In-situ two-step Raman thermometry for thermal characterization of monolayer graphene interface material

An in-situ two-step Raman thermometry is developed to measure both interfacial thermal conductance between graphene and substrate, and in-plane thermal conductivity of graphene. [Display omitted] •In-situ two-step Raman method is developed for interfacial thermal characterization.•Both in-plane ther...

Full description

Saved in:
Bibliographic Details
Published inApplied thermal engineering Vol. 113; pp. 481 - 489
Main Authors Zhao, Wenqiang, Chen, Wen, Yue, Yanan, Wu, Shijing
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 25.02.2017
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract An in-situ two-step Raman thermometry is developed to measure both interfacial thermal conductance between graphene and substrate, and in-plane thermal conductivity of graphene. [Display omitted] •In-situ two-step Raman method is developed for interfacial thermal characterization.•Both in-plane thermal conductivity and interface thermal conductance can be characterized.•An unconstrained graphene/SiO2 interface material is successfully measured.•Small interface thermal conductance and in-plane thermal conductivity are obtained. To date, accurate thermal property measurement of atomic-layer interface materials still remains as a challenge due to the extreme dimension of sample’s size and limitation of instruments. Raman thermometry emerges as the sole technique for direct measurement of unconstrained graphene interfacial thermal transport. In this work, an in-situ two-step Raman thermometry is developed to measure both interfacial thermal conductance between graphene and substrate, and in-plane thermal conductivity of supported graphene. This two-step Raman approach incorporates the first step: joule-heating experiment for interfacial thermal conductance characterization and the second step: laser-heating experiment for thermal conductivity measurement. Thermal conductance between monolayer graphene and SiO2 is characterized as 340-80+327W/m2K which is much smaller than reported values of sandwiched graphene interface structures, but agrees well with other unconstrained graphene interface structures. The in-plane thermal conductivity of supported graphene is obtained as 179-86+111W/mK. This value is consistent with previously reported data for thermal transport of supported graphene structures, which can be explained by phonons leakage and significant scattering at the interface. The successful measurement of graphene/SiO2 interfacial thermal properties proves that this technique can be well applied to graphene-like atomic-layer materials with Raman-active optical mode.
AbstractList To date, accurate thermal property measurement of atomic-layer interface materials still remains as a challenge due to the extreme dimension of sample’s size and limitation of instruments. Raman thermometry emerges as the sole technique for direct measurement of unconstrained graphene interfacial thermal transport. In this work, an in-situ two-step Raman thermometry is developed to measure both interfacial thermal conductance between graphene and substrate, and in-plane thermal conductivity of supported graphene. This two-step Raman approach incorporates the first step: joule-heating experiment for interfacial thermal conductance characterization and the second step: laser-heating experiment for thermal conductivity measurement. Thermal conductance between monolayer graphene and SiO2 is characterized as ... W/m2K which is much smaller than reported values of sandwiched graphene interface structures, but agrees well with other unconstrained graphene interface structures. The in-plane thermal conductivity of supported graphene is obtained as ... W/m K. This value is consistent with previously reported data for thermal transport of supported graphene structures, which can be explained by phonons leakage and significant scattering at the interface. The successful measurement of graphene/SiO2 interfacial thermal properties proves that this technique can be well applied to graphene-like atomic-layer materials with Raman-active optical mode.
An in-situ two-step Raman thermometry is developed to measure both interfacial thermal conductance between graphene and substrate, and in-plane thermal conductivity of graphene. [Display omitted] •In-situ two-step Raman method is developed for interfacial thermal characterization.•Both in-plane thermal conductivity and interface thermal conductance can be characterized.•An unconstrained graphene/SiO2 interface material is successfully measured.•Small interface thermal conductance and in-plane thermal conductivity are obtained. To date, accurate thermal property measurement of atomic-layer interface materials still remains as a challenge due to the extreme dimension of sample’s size and limitation of instruments. Raman thermometry emerges as the sole technique for direct measurement of unconstrained graphene interfacial thermal transport. In this work, an in-situ two-step Raman thermometry is developed to measure both interfacial thermal conductance between graphene and substrate, and in-plane thermal conductivity of supported graphene. This two-step Raman approach incorporates the first step: joule-heating experiment for interfacial thermal conductance characterization and the second step: laser-heating experiment for thermal conductivity measurement. Thermal conductance between monolayer graphene and SiO2 is characterized as 340-80+327W/m2K which is much smaller than reported values of sandwiched graphene interface structures, but agrees well with other unconstrained graphene interface structures. The in-plane thermal conductivity of supported graphene is obtained as 179-86+111W/mK. This value is consistent with previously reported data for thermal transport of supported graphene structures, which can be explained by phonons leakage and significant scattering at the interface. The successful measurement of graphene/SiO2 interfacial thermal properties proves that this technique can be well applied to graphene-like atomic-layer materials with Raman-active optical mode.
Author Yue, Yanan
Wu, Shijing
Zhao, Wenqiang
Chen, Wen
Author_xml – sequence: 1
  givenname: Wenqiang
  surname: Zhao
  fullname: Zhao, Wenqiang
  organization: School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei 430072, China
– sequence: 2
  givenname: Wen
  surname: Chen
  fullname: Chen, Wen
  organization: School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei 430072, China
– sequence: 3
  givenname: Yanan
  surname: Yue
  fullname: Yue, Yanan
  email: yyue@whu.edu.cn
  organization: School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei 430072, China
– sequence: 4
  givenname: Shijing
  surname: Wu
  fullname: Wu, Shijing
  email: wsj@whu.edu.cn
  organization: School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei 430072, China
BookMark eNqNkMFq3DAQhkVJoUnadxC0V7sa27Jl6KUNTRsIBEJ7FrPyKKvFllxJ27J5-mqzubSnnGYY_vmG-S7YmQ-eGPsAogYB_cddjes65y3FBWfyD3VTpjVALfr2FTsHNbSV7EV_VvpWjlXXArxhFynthIBGDd052974Krm85_lPqFKmld_jgp4_QcNCOR64DZE_H-FmixFNpugeMbvgebB8CT7MeKDIHyKuW_LEnS8Ri4b4gscwzm_Za4tzonfP9ZL9vP764-p7dXv37ebq821luqbL1SRHK0ahhl4qhWDVhkaA1jZ2gmHTGNGNGyksldck0tgNZlCSOgNKbKySU3vJ3p-4awy_9pSy3oV99OWkhhHGQm0aWVJfTikTQ0qRrDYuPz2UI7pZg9BHw3qn_zWsj4Y1gC6GC-TTf5A1ugXj4aXr16d1Kjp-O4o6GUfe0OQimayn4F4G-guA3qZI
CitedBy_id crossref_primary_10_1016_j_applthermaleng_2024_123929
crossref_primary_10_1063_5_0099383
crossref_primary_10_1063_5_0250249
crossref_primary_10_1088_1757_899X_1102_1_012010
crossref_primary_10_1007_s42493_019_00024_2
crossref_primary_10_1080_15567265_2017_1286421
crossref_primary_10_1080_10426914_2017_1303165
crossref_primary_10_1016_j_applthermaleng_2017_10_163
crossref_primary_10_1016_j_measurement_2024_114125
crossref_primary_10_1021_acs_jpcc_2c00732
crossref_primary_10_1038_s41699_019_0092_8
crossref_primary_10_1021_acsnano_0c06185
crossref_primary_10_3390_mi14112076
crossref_primary_10_1088_1674_1056_abc677
crossref_primary_10_1088_2053_1591_ab4492
crossref_primary_10_1007_s12633_021_00943_6
crossref_primary_10_1016_j_carbon_2017_11_008
crossref_primary_10_1016_j_applthermaleng_2018_04_076
crossref_primary_10_1039_C7NR01695F
crossref_primary_10_1016_j_commatsci_2018_03_043
crossref_primary_10_1016_j_mtcomm_2023_105921
crossref_primary_10_1016_j_apcatb_2017_05_078
crossref_primary_10_1016_j_apsusc_2020_148390
crossref_primary_10_1016_j_ijheatmasstransfer_2020_119751
crossref_primary_10_1016_j_porgcoat_2022_107052
crossref_primary_10_34133_2021_8438614
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125810
crossref_primary_10_1063_5_0221352
crossref_primary_10_1016_j_applthermaleng_2017_11_033
crossref_primary_10_1016_j_surfin_2023_103538
crossref_primary_10_1088_2631_7990_aba17c
crossref_primary_10_1063_5_0069466
crossref_primary_10_1016_j_ijheatmasstransfer_2019_01_012
crossref_primary_10_1016_j_molstruc_2020_128304
crossref_primary_10_1016_j_mtener_2020_100582
crossref_primary_10_1016_j_applthermaleng_2019_01_098
crossref_primary_10_1002_admi_201900275
Cites_doi 10.1039/C2NR32949B
10.1126/science.1171245
10.1103/PhysRevB.84.075470
10.1557/mrs.2012.203
10.1063/1.4752437
10.1063/1.3610386
10.1021/am405388a
10.1063/1.3511537
10.1007/s00339-009-5352-6
10.1021/nn9016229
10.1063/1.112933
10.1088/0957-4484/15/4/019
10.1021/nl061702a
10.1088/0957-4484/23/11/112001
10.1021/nl9041966
10.1002/er.1598
10.1103/PhysRevB.83.081419
10.1063/1.4916985
10.1103/PhysRevB.74.125403
10.1038/ncomms4689
10.1007/s00339-015-9066-7
10.1021/nl0731872
10.1364/OE.20.014152
10.1021/nl102923q
10.1038/srep12422
10.1021/nn2011442
10.1016/j.physleta.2010.08.034
10.1063/1.4954677
10.1103/PhysRevB.82.115427
10.1063/1.3245315
10.1103/PhysRevB.84.075471
10.1016/j.carbon.2011.05.047
10.1038/nnano.2010.89
10.1021/nl101790k
10.1021/nn202972f
10.1364/AO.46.008118
10.1103/PhysRevB.80.033406
10.1126/science.1156965
10.1016/j.ssc.2012.04.022
10.1021/nl101613u
10.3402/nano.v3i0.11586
10.1038/nature05545
10.1021/nl104156y
10.5640/insc.010280
10.1126/science.1184014
10.1515/ntrev-2014-0024
10.1021/nl203060j
10.1021/nl201488g
10.1063/1.3435465
10.1002/smll.201101598
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright Elsevier BV Feb 25, 2017
Copyright_xml – notice: 2016 Elsevier Ltd
– notice: Copyright Elsevier BV Feb 25, 2017
DBID AAYXX
CITATION
7TB
8FD
FR3
KR7
DOI 10.1016/j.applthermaleng.2016.11.063
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-5606
EndPage 489
ExternalDocumentID 10_1016_j_applthermaleng_2016_11_063
S1359431116331441
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
J1W
JARJE
JJJVA
KOM
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
TN5
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FGOYB
HZ~
R2-
SEW
SSH
7TB
8FD
EFKBS
FR3
KR7
ID FETCH-LOGICAL-c424t-d59f090876588a1f8be9113f2fd17b2c049b50fe8735ae947c785e4c180bf85d3
IEDL.DBID .~1
ISSN 1359-4311
IngestDate Fri Jul 25 03:37:54 EDT 2025
Tue Jul 01 02:27:23 EDT 2025
Thu Apr 24 22:56:21 EDT 2025
Fri Feb 23 02:45:49 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Raman thermometry
Thermal conductivity
Interfacial thermal conductance
Graphene
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c424t-d59f090876588a1f8be9113f2fd17b2c049b50fe8735ae947c785e4c180bf85d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1919588225
PQPubID 2045278
PageCount 9
ParticipantIDs proquest_journals_1919588225
crossref_citationtrail_10_1016_j_applthermaleng_2016_11_063
crossref_primary_10_1016_j_applthermaleng_2016_11_063
elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2016_11_063
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-02-25
PublicationDateYYYYMMDD 2017-02-25
PublicationDate_xml – month: 02
  year: 2017
  text: 2017-02-25
  day: 25
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Applied thermal engineering
PublicationYear 2017
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Lindsay, Broido, Mingo (b0020) 2010; 82
Kong, Paul, Nardelli, Kim (b0030) 2009; 80
Zhang, Hong, Yue (b0185) 2015; 117
Pettes, Jo, Yao, Shi (b0225) 2011; 11
Graf, Molitor, Ensslin, Stampfer, Jungen, Hierold, Wirtz (b0150) 2007; 7
Li, Cai, An, Kim, Nah, Yang, Piner, Velamakanni (b0155) 2016; 324
Balandin, Ghosh, Bao, Calizo, Teweldebrhan, Miao, Chun (b0035) 2008; 8
Meyer, Geim, Katsnelson, Novoselov, Booth, Roth (b0195) 2007; 446
Zhong, Lukes (b0200) 2006; 74
Cai, Moore, Zhu, Li, Chen, Shi, Ruoff (b0105) 2010; 10
Mak, Lui, Heinz (b9000) 2010; 97
Paronyan, Pigos, Chen, Harutyunyan (b0190) 2011; 5
Li, Zhang, Hu, Yue (b0085) 2015; 119
Forshaw, Stadler, Crawley, Nikoli (b0005) 2004; 15
Guo, Zhang, Gong (b0215) 2011; 84
Yue, Huang, Wang (b0120) 2010; 374
Ong, Pop (b0220) 2011; 84
Yue, Zhang, Tang, Xu, Wang (b0205) 2015; 4
Yue, Wang (b0135) 2012; 3
Bergman, Incropera, DeWitt, Lavine (b0115) 2011
Pop, Varshney, Roy (b0060) 2012; 37
Yoon, Son, Cheong (b0165) 2011; 11
Jo, Choe, Lee, Park, Kahng, Lee (b0055) 2012; 23
Mao, Kong, Kim, Jayasekera, Calzolari, Buongiorno Nardelli (b0080) 2012; 101
Hu, Desai, Keblinski (b0025) 2011; 110
Tang, Xu, Zhang, Wang (b0100) 2014; 6
Wang, Xie, Bui, Liu, Ni, Li, Thong (b9030) 2011; 11
Liu, Li, Xu, Khatami, Banerjee (b0160) 2011; 49
Judek, Gertych, Swiniarski, Lapinska, Duzynska, Zdrojek (b0110) 2015; 5
Hopkins, Baraket, Barnat, Beechem, Kearney, Duda, Robinson, Walton (b9005) 2012; 12
Jang, Chen, Bao, Lau, Dames (b0070) 2010; 10
Wang, Kurata, Fukunaga, Ago, Takamatsu, Zhang, Ikuta, Takahashi, Nishiyama, Takata (b9010) 2016; 119
Evans, Hu, Keblinski (b0040) 2010; 96
Sadeghi, Pettes, Shi (b0015) 2012; 152
Nair, Blake, Grigorenko, Novoselov, Booth, Stauber, Peres, Geim (b0210) 2008; 320
Chen, Zhang, Li (b0075) 2013; 5
Yue, Zhang, Wang (b0170) 2011; 7
Koh, Bae, Cahill, Pop (b0095) 2010; 10
Schwierz (b0045) 2010; 5
Seol, Jo, Moore, Lindsay, Aitken, Pettes, Li, Yao, Huang, Broido (b0065) 2010; 328
Yue, Chen, Wang (b0140) 2011; 5
Kitamura, Pilon, Jonasz (b0145) 2007; 46
Lee, Yoon, Kim, Lee, Cheong (b9015) 2011; 83
Chen, Jang, Bao, Lau, Dames (b0090) 2009; 95
Faugeras, Faugeras, Orlita, Potemski, Nair, Geim (b9025) 2010; 4
Yue, Eres, Wang, Guo (b0125) 2009; 97
Guo, Fang, Zhang, Gong (b0010) 2011
Käding, Skurk, Goodson (b0180) 1994; 65
Liang, Luo, Zhi (b0050) 2009; 33
Xu, Pereira, Wang, Wu, Zhang, Zhao, Bae, Tinh Bui, Xie, Thong, Hong, Loh, Donadio, Li, Ozyilmaz (b9020) 2014; 5
Tang, Yue, Chen, Wang (b0130) 2012; 20
Tang, Yue, Chen, Wang (b0175) 2012; 20
Mak (10.1016/j.applthermaleng.2016.11.063_b9000) 2010; 97
Tang (10.1016/j.applthermaleng.2016.11.063_b0100) 2014; 6
Tang (10.1016/j.applthermaleng.2016.11.063_b0130) 2012; 20
Tang (10.1016/j.applthermaleng.2016.11.063_b0175) 2012; 20
Yue (10.1016/j.applthermaleng.2016.11.063_b0120) 2010; 374
Guo (10.1016/j.applthermaleng.2016.11.063_b0010) 2011
Seol (10.1016/j.applthermaleng.2016.11.063_b0065) 2010; 328
Forshaw (10.1016/j.applthermaleng.2016.11.063_b0005) 2004; 15
Nair (10.1016/j.applthermaleng.2016.11.063_b0210) 2008; 320
Ong (10.1016/j.applthermaleng.2016.11.063_b0220) 2011; 84
Mao (10.1016/j.applthermaleng.2016.11.063_b0080) 2012; 101
Evans (10.1016/j.applthermaleng.2016.11.063_b0040) 2010; 96
Hopkins (10.1016/j.applthermaleng.2016.11.063_b9005) 2012; 12
Li (10.1016/j.applthermaleng.2016.11.063_b0155) 2016; 324
Faugeras (10.1016/j.applthermaleng.2016.11.063_b9025) 2010; 4
Cai (10.1016/j.applthermaleng.2016.11.063_b0105) 2010; 10
Lindsay (10.1016/j.applthermaleng.2016.11.063_b0020) 2010; 82
Yue (10.1016/j.applthermaleng.2016.11.063_b0205) 2015; 4
Judek (10.1016/j.applthermaleng.2016.11.063_b0110) 2015; 5
Kitamura (10.1016/j.applthermaleng.2016.11.063_b0145) 2007; 46
Kong (10.1016/j.applthermaleng.2016.11.063_b0030) 2009; 80
Yue (10.1016/j.applthermaleng.2016.11.063_b0170) 2011; 7
Jo (10.1016/j.applthermaleng.2016.11.063_b0055) 2012; 23
Paronyan (10.1016/j.applthermaleng.2016.11.063_b0190) 2011; 5
Lee (10.1016/j.applthermaleng.2016.11.063_b9015) 2011; 83
Pettes (10.1016/j.applthermaleng.2016.11.063_b0225) 2011; 11
Liang (10.1016/j.applthermaleng.2016.11.063_b0050) 2009; 33
Meyer (10.1016/j.applthermaleng.2016.11.063_b0195) 2007; 446
Sadeghi (10.1016/j.applthermaleng.2016.11.063_b0015) 2012; 152
Hu (10.1016/j.applthermaleng.2016.11.063_b0025) 2011; 110
Balandin (10.1016/j.applthermaleng.2016.11.063_b0035) 2008; 8
Yue (10.1016/j.applthermaleng.2016.11.063_b0140) 2011; 5
Jang (10.1016/j.applthermaleng.2016.11.063_b0070) 2010; 10
Zhang (10.1016/j.applthermaleng.2016.11.063_b0185) 2015; 117
Koh (10.1016/j.applthermaleng.2016.11.063_b0095) 2010; 10
Liu (10.1016/j.applthermaleng.2016.11.063_b0160) 2011; 49
Yue (10.1016/j.applthermaleng.2016.11.063_b0125) 2009; 97
Zhong (10.1016/j.applthermaleng.2016.11.063_b0200) 2006; 74
Chen (10.1016/j.applthermaleng.2016.11.063_b0075) 2013; 5
Guo (10.1016/j.applthermaleng.2016.11.063_b0215) 2011; 84
Chen (10.1016/j.applthermaleng.2016.11.063_b0090) 2009; 95
Graf (10.1016/j.applthermaleng.2016.11.063_b0150) 2007; 7
Xu (10.1016/j.applthermaleng.2016.11.063_b9020) 2014; 5
Schwierz (10.1016/j.applthermaleng.2016.11.063_b0045) 2010; 5
Li (10.1016/j.applthermaleng.2016.11.063_b0085) 2015; 119
Bergman (10.1016/j.applthermaleng.2016.11.063_b0115) 2011
Pop (10.1016/j.applthermaleng.2016.11.063_b0060) 2012; 37
Käding (10.1016/j.applthermaleng.2016.11.063_b0180) 1994; 65
Yue (10.1016/j.applthermaleng.2016.11.063_b0135) 2012; 3
Yoon (10.1016/j.applthermaleng.2016.11.063_b0165) 2011; 11
Wang (10.1016/j.applthermaleng.2016.11.063_b9010) 2016; 119
Wang (10.1016/j.applthermaleng.2016.11.063_b9030) 2011; 11
References_xml – volume: 96
  start-page: 203112
  year: 2010
  ident: b0040
  article-title: Thermal conductivity of graphene ribbons from equilibrium molecular dynamics: effect of ribbon width, edge roughness, and hydrogen termination
  publication-title: Appl. Phys. Lett.
– volume: 117
  start-page: 134307
  year: 2015
  ident: b0185
  article-title: Thermal transport across graphene and single layer hexagonal boron nitride
  publication-title: J. Appl. Phys.
– volume: 152
  start-page: 1321
  year: 2012
  end-page: 1330
  ident: b0015
  article-title: Thermal transport in graphene
  publication-title: Solid State Commun.
– year: 2011
  ident: b0115
  article-title: Fundamentals of Heat and Mass Transfer
– volume: 11
  start-page: 3227
  year: 2011
  end-page: 3231
  ident: b0165
  article-title: Negative thermal expansion coefficient of graphene measured by Raman spectroscopy
  publication-title: Nano Lett.
– volume: 49
  start-page: 4122
  year: 2011
  end-page: 4130
  ident: b0160
  article-title: Synthesis of high-quality monolayer and bilayer graphene on copper using chemical vapor deposition
  publication-title: Carbon
– volume: 84
  start-page: 075470
  year: 2011
  ident: b0215
  article-title: Manipulating thermal conductivity through substrate coupling
  publication-title: Phys. Rev. B
– volume: 80
  start-page: 033406
  year: 2009
  ident: b0030
  article-title: First-principles analysis of lattice thermal conductivity in monolayer and bilayer graphene
  publication-title: Phys. Rev. B
– volume: 12
  start-page: 590
  year: 2012
  end-page: 595
  ident: b9005
  article-title: Manipulating thermal conductance at metal-graphene contacts via chemical functionalization
  publication-title: Nano Lett.
– volume: 4
  start-page: 533
  year: 2015
  end-page: 555
  ident: b0205
  article-title: Thermal transport across atomic-layer material interfaces
  publication-title: Nanotechnol. Rev.
– volume: 97
  start-page: 221904
  year: 2010
  ident: b9000
  article-title: Measurement of the thermal conductance of the graphene/SiO
  publication-title: Appl. Phys. Lett.
– volume: 10
  start-page: 3909
  year: 2010
  end-page: 3913
  ident: b0070
  article-title: Thickness-dependent thermal conductivity of encased graphene and ultrathin graphite
  publication-title: Nano Lett.
– volume: 5
  start-page: 532
  year: 2013
  end-page: 536
  ident: b0075
  article-title: Substrate coupling suppresses size dependence of thermal conductivity in supported graphene
  publication-title: Nanoscale
– volume: 5
  start-page: 9619
  year: 2011
  end-page: 9627
  ident: b0190
  article-title: Formation of ripples in graphene as a result of interfacial instabilities
  publication-title: ACS Nano
– volume: 101
  start-page: 113111
  year: 2012
  ident: b0080
  article-title: Phonon engineering in nanostructures: controlling interfacial thermal resistance in multilayer-graphene/dielectric heterojunctions
  publication-title: Appl. Phys. Lett.
– volume: 374
  start-page: 4144
  year: 2010
  end-page: 4151
  ident: b0120
  article-title: Thermal transport in multiwall carbon nanotube buckypapers
  publication-title: Phys. Lett. A
– volume: 15
  start-page: S220
  year: 2004
  end-page: S223
  ident: b0005
  article-title: A short review of nanoelectronic architectures
  publication-title: Nanotechnology
– volume: 11
  start-page: 1195
  year: 2011
  end-page: 1200
  ident: b0225
  article-title: Influence of polymeric residue on the thermal conductivity of suspended bilayer graphene
  publication-title: Nano Lett.
– volume: 119
  start-page: 244306
  year: 2016
  ident: b9010
  article-title: Simultaneous measurement of electrical and thermal conductivities of suspended monolayer graphene
  publication-title: J. Appl. Phys.
– volume: 6
  start-page: 2809
  year: 2014
  end-page: 2818
  ident: b0100
  article-title: Five orders of magnitude reduction in energy coupling across corrugated graphene/substrate interfaces
  publication-title: ACS Appl. Mater. Interfaces
– volume: 84
  start-page: 075471
  year: 2011
  ident: b0220
  article-title: Effect of substrate modes on thermal transport in supported graphene
  publication-title: Phys. Rev. B
– volume: 5
  start-page: 12422
  year: 2015
  ident: b0110
  article-title: High accuracy determination of the thermal properties of supported 2D materials
  publication-title: Sci. Rep.
– volume: 23
  start-page: 112001
  year: 2012
  ident: b0055
  article-title: The application of graphene as electrodes in electrical and optical devices
  publication-title: Nanotechnology
– volume: 7
  start-page: 3324
  year: 2011
  end-page: 3333
  ident: b0170
  article-title: Micro/nanoscale spatial resolution temperature probing for the interfacial thermal characterization of epitaxial graphene on 4H-SiC
  publication-title: Small
– volume: 10
  start-page: 4363
  year: 2010
  end-page: 4368
  ident: b0095
  article-title: Heat conduction across monolayer and few-layer graphenes
  publication-title: Nano Lett.
– volume: 97
  start-page: 19
  year: 2009
  end-page: 23
  ident: b0125
  article-title: Characterization of thermal transport in micro/nanoscale wires by steady-state electro-Raman-thermal technique
  publication-title: Appl. Phys. A
– volume: 5
  start-page: 3689
  year: 2014
  ident: b9020
  article-title: Length-dependent thermal conductivity in suspended single-layer graphene
  publication-title: Nat. Commun.
– start-page: 80
  year: 2011
  end-page: 89
  ident: b0010
  article-title: Graphene doping: a review
  publication-title: Insciences J.
– volume: 4
  start-page: 1889
  year: 2010
  end-page: 1892
  ident: b9025
  article-title: Thermal conductivity of graphene in corbino membrane geometry
  publication-title: ACS Nano.
– volume: 7
  start-page: 238
  year: 2007
  end-page: 242
  ident: b0150
  article-title: Spatially resolved Raman spectroscopy of single- and few-layer graphene
  publication-title: Nano Lett.
– volume: 11
  start-page: 113
  year: 2011
  end-page: 118
  ident: b9030
  article-title: Thermal transport in suspended and supported few-layer graphene
  publication-title: Nano Lett.
– volume: 37
  start-page: 1273
  year: 2012
  end-page: 1281
  ident: b0060
  article-title: Thermal properties of graphene: fundamentals and applications
  publication-title: MRS Bull.
– volume: 119
  start-page: 415
  year: 2015
  end-page: 424
  ident: b0085
  article-title: Thermal transport across graphene/SiC interface: effects of atomic bond and crystallinity of substrate
  publication-title: Appl. Phys. A
– volume: 10
  start-page: 1645
  year: 2010
  end-page: 1651
  ident: b0105
  article-title: Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition
  publication-title: Nano Lett.
– volume: 5
  start-page: 487
  year: 2010
  end-page: 496
  ident: b0045
  article-title: Graphene transistors
  publication-title: Nat. Nanotechnol.
– volume: 65
  start-page: 1629
  year: 1994
  ident: b0180
  article-title: Thermal conduction in metallized silicon-dioxide layers on silicon
  publication-title: Appl. Phys. Lett.
– volume: 33
  start-page: 1161
  year: 2009
  end-page: 1170
  ident: b0050
  article-title: Application of graphene and graphene-based materials in clean energy-related devices
  publication-title: Int. J. Energy Res.
– volume: 320
  start-page: 1308
  year: 2008
  ident: b0210
  article-title: Fine structure constant defines visual transparency of graphene
  publication-title: Science
– volume: 83
  start-page: 081419
  year: 2011
  ident: b9015
  article-title: Thermal conductivity of suspended pristine graphene measured by Raman spectroscopy
  publication-title: Phys. Rev. B
– volume: 82
  start-page: 115427
  year: 2010
  ident: b0020
  article-title: Flexural phonons and thermal transport in graphene
  publication-title: Phys. Rev. B
– volume: 5
  start-page: 4466
  year: 2011
  end-page: 4475
  ident: b0140
  article-title: Noncontact sub-10 nm temperature measurement in near-field laser heating
  publication-title: ACS Nano
– volume: 74
  start-page: 125403
  year: 2006
  ident: b0200
  article-title: Interfacial thermal resistance between carbon nanotubes: molecular dynamics simulations and analytical thermal modeling
  publication-title: Phys. Rev. B
– volume: 20
  start-page: 14152
  year: 2012
  end-page: 14167
  ident: b0130
  article-title: Sub-wavelength temperature probing in near-field laser heating by particles
  publication-title: Opt. Express
– volume: 46
  start-page: 8118
  year: 2007
  end-page: 8133
  ident: b0145
  article-title: Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature
  publication-title: Appl. Opt.
– volume: 110
  start-page: 033517
  year: 2011
  ident: b0025
  article-title: Thermal transport in graphene-based nanocomposite
  publication-title: J. Appl. Phys.
– volume: 8
  start-page: 902
  year: 2008
  end-page: 907
  ident: b0035
  article-title: Superior thermal conductivity of single-layer graphene
  publication-title: Nano Lett.
– volume: 446
  start-page: 60
  year: 2007
  end-page: 63
  ident: b0195
  article-title: The structure of suspended graphene sheets
  publication-title: Nature
– volume: 328
  start-page: 213
  year: 2010
  end-page: 216
  ident: b0065
  article-title: Two-dimensional phonon transport in supported graphene
  publication-title: Science
– volume: 20
  start-page: 14152
  year: 2012
  end-page: 14167
  ident: b0175
  article-title: Sub-wavelength temperature probing in nearfield laser heating by particles
  publication-title: Opt. Express
– volume: 3
  start-page: 11586
  year: 2012
  ident: b0135
  article-title: Nanoscale thermal probing
  publication-title: Nano Rev.
– volume: 95
  start-page: 161910
  year: 2009
  ident: b0090
  article-title: Thermal contact resistance between graphene and silicon dioxide
  publication-title: Appl. Phys. Lett.
– volume: 324
  start-page: 1312
  year: 2016
  end-page: 1314
  ident: b0155
  article-title: Large-area synthesis of high-quality and uniform graphene films on copper foils
  publication-title: Science
– volume: 5
  start-page: 532
  year: 2013
  ident: 10.1016/j.applthermaleng.2016.11.063_b0075
  article-title: Substrate coupling suppresses size dependence of thermal conductivity in supported graphene
  publication-title: Nanoscale
  doi: 10.1039/C2NR32949B
– volume: 324
  start-page: 1312
  year: 2016
  ident: 10.1016/j.applthermaleng.2016.11.063_b0155
  article-title: Large-area synthesis of high-quality and uniform graphene films on copper foils
  publication-title: Science
  doi: 10.1126/science.1171245
– volume: 84
  start-page: 075470
  year: 2011
  ident: 10.1016/j.applthermaleng.2016.11.063_b0215
  article-title: Manipulating thermal conductivity through substrate coupling
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.84.075470
– volume: 37
  start-page: 1273
  year: 2012
  ident: 10.1016/j.applthermaleng.2016.11.063_b0060
  article-title: Thermal properties of graphene: fundamentals and applications
  publication-title: MRS Bull.
  doi: 10.1557/mrs.2012.203
– volume: 101
  start-page: 113111
  year: 2012
  ident: 10.1016/j.applthermaleng.2016.11.063_b0080
  article-title: Phonon engineering in nanostructures: controlling interfacial thermal resistance in multilayer-graphene/dielectric heterojunctions
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4752437
– volume: 110
  start-page: 033517
  year: 2011
  ident: 10.1016/j.applthermaleng.2016.11.063_b0025
  article-title: Thermal transport in graphene-based nanocomposite
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3610386
– volume: 6
  start-page: 2809
  year: 2014
  ident: 10.1016/j.applthermaleng.2016.11.063_b0100
  article-title: Five orders of magnitude reduction in energy coupling across corrugated graphene/substrate interfaces
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am405388a
– volume: 97
  start-page: 221904
  year: 2010
  ident: 10.1016/j.applthermaleng.2016.11.063_b9000
  article-title: Measurement of the thermal conductance of the graphene/SiO2 interface
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3511537
– year: 2011
  ident: 10.1016/j.applthermaleng.2016.11.063_b0115
– volume: 97
  start-page: 19
  year: 2009
  ident: 10.1016/j.applthermaleng.2016.11.063_b0125
  article-title: Characterization of thermal transport in micro/nanoscale wires by steady-state electro-Raman-thermal technique
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-009-5352-6
– volume: 4
  start-page: 1889
  year: 2010
  ident: 10.1016/j.applthermaleng.2016.11.063_b9025
  article-title: Thermal conductivity of graphene in corbino membrane geometry
  publication-title: ACS Nano.
  doi: 10.1021/nn9016229
– volume: 65
  start-page: 1629
  year: 1994
  ident: 10.1016/j.applthermaleng.2016.11.063_b0180
  article-title: Thermal conduction in metallized silicon-dioxide layers on silicon
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.112933
– volume: 15
  start-page: S220
  year: 2004
  ident: 10.1016/j.applthermaleng.2016.11.063_b0005
  article-title: A short review of nanoelectronic architectures
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/15/4/019
– volume: 7
  start-page: 238
  year: 2007
  ident: 10.1016/j.applthermaleng.2016.11.063_b0150
  article-title: Spatially resolved Raman spectroscopy of single- and few-layer graphene
  publication-title: Nano Lett.
  doi: 10.1021/nl061702a
– volume: 23
  start-page: 112001
  year: 2012
  ident: 10.1016/j.applthermaleng.2016.11.063_b0055
  article-title: The application of graphene as electrodes in electrical and optical devices
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/23/11/112001
– volume: 10
  start-page: 1645
  year: 2010
  ident: 10.1016/j.applthermaleng.2016.11.063_b0105
  article-title: Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition
  publication-title: Nano Lett.
  doi: 10.1021/nl9041966
– volume: 33
  start-page: 1161
  year: 2009
  ident: 10.1016/j.applthermaleng.2016.11.063_b0050
  article-title: Application of graphene and graphene-based materials in clean energy-related devices
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.1598
– volume: 83
  start-page: 081419
  year: 2011
  ident: 10.1016/j.applthermaleng.2016.11.063_b9015
  article-title: Thermal conductivity of suspended pristine graphene measured by Raman spectroscopy
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.83.081419
– volume: 117
  start-page: 134307
  year: 2015
  ident: 10.1016/j.applthermaleng.2016.11.063_b0185
  article-title: Thermal transport across graphene and single layer hexagonal boron nitride
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4916985
– volume: 74
  start-page: 125403
  year: 2006
  ident: 10.1016/j.applthermaleng.2016.11.063_b0200
  article-title: Interfacial thermal resistance between carbon nanotubes: molecular dynamics simulations and analytical thermal modeling
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.74.125403
– volume: 5
  start-page: 3689
  year: 2014
  ident: 10.1016/j.applthermaleng.2016.11.063_b9020
  article-title: Length-dependent thermal conductivity in suspended single-layer graphene
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4689
– volume: 119
  start-page: 415
  year: 2015
  ident: 10.1016/j.applthermaleng.2016.11.063_b0085
  article-title: Thermal transport across graphene/SiC interface: effects of atomic bond and crystallinity of substrate
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-015-9066-7
– volume: 8
  start-page: 902
  year: 2008
  ident: 10.1016/j.applthermaleng.2016.11.063_b0035
  article-title: Superior thermal conductivity of single-layer graphene
  publication-title: Nano Lett.
  doi: 10.1021/nl0731872
– volume: 20
  start-page: 14152
  year: 2012
  ident: 10.1016/j.applthermaleng.2016.11.063_b0175
  article-title: Sub-wavelength temperature probing in nearfield laser heating by particles
  publication-title: Opt. Express
  doi: 10.1364/OE.20.014152
– volume: 11
  start-page: 113
  year: 2011
  ident: 10.1016/j.applthermaleng.2016.11.063_b9030
  article-title: Thermal transport in suspended and supported few-layer graphene
  publication-title: Nano Lett.
  doi: 10.1021/nl102923q
– volume: 5
  start-page: 12422
  year: 2015
  ident: 10.1016/j.applthermaleng.2016.11.063_b0110
  article-title: High accuracy determination of the thermal properties of supported 2D materials
  publication-title: Sci. Rep.
  doi: 10.1038/srep12422
– volume: 5
  start-page: 4466
  year: 2011
  ident: 10.1016/j.applthermaleng.2016.11.063_b0140
  article-title: Noncontact sub-10 nm temperature measurement in near-field laser heating
  publication-title: ACS Nano
  doi: 10.1021/nn2011442
– volume: 374
  start-page: 4144
  year: 2010
  ident: 10.1016/j.applthermaleng.2016.11.063_b0120
  article-title: Thermal transport in multiwall carbon nanotube buckypapers
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2010.08.034
– volume: 119
  start-page: 244306
  year: 2016
  ident: 10.1016/j.applthermaleng.2016.11.063_b9010
  article-title: Simultaneous measurement of electrical and thermal conductivities of suspended monolayer graphene
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4954677
– volume: 82
  start-page: 115427
  year: 2010
  ident: 10.1016/j.applthermaleng.2016.11.063_b0020
  article-title: Flexural phonons and thermal transport in graphene
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.82.115427
– volume: 95
  start-page: 161910
  year: 2009
  ident: 10.1016/j.applthermaleng.2016.11.063_b0090
  article-title: Thermal contact resistance between graphene and silicon dioxide
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3245315
– volume: 84
  start-page: 075471
  year: 2011
  ident: 10.1016/j.applthermaleng.2016.11.063_b0220
  article-title: Effect of substrate modes on thermal transport in supported graphene
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.84.075471
– volume: 49
  start-page: 4122
  year: 2011
  ident: 10.1016/j.applthermaleng.2016.11.063_b0160
  article-title: Synthesis of high-quality monolayer and bilayer graphene on copper using chemical vapor deposition
  publication-title: Carbon
  doi: 10.1016/j.carbon.2011.05.047
– volume: 5
  start-page: 487
  year: 2010
  ident: 10.1016/j.applthermaleng.2016.11.063_b0045
  article-title: Graphene transistors
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.89
– volume: 10
  start-page: 4363
  year: 2010
  ident: 10.1016/j.applthermaleng.2016.11.063_b0095
  article-title: Heat conduction across monolayer and few-layer graphenes
  publication-title: Nano Lett.
  doi: 10.1021/nl101790k
– volume: 5
  start-page: 9619
  year: 2011
  ident: 10.1016/j.applthermaleng.2016.11.063_b0190
  article-title: Formation of ripples in graphene as a result of interfacial instabilities
  publication-title: ACS Nano
  doi: 10.1021/nn202972f
– volume: 46
  start-page: 8118
  year: 2007
  ident: 10.1016/j.applthermaleng.2016.11.063_b0145
  article-title: Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature
  publication-title: Appl. Opt.
  doi: 10.1364/AO.46.008118
– volume: 80
  start-page: 033406
  year: 2009
  ident: 10.1016/j.applthermaleng.2016.11.063_b0030
  article-title: First-principles analysis of lattice thermal conductivity in monolayer and bilayer graphene
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.80.033406
– volume: 320
  start-page: 1308
  year: 2008
  ident: 10.1016/j.applthermaleng.2016.11.063_b0210
  article-title: Fine structure constant defines visual transparency of graphene
  publication-title: Science
  doi: 10.1126/science.1156965
– volume: 152
  start-page: 1321
  year: 2012
  ident: 10.1016/j.applthermaleng.2016.11.063_b0015
  article-title: Thermal transport in graphene
  publication-title: Solid State Commun.
  doi: 10.1016/j.ssc.2012.04.022
– volume: 10
  start-page: 3909
  year: 2010
  ident: 10.1016/j.applthermaleng.2016.11.063_b0070
  article-title: Thickness-dependent thermal conductivity of encased graphene and ultrathin graphite
  publication-title: Nano Lett.
  doi: 10.1021/nl101613u
– volume: 3
  start-page: 11586
  year: 2012
  ident: 10.1016/j.applthermaleng.2016.11.063_b0135
  article-title: Nanoscale thermal probing
  publication-title: Nano Rev.
  doi: 10.3402/nano.v3i0.11586
– volume: 446
  start-page: 60
  year: 2007
  ident: 10.1016/j.applthermaleng.2016.11.063_b0195
  article-title: The structure of suspended graphene sheets
  publication-title: Nature
  doi: 10.1038/nature05545
– volume: 11
  start-page: 1195
  year: 2011
  ident: 10.1016/j.applthermaleng.2016.11.063_b0225
  article-title: Influence of polymeric residue on the thermal conductivity of suspended bilayer graphene
  publication-title: Nano Lett.
  doi: 10.1021/nl104156y
– start-page: 80
  year: 2011
  ident: 10.1016/j.applthermaleng.2016.11.063_b0010
  article-title: Graphene doping: a review
  publication-title: Insciences J.
  doi: 10.5640/insc.010280
– volume: 328
  start-page: 213
  year: 2010
  ident: 10.1016/j.applthermaleng.2016.11.063_b0065
  article-title: Two-dimensional phonon transport in supported graphene
  publication-title: Science
  doi: 10.1126/science.1184014
– volume: 4
  start-page: 533
  year: 2015
  ident: 10.1016/j.applthermaleng.2016.11.063_b0205
  article-title: Thermal transport across atomic-layer material interfaces
  publication-title: Nanotechnol. Rev.
  doi: 10.1515/ntrev-2014-0024
– volume: 20
  start-page: 14152
  year: 2012
  ident: 10.1016/j.applthermaleng.2016.11.063_b0130
  article-title: Sub-wavelength temperature probing in near-field laser heating by particles
  publication-title: Opt. Express
  doi: 10.1364/OE.20.014152
– volume: 12
  start-page: 590
  year: 2012
  ident: 10.1016/j.applthermaleng.2016.11.063_b9005
  article-title: Manipulating thermal conductance at metal-graphene contacts via chemical functionalization
  publication-title: Nano Lett.
  doi: 10.1021/nl203060j
– volume: 11
  start-page: 3227
  year: 2011
  ident: 10.1016/j.applthermaleng.2016.11.063_b0165
  article-title: Negative thermal expansion coefficient of graphene measured by Raman spectroscopy
  publication-title: Nano Lett.
  doi: 10.1021/nl201488g
– volume: 96
  start-page: 203112
  year: 2010
  ident: 10.1016/j.applthermaleng.2016.11.063_b0040
  article-title: Thermal conductivity of graphene ribbons from equilibrium molecular dynamics: effect of ribbon width, edge roughness, and hydrogen termination
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3435465
– volume: 7
  start-page: 3324
  year: 2011
  ident: 10.1016/j.applthermaleng.2016.11.063_b0170
  article-title: Micro/nanoscale spatial resolution temperature probing for the interfacial thermal characterization of epitaxial graphene on 4H-SiC
  publication-title: Small
  doi: 10.1002/smll.201101598
SSID ssj0012874
Score 2.3738458
Snippet An in-situ two-step Raman thermometry is developed to measure both interfacial thermal conductance between graphene and substrate, and in-plane thermal...
To date, accurate thermal property measurement of atomic-layer interface materials still remains as a challenge due to the extreme dimension of sample’s size...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 481
SubjectTerms Graphene
Graphite
Heat conductivity
Heat transfer
Interfacial thermal conductance
Laser beam heating
Phonons
Raman thermometry
Resistance
Scattering
Silicon dioxide
Thermal conductivity
Thermodynamic properties
Thermometry
Transport
Title In-situ two-step Raman thermometry for thermal characterization of monolayer graphene interface material
URI https://dx.doi.org/10.1016/j.applthermaleng.2016.11.063
https://www.proquest.com/docview/1919588225
Volume 113
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA6iIHoQn_iokkOvsftIugkeRMTSKvbgA3oLmzTBit2WukW8-Nud2e5WKwiC12WzGyaz33yzmflCSD0wDliQ5wz3zBg3PmRGABga7p1RIgUOjT_0b7vN9iO_7oneErmsemGwrLLE_hmmF2hdXmmU1myMB4PGfRgLBeEvBEYRY1qAHew8QS8__ZiXeYSo514kXUIxvHuV1L9qvHCTGHnWMMVjS7DQq3mKmp7N-Lcw9QOwiyjU2iQbJX2kF7MZbpEll22T9W-igjvkqZOx10E-pfnbiMEajuldOkwzWsxgNHT55J0CU6XljKidSzbPOjLpyFPwTUh5gY3TQtAa8JCirsTEp9ZR4LiF2-6Sx9bVw2WblecpMMsjnrO-UD5QqEEnpExDL40DqIt95PthYiILyYIRgXcyiUXqFE9sIoXjNpSB8VL04z2ynI0yt09oH4ibCp2FuBdz6bhyMnBANkTkE2tidUDOKvNpW4qN45kXL7qqKnvWi8bXaHzIRzQY_4CI-ejxTHTjj-POq5XSC06kIT788Qm1aoF1-TG_akhpFVgMkO_w3y84ImsREgNsihc1spxPpu4YaE1uTgq_PSErF52bdvcTF7T7-g
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVoJyQC0PUSjFh_boZh921hZCCEGrhD4O0Eq9mbVji6BmEyVbVb3wp_iDzGy8oUWqVAn1upJ3rc-emW_W428AthPrkQUFwenMjAsbUm4lOkMrgrdalsih6Yf-0XG3dyq-nMmzJfjd3oWhssro--c-vfHW8UknotmZDIedb2kuNYa_FBlFTmlBrKw88FeXmLfN3vc_4yLvZNn-3smnHo-tBbgTmaj5QOqQaJJjk0qVaVDWo9XnIQuDtLCZQ95sZRK8KnJZei0KVyjphUtVYoOSgxzf-wBWBLoLapuw-2tRV5KSgHyT5UnNaXoPYftvURmdShOxG5XUJ4Uqy7q7JCLazW-Li_9EiCbs7a_Bk8hX2cc5JOuw5Kun8PiaiuEz-NGv-GxYX7D6csxx00zY13JUVqyZwXjk6-kVQ2rM4oyYW2hEz6-AsnFgaAyYYyP9Z42CNjpgRkIW01A6z5BUN3byHE7vBeUXsFyNK_8S2ACZok69w0CbC-WF9irxyG5kFgpnc70B71r4jIvq5tRk49y0ZWw_zU3wDYGPCZBB8DdALkZP5iofdxz3oV0pc2PXGgxId3zDZrvAJnqPmcEcWiNi6Gpf_fcH3sKj3snRoTnsHx-8htWMWAndyJebsFxPL_wb5FS13Wr2MIPv9200fwCgKDbt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In-situ+two-step+Raman+thermometry+for+thermal+characterization+of+monolayer+graphene+interface+material&rft.jtitle=Applied+thermal+engineering&rft.au=Zhao%2C+Wenqiang&rft.au=Chen%2C+Wen&rft.au=Yue%2C+Yanan&rft.au=Wu%2C+Shijing&rft.date=2017-02-25&rft.pub=Elsevier+BV&rft.issn=1359-4311&rft.eissn=1873-5606&rft.volume=113&rft.spage=481&rft_id=info:doi/10.1016%2Fj.applthermaleng.2016.11.063&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon