Estimates of Aboveground Biomass from Texture Analysis of Landsat Imagery

Maps of forest biomass are important tools for managing natural resources and reporting terrestrial carbon stocks. Using the San Juan National Forest in Southwest Colorado as a case study, we evaluate regional biomass maps created using physical variables, spectral vegetation indices, and image text...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 6; no. 7; pp. 6407 - 6422
Main Authors Kelsey, Katharine C, Neff, Jason C
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.07.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Maps of forest biomass are important tools for managing natural resources and reporting terrestrial carbon stocks. Using the San Juan National Forest in Southwest Colorado as a case study, we evaluate regional biomass maps created using physical variables, spectral vegetation indices, and image textural analysis on Landsat TM imagery. We investigate eight gray level co-occurrence matrix based texture measures (mean, variance, homogeneity, contrast, dissimilarity, entropy, second moment and correlation) on four window sizes (3 3, 5 5, 7 7, 9 9) at four offsets ([1,0], [1,1], [0,1], [1,-1]) on four Landsat TM bands (2, 3, 4, and 5). The map with the highest prediction quality was created using three texture metrics calculated from Landsat Band 2 on a 3 3 window and an offset of [0,1]: entropy, mean and correlation; and one physical variable: slope. The correlation of predicted versus observed biomass values for our texture-based biomass map is r = 0.86, the Root Mean Square Error is 45.6 Mg times ha-1, and the Coefficient of Variation of the Root Mean Square Error is 0.31. We find that models including image texture variables are more strongly correlated with biomass than models using only physical and spectral variables. Additionally, we suggest that the use of texture appears to better capture the magnitude and direction of biomass change following disturbance compared to spectral approaches. The biomass mapping methods we present here are widely applicable throughout the US, as they are based on publically available datasets and utilize relatively simple analytical routines.
AbstractList Maps of forest biomass are important tools for managing natural resources and reporting terrestrial carbon stocks. Using the San Juan National Forest in Southwest Colorado as a case study, we evaluate regional biomass maps created using physical variables, spectral vegetation indices, and image textural analysis on Landsat TM imagery. We investigate eight gray level co-occurrence matrix based texture measures (mean, variance, homogeneity, contrast, dissimilarity, entropy, second moment and correlation) on four window sizes (3 3, 5 5, 7 7, 9 9) at four offsets ([1,0], [1,1], [0,1], [1,-1]) on four Landsat TM bands (2, 3, 4, and 5). The map with the highest prediction quality was created using three texture metrics calculated from Landsat Band 2 on a 3 3 window and an offset of [0,1]: entropy, mean and correlation; and one physical variable: slope. The correlation of predicted versus observed biomass values for our texture-based biomass map is r = 0.86, the Root Mean Square Error is 45.6 Mg times ha-1, and the Coefficient of Variation of the Root Mean Square Error is 0.31. We find that models including image texture variables are more strongly correlated with biomass than models using only physical and spectral variables. Additionally, we suggest that the use of texture appears to better capture the magnitude and direction of biomass change following disturbance compared to spectral approaches. The biomass mapping methods we present here are widely applicable throughout the US, as they are based on publically available datasets and utilize relatively simple analytical routines.
Maps of forest biomass are important tools for managing natural resources and reporting terrestrial carbon stocks. Using the San Juan National Forest in Southwest Colorado as a case study, we evaluate regional biomass maps created using physical variables, spectral vegetation indices, and image textural analysis on Landsat TM imagery. We investigate eight gray level co-occurrence matrix based texture measures (mean, variance, homogeneity, contrast, dissimilarity, entropy, second moment and correlation) on four window sizes (3 × 3, 5 × 5, 7 × 7, 9 × 9) at four offsets ([1,0], [1,1], [0,1], [1,−1]) on four Landsat TM bands (2, 3, 4, and 5). The map with the highest prediction quality was created using three texture metrics calculated from Landsat Band 2 on a 3 × 3 window and an offset of [0,1]: entropy, mean and correlation; and one physical variable: slope. The correlation of predicted versus observed biomass values for our texture-based biomass map is r = 0.86, the Root Mean Square Error is 45.6 Mg∙ha−1, and the Coefficient of Variation of the Root Mean Square Error is 0.31. We find that models including image texture variables are more strongly correlated with biomass than models using only physical and spectral variables. Additionally, we suggest that the use of texture appears to better capture the magnitude and direction of biomass change following disturbance compared to spectral approaches. The biomass mapping methods we present here are widely applicable throughout the US, as they are based on publically available datasets and utilize relatively simple analytical routines.
Maps of forest biomass are important tools for managing natural resources and reporting terrestrial carbon stocks. Using the San Juan National Forest in Southwest Colorado as a case study, we evaluate regional biomass maps created using physical variables, spectral vegetation indices, and image textural analysis on Landsat TM imagery. We investigate eight gray level co-occurrence matrix based texture measures (mean, variance, homogeneity, contrast, dissimilarity, entropy, second moment and correlation) on four window sizes (3 × 3, 5 × 5, 7 × 7, 9 × 9) at four offsets ([1,0], [1,1], [0,1], [1,-1]) on four Landsat TM bands (2, 3, 4, and 5). The map with the highest prediction quality was created using three texture metrics calculated from Landsat Band 2 on a 3 × 3 window and an offset of [0,1]: entropy, mean and correlation; and one physical variable: slope. The correlation of predicted versus observed biomass values for our texture-based biomass map is r = 0.86, the Root Mean Square Error is 45.6 Mg*ha-1, and the Coefficient of Variation of the Root Mean Square Error is 0.31. We find that models including image texture variables are more strongly correlated with biomass than models using only physical and spectral variables. Additionally, we suggest that the use of texture appears to better capture the magnitude and direction of biomass change following disturbance compared to spectral approaches. The biomass mapping methods we present here are widely applicable throughout the US, as they are based on publically available datasets and utilize relatively simple analytical routines.
Author Neff, Jason C
Kelsey, Katharine C
Author_xml – sequence: 1
  givenname: Katharine
  surname: Kelsey
  middlename: C
  fullname: Kelsey, Katharine C
– sequence: 2
  givenname: Jason
  surname: Neff
  middlename: C
  fullname: Neff, Jason C
BookMark eNqNkU9r3DAQxUVJoUmaQ7-BIZfmsKn-jCX5uA1ps7DQy97FWBotXmwrlezS_fZ1siGUnDKXGYYfjzfzLtjZmEZi7Ivgt0o1_FsumhsN3Hxg55IbuQLZyLP_5k_sqpQDX0op0XA4Z5v7MnUDTlSqFKt1m_7QPqd5DNX3Lg1YShVzGqod_Z3mTNV6xP5Yumd4i2MoOFWbAfeUj5_Zx4h9oauXfsl2P-53dw-r7a-fm7v1duVBwrRqo9UWa_LSSG7RN1qFYEOU7WJQtaIGHb1tQGgOHpUPABhBe1DWtyaqS7Y5yYaEB_eYF_P56BJ27nmR8t5hnjrfkxMYWys1GgoEQqiWqIkBIUYCzlu_aH09aT3m9HumMrmhK576HkdKc3HCGMtrMLx5B1oLKZQW9YJev0EPac7L4xaqBiuNbiws1M2J8jmVkim-3iK4e0rTvaap_gGBnJJm
CitedBy_id crossref_primary_10_1080_17538947_2023_2165180
crossref_primary_10_1109_TGRS_2020_3018638
crossref_primary_10_1186_s13021_016_0055_8
crossref_primary_10_3390_f14020299
crossref_primary_10_1016_j_jag_2023_103528
crossref_primary_10_1016_j_jag_2021_102435
crossref_primary_10_3390_rs12203335
crossref_primary_10_1890_ES15_00232_1
crossref_primary_10_1016_j_jag_2021_102397
crossref_primary_10_3390_su142114222
crossref_primary_10_3390_f11010011
crossref_primary_10_1016_j_ecoinf_2023_102404
crossref_primary_10_1108_AEAT_07_2022_0199
crossref_primary_10_1016_j_ecolind_2017_01_022
crossref_primary_10_1088_1755_1315_569_1_012053
crossref_primary_10_1016_j_rse_2019_111423
crossref_primary_10_1016_j_apgeog_2015_09_003
crossref_primary_10_1002_2015JG003315
crossref_primary_10_3390_rs11070738
crossref_primary_10_1186_s13021_020_00143_6
crossref_primary_10_1002_rse2_5
crossref_primary_10_1007_s11119_018_9600_7
crossref_primary_10_1016_j_jag_2015_08_004
crossref_primary_10_1080_01431161_2018_1553323
crossref_primary_10_3390_rs15030794
crossref_primary_10_1139_cjfr_2019_0216
crossref_primary_10_3390_rs12244170
crossref_primary_10_1109_JSTARS_2017_2748341
crossref_primary_10_1016_j_ecoinf_2024_102479
crossref_primary_10_3390_rs15030559
crossref_primary_10_3390_f12020216
crossref_primary_10_3390_rs14164097
crossref_primary_10_1371_journal_pone_0278645
crossref_primary_10_3390_rs15245715
crossref_primary_10_1016_j_jag_2018_12_004
crossref_primary_10_1016_j_foreco_2017_10_007
crossref_primary_10_1117_1_JRS_12_045019
crossref_primary_10_3390_su7010195
crossref_primary_10_1016_j_sciaf_2023_e01763
crossref_primary_10_1007_s11629_019_5968_8
crossref_primary_10_1007_s12524_024_01836_y
crossref_primary_10_1080_17583004_2017_1357402
crossref_primary_10_1080_01431161_2020_1714782
crossref_primary_10_1016_j_rse_2018_05_007
crossref_primary_10_1016_j_isprsjprs_2017_10_008
crossref_primary_10_1007_s10661_017_6307_6
crossref_primary_10_3390_rs8070540
crossref_primary_10_1007_s12524_023_01740_x
crossref_primary_10_3390_s21175974
crossref_primary_10_1016_j_foreco_2023_121345
crossref_primary_10_1080_01431161_2017_1356488
crossref_primary_10_3390_rs8060469
crossref_primary_10_1080_22797254_2019_1686717
crossref_primary_10_1080_01431161_2020_1771789
crossref_primary_10_3390_rs12060957
crossref_primary_10_1007_s11676_018_0713_7
crossref_primary_10_3389_fpsyg_2021_717303
crossref_primary_10_3390_rs70302832
crossref_primary_10_1016_j_jag_2021_102358
crossref_primary_10_3390_f14061086
crossref_primary_10_1109_ACCESS_2020_3048416
crossref_primary_10_2989_20702620_2018_1463150
crossref_primary_10_3390_rs8050369
crossref_primary_10_1080_10106049_2022_2071475
crossref_primary_10_1080_03736245_2016_1208586
crossref_primary_10_3390_rs13081595
crossref_primary_10_1080_07038992_2016_1217485
crossref_primary_10_3390_rs10091446
crossref_primary_10_1016_j_jag_2019_101913
crossref_primary_10_3390_rs14174360
crossref_primary_10_3390_rs9010055
crossref_primary_10_3389_fevo_2023_1137111
crossref_primary_10_3390_f15010099
crossref_primary_10_1117_1_JRS_10_035010
crossref_primary_10_1080_2150704X_2019_1619955
crossref_primary_10_1017_S1431927618015155
crossref_primary_10_1016_j_rse_2019_02_021
crossref_primary_10_3390_rs70810017
crossref_primary_10_1080_10106049_2019_1588390
crossref_primary_10_1080_15481603_2024_2345438
crossref_primary_10_3390_f10020104
crossref_primary_10_1016_j_ecolmodel_2023_110377
crossref_primary_10_1007_s11676_017_0404_9
crossref_primary_10_1016_j_asr_2023_03_010
crossref_primary_10_1109_JSTARS_2016_2528262
crossref_primary_10_3390_rs14092271
crossref_primary_10_3390_rs71114559
crossref_primary_10_3390_su141912187
crossref_primary_10_1080_01431161_2017_1399480
crossref_primary_10_1007_s00267_016_0714_2
crossref_primary_10_3390_rs13091696
crossref_primary_10_1080_10106049_2019_1629644
crossref_primary_10_3390_rs15041096
crossref_primary_10_3390_rs10111677
crossref_primary_10_3390_rs8070595
crossref_primary_10_1080_01431161_2019_1602795
crossref_primary_10_3389_fpls_2023_1284235
crossref_primary_10_3390_f14051064
crossref_primary_10_5721_EuJRS20154810
crossref_primary_10_3390_f10121073
crossref_primary_10_1111_avsc_12500
crossref_primary_10_1016_j_isprsjprs_2015_06_002
crossref_primary_10_1080_17538947_2017_1301581
crossref_primary_10_1016_j_rse_2015_01_007
crossref_primary_10_3390_rs14051063
crossref_primary_10_1080_15481603_2022_2026636
crossref_primary_10_3389_fpls_2018_00936
crossref_primary_10_3390_rs12122008
Cites_doi 10.1016/0034-4257(88)90019-3
10.1080/01431160500142145
10.1016/j.rse.2009.01.007
10.1016/j.rse.2007.08.021
10.3390/rs4040810
10.1890/04-0868
10.2307/2265817
10.1080/07038992.1982.10855028
10.1109/TSMC.1973.4309314
10.1186/1750-0680-4-2
10.1109/36.134089
10.1016/S0034-4257(96)00148-4
10.1590/S0044-59672005000200015
10.3390/rs5020716
10.1191/0309133303pp360ra
10.1016/j.isprsjprs.2012.03.011
ContentType Journal Article
Copyright Copyright MDPI AG 2014
Copyright_xml – notice: Copyright MDPI AG 2014
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PIMPY
PQEST
PQQKQ
PQUKI
PTHSS
DOA
DOI 10.3390/rs6076407
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
Materials Business File
Environmental Sciences and Pollution Management
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
DatabaseTitleList Aerospace Database

Publicly Available Content Database
Ecology Abstracts
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
EndPage 6422
ExternalDocumentID oai_doaj_org_article_1afb826a7ede4113bee9fda4ffe400bc
3383862931
10_3390_rs6076407
GroupedDBID 29P
2WC
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ADBBV
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IPNFZ
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PIMPY
PROAC
PTHSS
RIG
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c424t-bf868a5ec27208ac963dd8df2b4293b1546fc8941604ca3cd44af46c438cb7f3
IEDL.DBID 8FG
ISSN 2072-4292
IngestDate Tue Oct 22 15:11:51 EDT 2024
Fri Jun 28 12:27:04 EDT 2024
Fri Jun 28 10:19:44 EDT 2024
Sat Nov 09 16:39:25 EST 2024
Fri Dec 06 01:20:59 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c424t-bf868a5ec27208ac963dd8df2b4293b1546fc8941604ca3cd44af46c438cb7f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.proquest.com/docview/1548276984?pq-origsite=%requestingapplication%
PQID 1548276984
PQPubID 2032338
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_1afb826a7ede4113bee9fda4ffe400bc
proquest_miscellaneous_1778054709
proquest_miscellaneous_1751213615
proquest_journals_1548276984
crossref_primary_10_3390_rs6076407
PublicationCentury 2000
PublicationDate 2014-07-01
PublicationDateYYYYMMDD 2014-07-01
PublicationDate_xml – month: 07
  year: 2014
  text: 2014-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2014
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Cutler (ref12) 2012; 70
ref15
Lu (ref14) 2005; 26
ref31
ref1
(ref3) 2011
Richards (ref5) 2013
Eckert (ref13) 2012; 4
ref17
ref16
ref19
Jenkins (ref21) 2004
Lim (ref11) 2003; 27
Le Toan (ref6) 1992; 30
Dubayah (ref8) 2000; 98
Ryan (ref2) 2010; 13
Lu (ref28) 2005; 35
Kaye (ref22) 2005; 15
Kasischke (ref7) 1997; 59
Teillet (ref25) 1982; 8
Blackard (ref18) 2008; 112
ref26
ref20
Chavez (ref24) 1988; 24
Haralick (ref27) 1973; 3
Chander (ref23) 2009; 113
ref9
ref4
Clausi (ref29) 2002; 28
Spendelow (ref30) 1995; 76
Ouchi (ref10) 2013; 5
References_xml – volume: 24
  start-page: 459
  year: 1988
  ident: ref24
  article-title: An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data
  publication-title: Remote Sens. Environ
  doi: 10.1016/0034-4257(88)90019-3
  contributor:
    fullname: Chavez
– ident: ref1
– ident: ref20
– volume: 13
  start-page: 1
  year: 2010
  ident: ref2
  article-title: A synthesis of the science on for U.S. forests
  publication-title: Issues Ecol
  contributor:
    fullname: Ryan
– volume: 26
  start-page: 2509
  year: 2005
  ident: ref14
  article-title: Aboveground biomass estimation using Landsat TM data in the Brazilian Amazon
  publication-title: Int. J. Remote Sens
  doi: 10.1080/01431160500142145
  contributor:
    fullname: Lu
– year: 2004
  ident: ref21
  article-title: Comprehensive database of diameter-based biomass regressions for North American tree species
  contributor:
    fullname: Jenkins
– volume: 113
  start-page: 893
  year: 2009
  ident: ref23
  article-title: Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors
  publication-title: Remote Sens. Environ
  doi: 10.1016/j.rse.2009.01.007
  contributor:
    fullname: Chander
– volume: 112
  start-page: 1658
  year: 2008
  ident: ref18
  article-title: Mapping U.S. forest biomass using nationwide forest inventory data and moderate resolution information
  publication-title: Remote Sens. Environ
  doi: 10.1016/j.rse.2007.08.021
  contributor:
    fullname: Blackard
– ident: ref9
– ident: ref19
– volume: 4
  start-page: 810
  year: 2012
  ident: ref13
  article-title: Improved forest biomass and carbon estimations using texture measures from WorldView-2 satellite data
  publication-title: Remote Sens
  doi: 10.3390/rs4040810
  contributor:
    fullname: Eckert
– ident: ref17
– ident: ref15
– volume: 15
  start-page: 1581
  year: 2005
  ident: ref22
  article-title: Initial carbon, nitrogen, and phosphorus fluxes following ponderosa pine restoration treatments
  publication-title: Ecol. Appl
  doi: 10.1890/04-0868
  contributor:
    fullname: Kaye
– volume: 28
  start-page: 45
  year: 2002
  ident: ref29
  article-title: An analysis of co-occurrence texture statistics as a function of grey level quantization
  publication-title: Can. J. For. Res
  contributor:
    fullname: Clausi
– volume: 76
  start-page: 2415
  year: 1995
  ident: ref30
  article-title: Estimating annual survival and movement rates of adults within a metapopulation of roseate terns
  publication-title: Ecology
  doi: 10.2307/2265817
  contributor:
    fullname: Spendelow
– volume: 8
  start-page: 84
  year: 1982
  ident: ref25
  article-title: On the slope-aspect correction of multispectral scanner data
  publication-title: Can. J. Remote Sens
  doi: 10.1080/07038992.1982.10855028
  contributor:
    fullname: Teillet
– volume: 3
  start-page: 610
  year: 1973
  ident: ref27
  article-title: Textural features for image classification
  publication-title: IEEE Trans. Syst. Man. Cybern
  doi: 10.1109/TSMC.1973.4309314
  contributor:
    fullname: Haralick
– ident: ref4
  doi: 10.1186/1750-0680-4-2
– volume: 30
  start-page: 403
  year: 1992
  ident: ref6
  article-title: Relating forest biomass to SAR data
  publication-title: IEEE Trans. Geosci. Remote Sens
  doi: 10.1109/36.134089
  contributor:
    fullname: Le Toan
– volume: 59
  start-page: 141
  year: 1997
  ident: ref7
  article-title: The use of imaging radars for ecological applications—A review
  publication-title: Remote Sens. Environ
  doi: 10.1016/S0034-4257(96)00148-4
  contributor:
    fullname: Kasischke
– start-page: 1
  year: 2011
  ident: ref3
  article-title: Dimension 4: Mitagation and sustainable consumption
– ident: ref26
– volume: 35
  start-page: 249
  year: 2005
  ident: ref28
  article-title: Exploring TM image texture and its relationships with biomass estimation in Rondônia, Brazilian Amazon
  publication-title: Acta Amaz
  doi: 10.1590/S0044-59672005000200015
  contributor:
    fullname: Lu
– volume: 5
  start-page: 716
  year: 2013
  ident: ref10
  article-title: Recent trend and advance of synthetic aperture radar with selected topics
  publication-title: Remote Sens
  doi: 10.3390/rs5020716
  contributor:
    fullname: Ouchi
– start-page: 162
  year: 2013
  ident: ref5
  article-title: Chapter 5: Geometric processing and enhancement: Image domain techniques
  contributor:
    fullname: Richards
– volume: 98
  start-page: 44
  year: 2000
  ident: ref8
  article-title: Lidar remote sensing for forestry
  publication-title: J. For
  contributor:
    fullname: Dubayah
– volume: 27
  start-page: 88
  year: 2003
  ident: ref11
  article-title: LiDAR remote sensing of forest structure
  publication-title: Prog. Phys. Geogr
  doi: 10.1191/0309133303pp360ra
  contributor:
    fullname: Lim
– ident: ref16
– volume: 70
  start-page: 66
  year: 2012
  ident: ref12
  article-title: Estimating tropical forest biomass with a combination of SAR image texture and Landsat TM data: An assessment of predictions between regions
  publication-title: ISPRS J. Photogramm. Remote Sens
  doi: 10.1016/j.isprsjprs.2012.03.011
  contributor:
    fullname: Cutler
– ident: ref31
SSID ssj0000331904
Score 2.4429126
Snippet Maps of forest biomass are important tools for managing natural resources and reporting terrestrial carbon stocks. Using the San Juan National Forest in...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
StartPage 6407
SubjectTerms Biomass
carbon
Coefficient of variation
Correlation
Entropy
error
forest
Forest biomass
Landsat
Mathematical models
National forests
Natural resource management
regional biomass map
Remote sensing
San Juan National Forest
Satellite imagery
Spectra
Surface layer
Texture
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7iRS_iE6tVonhd3G5mk-yxikVFPVXwtuSJHrqVPoT-e2d2t6Ug6MXr7hDCZB7fkMk3jF3FHubUQsYkhVgkID26VKZtkkXjclP43NRNNM8v8v4VHt_yt7VRX9QT1tADN4q77ploEQIbFXyAXk_YEIroDcQY0Pysq6Nvmq0VU3UMFmhaKTRUQgLr-uvJVGLJDjQ2di0B1Tz9P8JwnVsGu2ynBYW832xmj22Eap9ttfPJ3xcH7OEOPXFEsJCPI-_b8Veg5xiV5zcf1OAz5fRMhA8x0s4ngS-ZRkj4id7ymhl_GBFbxeKQDQd3w9v7pB2CkDjIYJbYqKU2eXB0YaqNQ4fxXvuYWcwkwiICktHpAnFVCs4I5wFMBOlAaGdVFEdssxpX4ZhxXAKU1ZCFKEHlCiNbHkTuVSbAyAgddrlUTPnZUF2UWCKQ9sqV9jrshlS2EiB26voDnlnZnln515l1WHep8LJ1mWlJtVOmZKFxIxer32jsdINhqjCeo4zKiYIOUdhvMjSmAVRanPzHXk_ZNmIkaDp0u2xzNpmHM8QhM3tem9w30eLeig
  priority: 102
  providerName: Directory of Open Access Journals
Title Estimates of Aboveground Biomass from Texture Analysis of Landsat Imagery
URI https://www.proquest.com/docview/1548276984
https://search.proquest.com/docview/1751213615
https://search.proquest.com/docview/1778054709
https://doaj.org/article/1afb826a7ede4113bee9fda4ffe400bc
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5Be4BLVV5iS1kZxDVqEk9s51R10S4tggqhReot8hM4NGn3Uan_nplsdkFC6jUeJdJkHt_Y428APqSCcmqtUpZjqjNUgVyqNC4rk_WVrUNl-yaar5fq_Ad-vqquhg235dBWuY2JfaAOnec98hOG1qVWtcHTm9uMp0bx6eowQuMx7Be0yC19ZvZpt8eSSzKwHDeEQpKq-5PFUlHhjjw89p801LP1_xeM-wwzO4SDARqKs82_fAaPYvscngxTyn_dv4CLKfnjNYND0SVx5rq7yJcy2iAmv7nNZyn4soiYU7xdL6LY8o2w8Be-0WtX4uKaOSvuX8J8Np1_PM-GUQiZxxJXmUtGGVtFz8emxnpymxBMSKWjfCIdKUclb2pCVzl6K31AtAmVR2m800m-gr22a-NrEPQK1M5gGZNCXWmKb1WUVdClRKsSjuD9VjHNzYbwoqFCgbXX7LQ3ggmrbCfAHNX9g27xsxlMvilsclS8WB1DxKKQLsY6BYspRQoczo_geKvwZnCcZfP3N4_g3W6ZTJ7PMWwbuzXJ6IqJ6AiLPSTDwxpQ5_XRw595A08JA-GmA_cY9laLdXxLOGPlxr0xjWF_Mr389n3cV-t_AJYk1nQ
link.rule.ids 314,780,784,864,2102,12765,21388,27924,27925,33373,33374,33744,33745,43600,43805,74035,74302
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB6VcigXBBTUQKFLxdWq4x3vrk-oRU2TkvYUpN6sfbYcapc8kPrvmXGcgITUqz2ypdl578w3AF_SkHxqpVKWY6oyVIFUqjAuK5L1pa1CabsmmqtrNf6BlzflTV9wW_RtlRub2Bnq0HqukZ9waF1oVRn8-vAr461RfLvar9B4Bs9RkuvmSfHRxbbGkksSsBzXgEKSsvuT-UJR4o68PPYfN9Sh9f9njDsPM3oFL_vQUJyuz_I17MTmDez1W8rvHvdhck76eM_BoWiTOHXt78hDGU0QZz-5zWcheFhEzMjeruZRbPBGmHjKE712KSb3jFnx-BZmo_PZt3HWr0LIPBa4zFwyytgyer42NdaT2oRgQioc-RPpiDkqeVNRdJWjt9IHRJtQeZTGO53kO9ht2iYegKBPoHYGi5gU6lKTfSujLIMuJFqVcADHG8bUD2vAi5oSBeZeveXeAM6YZVsCxqjuHrTz27oX-Xpok6PkxeoYIg6H0sVYpWAxpUiGw_kBHG4YXveKs6j_HvMAPm9fk8jzPYZtYrsiGl0yEB3FYk_R8LIG1Hn1_unfHMHeeHY1raeT6-8f4AXFQ7juxj2E3eV8FT9SzLF0nzrB-gPr5tbH
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwEB5BVwIuiKcoLBAQ16hpPLGdE9pCqy0s1QoVaW-Rn8Bhk6UPpP33zKRuQULaazJylLFn5ht7_A3AuzimmFrLmBcY6xylJ5Mqtc3LaFxlal-Zvojmy0KefsNPF9VFqn9ap7LKvU_sHbXvHO-Rjxhal0rWGkcxlUWcf5y9v_qVcwcpPmlN7TRuwxFFxaIcwNFkujj_ethxKQQttwJ39EKCcv3Rai0pjUduJftPUOq5-_9zzX28mT2A-wkoZie7mX0It0L7CO6mnuU_rh_DfErWeclQMetidmK734GvaLQ-m_zkop91xldHsiX9wnYVsj37CAuf8f1es8nml8xgcf0ElrPp8sNpnhoj5A5L3OQ2aqlNFRwfomrjyIi81z6WlqKLsKQqGZ2uCWsV6IxwHtFElA6FdlZF8RQGbdeGZ5DREKisxjJEiapS5O2qICqvSoFGRhzC271imqsd_UVDaQNrrzlobwgTVtlBgBmr-wfd6nuTDKAZm2gplTEq-IDjsbAh1NEbjDGQG7FuCMd7hTfJjNbN30kfwpvDazIAPtUwbei2JKMqpqUjZHaTDLduQFXUz2_-zGu4Q6uqOZsvPr-AewSOcFeaewyDzWobXhIA2dhXaWX9AXKB3GM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimates+of+Aboveground+Biomass+from+Texture+Analysis+of+Landsat+Imagery&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Kelsey%2C+Katharine+C&rft.au=Neff%2C+Jason+C&rft.date=2014-07-01&rft.eissn=2072-4292&rft.volume=6&rft.issue=7&rft.spage=6407&rft.epage=6422&rft_id=info:doi/10.3390%2Frs6076407&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon