Microbial metabolites: cause or consequence in gastrointestinal disease?
Systems biology studies have established that changes in gastrointestinal microbiome composition and function can adversely impact host physiology. Notable diseases synonymously associated with dysbiosis include inflammatory bowel diseases, cancer, metabolic disorders, and opportunistic and recurren...
Saved in:
Published in | American journal of physiology: Gastrointestinal and liver physiology Vol. 322; no. 6; pp. G535 - G552 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
American Physiological Society
01.06.2022
|
Series | Microbiome-Based Therapeutics and Their Physiological Effects |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Systems biology studies have established that changes in gastrointestinal microbiome composition and function can adversely impact host physiology. Notable diseases synonymously associated with dysbiosis include inflammatory bowel diseases, cancer, metabolic disorders, and opportunistic and recurrent pathogen infections. However, there is a scarcity of mechanistic data that advances our understanding of taxonomic correlations with pathophysiological host-microbiome interactions. Generally, to survive a hostile gut environment, microbes are highly metabolically active and produce trans-kingdom signaling molecules to interact with competing microorganisms and the host. These specialized metabolites likely play important homeostatic roles, and identifying disease-specific taxa and their effector pathways can provide better strategies for diagnosis, treatment, and prevention, as well as the discovery of innovative therapeutics. The signaling role of microbial biotransformation products such as bile acids, short-chain fatty acids, polysaccharides, and dietary tryptophan is increasingly recognized, but little is known about the identity and function of metabolites that are synthesized by microbial biosynthetic gene clusters, including ribosomally synthesized and posttranslationally modified peptides (RiPPs), nonribosomal peptides (NRPs), polyketides (PKs), PK-NRP hybrids, and terpenes. Here we consider how bioactive natural products directly encoded by the human microbiome can contribute to the pathophysiology of gastrointestinal disease, cancer, autoimmune, antimicrobial-resistant bacterial and viral infections (including COVID-19). We also present strategies used to discover these compounds and the biological activities they exhibit, with consideration of therapeutic interventions that could emerge from understanding molecular causation in gut microbiome research. |
---|---|
AbstractList | Systems biology studies have established that changes in gastrointestinal microbiome composition and function can adversely impact host physiology. Notable diseases synonymously associated with dysbiosis include inflammatory bowel diseases, cancer, metabolic disorders, and opportunistic and recurrent pathogen infections. However, there is a scarcity of mechanistic data that advances our understanding of taxonomic correlations with pathophysiological host-microbiome interactions. Generally, to survive a hostile gut environment, microbes are highly metabolically active and produce trans-kingdom signaling molecules to interact with competing microorganisms and the host. These specialized metabolites likely play important homeostatic roles, and identifying disease-specific taxa and their effector pathways can provide better strategies for diagnosis, treatment, and prevention, as well as the discovery of innovative therapeutics. The signaling role of microbial biotransformation products such as bile acids, short-chain fatty acids, polysaccharides, and dietary tryptophan is increasingly recognized, but little is known about the identity and function of metabolites that are synthesized by microbial biosynthetic gene clusters, including ribosomally synthesized and posttranslationally modified peptides (RiPPs), nonribosomal peptides (NRPs), polyketides (PKs), PK-NRP hybrids, and terpenes. Here we consider how bioactive natural products directly encoded by the human microbiome can contribute to the pathophysiology of gastrointestinal disease, cancer, autoimmune, antimicrobial-resistant bacterial and viral infections (including COVID-19). We also present strategies used to discover these compounds and the biological activities they exhibit, with consideration of therapeutic interventions that could emerge from understanding molecular causation in gut microbiome research. Systems biology studies have established that changes in gastrointestinal microbiome composition and function can adversely impact host physiology. Notable diseases synonymously associated with dysbiosis include inflammatory bowel diseases, cancer, metabolic disorders, and opportunistic and recurrent pathogen infections. However, there is a scarcity of mechanistic data that advances our understanding of taxonomic correlations with pathophysiological host-microbiome interactions. Generally, to survive a hostile gut environment, microbes are highly metabolically active and produce trans-kingdom signaling molecules to interact with competing microorganisms and the host. These specialized metabolites likely play important homeostatic roles, and identifying disease-specific taxa and their effector pathways can provide better strategies for diagnosis, treatment, and prevention, as well as the discovery of innovative therapeutics. The signaling role of microbial biotransformation products such as bile acids, short-chain fatty acids, polysaccharides, and dietary tryptophan is increasingly recognized, but little is known about the identity and function of metabolites that are synthesized by microbial biosynthetic gene clusters, including ribosomally synthesized and posttranslationally modified peptides (RiPPs), nonribosomal peptides (NRPs), polyketides (PKs), PK-NRP hybrids, and terpenes. Here we consider how bioactive natural products directly encoded by the human microbiome can contribute to the pathophysiology of gastrointestinal disease, cancer, autoimmune, antimicrobial-resistant bacterial and viral infections (including COVID-19). We also present strategies used to discover these compounds and the biological activities they exhibit, with consideration of therapeutic interventions that could emerge from understanding molecular causation in gut microbiome research.Systems biology studies have established that changes in gastrointestinal microbiome composition and function can adversely impact host physiology. Notable diseases synonymously associated with dysbiosis include inflammatory bowel diseases, cancer, metabolic disorders, and opportunistic and recurrent pathogen infections. However, there is a scarcity of mechanistic data that advances our understanding of taxonomic correlations with pathophysiological host-microbiome interactions. Generally, to survive a hostile gut environment, microbes are highly metabolically active and produce trans-kingdom signaling molecules to interact with competing microorganisms and the host. These specialized metabolites likely play important homeostatic roles, and identifying disease-specific taxa and their effector pathways can provide better strategies for diagnosis, treatment, and prevention, as well as the discovery of innovative therapeutics. The signaling role of microbial biotransformation products such as bile acids, short-chain fatty acids, polysaccharides, and dietary tryptophan is increasingly recognized, but little is known about the identity and function of metabolites that are synthesized by microbial biosynthetic gene clusters, including ribosomally synthesized and posttranslationally modified peptides (RiPPs), nonribosomal peptides (NRPs), polyketides (PKs), PK-NRP hybrids, and terpenes. Here we consider how bioactive natural products directly encoded by the human microbiome can contribute to the pathophysiology of gastrointestinal disease, cancer, autoimmune, antimicrobial-resistant bacterial and viral infections (including COVID-19). We also present strategies used to discover these compounds and the biological activities they exhibit, with consideration of therapeutic interventions that could emerge from understanding molecular causation in gut microbiome research. |
Author | Fobofou, Serge Alain Savidge, Tor |
Author_xml | – sequence: 1 givenname: Serge Alain surname: Fobofou fullname: Fobofou, Serge Alain organization: Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, Department of Pathology, Texas Children’s Microbiome Center, Texas Children’s Hospital, Houston, Texas – sequence: 2 givenname: Tor orcidid: 0000-0001-5716-5357 surname: Savidge fullname: Savidge, Tor organization: Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, Department of Pathology, Texas Children’s Microbiome Center, Texas Children’s Hospital, Houston, Texas |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35271353$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc9rFDEUx4O02G317kkGvHiZbfLyYyYeLFLUFipe9BySzJs1y2yyTjKC_73ZthYtNBACL5_vl_fe95QcxRSRkFeMrhmTcG63-01Y03r6NVCAZ2RVy9AyKbojsqJM85b1sjshpzlvKyaBsefkhEvoGJd8Ra6-BD8nF-zU7LBYl6ZQML9rvF0yNmlufIoZfy4YPTYhNhuby5xCrFAJsaqGkNFmvHhBjkc7ZXx5_56R758-fru8am--fr6-_HDTegGitI4DKnDCC16vs64XA1WSM62FGPUwWsX8OGjZ4QgD-I5yh24A0FLpQXt-Rt7f-e4Xt8PBYyyzncx-Djs7_zbJBvP_Tww_zCb9MppKAYpVg7f3BnOqc-VidiF7nCYbMS3ZgOJ9Bx2IvqJvHqHbtMx16gOlegGdYKpSr__t6KGVv0uuAL0D6qZznnF8QBg1hxzNbY7mNkdzyLFK1COJD8WWkA4zhelp4R8V_6PW |
CitedBy_id | crossref_primary_10_1016_j_phrs_2023_106690 crossref_primary_10_3390_metabo15010060 crossref_primary_10_12998_wjcc_v10_i30_10823 crossref_primary_10_1021_acs_jcim_4c01875 crossref_primary_10_1016_j_mser_2025_100943 crossref_primary_10_1007_s00248_023_02313_8 crossref_primary_10_1021_acs_jcim_4c00903 crossref_primary_10_1021_acs_jafc_2c02357 crossref_primary_10_3390_ijms25158250 crossref_primary_10_3390_gastroent15010016 crossref_primary_10_32604_biocell_2023_024310 crossref_primary_10_3390_nu15133045 crossref_primary_10_1080_19490976_2023_2300847 crossref_primary_10_3390_ijms242015201 |
Cites_doi | 10.1038/ja.2013.126 10.1038/nature06244 10.1038/nrmicro.2015.25 10.1128/AAC.01217-10 10.3389/fmicb.2018.01588 10.1002/btpr.2567 10.1016/j.chembiol.2015.11.012 10.1371/journal.pone.0253293 10.1016/j.bmcl.2020.127280 10.3389/fimmu.2019.03141 10.1038/s41589-021-00745-2 10.1097/MOG.0000000000000057 10.1159/000517082 10.1111/j.1469-0691.2012.03916.x 10.1038/nm.4517 10.1093/advances/nmz127 10.1038/nrmicro3344 10.1007/978-1-4939-3375-4_1 10.1002/ddr.21093 10.1128/msystems.00620-19 10.1074/jbc.M110.118554 10.1186/s40168-021-01101-1 10.1126/science.aar7785 10.1016/j.anaerobe.2016.05.006 10.1016/j.aca.2021.338881 10.1038/nature18634 10.1186/s12934-020-01367-4 10.1002/anie.201103110 10.1021/cr0503097 10.1038/s41422-020-0332-7 10.1073/pnas.1508737112 10.1093/infdis/jiaa706 10.1126/science.aax9176 10.1038/s12276-020-0437-6 10.1016/j.biotechadv.2012.12.009 10.1038/s41579-021-00569-w 10.1038/srep04202 10.1128/AAC.39.12.2656 10.3389/fmicb.2018.00415 10.1038/d41573-020-00163-4 10.1038/s41598-017-02712-1 10.1021/jacs.9b07317 10.1210/me.2014-1108 10.1371/journal.pone.0153274 10.1128/AEM.01661-18 10.1016/j.jfma.2018.09.007 10.3390/ijms20010123 10.1038/s41598-019-55851-y 10.1021/acsinfecdis.7b00081 10.1080/19490976.2020.1782158 10.3389/fmicb.2019.02261 10.1111/imr.12563 10.1080/10408398.2016.1220913 10.1016/j.ijid.2021.02.071 10.1128/mSystems.00122-19 10.3389/fpls.2019.01166 10.1099/mic.0.000515 10.1093/nar/gkab353 10.1038/s41571-018-0006-2 10.1186/s13073-018-0592-8 10.1038/nature08821 10.1038/s41579-020-0438-4 10.1111/nyas.13257 10.1038/nature11234 10.1126/science.aax2685 10.1039/c5np00091b 10.1016/j.ccell.2021.08.006 10.1016/j.jaci.2019.11.003 10.1111/j.1472-765X.2010.02844.x 10.1016/j.cell.2020.10.047 10.3390/nu12020391 10.1038/nrd.2017.154 10.1038/s41573-020-00114-z 10.1039/c4np00085d 10.1080/19490976.2018.1455790 10.1016/j.toxrep.2018.02.007 10.1124/mol.113.091165 10.1111/1462-2920.12662 10.5604/01.3001.0010.5494 10.1056/nejmoa2023294 10.1073/pnas.1422108112 10.3389/fcimb.2019.00256 10.1039/D1NP00032B 10.3390/toxins10040151 10.1016/j.cell.2014.08.032 10.1016/j.suc.2011.05.001 10.1021/acs.orglett.9b04501 10.1038/nchembio.2007.5 10.1016/j.trsl.2017.07.001 10.1021/acschembio.8b00309 10.1074/jbc.RA119.009416 10.3389/fmicb.2019.02062 10.1039/c0ob00579g 10.1186/2008-2231-20-53 10.1039/c2np20085f 10.1016/j.cell.2016.12.021 10.1038/d41573-019-00122-8 10.1152/physiol.00004.2020 10.1146/annurev-micro-102215 10.1371/journal.pbio 10.1039/c8np00030a 10.1186/s13321-021-00546-8 10.1136/bmj.k2179 10.1093/cid/ciaa709 10.1016/j.coviro.2021.05.006 10.1016/j.cbpa.2017.02.005 10.1016/j.cbpa.2020.07.010 10.1039/b111145k 10.1016/j.chembiol.2010.08.006 10.1007/s10295-018-02130-w 10.1016/j.cell.2019.07.008 10.1038/nrmicro.2017.44 10.1371/journal.pone.0098741 10.1128/AEM.03691-14 10.1186/s12934-020-01477-z 10.1016/j.cmet.2021.03.002 10.1128/mBio.00321-19 10.1016/j.ebiom.2021.103293 10.1038/nature11465 10.1038/nchembio.2207 10.1002/ange.201609079 10.1039/c5np00102a 10.1038/s41467-021-21174-8 10.1007/s00248-013-0245-9 10.4183/aeb.2016.206 10.1038/s41575-021-00499-1 10.2147/IDR.S193649 10.1002/mnfr.202000619 10.1038/s41564-018-0306-4 10.1038/s41586-020-2396-4 10.1038/s41591-019-0377-7 10.1016/j.copbio.2021.08.003 10.1038/s41586-019-1501-z 10.1016/j.virusres.2020.198018 10.1126/science.1110591 10.3389/fmicb.2018.03328 10.1042/ETLS20160015 10.1126/science.aam5336 10.1371/journal.pbio.1002533 10.1039/c4mb00406j 10.1111/j.1574-6976.2008.00123.x 10.3762/bjoc.15.283 10.1016/j.cbpa.2016.01.012 10.1073/pnas.1904099116 10.1038/s41591-018-0128-1 10.1021/acsinfecdis.9b00365 10.3390/e14112036 10.1021/jacs.1c04825 10.1038/s41570-020-0176-1 10.1016/j.synbio.2021.06.002 10.1016/j.cell.2020.06.029 10.1126/scitranslmed.aay5445 10.1016/j.cbpa.2008.01.015 10.1073/pnas.1401734111 10.1186/s40168-019-0689-3 10.1038/s41467-021-26390-w 10.1038/nrgastro.2015.47 10.1038/nchembio.1890 10.1038/srep37479 10.1039/c2ob06856g 10.1021/jacs.0c05546 10.1016/j.ejmech.2020.112790 10.1021/acsinfecdis.7b00056 10.1038/ncomms12365 10.3389/fmicb.2018.01835 10.3389/fchem.2021.595991 10.1186/s12866-015-0515-4 10.1128/AEM.03079-09 10.1016/j.pbi.2020.01.005 10.1007/s00018-019-03155-9 10.1093/nar/gkaa978 |
ContentType | Journal Article |
Copyright | Copyright American Physiological Society Jun 2022 Copyright © 2022 the American Physiological Society. 2022 American Physiological Society |
Copyright_xml | – notice: Copyright American Physiological Society Jun 2022 – notice: Copyright © 2022 the American Physiological Society. 2022 American Physiological Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. 7X8 5PM |
DOI | 10.1152/ajpgi.00008.2022 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
DocumentTitleAlternate | MICROBIOME AND MOLECULAR CAUSALITY |
EISSN | 1522-1547 |
EndPage | G552 |
ExternalDocumentID | PMC9054261 35271353 10_1152_ajpgi_00008_2022 |
Genre | Journal Article Review Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: P01 AI152999 – fundername: NIAID NIH HHS grantid: U01 AI124290 – fundername: NIDDK NIH HHS grantid: P30 DK056338 – fundername: NINR NIH HHS grantid: R01 NR013497 – fundername: NIDDK NIH HHS grantid: R01 DK130517 – fundername: ; grantid: R01DK130517 – fundername: ; grantid: R01-NR013497 – fundername: ; grantid: P01-AI152999 – fundername: ; grantid: U01-AI24290 – fundername: ; grantid: P30-DK56338 |
GroupedDBID | --- 23M 2WC 39C 4.4 5GY 5VS 6J9 AAFWJ AAYXX ABJNI ACPRK ADBBV AENEX ALMA_UNASSIGNED_HOLDINGS BAWUL BKKCC BKOMP CITATION E3Z EBS EMOBN F5P GX1 H13 ITBOX KQ8 OK1 P2P PQQKQ RAP RHI RPL RPRKH TR2 W8F WOQ XSW YSK CGR CUY CVF ECM EIF NPM K9. 7X8 5PM |
ID | FETCH-LOGICAL-c424t-b32e62b4c434c4bab84d065319944f9dfa61cfd957ef2d2c703bebd229569d9c3 |
ISSN | 0193-1857 1522-1547 |
IngestDate | Thu Aug 21 18:36:11 EDT 2025 Fri Jul 11 15:40:30 EDT 2025 Mon Jun 30 08:09:16 EDT 2025 Thu Apr 03 07:09:28 EDT 2025 Tue Jul 01 03:43:05 EDT 2025 Thu Apr 24 23:09:16 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | fecal transplantation natural products microbial therapeutics gastrointestinal disease microbiome |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c424t-b32e62b4c434c4bab84d065319944f9dfa61cfd957ef2d2c703bebd229569d9c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-5716-5357 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC9054261 |
PMID | 35271353 |
PQID | 2668427416 |
PQPubID | 48585 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9054261 proquest_miscellaneous_2638727248 proquest_journals_2668427416 pubmed_primary_35271353 crossref_primary_10_1152_ajpgi_00008_2022 crossref_citationtrail_10_1152_ajpgi_00008_2022 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-01 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Bethesda – name: Rockville, MD |
PublicationSeriesTitle | Microbiome-Based Therapeutics and Their Physiological Effects |
PublicationTitle | American journal of physiology: Gastrointestinal and liver physiology |
PublicationTitleAlternate | Am J Physiol Gastrointest Liver Physiol |
PublicationYear | 2022 |
Publisher | American Physiological Society |
Publisher_xml | – name: American Physiological Society |
References | B20 B21 B22 B23 B24 B25 B26 B27 B28 B29 B158 B159 B156 B157 B154 B155 B152 B153 B150 B151 B30 B31 B32 B33 B34 B35 B36 B37 B38 B39 B169 B167 B1 B168 B2 B165 B3 B166 B4 B163 B5 B164 B6 B161 B7 B162 B8 B9 B160 B40 B41 B42 B43 B44 B45 B46 B47 B48 B49 B170 B171 B50 B51 B52 B53 B54 B55 B56 B57 B58 B59 B109 B107 B108 B105 B106 B103 B104 B101 B102 B100 B60 B61 B62 B63 B64 B65 B66 B67 B68 B69 B118 B119 B116 B117 B114 B115 B112 B113 B110 B111 B70 B71 B72 B73 B74 B75 B76 B77 B78 B79 B129 B127 B128 B125 B126 B123 B124 B121 B122 B120 B80 B81 B82 B83 B84 B85 B86 B87 B88 B89 B138 B139 B136 B137 B134 B135 B132 B133 B130 B131 B90 B91 B92 B93 B94 B95 B96 B97 B10 B98 B11 B99 B12 B13 B14 B15 B16 B17 B18 B19 B149 B147 B148 B145 B146 B143 B144 B141 B142 B140 |
References_xml | – ident: B128 doi: 10.1038/ja.2013.126 – ident: B1 doi: 10.1038/nature06244 – ident: B136 doi: 10.1038/nrmicro.2015.25 – ident: B64 doi: 10.1128/AAC.01217-10 – ident: B126 doi: 10.3389/fmicb.2018.01588 – ident: B75 doi: 10.1002/btpr.2567 – ident: B54 doi: 10.1016/j.chembiol.2015.11.012 – ident: B142 doi: 10.1371/journal.pone.0253293 – ident: B95 doi: 10.1016/j.bmcl.2020.127280 – ident: B13 doi: 10.3389/fimmu.2019.03141 – ident: B92 doi: 10.1038/s41589-021-00745-2 – ident: B38 doi: 10.1097/MOG.0000000000000057 – ident: B52 doi: 10.1159/000517082 – ident: B8 doi: 10.1111/j.1469-0691.2012.03916.x – ident: B26 doi: 10.1038/nm.4517 – ident: B41 doi: 10.1093/advances/nmz127 – ident: B122 doi: 10.1038/nrmicro3344 – ident: B71 doi: 10.1007/978-1-4939-3375-4_1 – ident: B162 doi: 10.1002/ddr.21093 – ident: B171 doi: 10.1128/msystems.00620-19 – ident: B65 doi: 10.1074/jbc.M110.118554 – ident: B106 doi: 10.1186/s40168-021-01101-1 – ident: B96 doi: 10.1126/science.aar7785 – ident: B18 doi: 10.1016/j.anaerobe.2016.05.006 – ident: B139 doi: 10.1016/j.aca.2021.338881 – ident: B73 doi: 10.1038/nature18634 – ident: B77 doi: 10.1186/s12934-020-01367-4 – ident: B104 doi: 10.1002/anie.201103110 – ident: B70 doi: 10.1021/cr0503097 – ident: B22 doi: 10.1038/s41422-020-0332-7 – ident: B46 doi: 10.1073/pnas.1508737112 – ident: B20 doi: 10.1093/infdis/jiaa706 – ident: B24 doi: 10.1126/science.aax9176 – ident: B168 doi: 10.1038/s12276-020-0437-6 – ident: B40 doi: 10.1016/j.biotechadv.2012.12.009 – ident: B49 doi: 10.1038/s41579-021-00569-w – ident: B117 doi: 10.1038/srep04202 – ident: B58 doi: 10.1128/AAC.39.12.2656 – ident: B59 doi: 10.3389/fmicb.2018.00415 – ident: B160 doi: 10.1038/d41573-020-00163-4 – ident: B109 doi: 10.1038/s41598-017-02712-1 – ident: B31 doi: 10.1021/jacs.9b07317 – ident: B157 doi: 10.1210/me.2014-1108 – ident: B113 doi: 10.1371/journal.pone.0153274 – ident: B83 doi: 10.1128/AEM.01661-18 – ident: B152 doi: 10.1016/j.jfma.2018.09.007 – ident: B17 doi: 10.3390/ijms20010123 – ident: B19 doi: 10.1038/s41598-019-55851-y – ident: B32 doi: 10.1021/acsinfecdis.7b00081 – ident: B125 doi: 10.1080/19490976.2020.1782158 – ident: B57 doi: 10.3389/fmicb.2019.02261 – ident: B111 doi: 10.1111/imr.12563 – ident: B149 doi: 10.1080/10408398.2016.1220913 – ident: B131 doi: 10.1016/j.ijid.2021.02.071 – ident: B170 doi: 10.1128/mSystems.00122-19 – ident: B103 doi: 10.3389/fpls.2019.01166 – ident: B60 doi: 10.1099/mic.0.000515 – ident: B28 doi: 10.1093/nar/gkab353 – ident: B120 doi: 10.1038/s41571-018-0006-2 – ident: B159 doi: 10.1186/s13073-018-0592-8 – ident: B3 doi: 10.1038/nature08821 – ident: B43 doi: 10.1038/s41579-020-0438-4 – ident: B156 doi: 10.1111/nyas.13257 – ident: B34 doi: 10.1038/nature11234 – ident: B97 doi: 10.1126/science.aax2685 – ident: B93 doi: 10.1039/c5np00091b – ident: B118 doi: 10.1016/j.ccell.2021.08.006 – ident: B15 doi: 10.1016/j.jaci.2019.11.003 – ident: B132 doi: 10.1111/j.1472-765X.2010.02844.x – ident: B135 doi: 10.1016/j.cell.2020.10.047 – ident: B130 doi: 10.3390/nu12020391 – ident: B166 doi: 10.1038/nrd.2017.154 – ident: B146 doi: 10.1038/s41573-020-00114-z – ident: B137 doi: 10.1039/c4np00085d – ident: B63 doi: 10.1080/19490976.2018.1455790 – ident: B129 doi: 10.1016/j.toxrep.2018.02.007 – ident: B42 doi: 10.1124/mol.113.091165 – ident: B112 doi: 10.1111/1462-2920.12662 – ident: B37 doi: 10.5604/01.3001.0010.5494 – ident: B167 doi: 10.1056/nejmoa2023294 – ident: B99 doi: 10.1073/pnas.1422108112 – ident: B134 doi: 10.3389/fcimb.2019.00256 – ident: B155 doi: 10.1039/D1NP00032B – ident: B94 doi: 10.3390/toxins10040151 – ident: B23 doi: 10.1016/j.cell.2014.08.032 – ident: B11 doi: 10.1016/j.suc.2011.05.001 – ident: B87 doi: 10.1021/acs.orglett.9b04501 – ident: B101 doi: 10.1038/nchembio.2007.5 – ident: B153 doi: 10.1016/j.trsl.2017.07.001 – ident: B165 doi: 10.1021/acschembio.8b00309 – ident: B56 doi: 10.1074/jbc.RA119.009416 – ident: B66 doi: 10.3389/fmicb.2019.02062 – ident: B88 doi: 10.1039/c0ob00579g – ident: B133 doi: 10.1186/2008-2231-20-53 – ident: B53 doi: 10.1039/c2np20085f – ident: B33 doi: 10.1016/j.cell.2016.12.021 – ident: B163 doi: 10.1038/d41573-019-00122-8 – ident: B36 doi: 10.1152/physiol.00004.2020 – ident: B39 doi: 10.1146/annurev-micro-102215 – ident: B6 doi: 10.1371/journal.pbio – ident: B79 doi: 10.1039/c8np00030a – ident: B81 doi: 10.1186/s13321-021-00546-8 – ident: B12 doi: 10.1136/bmj.k2179 – ident: B21 doi: 10.1093/cid/ciaa709 – ident: B145 doi: 10.1016/j.coviro.2021.05.006 – ident: B50 doi: 10.1016/j.cbpa.2017.02.005 – ident: B154 doi: 10.1016/j.cbpa.2020.07.010 – ident: B68 doi: 10.1039/b111145k – ident: B74 doi: 10.1016/j.chembiol.2010.08.006 – ident: B69 doi: 10.1007/s10295-018-02130-w – ident: B114 doi: 10.1016/j.cell.2019.07.008 – ident: B121 doi: 10.1038/nrmicro.2017.44 – ident: B116 doi: 10.1371/journal.pone.0098741 – ident: B85 doi: 10.1128/AEM.03691-14 – ident: B123 doi: 10.1186/s12934-020-01477-z – ident: B124 doi: 10.1016/j.cmet.2021.03.002 – ident: B30 doi: 10.1128/mBio.00321-19 – ident: B35 doi: 10.1016/j.ebiom.2021.103293 – ident: B119 doi: 10.1038/nature11465 – ident: B45 doi: 10.1038/nchembio.2207 – ident: B72 doi: 10.1002/ange.201609079 – ident: B100 doi: 10.1039/c5np00102a – ident: B78 doi: 10.1038/s41467-021-21174-8 – ident: B115 doi: 10.1007/s00248-013-0245-9 – ident: B14 doi: 10.4183/aeb.2016.206 – ident: B169 doi: 10.1038/s41575-021-00499-1 – ident: B108 doi: 10.2147/IDR.S193649 – ident: B105 doi: 10.1002/mnfr.202000619 – ident: B150 doi: 10.1038/s41564-018-0306-4 – ident: B29 doi: 10.1038/s41586-020-2396-4 – ident: B16 doi: 10.1038/s41591-019-0377-7 – ident: B158 doi: 10.1016/j.copbio.2021.08.003 – ident: B55 doi: 10.1038/s41586-019-1501-z – ident: B140 doi: 10.1016/j.virusres.2020.198018 – ident: B5 doi: 10.1126/science.1110591 – ident: B10 doi: 10.3389/fmicb.2018.03328 – ident: B110 doi: 10.1042/ETLS20160015 – ident: B144 doi: 10.1126/science.aam5336 – ident: B25 doi: 10.1371/journal.pbio.1002533 – ident: B84 doi: 10.1039/c4mb00406j – ident: B2 doi: 10.1111/j.1574-6976.2008.00123.x – ident: B98 doi: 10.3762/bjoc.15.283 – ident: B76 doi: 10.1016/j.cbpa.2016.01.012 – ident: B147 doi: 10.1073/pnas.1904099116 – ident: B164 doi: 10.1038/s41591-018-0128-1 – ident: B86 doi: 10.1021/acsinfecdis.9b00365 – ident: B9 doi: 10.3390/e14112036 – ident: B89 doi: 10.1021/jacs.1c04825 – ident: B51 doi: 10.1038/s41570-020-0176-1 – ident: B141 doi: 10.1016/j.synbio.2021.06.002 – ident: B143 doi: 10.1016/j.cell.2020.06.029 – ident: B62 doi: 10.1126/scitranslmed.aay5445 – ident: B7 doi: 10.1016/j.cbpa.2008.01.015 – ident: B67 doi: 10.1073/pnas.1401734111 – ident: B107 doi: 10.1186/s40168-019-0689-3 – ident: B148 doi: 10.1038/s41467-021-26390-w – ident: B161 doi: 10.1038/nrgastro.2015.47 – ident: B27 doi: 10.1038/nchembio.1890 – ident: B82 doi: 10.1038/srep37479 – ident: B90 doi: 10.1039/c2ob06856g – ident: B48 doi: 10.1021/jacs.0c05546 – ident: B138 doi: 10.1016/j.ejmech.2020.112790 – ident: B44 doi: 10.1021/acsinfecdis.7b00056 – ident: B127 doi: 10.1038/ncomms12365 – ident: B4 doi: 10.3389/fmicb.2018.01835 – ident: B61 doi: 10.3389/fchem.2021.595991 – ident: B47 doi: 10.1186/s12866-015-0515-4 – ident: B91 doi: 10.1128/AEM.03079-09 – ident: B102 doi: 10.1016/j.pbi.2020.01.005 – ident: B151 doi: 10.1007/s00018-019-03155-9 – ident: B80 doi: 10.1093/nar/gkaa978 |
SSID | ssj0005211 |
Score | 2.4751875 |
SecondaryResourceType | review_article |
Snippet | Systems biology studies have established that changes in gastrointestinal microbiome composition and function can adversely impact host physiology. Notable... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | G535 |
SubjectTerms | Bile acids Biotransformation COVID-19 Digestive system Dysbacteriosis Dysbiosis - microbiology Fatty acids Gastrointestinal Diseases Gastrointestinal Microbiome Gastrointestinal tract Gene clusters Humans Hybrids Inflammatory bowel diseases Intestinal microflora Medical innovations Metabolic disorders Metabolites Microbiomes Microbiota Natural products Opportunist infection Pathophysiology Peptides Polyketides Polysaccharides Review Therapeutic applications Tryptophan |
Title | Microbial metabolites: cause or consequence in gastrointestinal disease? |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35271353 https://www.proquest.com/docview/2668427416 https://www.proquest.com/docview/2638727248 https://pubmed.ncbi.nlm.nih.gov/PMC9054261 |
Volume | 322 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKkBAvCDZghYGMhJAQCkts54sXVKFtFaxDiFbqW2Q7yQgqydSlQuOv585JUzdDE_DQqEocO7o7f5z9u98R8pIHeZi6Inf8LDWk2p4Tq9x1fFfokGcy1zEGOE_OgvFMfJz788Hgpx1dUqu3-tcf40r-R6twD_SKUbL_oNmuUrgB_0G_cAUNw_WvdDwpDI2SCQCpQZsYT2wgblquTMYmBJWvwdK4s3EuL-tlhRQR0LPLzflMD97XHeNYvBJmC6QJbYEGTvoV4f77AjEeVsHNDAdTbbUyG60Y7PlmtJBFZ5RfEVXfJHifVkt7FwIc2A4tZQH_cdhet2FMrEWe2vuXMXeQfqqZftoxF6qDlVxoD8qcMcv67CH2xG_4Ta6P_T5yycrvF-eFYaVE4F5byxbN9tnn5Hh2eppMj-bTW-Q2A_8CU198-hJZ2CCvTWTZfO36fNtnh_36t9cz15yUPtbWWrxM75N7rddBR40JPSCDrNwle6NS1tWPK_qKdvK82iV3Ji3cYo-MOwOjloG9o8a8aLWklnnRoqR986Kteb1_SGbHR9MPY6dNveFowUTtKM6ygCmhBYefkioSKbIYI5O0yOM0l4Gn8zT2wyxnKdMwb6hMpZgbPojTWPNHZKesymyfUB6qOHShDqk9AcJWwuUyzJgWkRuAbIfkcC3ARLe89JgeZZEY_9RniRF5YkSeoMiH5HX3xkXDyXJD2YO1TpK2z1wmsCiNBPI2BUPyonsM4yoelskyq1ZYhkcIUhDRkDxuVNg1Bk4LZrbkQxJuKbcrgJzt20_K4pvhbo_BRWKB9-Tmz3pK7m462QHZqZer7Bksfmv13Bjqb90NtZ8 |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microbial+metabolites%3A+cause+or+consequence+in+gastrointestinal+disease%3F&rft.jtitle=American+journal+of+physiology%3A+Gastrointestinal+and+liver+physiology&rft.au=Fobofou%2C+Serge+Alain&rft.au=Savidge%2C+Tor&rft.date=2022-06-01&rft.pub=American+Physiological+Society&rft.issn=0193-1857&rft.eissn=1522-1547&rft.volume=322&rft.issue=6&rft.spage=G535&rft_id=info:doi/10.1152%2Fajpgi.00008.2022&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0193-1857&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0193-1857&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0193-1857&client=summon |