On the tightness of SDP relaxations of QCQPs
Quadratically constrained quadratic programs (QCQPs) are a fundamental class of optimization problems well-known to be NP-hard in general. In this paper we study conditions under which the standard semidefinite program (SDP) relaxation of a QCQP is tight. We begin by outlining a general framework fo...
Saved in:
Published in | Mathematical programming Vol. 193; no. 1; pp. 33 - 73 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.05.2022
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0025-5610 1436-4646 |
DOI | 10.1007/s10107-020-01589-9 |
Cover
Abstract | Quadratically constrained quadratic programs (QCQPs) are a fundamental class of optimization problems well-known to be NP-hard in general. In this paper we study conditions under which the standard semidefinite program (SDP) relaxation of a QCQP is tight. We begin by outlining a general framework for proving such sufficient conditions. Then using this framework, we show that the SDP relaxation is tight whenever the quadratic eigenvalue multiplicity, a parameter capturing the amount of symmetry present in a given problem, is large enough. We present similar sufficient conditions under which the projected epigraph of the SDP gives the convex hull of the epigraph in the original QCQP. Our results also imply new sufficient conditions for the tightness (as well as convex hull exactness) of a second order cone program relaxation of simultaneously diagonalizable QCQPs. |
---|---|
AbstractList | Quadratically constrained quadratic programs (QCQPs) are a fundamental class of optimization problems well-known to be NP-hard in general. In this paper we study conditions under which the standard semidefinite program (SDP) relaxation of a QCQP is tight. We begin by outlining a general framework for proving such sufficient conditions. Then using this framework, we show that the SDP relaxation is tight whenever the quadratic eigenvalue multiplicity, a parameter capturing the amount of symmetry present in a given problem, is large enough. We present similar sufficient conditions under which the projected epigraph of the SDP gives the convex hull of the epigraph in the original QCQP. Our results also imply new sufficient conditions for the tightness (as well as convex hull exactness) of a second order cone program relaxation of simultaneously diagonalizable QCQPs. |
Audience | Academic |
Author | Wang, Alex L. Kılınç-Karzan, Fatma |
Author_xml | – sequence: 1 givenname: Alex L. orcidid: 0000-0002-4293-0359 surname: Wang fullname: Wang, Alex L. organization: Carnegie Mellon University – sequence: 2 givenname: Fatma orcidid: 0000-0001-5939-4575 surname: Kılınç-Karzan fullname: Kılınç-Karzan, Fatma email: fkilinc@andrew.cmu.edu organization: Carnegie Mellon University |
BookMark | eNp9kE1rAjEQhkOxUG37B3pa6LWxk6_d5Cj2EwSVeg9rTDSy7tpkhfbfN7qFQg-Sw5DhfWaYZ4B6dVNbhO4IDAlA8RgJECgwUMBAhFRYXaA-4SzHPOd5D_UBqMAiJ3CFBjFuAYAwKfvoYVpn7cZmrV9v2trGmDUu-3iaZcFW5VfZ-qY-tebj-SzeoEtXVtHe_tZrtHh5Xozf8GT6-j4eTbDhlLd46VxOCy6dstwwKx1VRizBASgnSK4UlUtBCShSyBWjpky_0hGjlOREMXaN7rux-9B8Hmxs9bY5hDpt1DQXgrAcpEqpYZdal5XVvnZNG0qT3sruvEl6nE_9UQFM8UKy41jZASY0MQbrtPHt6cIE-koT0EeXunOpk0t9cqmPu-g_dB_8rgzf5yHWQTGF67UNf2ecoX4AttOE-g |
CitedBy_id | crossref_primary_10_1007_s12532_025_00275_1 crossref_primary_10_1007_s10107_023_01985_x crossref_primary_10_1007_s10107_021_01734_y crossref_primary_10_1007_s00186_024_00885_w crossref_primary_10_1007_s10107_024_02120_0 crossref_primary_10_1007_s10898_022_01268_3 crossref_primary_10_1016_j_jprocont_2023_103083 crossref_primary_10_1287_moor_2022_1254 crossref_primary_10_1007_s10107_024_02069_0 crossref_primary_10_1007_s10898_025_01478_5 crossref_primary_10_1287_moor_2022_1290 crossref_primary_10_1137_23M1593346 crossref_primary_10_1016_j_jsc_2023_102258 crossref_primary_10_1007_s10107_023_01933_9 crossref_primary_10_1007_s00186_023_00827_y crossref_primary_10_1007_s10107_022_01912_6 crossref_primary_10_1007_s10898_021_01071_6 crossref_primary_10_1137_22M1528215 crossref_primary_10_1007_s10107_024_02073_4 crossref_primary_10_1007_s10107_024_02076_1 crossref_primary_10_1137_22M1507656 crossref_primary_10_1007_s10898_022_01258_5 crossref_primary_10_1007_s10898_024_01407_y crossref_primary_10_1007_s10107_024_02105_z crossref_primary_10_1016_j_jprocont_2024_103252 |
Cites_doi | 10.1137/16M1065197 10.1007/BF02283692 10.1137/15M1023920 10.1023/A:1008282830093 10.1137/050644471 10.1007/978-1-4757-3532-1 10.1287/moor.28.2.246.14485 10.1007/BF02573959 10.1007/s10107-011-0461-3 10.1093/imamci/dnp023 10.1137/1.9781611973402.28 10.1007/s10107-019-01367-2 10.1137/1.9781611971088 10.1137/S105262340139001X 10.1007/BF02592331 10.1007/s10107-008-0246-5 10.1007/s10107-011-0462-2 10.1007/978-3-0348-8362-7_15 10.1007/s10107-017-1157-0 10.1016/j.jpaa.2003.12.011 10.1109/TIT.2015.2490670 10.1137/17M1150670 10.1137/05064816X 10.1007/s10107-015-0903-4 10.1007/s10107-017-1206-8 10.1007/s10107-016-1045-z 10.1515/9781400831050 10.1137/1.9780898718829 10.1137/1038003 10.1137/151005099 10.1007/s10107-015-0888-z 10.1137/18M1174313 10.1007/s10107980012a 10.1007/978-3-319-11008-0 10.1137/18M1215165 10.1109/ITW.2016.7606826 10.1007/s10107-002-0352-8 10.1007/s10107-016-1084-5 10.1007/s10107-013-0710-8 10.1109/MSP.2010.936019 10.1007/s10107-020-01560-8 10.1007/s10107-006-0039-7 10.1137/110826862 10.1007/s10107-014-0749-1 10.1016/j.orl.2014.12.002 10.1016/j.orl.2015.06.001 10.1007/978-3-030-45771-6_32 10.1016/j.orl.2012.03.005 10.1007/s10107-013-0716-2 |
ContentType | Journal Article |
Copyright | Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021 COPYRIGHT 2022 Springer Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021. |
Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021 – notice: COPYRIGHT 2022 Springer – notice: Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021. |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1007/s10107-020-01589-9 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics |
EISSN | 1436-4646 |
EndPage | 73 |
ExternalDocumentID | A703947833 10_1007_s10107_020_01589_9 |
GrantInformation_xml | – fundername: Office of Naval Research grantid: N00014-19-1-2321 funderid: http://dx.doi.org/10.13039/100000006 – fundername: National Science Foundation grantid: 1454548 funderid: http://dx.doi.org/10.13039/100000001 |
GroupedDBID | --K --Z -52 -5D -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1B1 1N0 1OL 1SB 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 7WY 88I 8AO 8FE 8FG 8FL 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMOZ AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EBA EBLON EBR EBS EBU ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IAO IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6V K6~ K7- KDC KOV KOW L6V LAS LLZTM M0C M0N M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQ- NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9R PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS QWB R4E R89 R9I RHV RIG RNI RNS ROL RPX RPZ RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TH9 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 XPP YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZL0 ZMTXR ZWQNP ~02 ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADXHL AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT AEIIB 7SC 8FD ABRTQ JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c424t-bff62748f9e4c3e8f29c5b0f009f5169928b52109178d32cab52af1c99841933 |
IEDL.DBID | AGYKE |
ISSN | 0025-5610 |
IngestDate | Fri Jul 25 19:48:58 EDT 2025 Tue Jun 10 20:50:27 EDT 2025 Thu Apr 24 23:12:46 EDT 2025 Tue Jul 01 02:15:13 EDT 2025 Fri Feb 21 02:46:03 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Relaxation Semidefinite program Convex hull 90C22 (Semidefinite programming) 90C26 (Nonconvex programming, global optimization) 90C20 (Quadratic programming) Quadratically constrained quadratic programming Lagrange function |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c424t-bff62748f9e4c3e8f29c5b0f009f5169928b52109178d32cab52af1c99841933 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5939-4575 0000-0002-4293-0359 |
PQID | 2655136089 |
PQPubID | 25307 |
PageCount | 41 |
ParticipantIDs | proquest_journals_2655136089 gale_infotracacademiconefile_A703947833 crossref_citationtrail_10_1007_s10107_020_01589_9 crossref_primary_10_1007_s10107_020_01589_9 springer_journals_10_1007_s10107_020_01589_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-05-01 |
PublicationDateYYYYMMDD | 2022-05-01 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationSubtitle | A Publication of the Mathematical Optimization Society |
PublicationTitle | Mathematical programming |
PublicationTitleAbbrev | Math. Program |
PublicationYear | 2022 |
Publisher | Springer Berlin Heidelberg Springer Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer – name: Springer Nature B.V |
References | Conforti, Cornuéjols, Zambelli (CR20) 2014 Jiang, Li (CR33) 2019; 29 Yıldız, Cornuéjols (CR58) 2015; 43 Modaresi, Vielma (CR41) 2017; 164 Phan huy Hao (CR30) 1982; 26 Wang, Kılınç-Karzan, Bienstock, Zambelli (CR52) 2020 Sturm, Zhang (CR48) 2003; 28 Megretski, Borichev, Nikolski (CR39) 2001 Luo, Ma, So, Ye, Zhang (CR38) 2010; 27 Yang, Anstreicher, Burer (CR54) 2018; 170 Ye, Zhang (CR56) 2003; 14 Wolkowicz, Saigal, Vandenberghe (CR53) 2012 Ben-Tal, Teboulle (CR10) 1996; 72 Locatelli (CR36) 2015; 43 CR46 Yıldıran (CR57) 2009; 26 Burer, Ye (CR18) 2019; 181 CR45 Fradkov, Yakubovich (CR25) 1979; 6 CR42 CR40 Ben-Tal, Nemirovski (CR9) 2001 Kılınç-Karzan, Yıldız (CR35) 2015; 154 Ye (CR55) 1999; 84 Ben-Tal, den Hertog (CR8) 2014; 143 Jiang, Li (CR32) 2016; 26 Beck, Eldar (CR6) 2006; 17 de Klerk, Dobre, Pasechnik (CR23) 2011; 129 Burer, Yang (CR17) 2014; 149 Barvinok (CR4) 1993; 10 Burer (CR13) 2015; 151 Burer, Kılınç-Karzan (CR15) 2017; 162 Jeyakumar, Li (CR31) 2014; 147 Beck, Drori, Teboulle (CR7) 2012; 40 Vandenberghe, Boyd (CR50) 1996; 38 Ramana, Pardalos, Wolkowicz (CR43) 1997 CR12 Candès, Eldar, Strohmer, Voroninski (CR19) 2015; 57 Bao, Sahinidis, Tawarmalani (CR3) 2011; 129 CR51 Adachi, Nakatsukasa (CR2) 2019; 173 Burer, Anstreicher (CR14) 2013; 23 Ekeland, Temam (CR24) 1999 Jiang, Li (CR34) 2020; 30 Ben-Tal, El Ghaoui, Nemirovski (CR11) 2009 Burer, Monteiro (CR16) 2003; 95 Locatelli (CR37) 2016; 10 de Klerk, Sotirov (CR21) 2010; 122 CR28 Tawarmalani, Sahinidis (CR49) 2002 de Klerk, Pasechnik, Schrijver (CR22) 2007; 109 Abbe, Bandeira, Hall (CR1) 2015; 62 Rujeerapaiboon, Schindler, Kuhn, Wiesemann (CR44) 2019; 29 Fujie, Kojima (CR26) 1997; 10 Shor (CR47) 1990; 25 Gatermann, Parrilo (CR27) 2004; 192 Ho-Nguyen, Kılınç-Karzan (CR29) 2017; 27 Beck (CR5) 2007; 17 R Jiang (1589_CR32) 2016; 26 A Beck (1589_CR7) 2012; 40 M Conforti (1589_CR20) 2014 S Burer (1589_CR14) 2013; 23 E Abbe (1589_CR1) 2015; 62 1589_CR51 S Adachi (1589_CR2) 2019; 173 N Rujeerapaiboon (1589_CR44) 2019; 29 U Yıldıran (1589_CR57) 2009; 26 1589_CR12 A Megretski (1589_CR39) 2001 S Burer (1589_CR13) 2015; 151 V Jeyakumar (1589_CR31) 2014; 147 Z Luo (1589_CR38) 2010; 27 M Locatelli (1589_CR37) 2016; 10 L Vandenberghe (1589_CR50) 1996; 38 A Ben-Tal (1589_CR10) 1996; 72 E de Klerk (1589_CR22) 2007; 109 E de Klerk (1589_CR21) 2010; 122 A Ben-Tal (1589_CR11) 2009 AL Wang (1589_CR52) 2020 EJ Candès (1589_CR19) 2015; 57 A Barvinok (1589_CR4) 1993; 10 R Jiang (1589_CR34) 2020; 30 M Locatelli (1589_CR36) 2015; 43 T Fujie (1589_CR26) 1997; 10 1589_CR42 B Yang (1589_CR54) 2018; 170 1589_CR40 E de Klerk (1589_CR23) 2011; 129 1589_CR46 Y Ye (1589_CR56) 2003; 14 1589_CR45 S Yıldız (1589_CR58) 2015; 43 A Beck (1589_CR5) 2007; 17 R Jiang (1589_CR33) 2019; 29 S Burer (1589_CR15) 2017; 162 N Ho-Nguyen (1589_CR29) 2017; 27 MV Ramana (1589_CR43) 1997 K Gatermann (1589_CR27) 2004; 192 AL Fradkov (1589_CR25) 1979; 6 Y Ye (1589_CR55) 1999; 84 M Tawarmalani (1589_CR49) 2002 H Wolkowicz (1589_CR53) 2012 S Burer (1589_CR18) 2019; 181 A Beck (1589_CR6) 2006; 17 NZ Shor (1589_CR47) 1990; 25 S Burer (1589_CR16) 2003; 95 S Modaresi (1589_CR41) 2017; 164 A Ben-Tal (1589_CR9) 2001 A Ben-Tal (1589_CR8) 2014; 143 JF Sturm (1589_CR48) 2003; 28 S Burer (1589_CR17) 2014; 149 E Phan huy Hao (1589_CR30) 1982; 26 X Bao (1589_CR3) 2011; 129 1589_CR28 F Kılınç-Karzan (1589_CR35) 2015; 154 I Ekeland (1589_CR24) 1999 |
References_xml | – ident: CR45 – volume: 38 start-page: 49 issue: 1 year: 1996 end-page: 95 ident: CR50 article-title: Semidefinite programming publication-title: SIAM Rev. – volume: 40 start-page: 298 issue: 4 year: 2012 end-page: 302 ident: CR7 article-title: A new semidefinite programming relaxation scheme for a class of quadratic matrix problems publication-title: Oper. Res. Lett. – volume: 28 start-page: 246 issue: 2 year: 2003 end-page: 267 ident: CR48 article-title: On cones of nonnegative quadratic functions publication-title: Math. Oper. Res. – ident: CR51 – ident: CR12 – year: 2009 ident: CR11 publication-title: Robust Optimization – volume: 27 start-page: 20 issue: 3 year: 2010 end-page: 34 ident: CR38 article-title: Semidefinite relaxation of quadratic optimization problems publication-title: IEEE Signal Process. Mag. – volume: 147 start-page: 171 year: 2014 end-page: 206 ident: CR31 article-title: Trust-region problems with linear inequality constraints: exact SDP relaxation, global optimality and robust optimization publication-title: Math. Program. – volume: 14 start-page: 245 issue: 1 year: 2003 end-page: 267 ident: CR56 article-title: New results on quadratic minimization publication-title: SIAM J. Optim. – volume: 151 start-page: 89 year: 2015 end-page: 116 ident: CR13 article-title: A gentle, geometric introduction to copositive optimization publication-title: Math. Program. – volume: 149 start-page: 253 year: 2014 end-page: 264 ident: CR17 article-title: The trust region subproblem with non-intersecting linear constraints publication-title: Math. Program. – volume: 26 start-page: 105 year: 1982 end-page: 119 ident: CR30 article-title: Quadratically constrained quadratic programming: some applications and a method for solution publication-title: Z. Oper. Res. – ident: CR42 – volume: 84 start-page: 219 year: 1999 end-page: 226 ident: CR55 article-title: Approximating quadratic programming with bound and quadratic constraints publication-title: Math. Program. – volume: 27 start-page: 1485 issue: 3 year: 2017 end-page: 1512 ident: CR29 article-title: A second-order cone based approach for solving the trust region subproblem and its variants publication-title: SIAM J. Optim. – ident: CR46 – year: 2014 ident: CR20 publication-title: Integer Programming – volume: 129 start-page: 129 year: 2011 ident: CR3 article-title: Semidefinite relaxations for quadratically constrained quadratic programming: a review and comparisons publication-title: Math. Program. – volume: 6 start-page: 101 year: 1979 end-page: 109 ident: CR25 article-title: The S-procedure and duality relations in nonconvex problems of quadratic programming publication-title: Vestnik Leningr. Univ. Math. – volume: 170 start-page: 541 year: 2018 end-page: 553 ident: CR54 article-title: Quadratic programs with hollows publication-title: Math. Program. – volume: 26 start-page: 417 issue: 4 year: 2009 end-page: 450 ident: CR57 article-title: Convex hull of two quadratic constraints is an LMI set publication-title: IMA J. Math. Control Inform. – start-page: 27 year: 1997 end-page: 38 ident: CR43 article-title: Polyhedra, spectrahedra, and semidefinite programming publication-title: Topics in Semidefinite and Interior-Point Methods (Fields Institute Communications) – volume: 29 start-page: 1603 issue: 2 year: 2019 end-page: 1633 ident: CR33 article-title: Novel reformulations and efficient algorithms for the generalized trust region subproblem publication-title: SIAM J. Optim. – volume: 173 start-page: 79 year: 2019 end-page: 116 ident: CR2 article-title: Eigenvalue-based algorithm and analysis for nonconvex QCQP with one constraint publication-title: Math. Program. – year: 2001 ident: CR9 publication-title: Lectures on Modern Convex Optimization – volume: 164 start-page: 383 year: 2017 end-page: 409 ident: CR41 article-title: Convex hull of two quadratic or a conic quadratic and a quadratic inequality publication-title: Math. Program. – volume: 17 start-page: 1224 issue: 4 year: 2007 end-page: 1238 ident: CR5 article-title: Quadratic matrix programming publication-title: SIAM J. Optim. – volume: 181 start-page: 1 year: 2019 end-page: 17 ident: CR18 article-title: Exact semidefinite formulations for a class of (random and non-random) nonconvex quadratic programs publication-title: Math. Program. – volume: 17 start-page: 844 issue: 3 year: 2006 end-page: 860 ident: CR6 article-title: Strong duality in nonconvex quadratic optimization with two quadratic constraints publication-title: SIAM J. Optim. – volume: 10 start-page: 1141 issue: 6 year: 2016 end-page: 1151 ident: CR37 article-title: Exactness conditions for an SDP relaxation of the extended trust region problem publication-title: Oper. Res. Lett. – volume: 129 start-page: 91 year: 2011 end-page: 111 ident: CR23 article-title: Numerical block diagonalization of matrix *-algebras with application to semidefinite programming publication-title: Math. Program. – volume: 10 start-page: 1 year: 1993 end-page: 13 ident: CR4 article-title: Feasibility testing for systems of real quadratic equations publication-title: Discrete Comput. Geom. – volume: 29 start-page: 1211 issue: 2 year: 2019 end-page: 1239 ident: CR44 article-title: Size matters: cardinality-constrained clustering and outlier detection via conic optimization publication-title: SIAM J. Optim. – volume: 23 start-page: 432 issue: 1 year: 2013 end-page: 451 ident: CR14 article-title: Second-order-cone constraints for extended trust-region subproblems publication-title: SIAM J. Optim. – year: 2012 ident: CR53 publication-title: Handbook of Semidefinite Programming: Theory, Algorithms, and Applications – volume: 62 start-page: 471 issue: 1 year: 2015 end-page: 487 ident: CR1 article-title: Exact recovery in the stochastic block model publication-title: IEEE Trans. Inform. Theory – volume: 143 start-page: 1 year: 2014 end-page: 29 ident: CR8 article-title: Hidden conic quadratic representation of some nonconvex quadratic optimization problems publication-title: Math. Program. – volume: 43 start-page: 126 issue: 2 year: 2015 end-page: 131 ident: CR36 article-title: Some results for quadratic problems with one or two quadratic constraints publication-title: Oper. Res. Lett. – volume: 26 start-page: 1649 issue: 3 year: 2016 end-page: 1668 ident: CR32 article-title: Simultaneous diagonalization of matrices and its applications in quadratically constrained quadratic programming publication-title: SIAM J. Optim. – volume: 43 start-page: 432 issue: 4 year: 2015 end-page: 437 ident: CR58 article-title: Disjunctive cuts for cross-sections of the second-order cone publication-title: Oper. Res. Lett. – volume: 30 start-page: 915 issue: 1 year: 2020 end-page: 932 ident: CR34 article-title: A linear-time algorithm for generalized trust region problems publication-title: SIAM J. Optim. – volume: 162 start-page: 393 year: 2017 end-page: 429 ident: CR15 article-title: How to convexify the intersection of a second order cone and a nonconvex quadratic publication-title: Math. Program. – year: 1999 ident: CR24 publication-title: Convex Analysis and Variational Problems – ident: CR40 – volume: 72 start-page: 51 year: 1996 end-page: 63 ident: CR10 article-title: Hidden convexity in some nonconvex quadratically constrained quadratic programming publication-title: Math. Program. – volume: 122 start-page: 225 year: 2010 end-page: 246 ident: CR21 article-title: Exploiting group symmetry in semidefinite programming relaxations of the quadratic assignment problem publication-title: Math. Program. – volume: 154 start-page: 463 year: 2015 end-page: 491 ident: CR35 article-title: Two-term disjunctions on the second-order cone publication-title: Math. Program. – start-page: 365 year: 2001 end-page: 392 ident: CR39 article-title: Relaxations of quadratic programs in operator theory and system analysis publication-title: Systems, Approximation, Singular Integral Operators, and Related Topics – volume: 57 start-page: 225 issue: 2 year: 2015 end-page: 251 ident: CR19 article-title: Phase retrieval via matrix completion publication-title: SIAM Rev. – volume: 25 start-page: 163 year: 1990 end-page: 168 ident: CR47 article-title: Dual quadratic estimates in polynomial and Boolean programming publication-title: Ann. Oper. Res. – start-page: 419 year: 2020 end-page: 432 ident: CR52 article-title: On convex hulls of epigraphs of QCQPs publication-title: Integer Programming and Combinatorial Optimization (IPCO 2020) – volume: 95 start-page: 329 year: 2003 end-page: 357 ident: CR16 article-title: A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization publication-title: Math. Program. – volume: 109 start-page: 613 year: 2007 end-page: 624 ident: CR22 article-title: Reduction of symmetric semidefinite programs using the regular -representation publication-title: Math. Program. – volume: 10 start-page: 367 issue: 4 year: 1997 end-page: 380 ident: CR26 article-title: Semidefinite programming relaxation for nonconvex quadratic programs publication-title: J. Glob. Optim. – year: 2002 ident: CR49 publication-title: Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications – volume: 192 start-page: 95 issue: 1–3 year: 2004 end-page: 128 ident: CR27 article-title: Symmetry groups, semidefinite programs, and sums of squares publication-title: J. Pure Appl. Algebra – ident: CR28 – volume: 27 start-page: 1485 issue: 3 year: 2017 ident: 1589_CR29 publication-title: SIAM J. Optim. doi: 10.1137/16M1065197 – ident: 1589_CR28 – volume: 25 start-page: 163 year: 1990 ident: 1589_CR47 publication-title: Ann. Oper. Res. doi: 10.1007/BF02283692 – volume: 6 start-page: 101 year: 1979 ident: 1589_CR25 publication-title: Vestnik Leningr. Univ. Math. – volume: 26 start-page: 1649 issue: 3 year: 2016 ident: 1589_CR32 publication-title: SIAM J. Optim. doi: 10.1137/15M1023920 – volume: 10 start-page: 367 issue: 4 year: 1997 ident: 1589_CR26 publication-title: J. Glob. Optim. doi: 10.1023/A:1008282830093 – volume: 17 start-page: 844 issue: 3 year: 2006 ident: 1589_CR6 publication-title: SIAM J. Optim. doi: 10.1137/050644471 – volume-title: Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications year: 2002 ident: 1589_CR49 doi: 10.1007/978-1-4757-3532-1 – volume: 28 start-page: 246 issue: 2 year: 2003 ident: 1589_CR48 publication-title: Math. Oper. Res. doi: 10.1287/moor.28.2.246.14485 – volume: 10 start-page: 1 year: 1993 ident: 1589_CR4 publication-title: Discrete Comput. Geom. doi: 10.1007/BF02573959 – volume: 129 start-page: 91 year: 2011 ident: 1589_CR23 publication-title: Math. Program. doi: 10.1007/s10107-011-0461-3 – volume: 26 start-page: 417 issue: 4 year: 2009 ident: 1589_CR57 publication-title: IMA J. Math. Control Inform. doi: 10.1093/imamci/dnp023 – ident: 1589_CR12 doi: 10.1137/1.9781611973402.28 – volume: 181 start-page: 1 year: 2019 ident: 1589_CR18 publication-title: Math. Program. doi: 10.1007/s10107-019-01367-2 – volume-title: Convex Analysis and Variational Problems year: 1999 ident: 1589_CR24 doi: 10.1137/1.9781611971088 – volume: 14 start-page: 245 issue: 1 year: 2003 ident: 1589_CR56 publication-title: SIAM J. Optim. doi: 10.1137/S105262340139001X – volume: 72 start-page: 51 year: 1996 ident: 1589_CR10 publication-title: Math. Program. doi: 10.1007/BF02592331 – volume: 122 start-page: 225 year: 2010 ident: 1589_CR21 publication-title: Math. Program. doi: 10.1007/s10107-008-0246-5 – volume: 129 start-page: 129 year: 2011 ident: 1589_CR3 publication-title: Math. Program. doi: 10.1007/s10107-011-0462-2 – start-page: 365 volume-title: Systems, Approximation, Singular Integral Operators, and Related Topics year: 2001 ident: 1589_CR39 doi: 10.1007/978-3-0348-8362-7_15 – volume: 170 start-page: 541 year: 2018 ident: 1589_CR54 publication-title: Math. Program. doi: 10.1007/s10107-017-1157-0 – volume: 192 start-page: 95 issue: 1–3 year: 2004 ident: 1589_CR27 publication-title: J. Pure Appl. Algebra doi: 10.1016/j.jpaa.2003.12.011 – volume: 62 start-page: 471 issue: 1 year: 2015 ident: 1589_CR1 publication-title: IEEE Trans. Inform. Theory doi: 10.1109/TIT.2015.2490670 – volume: 29 start-page: 1211 issue: 2 year: 2019 ident: 1589_CR44 publication-title: SIAM J. Optim. doi: 10.1137/17M1150670 – volume: 17 start-page: 1224 issue: 4 year: 2007 ident: 1589_CR5 publication-title: SIAM J. Optim. doi: 10.1137/05064816X – volume: 154 start-page: 463 year: 2015 ident: 1589_CR35 publication-title: Math. Program. doi: 10.1007/s10107-015-0903-4 – volume: 173 start-page: 79 year: 2019 ident: 1589_CR2 publication-title: Math. Program. doi: 10.1007/s10107-017-1206-8 – volume: 162 start-page: 393 year: 2017 ident: 1589_CR15 publication-title: Math. Program. doi: 10.1007/s10107-016-1045-z – volume: 10 start-page: 1141 issue: 6 year: 2016 ident: 1589_CR37 publication-title: Oper. Res. Lett. – volume-title: Robust Optimization year: 2009 ident: 1589_CR11 doi: 10.1515/9781400831050 – volume-title: Lectures on Modern Convex Optimization year: 2001 ident: 1589_CR9 doi: 10.1137/1.9780898718829 – volume: 38 start-page: 49 issue: 1 year: 1996 ident: 1589_CR50 publication-title: SIAM Rev. doi: 10.1137/1038003 – volume: 57 start-page: 225 issue: 2 year: 2015 ident: 1589_CR19 publication-title: SIAM Rev. doi: 10.1137/151005099 – volume: 151 start-page: 89 year: 2015 ident: 1589_CR13 publication-title: Math. Program. doi: 10.1007/s10107-015-0888-z – volume: 29 start-page: 1603 issue: 2 year: 2019 ident: 1589_CR33 publication-title: SIAM J. Optim. doi: 10.1137/18M1174313 – volume: 84 start-page: 219 year: 1999 ident: 1589_CR55 publication-title: Math. Program. doi: 10.1007/s10107980012a – volume-title: Integer Programming year: 2014 ident: 1589_CR20 doi: 10.1007/978-3-319-11008-0 – volume: 30 start-page: 915 issue: 1 year: 2020 ident: 1589_CR34 publication-title: SIAM J. Optim. doi: 10.1137/18M1215165 – ident: 1589_CR45 – ident: 1589_CR40 doi: 10.1109/ITW.2016.7606826 – volume: 95 start-page: 329 year: 2003 ident: 1589_CR16 publication-title: Math. Program. doi: 10.1007/s10107-002-0352-8 – ident: 1589_CR42 – volume: 164 start-page: 383 year: 2017 ident: 1589_CR41 publication-title: Math. Program. doi: 10.1007/s10107-016-1084-5 – volume: 143 start-page: 1 year: 2014 ident: 1589_CR8 publication-title: Math. Program. doi: 10.1007/s10107-013-0710-8 – volume: 27 start-page: 20 issue: 3 year: 2010 ident: 1589_CR38 publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2010.936019 – ident: 1589_CR51 doi: 10.1007/s10107-020-01560-8 – volume: 109 start-page: 613 year: 2007 ident: 1589_CR22 publication-title: Math. Program. doi: 10.1007/s10107-006-0039-7 – volume: 23 start-page: 432 issue: 1 year: 2013 ident: 1589_CR14 publication-title: SIAM J. Optim. doi: 10.1137/110826862 – volume: 149 start-page: 253 year: 2014 ident: 1589_CR17 publication-title: Math. Program. doi: 10.1007/s10107-014-0749-1 – ident: 1589_CR46 – volume: 43 start-page: 126 issue: 2 year: 2015 ident: 1589_CR36 publication-title: Oper. Res. Lett. doi: 10.1016/j.orl.2014.12.002 – start-page: 27 volume-title: Topics in Semidefinite and Interior-Point Methods (Fields Institute Communications) year: 1997 ident: 1589_CR43 – volume: 43 start-page: 432 issue: 4 year: 2015 ident: 1589_CR58 publication-title: Oper. Res. Lett. doi: 10.1016/j.orl.2015.06.001 – start-page: 419 volume-title: Integer Programming and Combinatorial Optimization (IPCO 2020) year: 2020 ident: 1589_CR52 doi: 10.1007/978-3-030-45771-6_32 – volume: 26 start-page: 105 year: 1982 ident: 1589_CR30 publication-title: Z. Oper. Res. – volume: 40 start-page: 298 issue: 4 year: 2012 ident: 1589_CR7 publication-title: Oper. Res. Lett. doi: 10.1016/j.orl.2012.03.005 – volume-title: Handbook of Semidefinite Programming: Theory, Algorithms, and Applications year: 2012 ident: 1589_CR53 – volume: 147 start-page: 171 year: 2014 ident: 1589_CR31 publication-title: Math. Program. doi: 10.1007/s10107-013-0716-2 |
SSID | ssj0001388 |
Score | 2.5295565 |
Snippet | Quadratically constrained quadratic programs (QCQPs) are a fundamental class of optimization problems well-known to be NP-hard in general. In this paper we... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 33 |
SubjectTerms | Calculus of Variations and Optimal Control; Optimization Combinatorics Convexity Eigenvalues Full Length Paper Mathematical and Computational Physics Mathematical Methods in Physics Mathematics Mathematics and Statistics Mathematics of Computing Numerical Analysis Optimization Theoretical Tightness |
Title | On the tightness of SDP relaxations of QCQPs |
URI | https://link.springer.com/article/10.1007/s10107-020-01589-9 https://www.proquest.com/docview/2655136089 |
Volume | 193 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JT-swEB5BufAO7E-sVQ5IHCCo8RLbx7IUBGITVIKTFbvxBVQQDRLi1zOTJmVH4ujEdpyxPf5sz3wDsK5UkFwlLk5VK4sF72XlnItN7qVxOtfGkYPzyWl62BVH1_K6cgob1Nbu9ZVkqanfObsldKzGyJBKahObcZiQiTa6ARPtg5vj_ZEGTrjWdahWwgeVs8z3tXxYkD6r5S_3o-Wy05mGbt3gobXJ7fZT4bb9yycux7_-0QxMVTg0ag8HziyM5f05-PeOnRBTJyNK18E8bJ31I0xGBe3mST9G9yG63DuPyBvmeXjuR48udi_OBwtw1dm_2j2Mq1ALsRdMFLELgYLw6GBy4XmuAzNeulZABBboJs0w7XChR3ChdI8zn2EqC4nHzZpACMj_Q6N_388XIVJK-aBl5pxyQvGeCzJLEfQxmTPRc2YJklrc1lc05BQN486-ESiTWCyKxZZisVhmc1TmYUjC8WvuDepFSzMUa_ZZ5WiA7SOuK9tGJWeE0pwvwWrd0baaugPLUop5k7Y0VrRV99vb65-_u_y37CswyciVojSeXIVG8fiUryHAKVwTx_PO3k6nWY3rJox3WfsVXwnteQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG8UD-rB-BlR1B1MPMgS1nZreyQoQQWECAm3Zi3ryQwjmPjn-97YAD8Tj93arnlv7_XXj997hFwK4UImAuNHohb7nI3jzOZ8ldhQGZlIZZDg3OlGrSG_H4WjnBQ2LW67F0eSmadeIbsFuK1G8SJVKJWv1skGgAGJeQuGtL7wvwGTskjUiuggp8r83Men6eirU_52OppNOs1dspOjRa8-V-8eWUvSfbK9EkMQSp1F4NXpAak-ph4UvRmuudGLeRPnPd30POSsvM935_BRv9HvTQ_JoHk7aLT8PCGCbznlM984h6lypFMJtyyRjiobmpoDnOTwvEtRaWA6Bggg5JhRG0MpdoGFJRUHoMaOSCmdpMkx8YQQ1skwNkYYLtjYuDCOAJrRMKF8bFSZBIVYtM2DhWPOime9DHOMotQgSp2JUkOb60Wbl3mojD9rX6G0NdoR9GzjnA4A48OIVLoOrkhxIRkrk0qhEJ0b2FTTCDPTRDUJHVULJS1f__7dk_9VvyCbrUGnrdt33YdTskWR_JBdd6yQ0uz1LTkDSDIz59kf-AFgjtEI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA46QfRBvOJ0ah8EH1xxTdImeRybY16mEyf4Fpq0eZIqroI_33O6dptX8DFtkpaT5OTL5fsOIcdCuJCJwPiRaMU-Z0lcjDlfpTZURqZSGSQ4D26i_gO_fAwf51j8xW336khywmlAlaYsP3tJ3Nkc8S3ALTaKl6pCqXy1SJbAHQfY0x9oe-qLAyZlFbQVkUJJm_m5jk9T01cH_e2ktJiAeutkrUSOXnvS1BtkIc02yeqcniCkBlMR1vEWad5mHiS9HNff6NG8Z-fdd4ce8lfeJzt1-Oiuczccb5NR73zU6ftlcATfcspz3ziHYXOkUym3LJWOKhualgPM5PDsS1FpYGoGOCBkwqiNIRW7wMLyigNoYzuklj1n6S7xhBDWyTA2RhguWGJcGEcA02iYUp4YVSdBZRZtS-FwjF_xpGeSx2hKDabUhSk1lDmdlnmZyGb8mfsEra1xTEHNNi6pAfB_qE6l2-CWFBeSsTppVA2iy8E21jTCKDVRS0JFzaqRZq9__-7e_7IfkeVht6evL26u9skKRR5EcfOxQWr561t6AOgkN4dFB_wA8HXVRA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+tightness+of+SDP+relaxations+of+QCQPs&rft.jtitle=Mathematical+programming&rft.au=Wang%2C+Alex+L&rft.au=K%C4%B1l%C4%B1n%C3%A7-Karzan+Fatma&rft.date=2022-05-01&rft.pub=Springer+Nature+B.V&rft.issn=0025-5610&rft.eissn=1436-4646&rft.volume=193&rft.issue=1&rft.spage=33&rft.epage=73&rft_id=info:doi/10.1007%2Fs10107-020-01589-9&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon |