc70B71r4jIvq5tRk49y0ZWw_zU3wDYGPCZBB8DdALkZP5iofdxz3oV0pc2PXGgxId3zDZrvAJnqPmcEcWiNi6Gpf_fcH3sKj3snRoTnsHx-8htWMWAndyJebsFxPL_wb5FS13Wr2MIPv9200fwCgKDbt |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In-situ+two-step+Raman+thermometry+for+thermal+characterization+of+monolayer+graphene+interface+material&rft.jtitle=Applied+thermal+engineering&rft.au=Zhao%2C+Wenqiang&rft.au=Chen%2C+Wen&rft.au=Yue%2C+Yanan&rft.au=Wu%2C+Shijing&rft.date=2017-02-25&rft.pub=Elsevier+BV&rft.issn=1359-4311&rft.eissn=1873-5606&rft.volume=113&rft.spage=481&rft_id=info:doi/10.1016%2Fj.applthermaleng.2016.11.063&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon |