On the tightness of SDP relaxations of QCQPs

Quadratically constrained quadratic programs (QCQPs) are a fundamental class of optimization problems well-known to be NP-hard in general. In this paper we study conditions under which the standard semidefinite program (SDP) relaxation of a QCQP is tight. We begin by outlining a general framework fo...

Full description

Saved in:
Bibliographic Details
Published inMathematical programming Vol. 193; no. 1; pp. 33 - 73
Main Authors Wang, Alex L., Kılınç-Karzan, Fatma
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.05.2022
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0025-5610
1436-4646
DOI10.1007/s10107-020-01589-9

Cover

Abstract Quadratically constrained quadratic programs (QCQPs) are a fundamental class of optimization problems well-known to be NP-hard in general. In this paper we study conditions under which the standard semidefinite program (SDP) relaxation of a QCQP is tight. We begin by outlining a general framework for proving such sufficient conditions. Then using this framework, we show that the SDP relaxation is tight whenever the quadratic eigenvalue multiplicity, a parameter capturing the amount of symmetry present in a given problem, is large enough. We present similar sufficient conditions under which the projected epigraph of the SDP gives the convex hull of the epigraph in the original QCQP. Our results also imply new sufficient conditions for the tightness (as well as convex hull exactness) of a second order cone program relaxation of simultaneously diagonalizable QCQPs.
AbstractList Quadratically constrained quadratic programs (QCQPs) are a fundamental class of optimization problems well-known to be NP-hard in general. In this paper we study conditions under which the standard semidefinite program (SDP) relaxation of a QCQP is tight. We begin by outlining a general framework for proving such sufficient conditions. Then using this framework, we show that the SDP relaxation is tight whenever the quadratic eigenvalue multiplicity, a parameter capturing the amount of symmetry present in a given problem, is large enough. We present similar sufficient conditions under which the projected epigraph of the SDP gives the convex hull of the epigraph in the original QCQP. Our results also imply new sufficient conditions for the tightness (as well as convex hull exactness) of a second order cone program relaxation of simultaneously diagonalizable QCQPs.
Audience Academic
Author Wang, Alex L.
Kılınç-Karzan, Fatma
Author_xml – sequence: 1
  givenname: Alex L.
  orcidid: 0000-0002-4293-0359
  surname: Wang
  fullname: Wang, Alex L.
  organization: Carnegie Mellon University
– sequence: 2
  givenname: Fatma
  orcidid: 0000-0001-5939-4575
  surname: Kılınç-Karzan
  fullname: Kılınç-Karzan, Fatma
  email: fkilinc@andrew.cmu.edu
  organization: Carnegie Mellon University
BookMark eNp9kE1rAjEQhkOxUG37B3pa6LWxk6_d5Cj2EwSVeg9rTDSy7tpkhfbfN7qFQg-Sw5DhfWaYZ4B6dVNbhO4IDAlA8RgJECgwUMBAhFRYXaA-4SzHPOd5D_UBqMAiJ3CFBjFuAYAwKfvoYVpn7cZmrV9v2trGmDUu-3iaZcFW5VfZ-qY-tebj-SzeoEtXVtHe_tZrtHh5Xozf8GT6-j4eTbDhlLd46VxOCy6dstwwKx1VRizBASgnSK4UlUtBCShSyBWjpky_0hGjlOREMXaN7rux-9B8Hmxs9bY5hDpt1DQXgrAcpEqpYZdal5XVvnZNG0qT3sruvEl6nE_9UQFM8UKy41jZASY0MQbrtPHt6cIE-koT0EeXunOpk0t9cqmPu-g_dB_8rgzf5yHWQTGF67UNf2ecoX4AttOE-g
CitedBy_id crossref_primary_10_1007_s12532_025_00275_1
crossref_primary_10_1007_s10107_023_01985_x
crossref_primary_10_1007_s10107_021_01734_y
crossref_primary_10_1007_s00186_024_00885_w
crossref_primary_10_1007_s10107_024_02120_0
crossref_primary_10_1007_s10898_022_01268_3
crossref_primary_10_1016_j_jprocont_2023_103083
crossref_primary_10_1287_moor_2022_1254
crossref_primary_10_1007_s10107_024_02069_0
crossref_primary_10_1007_s10898_025_01478_5
crossref_primary_10_1287_moor_2022_1290
crossref_primary_10_1137_23M1593346
crossref_primary_10_1016_j_jsc_2023_102258
crossref_primary_10_1007_s10107_023_01933_9
crossref_primary_10_1007_s00186_023_00827_y
crossref_primary_10_1007_s10107_022_01912_6
crossref_primary_10_1007_s10898_021_01071_6
crossref_primary_10_1137_22M1528215
crossref_primary_10_1007_s10107_024_02073_4
crossref_primary_10_1007_s10107_024_02076_1
crossref_primary_10_1137_22M1507656
crossref_primary_10_1007_s10898_022_01258_5
crossref_primary_10_1007_s10898_024_01407_y
crossref_primary_10_1007_s10107_024_02105_z
crossref_primary_10_1016_j_jprocont_2024_103252
Cites_doi 10.1137/16M1065197
10.1007/BF02283692
10.1137/15M1023920
10.1023/A:1008282830093
10.1137/050644471
10.1007/978-1-4757-3532-1
10.1287/moor.28.2.246.14485
10.1007/BF02573959
10.1007/s10107-011-0461-3
10.1093/imamci/dnp023
10.1137/1.9781611973402.28
10.1007/s10107-019-01367-2
10.1137/1.9781611971088
10.1137/S105262340139001X
10.1007/BF02592331
10.1007/s10107-008-0246-5
10.1007/s10107-011-0462-2
10.1007/978-3-0348-8362-7_15
10.1007/s10107-017-1157-0
10.1016/j.jpaa.2003.12.011
10.1109/TIT.2015.2490670
10.1137/17M1150670
10.1137/05064816X
10.1007/s10107-015-0903-4
10.1007/s10107-017-1206-8
10.1007/s10107-016-1045-z
10.1515/9781400831050
10.1137/1.9780898718829
10.1137/1038003
10.1137/151005099
10.1007/s10107-015-0888-z
10.1137/18M1174313
10.1007/s10107980012a
10.1007/978-3-319-11008-0
10.1137/18M1215165
10.1109/ITW.2016.7606826
10.1007/s10107-002-0352-8
10.1007/s10107-016-1084-5
10.1007/s10107-013-0710-8
10.1109/MSP.2010.936019
10.1007/s10107-020-01560-8
10.1007/s10107-006-0039-7
10.1137/110826862
10.1007/s10107-014-0749-1
10.1016/j.orl.2014.12.002
10.1016/j.orl.2015.06.001
10.1007/978-3-030-45771-6_32
10.1016/j.orl.2012.03.005
10.1007/s10107-013-0716-2
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021
COPYRIGHT 2022 Springer
Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021
– notice: COPYRIGHT 2022 Springer
– notice: Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s10107-020-01589-9
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1436-4646
EndPage 73
ExternalDocumentID A703947833
10_1007_s10107_020_01589_9
GrantInformation_xml – fundername: Office of Naval Research
  grantid: N00014-19-1-2321
  funderid: http://dx.doi.org/10.13039/100000006
– fundername: National Science Foundation
  grantid: 1454548
  funderid: http://dx.doi.org/10.13039/100000001
GroupedDBID --K
--Z
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1B1
1N0
1OL
1SB
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
88I
8AO
8FE
8FG
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBA
EBLON
EBR
EBS
EBU
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0C
M0N
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQ-
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RPZ
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XPP
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZL0
ZMTXR
ZWQNP
~02
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADXHL
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
AEIIB
7SC
8FD
ABRTQ
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c424t-bff62748f9e4c3e8f29c5b0f009f5169928b52109178d32cab52af1c99841933
IEDL.DBID AGYKE
ISSN 0025-5610
IngestDate Fri Jul 25 19:48:58 EDT 2025
Tue Jun 10 20:50:27 EDT 2025
Thu Apr 24 23:12:46 EDT 2025
Tue Jul 01 02:15:13 EDT 2025
Fri Feb 21 02:46:03 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Relaxation
Semidefinite program
Convex hull
90C22 (Semidefinite programming)
90C26 (Nonconvex programming, global optimization)
90C20 (Quadratic programming)
Quadratically constrained quadratic programming
Lagrange function
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c424t-bff62748f9e4c3e8f29c5b0f009f5169928b52109178d32cab52af1c99841933
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5939-4575
0000-0002-4293-0359
PQID 2655136089
PQPubID 25307
PageCount 41
ParticipantIDs proquest_journals_2655136089
gale_infotracacademiconefile_A703947833
crossref_citationtrail_10_1007_s10107_020_01589_9
crossref_primary_10_1007_s10107_020_01589_9
springer_journals_10_1007_s10107_020_01589_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle A Publication of the Mathematical Optimization Society
PublicationTitle Mathematical programming
PublicationTitleAbbrev Math. Program
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Springer
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer
– name: Springer Nature B.V
References Conforti, Cornuéjols, Zambelli (CR20) 2014
Jiang, Li (CR33) 2019; 29
Yıldız, Cornuéjols (CR58) 2015; 43
Modaresi, Vielma (CR41) 2017; 164
Phan huy Hao (CR30) 1982; 26
Wang, Kılınç-Karzan, Bienstock, Zambelli (CR52) 2020
Sturm, Zhang (CR48) 2003; 28
Megretski, Borichev, Nikolski (CR39) 2001
Luo, Ma, So, Ye, Zhang (CR38) 2010; 27
Yang, Anstreicher, Burer (CR54) 2018; 170
Ye, Zhang (CR56) 2003; 14
Wolkowicz, Saigal, Vandenberghe (CR53) 2012
Ben-Tal, Teboulle (CR10) 1996; 72
Locatelli (CR36) 2015; 43
CR46
Yıldıran (CR57) 2009; 26
Burer, Ye (CR18) 2019; 181
CR45
Fradkov, Yakubovich (CR25) 1979; 6
CR42
CR40
Ben-Tal, Nemirovski (CR9) 2001
Kılınç-Karzan, Yıldız (CR35) 2015; 154
Ye (CR55) 1999; 84
Ben-Tal, den Hertog (CR8) 2014; 143
Jiang, Li (CR32) 2016; 26
Beck, Eldar (CR6) 2006; 17
de Klerk, Dobre, Pasechnik (CR23) 2011; 129
Burer, Yang (CR17) 2014; 149
Barvinok (CR4) 1993; 10
Burer (CR13) 2015; 151
Burer, Kılınç-Karzan (CR15) 2017; 162
Jeyakumar, Li (CR31) 2014; 147
Beck, Drori, Teboulle (CR7) 2012; 40
Vandenberghe, Boyd (CR50) 1996; 38
Ramana, Pardalos, Wolkowicz (CR43) 1997
CR12
Candès, Eldar, Strohmer, Voroninski (CR19) 2015; 57
Bao, Sahinidis, Tawarmalani (CR3) 2011; 129
CR51
Adachi, Nakatsukasa (CR2) 2019; 173
Burer, Anstreicher (CR14) 2013; 23
Ekeland, Temam (CR24) 1999
Jiang, Li (CR34) 2020; 30
Ben-Tal, El Ghaoui, Nemirovski (CR11) 2009
Burer, Monteiro (CR16) 2003; 95
Locatelli (CR37) 2016; 10
de Klerk, Sotirov (CR21) 2010; 122
CR28
Tawarmalani, Sahinidis (CR49) 2002
de Klerk, Pasechnik, Schrijver (CR22) 2007; 109
Abbe, Bandeira, Hall (CR1) 2015; 62
Rujeerapaiboon, Schindler, Kuhn, Wiesemann (CR44) 2019; 29
Fujie, Kojima (CR26) 1997; 10
Shor (CR47) 1990; 25
Gatermann, Parrilo (CR27) 2004; 192
Ho-Nguyen, Kılınç-Karzan (CR29) 2017; 27
Beck (CR5) 2007; 17
R Jiang (1589_CR32) 2016; 26
A Beck (1589_CR7) 2012; 40
M Conforti (1589_CR20) 2014
S Burer (1589_CR14) 2013; 23
E Abbe (1589_CR1) 2015; 62
1589_CR51
S Adachi (1589_CR2) 2019; 173
N Rujeerapaiboon (1589_CR44) 2019; 29
U Yıldıran (1589_CR57) 2009; 26
1589_CR12
A Megretski (1589_CR39) 2001
S Burer (1589_CR13) 2015; 151
V Jeyakumar (1589_CR31) 2014; 147
Z Luo (1589_CR38) 2010; 27
M Locatelli (1589_CR37) 2016; 10
L Vandenberghe (1589_CR50) 1996; 38
A Ben-Tal (1589_CR10) 1996; 72
E de Klerk (1589_CR22) 2007; 109
E de Klerk (1589_CR21) 2010; 122
A Ben-Tal (1589_CR11) 2009
AL Wang (1589_CR52) 2020
EJ Candès (1589_CR19) 2015; 57
A Barvinok (1589_CR4) 1993; 10
R Jiang (1589_CR34) 2020; 30
M Locatelli (1589_CR36) 2015; 43
T Fujie (1589_CR26) 1997; 10
1589_CR42
B Yang (1589_CR54) 2018; 170
1589_CR40
E de Klerk (1589_CR23) 2011; 129
1589_CR46
Y Ye (1589_CR56) 2003; 14
1589_CR45
S Yıldız (1589_CR58) 2015; 43
A Beck (1589_CR5) 2007; 17
R Jiang (1589_CR33) 2019; 29
S Burer (1589_CR15) 2017; 162
N Ho-Nguyen (1589_CR29) 2017; 27
MV Ramana (1589_CR43) 1997
K Gatermann (1589_CR27) 2004; 192
AL Fradkov (1589_CR25) 1979; 6
Y Ye (1589_CR55) 1999; 84
M Tawarmalani (1589_CR49) 2002
H Wolkowicz (1589_CR53) 2012
S Burer (1589_CR18) 2019; 181
A Beck (1589_CR6) 2006; 17
NZ Shor (1589_CR47) 1990; 25
S Burer (1589_CR16) 2003; 95
S Modaresi (1589_CR41) 2017; 164
A Ben-Tal (1589_CR9) 2001
A Ben-Tal (1589_CR8) 2014; 143
JF Sturm (1589_CR48) 2003; 28
S Burer (1589_CR17) 2014; 149
E Phan huy Hao (1589_CR30) 1982; 26
X Bao (1589_CR3) 2011; 129
1589_CR28
F Kılınç-Karzan (1589_CR35) 2015; 154
I Ekeland (1589_CR24) 1999
References_xml – ident: CR45
– volume: 38
  start-page: 49
  issue: 1
  year: 1996
  end-page: 95
  ident: CR50
  article-title: Semidefinite programming
  publication-title: SIAM Rev.
– volume: 40
  start-page: 298
  issue: 4
  year: 2012
  end-page: 302
  ident: CR7
  article-title: A new semidefinite programming relaxation scheme for a class of quadratic matrix problems
  publication-title: Oper. Res. Lett.
– volume: 28
  start-page: 246
  issue: 2
  year: 2003
  end-page: 267
  ident: CR48
  article-title: On cones of nonnegative quadratic functions
  publication-title: Math. Oper. Res.
– ident: CR51
– ident: CR12
– year: 2009
  ident: CR11
  publication-title: Robust Optimization
– volume: 27
  start-page: 20
  issue: 3
  year: 2010
  end-page: 34
  ident: CR38
  article-title: Semidefinite relaxation of quadratic optimization problems
  publication-title: IEEE Signal Process. Mag.
– volume: 147
  start-page: 171
  year: 2014
  end-page: 206
  ident: CR31
  article-title: Trust-region problems with linear inequality constraints: exact SDP relaxation, global optimality and robust optimization
  publication-title: Math. Program.
– volume: 14
  start-page: 245
  issue: 1
  year: 2003
  end-page: 267
  ident: CR56
  article-title: New results on quadratic minimization
  publication-title: SIAM J. Optim.
– volume: 151
  start-page: 89
  year: 2015
  end-page: 116
  ident: CR13
  article-title: A gentle, geometric introduction to copositive optimization
  publication-title: Math. Program.
– volume: 149
  start-page: 253
  year: 2014
  end-page: 264
  ident: CR17
  article-title: The trust region subproblem with non-intersecting linear constraints
  publication-title: Math. Program.
– volume: 26
  start-page: 105
  year: 1982
  end-page: 119
  ident: CR30
  article-title: Quadratically constrained quadratic programming: some applications and a method for solution
  publication-title: Z. Oper. Res.
– ident: CR42
– volume: 84
  start-page: 219
  year: 1999
  end-page: 226
  ident: CR55
  article-title: Approximating quadratic programming with bound and quadratic constraints
  publication-title: Math. Program.
– volume: 27
  start-page: 1485
  issue: 3
  year: 2017
  end-page: 1512
  ident: CR29
  article-title: A second-order cone based approach for solving the trust region subproblem and its variants
  publication-title: SIAM J. Optim.
– ident: CR46
– year: 2014
  ident: CR20
  publication-title: Integer Programming
– volume: 129
  start-page: 129
  year: 2011
  ident: CR3
  article-title: Semidefinite relaxations for quadratically constrained quadratic programming: a review and comparisons
  publication-title: Math. Program.
– volume: 6
  start-page: 101
  year: 1979
  end-page: 109
  ident: CR25
  article-title: The S-procedure and duality relations in nonconvex problems of quadratic programming
  publication-title: Vestnik Leningr. Univ. Math.
– volume: 170
  start-page: 541
  year: 2018
  end-page: 553
  ident: CR54
  article-title: Quadratic programs with hollows
  publication-title: Math. Program.
– volume: 26
  start-page: 417
  issue: 4
  year: 2009
  end-page: 450
  ident: CR57
  article-title: Convex hull of two quadratic constraints is an LMI set
  publication-title: IMA J. Math. Control Inform.
– start-page: 27
  year: 1997
  end-page: 38
  ident: CR43
  article-title: Polyhedra, spectrahedra, and semidefinite programming
  publication-title: Topics in Semidefinite and Interior-Point Methods (Fields Institute Communications)
– volume: 29
  start-page: 1603
  issue: 2
  year: 2019
  end-page: 1633
  ident: CR33
  article-title: Novel reformulations and efficient algorithms for the generalized trust region subproblem
  publication-title: SIAM J. Optim.
– volume: 173
  start-page: 79
  year: 2019
  end-page: 116
  ident: CR2
  article-title: Eigenvalue-based algorithm and analysis for nonconvex QCQP with one constraint
  publication-title: Math. Program.
– year: 2001
  ident: CR9
  publication-title: Lectures on Modern Convex Optimization
– volume: 164
  start-page: 383
  year: 2017
  end-page: 409
  ident: CR41
  article-title: Convex hull of two quadratic or a conic quadratic and a quadratic inequality
  publication-title: Math. Program.
– volume: 17
  start-page: 1224
  issue: 4
  year: 2007
  end-page: 1238
  ident: CR5
  article-title: Quadratic matrix programming
  publication-title: SIAM J. Optim.
– volume: 181
  start-page: 1
  year: 2019
  end-page: 17
  ident: CR18
  article-title: Exact semidefinite formulations for a class of (random and non-random) nonconvex quadratic programs
  publication-title: Math. Program.
– volume: 17
  start-page: 844
  issue: 3
  year: 2006
  end-page: 860
  ident: CR6
  article-title: Strong duality in nonconvex quadratic optimization with two quadratic constraints
  publication-title: SIAM J. Optim.
– volume: 10
  start-page: 1141
  issue: 6
  year: 2016
  end-page: 1151
  ident: CR37
  article-title: Exactness conditions for an SDP relaxation of the extended trust region problem
  publication-title: Oper. Res. Lett.
– volume: 129
  start-page: 91
  year: 2011
  end-page: 111
  ident: CR23
  article-title: Numerical block diagonalization of matrix *-algebras with application to semidefinite programming
  publication-title: Math. Program.
– volume: 10
  start-page: 1
  year: 1993
  end-page: 13
  ident: CR4
  article-title: Feasibility testing for systems of real quadratic equations
  publication-title: Discrete Comput. Geom.
– volume: 29
  start-page: 1211
  issue: 2
  year: 2019
  end-page: 1239
  ident: CR44
  article-title: Size matters: cardinality-constrained clustering and outlier detection via conic optimization
  publication-title: SIAM J. Optim.
– volume: 23
  start-page: 432
  issue: 1
  year: 2013
  end-page: 451
  ident: CR14
  article-title: Second-order-cone constraints for extended trust-region subproblems
  publication-title: SIAM J. Optim.
– year: 2012
  ident: CR53
  publication-title: Handbook of Semidefinite Programming: Theory, Algorithms, and Applications
– volume: 62
  start-page: 471
  issue: 1
  year: 2015
  end-page: 487
  ident: CR1
  article-title: Exact recovery in the stochastic block model
  publication-title: IEEE Trans. Inform. Theory
– volume: 143
  start-page: 1
  year: 2014
  end-page: 29
  ident: CR8
  article-title: Hidden conic quadratic representation of some nonconvex quadratic optimization problems
  publication-title: Math. Program.
– volume: 43
  start-page: 126
  issue: 2
  year: 2015
  end-page: 131
  ident: CR36
  article-title: Some results for quadratic problems with one or two quadratic constraints
  publication-title: Oper. Res. Lett.
– volume: 26
  start-page: 1649
  issue: 3
  year: 2016
  end-page: 1668
  ident: CR32
  article-title: Simultaneous diagonalization of matrices and its applications in quadratically constrained quadratic programming
  publication-title: SIAM J. Optim.
– volume: 43
  start-page: 432
  issue: 4
  year: 2015
  end-page: 437
  ident: CR58
  article-title: Disjunctive cuts for cross-sections of the second-order cone
  publication-title: Oper. Res. Lett.
– volume: 30
  start-page: 915
  issue: 1
  year: 2020
  end-page: 932
  ident: CR34
  article-title: A linear-time algorithm for generalized trust region problems
  publication-title: SIAM J. Optim.
– volume: 162
  start-page: 393
  year: 2017
  end-page: 429
  ident: CR15
  article-title: How to convexify the intersection of a second order cone and a nonconvex quadratic
  publication-title: Math. Program.
– year: 1999
  ident: CR24
  publication-title: Convex Analysis and Variational Problems
– ident: CR40
– volume: 72
  start-page: 51
  year: 1996
  end-page: 63
  ident: CR10
  article-title: Hidden convexity in some nonconvex quadratically constrained quadratic programming
  publication-title: Math. Program.
– volume: 122
  start-page: 225
  year: 2010
  end-page: 246
  ident: CR21
  article-title: Exploiting group symmetry in semidefinite programming relaxations of the quadratic assignment problem
  publication-title: Math. Program.
– volume: 154
  start-page: 463
  year: 2015
  end-page: 491
  ident: CR35
  article-title: Two-term disjunctions on the second-order cone
  publication-title: Math. Program.
– start-page: 365
  year: 2001
  end-page: 392
  ident: CR39
  article-title: Relaxations of quadratic programs in operator theory and system analysis
  publication-title: Systems, Approximation, Singular Integral Operators, and Related Topics
– volume: 57
  start-page: 225
  issue: 2
  year: 2015
  end-page: 251
  ident: CR19
  article-title: Phase retrieval via matrix completion
  publication-title: SIAM Rev.
– volume: 25
  start-page: 163
  year: 1990
  end-page: 168
  ident: CR47
  article-title: Dual quadratic estimates in polynomial and Boolean programming
  publication-title: Ann. Oper. Res.
– start-page: 419
  year: 2020
  end-page: 432
  ident: CR52
  article-title: On convex hulls of epigraphs of QCQPs
  publication-title: Integer Programming and Combinatorial Optimization (IPCO 2020)
– volume: 95
  start-page: 329
  year: 2003
  end-page: 357
  ident: CR16
  article-title: A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization
  publication-title: Math. Program.
– volume: 109
  start-page: 613
  year: 2007
  end-page: 624
  ident: CR22
  article-title: Reduction of symmetric semidefinite programs using the regular -representation
  publication-title: Math. Program.
– volume: 10
  start-page: 367
  issue: 4
  year: 1997
  end-page: 380
  ident: CR26
  article-title: Semidefinite programming relaxation for nonconvex quadratic programs
  publication-title: J. Glob. Optim.
– year: 2002
  ident: CR49
  publication-title: Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications
– volume: 192
  start-page: 95
  issue: 1–3
  year: 2004
  end-page: 128
  ident: CR27
  article-title: Symmetry groups, semidefinite programs, and sums of squares
  publication-title: J. Pure Appl. Algebra
– ident: CR28
– volume: 27
  start-page: 1485
  issue: 3
  year: 2017
  ident: 1589_CR29
  publication-title: SIAM J. Optim.
  doi: 10.1137/16M1065197
– ident: 1589_CR28
– volume: 25
  start-page: 163
  year: 1990
  ident: 1589_CR47
  publication-title: Ann. Oper. Res.
  doi: 10.1007/BF02283692
– volume: 6
  start-page: 101
  year: 1979
  ident: 1589_CR25
  publication-title: Vestnik Leningr. Univ. Math.
– volume: 26
  start-page: 1649
  issue: 3
  year: 2016
  ident: 1589_CR32
  publication-title: SIAM J. Optim.
  doi: 10.1137/15M1023920
– volume: 10
  start-page: 367
  issue: 4
  year: 1997
  ident: 1589_CR26
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1008282830093
– volume: 17
  start-page: 844
  issue: 3
  year: 2006
  ident: 1589_CR6
  publication-title: SIAM J. Optim.
  doi: 10.1137/050644471
– volume-title: Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications
  year: 2002
  ident: 1589_CR49
  doi: 10.1007/978-1-4757-3532-1
– volume: 28
  start-page: 246
  issue: 2
  year: 2003
  ident: 1589_CR48
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.28.2.246.14485
– volume: 10
  start-page: 1
  year: 1993
  ident: 1589_CR4
  publication-title: Discrete Comput. Geom.
  doi: 10.1007/BF02573959
– volume: 129
  start-page: 91
  year: 2011
  ident: 1589_CR23
  publication-title: Math. Program.
  doi: 10.1007/s10107-011-0461-3
– volume: 26
  start-page: 417
  issue: 4
  year: 2009
  ident: 1589_CR57
  publication-title: IMA J. Math. Control Inform.
  doi: 10.1093/imamci/dnp023
– ident: 1589_CR12
  doi: 10.1137/1.9781611973402.28
– volume: 181
  start-page: 1
  year: 2019
  ident: 1589_CR18
  publication-title: Math. Program.
  doi: 10.1007/s10107-019-01367-2
– volume-title: Convex Analysis and Variational Problems
  year: 1999
  ident: 1589_CR24
  doi: 10.1137/1.9781611971088
– volume: 14
  start-page: 245
  issue: 1
  year: 2003
  ident: 1589_CR56
  publication-title: SIAM J. Optim.
  doi: 10.1137/S105262340139001X
– volume: 72
  start-page: 51
  year: 1996
  ident: 1589_CR10
  publication-title: Math. Program.
  doi: 10.1007/BF02592331
– volume: 122
  start-page: 225
  year: 2010
  ident: 1589_CR21
  publication-title: Math. Program.
  doi: 10.1007/s10107-008-0246-5
– volume: 129
  start-page: 129
  year: 2011
  ident: 1589_CR3
  publication-title: Math. Program.
  doi: 10.1007/s10107-011-0462-2
– start-page: 365
  volume-title: Systems, Approximation, Singular Integral Operators, and Related Topics
  year: 2001
  ident: 1589_CR39
  doi: 10.1007/978-3-0348-8362-7_15
– volume: 170
  start-page: 541
  year: 2018
  ident: 1589_CR54
  publication-title: Math. Program.
  doi: 10.1007/s10107-017-1157-0
– volume: 192
  start-page: 95
  issue: 1–3
  year: 2004
  ident: 1589_CR27
  publication-title: J. Pure Appl. Algebra
  doi: 10.1016/j.jpaa.2003.12.011
– volume: 62
  start-page: 471
  issue: 1
  year: 2015
  ident: 1589_CR1
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/TIT.2015.2490670
– volume: 29
  start-page: 1211
  issue: 2
  year: 2019
  ident: 1589_CR44
  publication-title: SIAM J. Optim.
  doi: 10.1137/17M1150670
– volume: 17
  start-page: 1224
  issue: 4
  year: 2007
  ident: 1589_CR5
  publication-title: SIAM J. Optim.
  doi: 10.1137/05064816X
– volume: 154
  start-page: 463
  year: 2015
  ident: 1589_CR35
  publication-title: Math. Program.
  doi: 10.1007/s10107-015-0903-4
– volume: 173
  start-page: 79
  year: 2019
  ident: 1589_CR2
  publication-title: Math. Program.
  doi: 10.1007/s10107-017-1206-8
– volume: 162
  start-page: 393
  year: 2017
  ident: 1589_CR15
  publication-title: Math. Program.
  doi: 10.1007/s10107-016-1045-z
– volume: 10
  start-page: 1141
  issue: 6
  year: 2016
  ident: 1589_CR37
  publication-title: Oper. Res. Lett.
– volume-title: Robust Optimization
  year: 2009
  ident: 1589_CR11
  doi: 10.1515/9781400831050
– volume-title: Lectures on Modern Convex Optimization
  year: 2001
  ident: 1589_CR9
  doi: 10.1137/1.9780898718829
– volume: 38
  start-page: 49
  issue: 1
  year: 1996
  ident: 1589_CR50
  publication-title: SIAM Rev.
  doi: 10.1137/1038003
– volume: 57
  start-page: 225
  issue: 2
  year: 2015
  ident: 1589_CR19
  publication-title: SIAM Rev.
  doi: 10.1137/151005099
– volume: 151
  start-page: 89
  year: 2015
  ident: 1589_CR13
  publication-title: Math. Program.
  doi: 10.1007/s10107-015-0888-z
– volume: 29
  start-page: 1603
  issue: 2
  year: 2019
  ident: 1589_CR33
  publication-title: SIAM J. Optim.
  doi: 10.1137/18M1174313
– volume: 84
  start-page: 219
  year: 1999
  ident: 1589_CR55
  publication-title: Math. Program.
  doi: 10.1007/s10107980012a
– volume-title: Integer Programming
  year: 2014
  ident: 1589_CR20
  doi: 10.1007/978-3-319-11008-0
– volume: 30
  start-page: 915
  issue: 1
  year: 2020
  ident: 1589_CR34
  publication-title: SIAM J. Optim.
  doi: 10.1137/18M1215165
– ident: 1589_CR45
– ident: 1589_CR40
  doi: 10.1109/ITW.2016.7606826
– volume: 95
  start-page: 329
  year: 2003
  ident: 1589_CR16
  publication-title: Math. Program.
  doi: 10.1007/s10107-002-0352-8
– ident: 1589_CR42
– volume: 164
  start-page: 383
  year: 2017
  ident: 1589_CR41
  publication-title: Math. Program.
  doi: 10.1007/s10107-016-1084-5
– volume: 143
  start-page: 1
  year: 2014
  ident: 1589_CR8
  publication-title: Math. Program.
  doi: 10.1007/s10107-013-0710-8
– volume: 27
  start-page: 20
  issue: 3
  year: 2010
  ident: 1589_CR38
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2010.936019
– ident: 1589_CR51
  doi: 10.1007/s10107-020-01560-8
– volume: 109
  start-page: 613
  year: 2007
  ident: 1589_CR22
  publication-title: Math. Program.
  doi: 10.1007/s10107-006-0039-7
– volume: 23
  start-page: 432
  issue: 1
  year: 2013
  ident: 1589_CR14
  publication-title: SIAM J. Optim.
  doi: 10.1137/110826862
– volume: 149
  start-page: 253
  year: 2014
  ident: 1589_CR17
  publication-title: Math. Program.
  doi: 10.1007/s10107-014-0749-1
– ident: 1589_CR46
– volume: 43
  start-page: 126
  issue: 2
  year: 2015
  ident: 1589_CR36
  publication-title: Oper. Res. Lett.
  doi: 10.1016/j.orl.2014.12.002
– start-page: 27
  volume-title: Topics in Semidefinite and Interior-Point Methods (Fields Institute Communications)
  year: 1997
  ident: 1589_CR43
– volume: 43
  start-page: 432
  issue: 4
  year: 2015
  ident: 1589_CR58
  publication-title: Oper. Res. Lett.
  doi: 10.1016/j.orl.2015.06.001
– start-page: 419
  volume-title: Integer Programming and Combinatorial Optimization (IPCO 2020)
  year: 2020
  ident: 1589_CR52
  doi: 10.1007/978-3-030-45771-6_32
– volume: 26
  start-page: 105
  year: 1982
  ident: 1589_CR30
  publication-title: Z. Oper. Res.
– volume: 40
  start-page: 298
  issue: 4
  year: 2012
  ident: 1589_CR7
  publication-title: Oper. Res. Lett.
  doi: 10.1016/j.orl.2012.03.005
– volume-title: Handbook of Semidefinite Programming: Theory, Algorithms, and Applications
  year: 2012
  ident: 1589_CR53
– volume: 147
  start-page: 171
  year: 2014
  ident: 1589_CR31
  publication-title: Math. Program.
  doi: 10.1007/s10107-013-0716-2
SSID ssj0001388
Score 2.5295565
Snippet Quadratically constrained quadratic programs (QCQPs) are a fundamental class of optimization problems well-known to be NP-hard in general. In this paper we...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 33
SubjectTerms Calculus of Variations and Optimal Control; Optimization
Combinatorics
Convexity
Eigenvalues
Full Length Paper
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Mathematics of Computing
Numerical Analysis
Optimization
Theoretical
Tightness
Title On the tightness of SDP relaxations of QCQPs
URI https://link.springer.com/article/10.1007/s10107-020-01589-9
https://www.proquest.com/docview/2655136089
Volume 193
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JT-swEB5BufAO7E-sVQ5IHCCo8RLbx7IUBGITVIKTFbvxBVQQDRLi1zOTJmVH4ujEdpyxPf5sz3wDsK5UkFwlLk5VK4sF72XlnItN7qVxOtfGkYPzyWl62BVH1_K6cgob1Nbu9ZVkqanfObsldKzGyJBKahObcZiQiTa6ARPtg5vj_ZEGTrjWdahWwgeVs8z3tXxYkD6r5S_3o-Wy05mGbt3gobXJ7fZT4bb9yycux7_-0QxMVTg0ag8HziyM5f05-PeOnRBTJyNK18E8bJ31I0xGBe3mST9G9yG63DuPyBvmeXjuR48udi_OBwtw1dm_2j2Mq1ALsRdMFLELgYLw6GBy4XmuAzNeulZABBboJs0w7XChR3ChdI8zn2EqC4nHzZpACMj_Q6N_388XIVJK-aBl5pxyQvGeCzJLEfQxmTPRc2YJklrc1lc05BQN486-ESiTWCyKxZZisVhmc1TmYUjC8WvuDepFSzMUa_ZZ5WiA7SOuK9tGJWeE0pwvwWrd0baaugPLUop5k7Y0VrRV99vb65-_u_y37CswyciVojSeXIVG8fiUryHAKVwTx_PO3k6nWY3rJox3WfsVXwnteQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG8UD-rB-BlR1B1MPMgS1nZreyQoQQWECAm3Zi3ryQwjmPjn-97YAD8Tj93arnlv7_XXj997hFwK4UImAuNHohb7nI3jzOZ8ldhQGZlIZZDg3OlGrSG_H4WjnBQ2LW67F0eSmadeIbsFuK1G8SJVKJWv1skGgAGJeQuGtL7wvwGTskjUiuggp8r83Men6eirU_52OppNOs1dspOjRa8-V-8eWUvSfbK9EkMQSp1F4NXpAak-ph4UvRmuudGLeRPnPd30POSsvM935_BRv9HvTQ_JoHk7aLT8PCGCbznlM984h6lypFMJtyyRjiobmpoDnOTwvEtRaWA6Bggg5JhRG0MpdoGFJRUHoMaOSCmdpMkx8YQQ1skwNkYYLtjYuDCOAJrRMKF8bFSZBIVYtM2DhWPOime9DHOMotQgSp2JUkOb60Wbl3mojD9rX6G0NdoR9GzjnA4A48OIVLoOrkhxIRkrk0qhEJ0b2FTTCDPTRDUJHVULJS1f__7dk_9VvyCbrUGnrdt33YdTskWR_JBdd6yQ0uz1LTkDSDIz59kf-AFgjtEI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA46QfRBvOJ0ah8EH1xxTdImeRybY16mEyf4Fpq0eZIqroI_33O6dptX8DFtkpaT5OTL5fsOIcdCuJCJwPiRaMU-Z0lcjDlfpTZURqZSGSQ4D26i_gO_fAwf51j8xW336khywmlAlaYsP3tJ3Nkc8S3ALTaKl6pCqXy1SJbAHQfY0x9oe-qLAyZlFbQVkUJJm_m5jk9T01cH_e2ktJiAeutkrUSOXnvS1BtkIc02yeqcniCkBlMR1vEWad5mHiS9HNff6NG8Z-fdd4ce8lfeJzt1-Oiuczccb5NR73zU6ftlcATfcspz3ziHYXOkUym3LJWOKhualgPM5PDsS1FpYGoGOCBkwqiNIRW7wMLyigNoYzuklj1n6S7xhBDWyTA2RhguWGJcGEcA02iYUp4YVSdBZRZtS-FwjF_xpGeSx2hKDabUhSk1lDmdlnmZyGb8mfsEra1xTEHNNi6pAfB_qE6l2-CWFBeSsTppVA2iy8E21jTCKDVRS0JFzaqRZq9__-7e_7IfkeVht6evL26u9skKRR5EcfOxQWr561t6AOgkN4dFB_wA8HXVRA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+tightness+of+SDP+relaxations+of+QCQPs&rft.jtitle=Mathematical+programming&rft.au=Wang%2C+Alex+L&rft.au=K%C4%B1l%C4%B1n%C3%A7-Karzan+Fatma&rft.date=2022-05-01&rft.pub=Springer+Nature+B.V&rft.issn=0025-5610&rft.eissn=1436-4646&rft.volume=193&rft.issue=1&rft.spage=33&rft.epage=73&rft_id=info:doi/10.1007%2Fs10107-020-01589-9&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon