Microbial metabolites: cause or consequence in gastrointestinal disease?

Systems biology studies have established that changes in gastrointestinal microbiome composition and function can adversely impact host physiology. Notable diseases synonymously associated with dysbiosis include inflammatory bowel diseases, cancer, metabolic disorders, and opportunistic and recurren...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of physiology: Gastrointestinal and liver physiology Vol. 322; no. 6; pp. G535 - G552
Main Authors Fobofou, Serge Alain, Savidge, Tor
Format Journal Article
LanguageEnglish
Published United States American Physiological Society 01.06.2022
SeriesMicrobiome-Based Therapeutics and Their Physiological Effects
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Systems biology studies have established that changes in gastrointestinal microbiome composition and function can adversely impact host physiology. Notable diseases synonymously associated with dysbiosis include inflammatory bowel diseases, cancer, metabolic disorders, and opportunistic and recurrent pathogen infections. However, there is a scarcity of mechanistic data that advances our understanding of taxonomic correlations with pathophysiological host-microbiome interactions. Generally, to survive a hostile gut environment, microbes are highly metabolically active and produce trans-kingdom signaling molecules to interact with competing microorganisms and the host. These specialized metabolites likely play important homeostatic roles, and identifying disease-specific taxa and their effector pathways can provide better strategies for diagnosis, treatment, and prevention, as well as the discovery of innovative therapeutics. The signaling role of microbial biotransformation products such as bile acids, short-chain fatty acids, polysaccharides, and dietary tryptophan is increasingly recognized, but little is known about the identity and function of metabolites that are synthesized by microbial biosynthetic gene clusters, including ribosomally synthesized and posttranslationally modified peptides (RiPPs), nonribosomal peptides (NRPs), polyketides (PKs), PK-NRP hybrids, and terpenes. Here we consider how bioactive natural products directly encoded by the human microbiome can contribute to the pathophysiology of gastrointestinal disease, cancer, autoimmune, antimicrobial-resistant bacterial and viral infections (including COVID-19). We also present strategies used to discover these compounds and the biological activities they exhibit, with consideration of therapeutic interventions that could emerge from understanding molecular causation in gut microbiome research.
AbstractList Systems biology studies have established that changes in gastrointestinal microbiome composition and function can adversely impact host physiology. Notable diseases synonymously associated with dysbiosis include inflammatory bowel diseases, cancer, metabolic disorders, and opportunistic and recurrent pathogen infections. However, there is a scarcity of mechanistic data that advances our understanding of taxonomic correlations with pathophysiological host-microbiome interactions. Generally, to survive a hostile gut environment, microbes are highly metabolically active and produce trans-kingdom signaling molecules to interact with competing microorganisms and the host. These specialized metabolites likely play important homeostatic roles, and identifying disease-specific taxa and their effector pathways can provide better strategies for diagnosis, treatment, and prevention, as well as the discovery of innovative therapeutics. The signaling role of microbial biotransformation products such as bile acids, short-chain fatty acids, polysaccharides, and dietary tryptophan is increasingly recognized, but little is known about the identity and function of metabolites that are synthesized by microbial biosynthetic gene clusters, including ribosomally synthesized and posttranslationally modified peptides (RiPPs), nonribosomal peptides (NRPs), polyketides (PKs), PK-NRP hybrids, and terpenes. Here we consider how bioactive natural products directly encoded by the human microbiome can contribute to the pathophysiology of gastrointestinal disease, cancer, autoimmune, antimicrobial-resistant bacterial and viral infections (including COVID-19). We also present strategies used to discover these compounds and the biological activities they exhibit, with consideration of therapeutic interventions that could emerge from understanding molecular causation in gut microbiome research.
Systems biology studies have established that changes in gastrointestinal microbiome composition and function can adversely impact host physiology. Notable diseases synonymously associated with dysbiosis include inflammatory bowel diseases, cancer, metabolic disorders, and opportunistic and recurrent pathogen infections. However, there is a scarcity of mechanistic data that advances our understanding of taxonomic correlations with pathophysiological host-microbiome interactions. Generally, to survive a hostile gut environment, microbes are highly metabolically active and produce trans-kingdom signaling molecules to interact with competing microorganisms and the host. These specialized metabolites likely play important homeostatic roles, and identifying disease-specific taxa and their effector pathways can provide better strategies for diagnosis, treatment, and prevention, as well as the discovery of innovative therapeutics. The signaling role of microbial biotransformation products such as bile acids, short-chain fatty acids, polysaccharides, and dietary tryptophan is increasingly recognized, but little is known about the identity and function of metabolites that are synthesized by microbial biosynthetic gene clusters, including ribosomally synthesized and posttranslationally modified peptides (RiPPs), nonribosomal peptides (NRPs), polyketides (PKs), PK-NRP hybrids, and terpenes. Here we consider how bioactive natural products directly encoded by the human microbiome can contribute to the pathophysiology of gastrointestinal disease, cancer, autoimmune, antimicrobial-resistant bacterial and viral infections (including COVID-19). We also present strategies used to discover these compounds and the biological activities they exhibit, with consideration of therapeutic interventions that could emerge from understanding molecular causation in gut microbiome research.Systems biology studies have established that changes in gastrointestinal microbiome composition and function can adversely impact host physiology. Notable diseases synonymously associated with dysbiosis include inflammatory bowel diseases, cancer, metabolic disorders, and opportunistic and recurrent pathogen infections. However, there is a scarcity of mechanistic data that advances our understanding of taxonomic correlations with pathophysiological host-microbiome interactions. Generally, to survive a hostile gut environment, microbes are highly metabolically active and produce trans-kingdom signaling molecules to interact with competing microorganisms and the host. These specialized metabolites likely play important homeostatic roles, and identifying disease-specific taxa and their effector pathways can provide better strategies for diagnosis, treatment, and prevention, as well as the discovery of innovative therapeutics. The signaling role of microbial biotransformation products such as bile acids, short-chain fatty acids, polysaccharides, and dietary tryptophan is increasingly recognized, but little is known about the identity and function of metabolites that are synthesized by microbial biosynthetic gene clusters, including ribosomally synthesized and posttranslationally modified peptides (RiPPs), nonribosomal peptides (NRPs), polyketides (PKs), PK-NRP hybrids, and terpenes. Here we consider how bioactive natural products directly encoded by the human microbiome can contribute to the pathophysiology of gastrointestinal disease, cancer, autoimmune, antimicrobial-resistant bacterial and viral infections (including COVID-19). We also present strategies used to discover these compounds and the biological activities they exhibit, with consideration of therapeutic interventions that could emerge from understanding molecular causation in gut microbiome research.
Author Fobofou, Serge Alain
Savidge, Tor
Author_xml – sequence: 1
  givenname: Serge Alain
  surname: Fobofou
  fullname: Fobofou, Serge Alain
  organization: Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, Department of Pathology, Texas Children’s Microbiome Center, Texas Children’s Hospital, Houston, Texas
– sequence: 2
  givenname: Tor
  orcidid: 0000-0001-5716-5357
  surname: Savidge
  fullname: Savidge, Tor
  organization: Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, Department of Pathology, Texas Children’s Microbiome Center, Texas Children’s Hospital, Houston, Texas
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35271353$$D View this record in MEDLINE/PubMed
BookMark eNp1kc9rFDEUx4O02G317kkGvHiZbfLyYyYeLFLUFipe9BySzJs1y2yyTjKC_73ZthYtNBACL5_vl_fe95QcxRSRkFeMrhmTcG63-01Y03r6NVCAZ2RVy9AyKbojsqJM85b1sjshpzlvKyaBsefkhEvoGJd8Ra6-BD8nF-zU7LBYl6ZQML9rvF0yNmlufIoZfy4YPTYhNhuby5xCrFAJsaqGkNFmvHhBjkc7ZXx5_56R758-fru8am--fr6-_HDTegGitI4DKnDCC16vs64XA1WSM62FGPUwWsX8OGjZ4QgD-I5yh24A0FLpQXt-Rt7f-e4Xt8PBYyyzncx-Djs7_zbJBvP_Tww_zCb9MppKAYpVg7f3BnOqc-VidiF7nCYbMS3ZgOJ9Bx2IvqJvHqHbtMx16gOlegGdYKpSr__t6KGVv0uuAL0D6qZznnF8QBg1hxzNbY7mNkdzyLFK1COJD8WWkA4zhelp4R8V_6PW
CitedBy_id crossref_primary_10_1016_j_phrs_2023_106690
crossref_primary_10_3390_metabo15010060
crossref_primary_10_12998_wjcc_v10_i30_10823
crossref_primary_10_1021_acs_jcim_4c01875
crossref_primary_10_1016_j_mser_2025_100943
crossref_primary_10_1007_s00248_023_02313_8
crossref_primary_10_1021_acs_jcim_4c00903
crossref_primary_10_1021_acs_jafc_2c02357
crossref_primary_10_3390_ijms25158250
crossref_primary_10_3390_gastroent15010016
crossref_primary_10_32604_biocell_2023_024310
crossref_primary_10_3390_nu15133045
crossref_primary_10_1080_19490976_2023_2300847
crossref_primary_10_3390_ijms242015201
Cites_doi 10.1038/ja.2013.126
10.1038/nature06244
10.1038/nrmicro.2015.25
10.1128/AAC.01217-10
10.3389/fmicb.2018.01588
10.1002/btpr.2567
10.1016/j.chembiol.2015.11.012
10.1371/journal.pone.0253293
10.1016/j.bmcl.2020.127280
10.3389/fimmu.2019.03141
10.1038/s41589-021-00745-2
10.1097/MOG.0000000000000057
10.1159/000517082
10.1111/j.1469-0691.2012.03916.x
10.1038/nm.4517
10.1093/advances/nmz127
10.1038/nrmicro3344
10.1007/978-1-4939-3375-4_1
10.1002/ddr.21093
10.1128/msystems.00620-19
10.1074/jbc.M110.118554
10.1186/s40168-021-01101-1
10.1126/science.aar7785
10.1016/j.anaerobe.2016.05.006
10.1016/j.aca.2021.338881
10.1038/nature18634
10.1186/s12934-020-01367-4
10.1002/anie.201103110
10.1021/cr0503097
10.1038/s41422-020-0332-7
10.1073/pnas.1508737112
10.1093/infdis/jiaa706
10.1126/science.aax9176
10.1038/s12276-020-0437-6
10.1016/j.biotechadv.2012.12.009
10.1038/s41579-021-00569-w
10.1038/srep04202
10.1128/AAC.39.12.2656
10.3389/fmicb.2018.00415
10.1038/d41573-020-00163-4
10.1038/s41598-017-02712-1
10.1021/jacs.9b07317
10.1210/me.2014-1108
10.1371/journal.pone.0153274
10.1128/AEM.01661-18
10.1016/j.jfma.2018.09.007
10.3390/ijms20010123
10.1038/s41598-019-55851-y
10.1021/acsinfecdis.7b00081
10.1080/19490976.2020.1782158
10.3389/fmicb.2019.02261
10.1111/imr.12563
10.1080/10408398.2016.1220913
10.1016/j.ijid.2021.02.071
10.1128/mSystems.00122-19
10.3389/fpls.2019.01166
10.1099/mic.0.000515
10.1093/nar/gkab353
10.1038/s41571-018-0006-2
10.1186/s13073-018-0592-8
10.1038/nature08821
10.1038/s41579-020-0438-4
10.1111/nyas.13257
10.1038/nature11234
10.1126/science.aax2685
10.1039/c5np00091b
10.1016/j.ccell.2021.08.006
10.1016/j.jaci.2019.11.003
10.1111/j.1472-765X.2010.02844.x
10.1016/j.cell.2020.10.047
10.3390/nu12020391
10.1038/nrd.2017.154
10.1038/s41573-020-00114-z
10.1039/c4np00085d
10.1080/19490976.2018.1455790
10.1016/j.toxrep.2018.02.007
10.1124/mol.113.091165
10.1111/1462-2920.12662
10.5604/01.3001.0010.5494
10.1056/nejmoa2023294
10.1073/pnas.1422108112
10.3389/fcimb.2019.00256
10.1039/D1NP00032B
10.3390/toxins10040151
10.1016/j.cell.2014.08.032
10.1016/j.suc.2011.05.001
10.1021/acs.orglett.9b04501
10.1038/nchembio.2007.5
10.1016/j.trsl.2017.07.001
10.1021/acschembio.8b00309
10.1074/jbc.RA119.009416
10.3389/fmicb.2019.02062
10.1039/c0ob00579g
10.1186/2008-2231-20-53
10.1039/c2np20085f
10.1016/j.cell.2016.12.021
10.1038/d41573-019-00122-8
10.1152/physiol.00004.2020
10.1146/annurev-micro-102215
10.1371/journal.pbio
10.1039/c8np00030a
10.1186/s13321-021-00546-8
10.1136/bmj.k2179
10.1093/cid/ciaa709
10.1016/j.coviro.2021.05.006
10.1016/j.cbpa.2017.02.005
10.1016/j.cbpa.2020.07.010
10.1039/b111145k
10.1016/j.chembiol.2010.08.006
10.1007/s10295-018-02130-w
10.1016/j.cell.2019.07.008
10.1038/nrmicro.2017.44
10.1371/journal.pone.0098741
10.1128/AEM.03691-14
10.1186/s12934-020-01477-z
10.1016/j.cmet.2021.03.002
10.1128/mBio.00321-19
10.1016/j.ebiom.2021.103293
10.1038/nature11465
10.1038/nchembio.2207
10.1002/ange.201609079
10.1039/c5np00102a
10.1038/s41467-021-21174-8
10.1007/s00248-013-0245-9
10.4183/aeb.2016.206
10.1038/s41575-021-00499-1
10.2147/IDR.S193649
10.1002/mnfr.202000619
10.1038/s41564-018-0306-4
10.1038/s41586-020-2396-4
10.1038/s41591-019-0377-7
10.1016/j.copbio.2021.08.003
10.1038/s41586-019-1501-z
10.1016/j.virusres.2020.198018
10.1126/science.1110591
10.3389/fmicb.2018.03328
10.1042/ETLS20160015
10.1126/science.aam5336
10.1371/journal.pbio.1002533
10.1039/c4mb00406j
10.1111/j.1574-6976.2008.00123.x
10.3762/bjoc.15.283
10.1016/j.cbpa.2016.01.012
10.1073/pnas.1904099116
10.1038/s41591-018-0128-1
10.1021/acsinfecdis.9b00365
10.3390/e14112036
10.1021/jacs.1c04825
10.1038/s41570-020-0176-1
10.1016/j.synbio.2021.06.002
10.1016/j.cell.2020.06.029
10.1126/scitranslmed.aay5445
10.1016/j.cbpa.2008.01.015
10.1073/pnas.1401734111
10.1186/s40168-019-0689-3
10.1038/s41467-021-26390-w
10.1038/nrgastro.2015.47
10.1038/nchembio.1890
10.1038/srep37479
10.1039/c2ob06856g
10.1021/jacs.0c05546
10.1016/j.ejmech.2020.112790
10.1021/acsinfecdis.7b00056
10.1038/ncomms12365
10.3389/fmicb.2018.01835
10.3389/fchem.2021.595991
10.1186/s12866-015-0515-4
10.1128/AEM.03079-09
10.1016/j.pbi.2020.01.005
10.1007/s00018-019-03155-9
10.1093/nar/gkaa978
ContentType Journal Article
Copyright Copyright American Physiological Society Jun 2022
Copyright © 2022 the American Physiological Society. 2022 American Physiological Society
Copyright_xml – notice: Copyright American Physiological Society Jun 2022
– notice: Copyright © 2022 the American Physiological Society. 2022 American Physiological Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
5PM
DOI 10.1152/ajpgi.00008.2022
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
DocumentTitleAlternate MICROBIOME AND MOLECULAR CAUSALITY
EISSN 1522-1547
EndPage G552
ExternalDocumentID PMC9054261
35271353
10_1152_ajpgi_00008_2022
Genre Journal Article
Review
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: P01 AI152999
– fundername: NIAID NIH HHS
  grantid: U01 AI124290
– fundername: NIDDK NIH HHS
  grantid: P30 DK056338
– fundername: NINR NIH HHS
  grantid: R01 NR013497
– fundername: NIDDK NIH HHS
  grantid: R01 DK130517
– fundername: ;
  grantid: R01DK130517
– fundername: ;
  grantid: R01-NR013497
– fundername: ;
  grantid: P01-AI152999
– fundername: ;
  grantid: U01-AI24290
– fundername: ;
  grantid: P30-DK56338
GroupedDBID ---
23M
2WC
39C
4.4
5GY
5VS
6J9
AAFWJ
AAYXX
ABJNI
ACPRK
ADBBV
AENEX
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BKKCC
BKOMP
CITATION
E3Z
EBS
EMOBN
F5P
GX1
H13
ITBOX
KQ8
OK1
P2P
PQQKQ
RAP
RHI
RPL
RPRKH
TR2
W8F
WOQ
XSW
YSK
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
5PM
ID FETCH-LOGICAL-c424t-b32e62b4c434c4bab84d065319944f9dfa61cfd957ef2d2c703bebd229569d9c3
ISSN 0193-1857
1522-1547
IngestDate Thu Aug 21 18:36:11 EDT 2025
Fri Jul 11 15:40:30 EDT 2025
Mon Jun 30 08:09:16 EDT 2025
Thu Apr 03 07:09:28 EDT 2025
Tue Jul 01 03:43:05 EDT 2025
Thu Apr 24 23:09:16 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords fecal transplantation
natural products
microbial therapeutics
gastrointestinal disease
microbiome
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c424t-b32e62b4c434c4bab84d065319944f9dfa61cfd957ef2d2c703bebd229569d9c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-5716-5357
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC9054261
PMID 35271353
PQID 2668427416
PQPubID 48585
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9054261
proquest_miscellaneous_2638727248
proquest_journals_2668427416
pubmed_primary_35271353
crossref_primary_10_1152_ajpgi_00008_2022
crossref_citationtrail_10_1152_ajpgi_00008_2022
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Bethesda
– name: Rockville, MD
PublicationSeriesTitle Microbiome-Based Therapeutics and Their Physiological Effects
PublicationTitle American journal of physiology: Gastrointestinal and liver physiology
PublicationTitleAlternate Am J Physiol Gastrointest Liver Physiol
PublicationYear 2022
Publisher American Physiological Society
Publisher_xml – name: American Physiological Society
References B20
B21
B22
B23
B24
B25
B26
B27
B28
B29
B158
B159
B156
B157
B154
B155
B152
B153
B150
B151
B30
B31
B32
B33
B34
B35
B36
B37
B38
B39
B169
B167
B1
B168
B2
B165
B3
B166
B4
B163
B5
B164
B6
B161
B7
B162
B8
B9
B160
B40
B41
B42
B43
B44
B45
B46
B47
B48
B49
B170
B171
B50
B51
B52
B53
B54
B55
B56
B57
B58
B59
B109
B107
B108
B105
B106
B103
B104
B101
B102
B100
B60
B61
B62
B63
B64
B65
B66
B67
B68
B69
B118
B119
B116
B117
B114
B115
B112
B113
B110
B111
B70
B71
B72
B73
B74
B75
B76
B77
B78
B79
B129
B127
B128
B125
B126
B123
B124
B121
B122
B120
B80
B81
B82
B83
B84
B85
B86
B87
B88
B89
B138
B139
B136
B137
B134
B135
B132
B133
B130
B131
B90
B91
B92
B93
B94
B95
B96
B97
B10
B98
B11
B99
B12
B13
B14
B15
B16
B17
B18
B19
B149
B147
B148
B145
B146
B143
B144
B141
B142
B140
References_xml – ident: B128
  doi: 10.1038/ja.2013.126
– ident: B1
  doi: 10.1038/nature06244
– ident: B136
  doi: 10.1038/nrmicro.2015.25
– ident: B64
  doi: 10.1128/AAC.01217-10
– ident: B126
  doi: 10.3389/fmicb.2018.01588
– ident: B75
  doi: 10.1002/btpr.2567
– ident: B54
  doi: 10.1016/j.chembiol.2015.11.012
– ident: B142
  doi: 10.1371/journal.pone.0253293
– ident: B95
  doi: 10.1016/j.bmcl.2020.127280
– ident: B13
  doi: 10.3389/fimmu.2019.03141
– ident: B92
  doi: 10.1038/s41589-021-00745-2
– ident: B38
  doi: 10.1097/MOG.0000000000000057
– ident: B52
  doi: 10.1159/000517082
– ident: B8
  doi: 10.1111/j.1469-0691.2012.03916.x
– ident: B26
  doi: 10.1038/nm.4517
– ident: B41
  doi: 10.1093/advances/nmz127
– ident: B122
  doi: 10.1038/nrmicro3344
– ident: B71
  doi: 10.1007/978-1-4939-3375-4_1
– ident: B162
  doi: 10.1002/ddr.21093
– ident: B171
  doi: 10.1128/msystems.00620-19
– ident: B65
  doi: 10.1074/jbc.M110.118554
– ident: B106
  doi: 10.1186/s40168-021-01101-1
– ident: B96
  doi: 10.1126/science.aar7785
– ident: B18
  doi: 10.1016/j.anaerobe.2016.05.006
– ident: B139
  doi: 10.1016/j.aca.2021.338881
– ident: B73
  doi: 10.1038/nature18634
– ident: B77
  doi: 10.1186/s12934-020-01367-4
– ident: B104
  doi: 10.1002/anie.201103110
– ident: B70
  doi: 10.1021/cr0503097
– ident: B22
  doi: 10.1038/s41422-020-0332-7
– ident: B46
  doi: 10.1073/pnas.1508737112
– ident: B20
  doi: 10.1093/infdis/jiaa706
– ident: B24
  doi: 10.1126/science.aax9176
– ident: B168
  doi: 10.1038/s12276-020-0437-6
– ident: B40
  doi: 10.1016/j.biotechadv.2012.12.009
– ident: B49
  doi: 10.1038/s41579-021-00569-w
– ident: B117
  doi: 10.1038/srep04202
– ident: B58
  doi: 10.1128/AAC.39.12.2656
– ident: B59
  doi: 10.3389/fmicb.2018.00415
– ident: B160
  doi: 10.1038/d41573-020-00163-4
– ident: B109
  doi: 10.1038/s41598-017-02712-1
– ident: B31
  doi: 10.1021/jacs.9b07317
– ident: B157
  doi: 10.1210/me.2014-1108
– ident: B113
  doi: 10.1371/journal.pone.0153274
– ident: B83
  doi: 10.1128/AEM.01661-18
– ident: B152
  doi: 10.1016/j.jfma.2018.09.007
– ident: B17
  doi: 10.3390/ijms20010123
– ident: B19
  doi: 10.1038/s41598-019-55851-y
– ident: B32
  doi: 10.1021/acsinfecdis.7b00081
– ident: B125
  doi: 10.1080/19490976.2020.1782158
– ident: B57
  doi: 10.3389/fmicb.2019.02261
– ident: B111
  doi: 10.1111/imr.12563
– ident: B149
  doi: 10.1080/10408398.2016.1220913
– ident: B131
  doi: 10.1016/j.ijid.2021.02.071
– ident: B170
  doi: 10.1128/mSystems.00122-19
– ident: B103
  doi: 10.3389/fpls.2019.01166
– ident: B60
  doi: 10.1099/mic.0.000515
– ident: B28
  doi: 10.1093/nar/gkab353
– ident: B120
  doi: 10.1038/s41571-018-0006-2
– ident: B159
  doi: 10.1186/s13073-018-0592-8
– ident: B3
  doi: 10.1038/nature08821
– ident: B43
  doi: 10.1038/s41579-020-0438-4
– ident: B156
  doi: 10.1111/nyas.13257
– ident: B34
  doi: 10.1038/nature11234
– ident: B97
  doi: 10.1126/science.aax2685
– ident: B93
  doi: 10.1039/c5np00091b
– ident: B118
  doi: 10.1016/j.ccell.2021.08.006
– ident: B15
  doi: 10.1016/j.jaci.2019.11.003
– ident: B132
  doi: 10.1111/j.1472-765X.2010.02844.x
– ident: B135
  doi: 10.1016/j.cell.2020.10.047
– ident: B130
  doi: 10.3390/nu12020391
– ident: B166
  doi: 10.1038/nrd.2017.154
– ident: B146
  doi: 10.1038/s41573-020-00114-z
– ident: B137
  doi: 10.1039/c4np00085d
– ident: B63
  doi: 10.1080/19490976.2018.1455790
– ident: B129
  doi: 10.1016/j.toxrep.2018.02.007
– ident: B42
  doi: 10.1124/mol.113.091165
– ident: B112
  doi: 10.1111/1462-2920.12662
– ident: B37
  doi: 10.5604/01.3001.0010.5494
– ident: B167
  doi: 10.1056/nejmoa2023294
– ident: B99
  doi: 10.1073/pnas.1422108112
– ident: B134
  doi: 10.3389/fcimb.2019.00256
– ident: B155
  doi: 10.1039/D1NP00032B
– ident: B94
  doi: 10.3390/toxins10040151
– ident: B23
  doi: 10.1016/j.cell.2014.08.032
– ident: B11
  doi: 10.1016/j.suc.2011.05.001
– ident: B87
  doi: 10.1021/acs.orglett.9b04501
– ident: B101
  doi: 10.1038/nchembio.2007.5
– ident: B153
  doi: 10.1016/j.trsl.2017.07.001
– ident: B165
  doi: 10.1021/acschembio.8b00309
– ident: B56
  doi: 10.1074/jbc.RA119.009416
– ident: B66
  doi: 10.3389/fmicb.2019.02062
– ident: B88
  doi: 10.1039/c0ob00579g
– ident: B133
  doi: 10.1186/2008-2231-20-53
– ident: B53
  doi: 10.1039/c2np20085f
– ident: B33
  doi: 10.1016/j.cell.2016.12.021
– ident: B163
  doi: 10.1038/d41573-019-00122-8
– ident: B36
  doi: 10.1152/physiol.00004.2020
– ident: B39
  doi: 10.1146/annurev-micro-102215
– ident: B6
  doi: 10.1371/journal.pbio
– ident: B79
  doi: 10.1039/c8np00030a
– ident: B81
  doi: 10.1186/s13321-021-00546-8
– ident: B12
  doi: 10.1136/bmj.k2179
– ident: B21
  doi: 10.1093/cid/ciaa709
– ident: B145
  doi: 10.1016/j.coviro.2021.05.006
– ident: B50
  doi: 10.1016/j.cbpa.2017.02.005
– ident: B154
  doi: 10.1016/j.cbpa.2020.07.010
– ident: B68
  doi: 10.1039/b111145k
– ident: B74
  doi: 10.1016/j.chembiol.2010.08.006
– ident: B69
  doi: 10.1007/s10295-018-02130-w
– ident: B114
  doi: 10.1016/j.cell.2019.07.008
– ident: B121
  doi: 10.1038/nrmicro.2017.44
– ident: B116
  doi: 10.1371/journal.pone.0098741
– ident: B85
  doi: 10.1128/AEM.03691-14
– ident: B123
  doi: 10.1186/s12934-020-01477-z
– ident: B124
  doi: 10.1016/j.cmet.2021.03.002
– ident: B30
  doi: 10.1128/mBio.00321-19
– ident: B35
  doi: 10.1016/j.ebiom.2021.103293
– ident: B119
  doi: 10.1038/nature11465
– ident: B45
  doi: 10.1038/nchembio.2207
– ident: B72
  doi: 10.1002/ange.201609079
– ident: B100
  doi: 10.1039/c5np00102a
– ident: B78
  doi: 10.1038/s41467-021-21174-8
– ident: B115
  doi: 10.1007/s00248-013-0245-9
– ident: B14
  doi: 10.4183/aeb.2016.206
– ident: B169
  doi: 10.1038/s41575-021-00499-1
– ident: B108
  doi: 10.2147/IDR.S193649
– ident: B105
  doi: 10.1002/mnfr.202000619
– ident: B150
  doi: 10.1038/s41564-018-0306-4
– ident: B29
  doi: 10.1038/s41586-020-2396-4
– ident: B16
  doi: 10.1038/s41591-019-0377-7
– ident: B158
  doi: 10.1016/j.copbio.2021.08.003
– ident: B55
  doi: 10.1038/s41586-019-1501-z
– ident: B140
  doi: 10.1016/j.virusres.2020.198018
– ident: B5
  doi: 10.1126/science.1110591
– ident: B10
  doi: 10.3389/fmicb.2018.03328
– ident: B110
  doi: 10.1042/ETLS20160015
– ident: B144
  doi: 10.1126/science.aam5336
– ident: B25
  doi: 10.1371/journal.pbio.1002533
– ident: B84
  doi: 10.1039/c4mb00406j
– ident: B2
  doi: 10.1111/j.1574-6976.2008.00123.x
– ident: B98
  doi: 10.3762/bjoc.15.283
– ident: B76
  doi: 10.1016/j.cbpa.2016.01.012
– ident: B147
  doi: 10.1073/pnas.1904099116
– ident: B164
  doi: 10.1038/s41591-018-0128-1
– ident: B86
  doi: 10.1021/acsinfecdis.9b00365
– ident: B9
  doi: 10.3390/e14112036
– ident: B89
  doi: 10.1021/jacs.1c04825
– ident: B51
  doi: 10.1038/s41570-020-0176-1
– ident: B141
  doi: 10.1016/j.synbio.2021.06.002
– ident: B143
  doi: 10.1016/j.cell.2020.06.029
– ident: B62
  doi: 10.1126/scitranslmed.aay5445
– ident: B7
  doi: 10.1016/j.cbpa.2008.01.015
– ident: B67
  doi: 10.1073/pnas.1401734111
– ident: B107
  doi: 10.1186/s40168-019-0689-3
– ident: B148
  doi: 10.1038/s41467-021-26390-w
– ident: B161
  doi: 10.1038/nrgastro.2015.47
– ident: B27
  doi: 10.1038/nchembio.1890
– ident: B82
  doi: 10.1038/srep37479
– ident: B90
  doi: 10.1039/c2ob06856g
– ident: B48
  doi: 10.1021/jacs.0c05546
– ident: B138
  doi: 10.1016/j.ejmech.2020.112790
– ident: B44
  doi: 10.1021/acsinfecdis.7b00056
– ident: B127
  doi: 10.1038/ncomms12365
– ident: B4
  doi: 10.3389/fmicb.2018.01835
– ident: B61
  doi: 10.3389/fchem.2021.595991
– ident: B47
  doi: 10.1186/s12866-015-0515-4
– ident: B91
  doi: 10.1128/AEM.03079-09
– ident: B102
  doi: 10.1016/j.pbi.2020.01.005
– ident: B151
  doi: 10.1007/s00018-019-03155-9
– ident: B80
  doi: 10.1093/nar/gkaa978
SSID ssj0005211
Score 2.4751875
SecondaryResourceType review_article
Snippet Systems biology studies have established that changes in gastrointestinal microbiome composition and function can adversely impact host physiology. Notable...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage G535
SubjectTerms Bile acids
Biotransformation
COVID-19
Digestive system
Dysbacteriosis
Dysbiosis - microbiology
Fatty acids
Gastrointestinal Diseases
Gastrointestinal Microbiome
Gastrointestinal tract
Gene clusters
Humans
Hybrids
Inflammatory bowel diseases
Intestinal microflora
Medical innovations
Metabolic disorders
Metabolites
Microbiomes
Microbiota
Natural products
Opportunist infection
Pathophysiology
Peptides
Polyketides
Polysaccharides
Review
Therapeutic applications
Tryptophan
Title Microbial metabolites: cause or consequence in gastrointestinal disease?
URI https://www.ncbi.nlm.nih.gov/pubmed/35271353
https://www.proquest.com/docview/2668427416
https://www.proquest.com/docview/2638727248
https://pubmed.ncbi.nlm.nih.gov/PMC9054261
Volume 322
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKkBAvCDZghYGMhJAQCkts54sXVKFtFaxDiFbqW2Q7yQgqydSlQuOv585JUzdDE_DQqEocO7o7f5z9u98R8pIHeZi6Inf8LDWk2p4Tq9x1fFfokGcy1zEGOE_OgvFMfJz788Hgpx1dUqu3-tcf40r-R6twD_SKUbL_oNmuUrgB_0G_cAUNw_WvdDwpDI2SCQCpQZsYT2wgblquTMYmBJWvwdK4s3EuL-tlhRQR0LPLzflMD97XHeNYvBJmC6QJbYEGTvoV4f77AjEeVsHNDAdTbbUyG60Y7PlmtJBFZ5RfEVXfJHifVkt7FwIc2A4tZQH_cdhet2FMrEWe2vuXMXeQfqqZftoxF6qDlVxoD8qcMcv67CH2xG_4Ta6P_T5yycrvF-eFYaVE4F5byxbN9tnn5Hh2eppMj-bTW-Q2A_8CU198-hJZ2CCvTWTZfO36fNtnh_36t9cz15yUPtbWWrxM75N7rddBR40JPSCDrNwle6NS1tWPK_qKdvK82iV3Ji3cYo-MOwOjloG9o8a8aLWklnnRoqR986Kteb1_SGbHR9MPY6dNveFowUTtKM6ygCmhBYefkioSKbIYI5O0yOM0l4Gn8zT2wyxnKdMwb6hMpZgbPojTWPNHZKesymyfUB6qOHShDqk9AcJWwuUyzJgWkRuAbIfkcC3ARLe89JgeZZEY_9RniRF5YkSeoMiH5HX3xkXDyXJD2YO1TpK2z1wmsCiNBPI2BUPyonsM4yoelskyq1ZYhkcIUhDRkDxuVNg1Bk4LZrbkQxJuKbcrgJzt20_K4pvhbo_BRWKB9-Tmz3pK7m462QHZqZer7Bksfmv13Bjqb90NtZ8
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microbial+metabolites%3A+cause+or+consequence+in+gastrointestinal+disease%3F&rft.jtitle=American+journal+of+physiology%3A+Gastrointestinal+and+liver+physiology&rft.au=Fobofou%2C+Serge+Alain&rft.au=Savidge%2C+Tor&rft.date=2022-06-01&rft.pub=American+Physiological+Society&rft.issn=0193-1857&rft.eissn=1522-1547&rft.volume=322&rft.issue=6&rft.spage=G535&rft_id=info:doi/10.1152%2Fajpgi.00008.2022&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0193-1857&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0193-1857&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0193-1857&client=summon