Estimates of Aboveground Biomass from Texture Analysis of Landsat Imagery
Maps of forest biomass are important tools for managing natural resources and reporting terrestrial carbon stocks. Using the San Juan National Forest in Southwest Colorado as a case study, we evaluate regional biomass maps created using physical variables, spectral vegetation indices, and image text...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 6; no. 7; pp. 6407 - 6422 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.07.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Maps of forest biomass are important tools for managing natural resources and reporting terrestrial carbon stocks. Using the San Juan National Forest in Southwest Colorado as a case study, we evaluate regional biomass maps created using physical variables, spectral vegetation indices, and image textural analysis on Landsat TM imagery. We investigate eight gray level co-occurrence matrix based texture measures (mean, variance, homogeneity, contrast, dissimilarity, entropy, second moment and correlation) on four window sizes (3 3, 5 5, 7 7, 9 9) at four offsets ([1,0], [1,1], [0,1], [1,-1]) on four Landsat TM bands (2, 3, 4, and 5). The map with the highest prediction quality was created using three texture metrics calculated from Landsat Band 2 on a 3 3 window and an offset of [0,1]: entropy, mean and correlation; and one physical variable: slope. The correlation of predicted versus observed biomass values for our texture-based biomass map is r = 0.86, the Root Mean Square Error is 45.6 Mg times ha-1, and the Coefficient of Variation of the Root Mean Square Error is 0.31. We find that models including image texture variables are more strongly correlated with biomass than models using only physical and spectral variables. Additionally, we suggest that the use of texture appears to better capture the magnitude and direction of biomass change following disturbance compared to spectral approaches. The biomass mapping methods we present here are widely applicable throughout the US, as they are based on publically available datasets and utilize relatively simple analytical routines. |
---|---|
AbstractList | Maps of forest biomass are important tools for managing natural resources and reporting terrestrial carbon stocks. Using the San Juan National Forest in Southwest Colorado as a case study, we evaluate regional biomass maps created using physical variables, spectral vegetation indices, and image textural analysis on Landsat TM imagery. We investigate eight gray level co-occurrence matrix based texture measures (mean, variance, homogeneity, contrast, dissimilarity, entropy, second moment and correlation) on four window sizes (3 3, 5 5, 7 7, 9 9) at four offsets ([1,0], [1,1], [0,1], [1,-1]) on four Landsat TM bands (2, 3, 4, and 5). The map with the highest prediction quality was created using three texture metrics calculated from Landsat Band 2 on a 3 3 window and an offset of [0,1]: entropy, mean and correlation; and one physical variable: slope. The correlation of predicted versus observed biomass values for our texture-based biomass map is r = 0.86, the Root Mean Square Error is 45.6 Mg times ha-1, and the Coefficient of Variation of the Root Mean Square Error is 0.31. We find that models including image texture variables are more strongly correlated with biomass than models using only physical and spectral variables. Additionally, we suggest that the use of texture appears to better capture the magnitude and direction of biomass change following disturbance compared to spectral approaches. The biomass mapping methods we present here are widely applicable throughout the US, as they are based on publically available datasets and utilize relatively simple analytical routines. Maps of forest biomass are important tools for managing natural resources and reporting terrestrial carbon stocks. Using the San Juan National Forest in Southwest Colorado as a case study, we evaluate regional biomass maps created using physical variables, spectral vegetation indices, and image textural analysis on Landsat TM imagery. We investigate eight gray level co-occurrence matrix based texture measures (mean, variance, homogeneity, contrast, dissimilarity, entropy, second moment and correlation) on four window sizes (3 × 3, 5 × 5, 7 × 7, 9 × 9) at four offsets ([1,0], [1,1], [0,1], [1,−1]) on four Landsat TM bands (2, 3, 4, and 5). The map with the highest prediction quality was created using three texture metrics calculated from Landsat Band 2 on a 3 × 3 window and an offset of [0,1]: entropy, mean and correlation; and one physical variable: slope. The correlation of predicted versus observed biomass values for our texture-based biomass map is r = 0.86, the Root Mean Square Error is 45.6 Mg∙ha−1, and the Coefficient of Variation of the Root Mean Square Error is 0.31. We find that models including image texture variables are more strongly correlated with biomass than models using only physical and spectral variables. Additionally, we suggest that the use of texture appears to better capture the magnitude and direction of biomass change following disturbance compared to spectral approaches. The biomass mapping methods we present here are widely applicable throughout the US, as they are based on publically available datasets and utilize relatively simple analytical routines. Maps of forest biomass are important tools for managing natural resources and reporting terrestrial carbon stocks. Using the San Juan National Forest in Southwest Colorado as a case study, we evaluate regional biomass maps created using physical variables, spectral vegetation indices, and image textural analysis on Landsat TM imagery. We investigate eight gray level co-occurrence matrix based texture measures (mean, variance, homogeneity, contrast, dissimilarity, entropy, second moment and correlation) on four window sizes (3 × 3, 5 × 5, 7 × 7, 9 × 9) at four offsets ([1,0], [1,1], [0,1], [1,-1]) on four Landsat TM bands (2, 3, 4, and 5). The map with the highest prediction quality was created using three texture metrics calculated from Landsat Band 2 on a 3 × 3 window and an offset of [0,1]: entropy, mean and correlation; and one physical variable: slope. The correlation of predicted versus observed biomass values for our texture-based biomass map is r = 0.86, the Root Mean Square Error is 45.6 Mg*ha-1, and the Coefficient of Variation of the Root Mean Square Error is 0.31. We find that models including image texture variables are more strongly correlated with biomass than models using only physical and spectral variables. Additionally, we suggest that the use of texture appears to better capture the magnitude and direction of biomass change following disturbance compared to spectral approaches. The biomass mapping methods we present here are widely applicable throughout the US, as they are based on publically available datasets and utilize relatively simple analytical routines. |
Author | Neff, Jason C Kelsey, Katharine C |
Author_xml | – sequence: 1 givenname: Katharine surname: Kelsey middlename: C fullname: Kelsey, Katharine C – sequence: 2 givenname: Jason surname: Neff middlename: C fullname: Neff, Jason C |
BookMark | eNqNkU9r3DAQxUVJoUmaQ7-BIZfmsKn-jCX5uA1ps7DQy97FWBotXmwrlezS_fZ1siGUnDKXGYYfjzfzLtjZmEZi7Ivgt0o1_FsumhsN3Hxg55IbuQLZyLP_5k_sqpQDX0op0XA4Z5v7MnUDTlSqFKt1m_7QPqd5DNX3Lg1YShVzGqod_Z3mTNV6xP5Yumd4i2MoOFWbAfeUj5_Zx4h9oauXfsl2P-53dw-r7a-fm7v1duVBwrRqo9UWa_LSSG7RN1qFYEOU7WJQtaIGHb1tQGgOHpUPABhBe1DWtyaqS7Y5yYaEB_eYF_P56BJ27nmR8t5hnjrfkxMYWys1GgoEQqiWqIkBIUYCzlu_aH09aT3m9HumMrmhK576HkdKc3HCGMtrMLx5B1oLKZQW9YJev0EPac7L4xaqBiuNbiws1M2J8jmVkim-3iK4e0rTvaap_gGBnJJm |
CitedBy_id | crossref_primary_10_1080_17538947_2023_2165180 crossref_primary_10_1109_TGRS_2020_3018638 crossref_primary_10_1186_s13021_016_0055_8 crossref_primary_10_3390_f14020299 crossref_primary_10_1016_j_jag_2023_103528 crossref_primary_10_1016_j_jag_2021_102435 crossref_primary_10_3390_rs12203335 crossref_primary_10_1890_ES15_00232_1 crossref_primary_10_1016_j_jag_2021_102397 crossref_primary_10_3390_su142114222 crossref_primary_10_3390_f11010011 crossref_primary_10_1016_j_ecoinf_2023_102404 crossref_primary_10_1108_AEAT_07_2022_0199 crossref_primary_10_1016_j_ecolind_2017_01_022 crossref_primary_10_1088_1755_1315_569_1_012053 crossref_primary_10_1016_j_rse_2019_111423 crossref_primary_10_1016_j_apgeog_2015_09_003 crossref_primary_10_1002_2015JG003315 crossref_primary_10_3390_rs11070738 crossref_primary_10_1186_s13021_020_00143_6 crossref_primary_10_1002_rse2_5 crossref_primary_10_1007_s11119_018_9600_7 crossref_primary_10_1016_j_jag_2015_08_004 crossref_primary_10_1080_01431161_2018_1553323 crossref_primary_10_3390_rs15030794 crossref_primary_10_1139_cjfr_2019_0216 crossref_primary_10_3390_rs12244170 crossref_primary_10_1109_JSTARS_2017_2748341 crossref_primary_10_1016_j_ecoinf_2024_102479 crossref_primary_10_3390_rs15030559 crossref_primary_10_3390_f12020216 crossref_primary_10_3390_rs14164097 crossref_primary_10_1371_journal_pone_0278645 crossref_primary_10_3390_rs15245715 crossref_primary_10_1016_j_jag_2018_12_004 crossref_primary_10_1016_j_foreco_2017_10_007 crossref_primary_10_1117_1_JRS_12_045019 crossref_primary_10_3390_su7010195 crossref_primary_10_1016_j_sciaf_2023_e01763 crossref_primary_10_1007_s11629_019_5968_8 crossref_primary_10_1007_s12524_024_01836_y crossref_primary_10_1080_17583004_2017_1357402 crossref_primary_10_1080_01431161_2020_1714782 crossref_primary_10_1016_j_rse_2018_05_007 crossref_primary_10_1016_j_isprsjprs_2017_10_008 crossref_primary_10_1007_s10661_017_6307_6 crossref_primary_10_3390_rs8070540 crossref_primary_10_1007_s12524_023_01740_x crossref_primary_10_3390_s21175974 crossref_primary_10_1016_j_foreco_2023_121345 crossref_primary_10_1080_01431161_2017_1356488 crossref_primary_10_3390_rs8060469 crossref_primary_10_1080_22797254_2019_1686717 crossref_primary_10_1080_01431161_2020_1771789 crossref_primary_10_3390_rs12060957 crossref_primary_10_1007_s11676_018_0713_7 crossref_primary_10_3389_fpsyg_2021_717303 crossref_primary_10_3390_rs70302832 crossref_primary_10_1016_j_jag_2021_102358 crossref_primary_10_3390_f14061086 crossref_primary_10_1109_ACCESS_2020_3048416 crossref_primary_10_2989_20702620_2018_1463150 crossref_primary_10_3390_rs8050369 crossref_primary_10_1080_10106049_2022_2071475 crossref_primary_10_1080_03736245_2016_1208586 crossref_primary_10_3390_rs13081595 crossref_primary_10_1080_07038992_2016_1217485 crossref_primary_10_3390_rs10091446 crossref_primary_10_1016_j_jag_2019_101913 crossref_primary_10_3390_rs14174360 crossref_primary_10_3390_rs9010055 crossref_primary_10_3389_fevo_2023_1137111 crossref_primary_10_3390_f15010099 crossref_primary_10_1117_1_JRS_10_035010 crossref_primary_10_1080_2150704X_2019_1619955 crossref_primary_10_1017_S1431927618015155 crossref_primary_10_1016_j_rse_2019_02_021 crossref_primary_10_3390_rs70810017 crossref_primary_10_1080_10106049_2019_1588390 crossref_primary_10_1080_15481603_2024_2345438 crossref_primary_10_3390_f10020104 crossref_primary_10_1016_j_ecolmodel_2023_110377 crossref_primary_10_1007_s11676_017_0404_9 crossref_primary_10_1016_j_asr_2023_03_010 crossref_primary_10_1109_JSTARS_2016_2528262 crossref_primary_10_3390_rs14092271 crossref_primary_10_3390_rs71114559 crossref_primary_10_3390_su141912187 crossref_primary_10_1080_01431161_2017_1399480 crossref_primary_10_1007_s00267_016_0714_2 crossref_primary_10_3390_rs13091696 crossref_primary_10_1080_10106049_2019_1629644 crossref_primary_10_3390_rs15041096 crossref_primary_10_3390_rs10111677 crossref_primary_10_3390_rs8070595 crossref_primary_10_1080_01431161_2019_1602795 crossref_primary_10_3389_fpls_2023_1284235 crossref_primary_10_3390_f14051064 crossref_primary_10_5721_EuJRS20154810 crossref_primary_10_3390_f10121073 crossref_primary_10_1111_avsc_12500 crossref_primary_10_1016_j_isprsjprs_2015_06_002 crossref_primary_10_1080_17538947_2017_1301581 crossref_primary_10_1016_j_rse_2015_01_007 crossref_primary_10_3390_rs14051063 crossref_primary_10_1080_15481603_2022_2026636 crossref_primary_10_3389_fpls_2018_00936 crossref_primary_10_3390_rs12122008 |
Cites_doi | 10.1016/0034-4257(88)90019-3 10.1080/01431160500142145 10.1016/j.rse.2009.01.007 10.1016/j.rse.2007.08.021 10.3390/rs4040810 10.1890/04-0868 10.2307/2265817 10.1080/07038992.1982.10855028 10.1109/TSMC.1973.4309314 10.1186/1750-0680-4-2 10.1109/36.134089 10.1016/S0034-4257(96)00148-4 10.1590/S0044-59672005000200015 10.3390/rs5020716 10.1191/0309133303pp360ra 10.1016/j.isprsjprs.2012.03.011 |
ContentType | Journal Article |
Copyright | Copyright MDPI AG 2014 |
Copyright_xml | – notice: Copyright MDPI AG 2014 |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PIMPY PQEST PQQKQ PQUKI PTHSS DOA |
DOI | 10.3390/rs6076407 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection Materials Business File Environmental Sciences and Pollution Management Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts |
DatabaseTitleList | Aerospace Database Publicly Available Content Database Ecology Abstracts |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
EndPage | 6422 |
ExternalDocumentID | oai_doaj_org_article_1afb826a7ede4113bee9fda4ffe400bc 3383862931 10_3390_rs6076407 |
GroupedDBID | 29P 2WC 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ADBBV AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IPNFZ KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PIMPY PROAC PTHSS RIG TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PQEST PQQKQ PQUKI |
ID | FETCH-LOGICAL-c424t-bf868a5ec27208ac963dd8df2b4293b1546fc8941604ca3cd44af46c438cb7f3 |
IEDL.DBID | 8FG |
ISSN | 2072-4292 |
IngestDate | Tue Oct 22 15:11:51 EDT 2024 Fri Jun 28 12:27:04 EDT 2024 Fri Jun 28 10:19:44 EDT 2024 Sat Nov 09 16:39:25 EST 2024 Fri Dec 06 01:20:59 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c424t-bf868a5ec27208ac963dd8df2b4293b1546fc8941604ca3cd44af46c438cb7f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/1548276984?pq-origsite=%requestingapplication% |
PQID | 1548276984 |
PQPubID | 2032338 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1afb826a7ede4113bee9fda4ffe400bc proquest_miscellaneous_1778054709 proquest_miscellaneous_1751213615 proquest_journals_1548276984 crossref_primary_10_3390_rs6076407 |
PublicationCentury | 2000 |
PublicationDate | 2014-07-01 |
PublicationDateYYYYMMDD | 2014-07-01 |
PublicationDate_xml | – month: 07 year: 2014 text: 2014-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2014 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Cutler (ref12) 2012; 70 ref15 Lu (ref14) 2005; 26 ref31 ref1 (ref3) 2011 Richards (ref5) 2013 Eckert (ref13) 2012; 4 ref17 ref16 ref19 Jenkins (ref21) 2004 Lim (ref11) 2003; 27 Le Toan (ref6) 1992; 30 Dubayah (ref8) 2000; 98 Ryan (ref2) 2010; 13 Lu (ref28) 2005; 35 Kaye (ref22) 2005; 15 Kasischke (ref7) 1997; 59 Teillet (ref25) 1982; 8 Blackard (ref18) 2008; 112 ref26 ref20 Chavez (ref24) 1988; 24 Haralick (ref27) 1973; 3 Chander (ref23) 2009; 113 ref9 ref4 Clausi (ref29) 2002; 28 Spendelow (ref30) 1995; 76 Ouchi (ref10) 2013; 5 |
References_xml | – volume: 24 start-page: 459 year: 1988 ident: ref24 article-title: An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data publication-title: Remote Sens. Environ doi: 10.1016/0034-4257(88)90019-3 contributor: fullname: Chavez – ident: ref1 – ident: ref20 – volume: 13 start-page: 1 year: 2010 ident: ref2 article-title: A synthesis of the science on for U.S. forests publication-title: Issues Ecol contributor: fullname: Ryan – volume: 26 start-page: 2509 year: 2005 ident: ref14 article-title: Aboveground biomass estimation using Landsat TM data in the Brazilian Amazon publication-title: Int. J. Remote Sens doi: 10.1080/01431160500142145 contributor: fullname: Lu – year: 2004 ident: ref21 article-title: Comprehensive database of diameter-based biomass regressions for North American tree species contributor: fullname: Jenkins – volume: 113 start-page: 893 year: 2009 ident: ref23 article-title: Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors publication-title: Remote Sens. Environ doi: 10.1016/j.rse.2009.01.007 contributor: fullname: Chander – volume: 112 start-page: 1658 year: 2008 ident: ref18 article-title: Mapping U.S. forest biomass using nationwide forest inventory data and moderate resolution information publication-title: Remote Sens. Environ doi: 10.1016/j.rse.2007.08.021 contributor: fullname: Blackard – ident: ref9 – ident: ref19 – volume: 4 start-page: 810 year: 2012 ident: ref13 article-title: Improved forest biomass and carbon estimations using texture measures from WorldView-2 satellite data publication-title: Remote Sens doi: 10.3390/rs4040810 contributor: fullname: Eckert – ident: ref17 – ident: ref15 – volume: 15 start-page: 1581 year: 2005 ident: ref22 article-title: Initial carbon, nitrogen, and phosphorus fluxes following ponderosa pine restoration treatments publication-title: Ecol. Appl doi: 10.1890/04-0868 contributor: fullname: Kaye – volume: 28 start-page: 45 year: 2002 ident: ref29 article-title: An analysis of co-occurrence texture statistics as a function of grey level quantization publication-title: Can. J. For. Res contributor: fullname: Clausi – volume: 76 start-page: 2415 year: 1995 ident: ref30 article-title: Estimating annual survival and movement rates of adults within a metapopulation of roseate terns publication-title: Ecology doi: 10.2307/2265817 contributor: fullname: Spendelow – volume: 8 start-page: 84 year: 1982 ident: ref25 article-title: On the slope-aspect correction of multispectral scanner data publication-title: Can. J. Remote Sens doi: 10.1080/07038992.1982.10855028 contributor: fullname: Teillet – volume: 3 start-page: 610 year: 1973 ident: ref27 article-title: Textural features for image classification publication-title: IEEE Trans. Syst. Man. Cybern doi: 10.1109/TSMC.1973.4309314 contributor: fullname: Haralick – ident: ref4 doi: 10.1186/1750-0680-4-2 – volume: 30 start-page: 403 year: 1992 ident: ref6 article-title: Relating forest biomass to SAR data publication-title: IEEE Trans. Geosci. Remote Sens doi: 10.1109/36.134089 contributor: fullname: Le Toan – volume: 59 start-page: 141 year: 1997 ident: ref7 article-title: The use of imaging radars for ecological applications—A review publication-title: Remote Sens. Environ doi: 10.1016/S0034-4257(96)00148-4 contributor: fullname: Kasischke – start-page: 1 year: 2011 ident: ref3 article-title: Dimension 4: Mitagation and sustainable consumption – ident: ref26 – volume: 35 start-page: 249 year: 2005 ident: ref28 article-title: Exploring TM image texture and its relationships with biomass estimation in Rondônia, Brazilian Amazon publication-title: Acta Amaz doi: 10.1590/S0044-59672005000200015 contributor: fullname: Lu – volume: 5 start-page: 716 year: 2013 ident: ref10 article-title: Recent trend and advance of synthetic aperture radar with selected topics publication-title: Remote Sens doi: 10.3390/rs5020716 contributor: fullname: Ouchi – start-page: 162 year: 2013 ident: ref5 article-title: Chapter 5: Geometric processing and enhancement: Image domain techniques contributor: fullname: Richards – volume: 98 start-page: 44 year: 2000 ident: ref8 article-title: Lidar remote sensing for forestry publication-title: J. For contributor: fullname: Dubayah – volume: 27 start-page: 88 year: 2003 ident: ref11 article-title: LiDAR remote sensing of forest structure publication-title: Prog. Phys. Geogr doi: 10.1191/0309133303pp360ra contributor: fullname: Lim – ident: ref16 – volume: 70 start-page: 66 year: 2012 ident: ref12 article-title: Estimating tropical forest biomass with a combination of SAR image texture and Landsat TM data: An assessment of predictions between regions publication-title: ISPRS J. Photogramm. Remote Sens doi: 10.1016/j.isprsjprs.2012.03.011 contributor: fullname: Cutler – ident: ref31 |
SSID | ssj0000331904 |
Score | 2.4429126 |
Snippet | Maps of forest biomass are important tools for managing natural resources and reporting terrestrial carbon stocks. Using the San Juan National Forest in... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database |
StartPage | 6407 |
SubjectTerms | Biomass carbon Coefficient of variation Correlation Entropy error forest Forest biomass Landsat Mathematical models National forests Natural resource management regional biomass map Remote sensing San Juan National Forest Satellite imagery Spectra Surface layer Texture |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7iRS_iE6tVonhd3G5mk-yxikVFPVXwtuSJHrqVPoT-e2d2t6Ug6MXr7hDCZB7fkMk3jF3FHubUQsYkhVgkID26VKZtkkXjclP43NRNNM8v8v4VHt_yt7VRX9QT1tADN4q77ploEQIbFXyAXk_YEIroDcQY0Pysq6Nvmq0VU3UMFmhaKTRUQgLr-uvJVGLJDjQ2di0B1Tz9P8JwnVsGu2ynBYW832xmj22Eap9ttfPJ3xcH7OEOPXFEsJCPI-_b8Veg5xiV5zcf1OAz5fRMhA8x0s4ngS-ZRkj4id7ymhl_GBFbxeKQDQd3w9v7pB2CkDjIYJbYqKU2eXB0YaqNQ4fxXvuYWcwkwiICktHpAnFVCs4I5wFMBOlAaGdVFEdssxpX4ZhxXAKU1ZCFKEHlCiNbHkTuVSbAyAgddrlUTPnZUF2UWCKQ9sqV9jrshlS2EiB26voDnlnZnln515l1WHep8LJ1mWlJtVOmZKFxIxer32jsdINhqjCeo4zKiYIOUdhvMjSmAVRanPzHXk_ZNmIkaDp0u2xzNpmHM8QhM3tem9w30eLeig priority: 102 providerName: Directory of Open Access Journals |
Title | Estimates of Aboveground Biomass from Texture Analysis of Landsat Imagery |
URI | https://www.proquest.com/docview/1548276984 https://search.proquest.com/docview/1751213615 https://search.proquest.com/docview/1778054709 https://doaj.org/article/1afb826a7ede4113bee9fda4ffe400bc |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5Be4BLVV5iS1kZxDVqEk9s51R10S4tggqhReot8hM4NGn3Uan_nplsdkFC6jUeJdJkHt_Y428APqSCcmqtUpZjqjNUgVyqNC4rk_WVrUNl-yaar5fq_Ad-vqquhg235dBWuY2JfaAOnec98hOG1qVWtcHTm9uMp0bx6eowQuMx7Be0yC19ZvZpt8eSSzKwHDeEQpKq-5PFUlHhjjw89p801LP1_xeM-wwzO4SDARqKs82_fAaPYvscngxTyn_dv4CLKfnjNYND0SVx5rq7yJcy2iAmv7nNZyn4soiYU7xdL6LY8o2w8Be-0WtX4uKaOSvuX8J8Np1_PM-GUQiZxxJXmUtGGVtFz8emxnpymxBMSKWjfCIdKUclb2pCVzl6K31AtAmVR2m800m-gr22a-NrEPQK1M5gGZNCXWmKb1WUVdClRKsSjuD9VjHNzYbwoqFCgbXX7LQ3ggmrbCfAHNX9g27xsxlMvilsclS8WB1DxKKQLsY6BYspRQoczo_geKvwZnCcZfP3N4_g3W6ZTJ7PMWwbuzXJ6IqJ6AiLPSTDwxpQ5_XRw595A08JA-GmA_cY9laLdXxLOGPlxr0xjWF_Mr389n3cV-t_AJYk1nQ |
link.rule.ids | 314,780,784,864,2102,12765,21388,27924,27925,33373,33374,33744,33745,43600,43805,74035,74302 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB6VcigXBBTUQKFLxdWq4x3vrk-oRU2TkvYUpN6sfbYcapc8kPrvmXGcgITUqz2ypdl578w3AF_SkHxqpVKWY6oyVIFUqjAuK5L1pa1CabsmmqtrNf6BlzflTV9wW_RtlRub2Bnq0HqukZ9waF1oVRn8-vAr461RfLvar9B4Bs9RkuvmSfHRxbbGkksSsBzXgEKSsvuT-UJR4o68PPYfN9Sh9f9njDsPM3oFL_vQUJyuz_I17MTmDez1W8rvHvdhck76eM_BoWiTOHXt78hDGU0QZz-5zWcheFhEzMjeruZRbPBGmHjKE712KSb3jFnx-BZmo_PZt3HWr0LIPBa4zFwyytgyer42NdaT2oRgQioc-RPpiDkqeVNRdJWjt9IHRJtQeZTGO53kO9ht2iYegKBPoHYGi5gU6lKTfSujLIMuJFqVcADHG8bUD2vAi5oSBeZeveXeAM6YZVsCxqjuHrTz27oX-Xpok6PkxeoYIg6H0sVYpWAxpUiGw_kBHG4YXveKs6j_HvMAPm9fk8jzPYZtYrsiGl0yEB3FYk_R8LIG1Hn1_unfHMHeeHY1raeT6-8f4AXFQ7juxj2E3eV8FT9SzLF0nzrB-gPr5tbH |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwEB5BVwIuiKcoLBAQ16hpPLGdE9pCqy0s1QoVaW-Rn8Bhk6UPpP33zKRuQULaazJylLFn5ht7_A3AuzimmFrLmBcY6xylJ5Mqtc3LaFxlal-Zvojmy0KefsNPF9VFqn9ap7LKvU_sHbXvHO-Rjxhal0rWGkcxlUWcf5y9v_qVcwcpPmlN7TRuwxFFxaIcwNFkujj_ethxKQQttwJ39EKCcv3Rai0pjUduJftPUOq5-_9zzX28mT2A-wkoZie7mX0It0L7CO6mnuU_rh_DfErWeclQMetidmK734GvaLQ-m_zkop91xldHsiX9wnYVsj37CAuf8f1es8nml8xgcf0ElrPp8sNpnhoj5A5L3OQ2aqlNFRwfomrjyIi81z6WlqKLsKQqGZ2uCWsV6IxwHtFElA6FdlZF8RQGbdeGZ5DREKisxjJEiapS5O2qICqvSoFGRhzC271imqsd_UVDaQNrrzlobwgTVtlBgBmr-wfd6nuTDKAZm2gplTEq-IDjsbAh1NEbjDGQG7FuCMd7hTfJjNbN30kfwpvDazIAPtUwbei2JKMqpqUjZHaTDLduQFXUz2_-zGu4Q6uqOZsvPr-AewSOcFeaewyDzWobXhIA2dhXaWX9AXKB3GM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimates+of+Aboveground+Biomass+from+Texture+Analysis+of+Landsat+Imagery&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Kelsey%2C+Katharine+C&rft.au=Neff%2C+Jason+C&rft.date=2014-07-01&rft.eissn=2072-4292&rft.volume=6&rft.issue=7&rft.spage=6407&rft.epage=6422&rft_id=info:doi/10.3390%2Frs6076407&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |