Neural network guided interpolation for mapping canopy height of China's forests by integrating GEDI and ICESat-2 data
Spatially continuous estimates of forest canopy height at national to global scales are critical for quantifying forest carbon storage, understanding forest ecosystem processes, and developing forest management and restoration policies to mitigate global climate change. Spaceborne light detection an...
Saved in:
Published in | Remote sensing of environment Vol. 269; p. 112844 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Elsevier Inc
01.02.2022
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Spatially continuous estimates of forest canopy height at national to global scales are critical for quantifying forest carbon storage, understanding forest ecosystem processes, and developing forest management and restoration policies to mitigate global climate change. Spaceborne light detection and ranging (lidar) platforms, especially the Global Ecosystem Dynamics Investigation (GEDI) and Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) Advanced Topographic Laser Altimeter System (ATLAS), can measure forest canopy height in discrete footprints globally. Their coverage provides a promising data source for national to global-scale forest canopy height estimates. However, previous studies usually used a regression-based approach to develop spatially continuous forest canopy height distribution through the aid of optical images, which cannot take full advantage of the dense spaceborne lidar footprints and may still suffer from the saturation effect of optical images. In this study, we developed a novel neural network guided interpolation (NNGI) method to map forest canopy height by fusing GEDI, ICESat-2 ATLAS, and Sentinel-2 images. To evaluate the performance of the proposed NNGI method, we generated a 30-m forest canopy height product of China for the year 2019. More than 140 km2 drone-lidar data were collected across the country to train and validate the NNGI method. The results showed that the average forest canopy height of China is 15.90 m with a standard deviation of 5.77 m. We evaluated the interpolated forest canopy height product of China by over 1,100,000 GEDI validation footprints (R2 = 0.55, RMSE = 5.32 m), about 33 km2 drone-lidar validation data (R2 = 0.58, RMSE = 4.93 m), and over 59,000 field plot measurements (R2 = 0.60, RMSE = 4.88 m). Benefiting from the interpolation-based mapping strategy, the resulting product had almost no saturation effect in areas with tall forest canopies. The high mapping accuracy demonstrates the feasibility of the proposed NNGI method for monitoring spatially continuous forest canopy height at national to global scales by integrating multi-platform spaceborne lidar data and optical images, enabling opportunities to provide more accurate quantification of terrestrial carbon storage and better understanding of forest ecosystem processes.
•Neural network guided interpolation (NNGI) was proposed to map forest canopy height.•Over 140 km2 drone lidar data were collected to train and validate the NNGI method.•A 30-m forest canopy height product of China was mapped with high accuracy by NNGI.•The NNGI method reduced the saturation effect of estimates in tall forests.•Fusion of GEDI and ICESat-2 alleviated the strip effect of each individual dataset. |
---|---|
AbstractList | Spatially continuous estimates of forest canopy height at national to global scales are critical for quantifying forest carbon storage, understanding forest ecosystem processes, and developing forest management and restoration policies to mitigate global climate change. Spaceborne light detection and ranging (lidar) platforms, especially the Global Ecosystem Dynamics Investigation (GEDI) and Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) Advanced Topographic Laser Altimeter System (ATLAS), can measure forest canopy height in discrete footprints globally. Their coverage provides a promising data source for national to global-scale forest canopy height estimates. However, previous studies usually used a regression-based approach to develop spatially continuous forest canopy height distribution through the aid of optical images, which cannot take full advantage of the dense spaceborne lidar footprints and may still suffer from the saturation effect of optical images. In this study, we developed a novel neural network guided interpolation (NNGI) method to map forest canopy height by fusing GEDI, ICESat-2 ATLAS, and Sentinel-2 images. To evaluate the performance of the proposed NNGI method, we generated a 30-m forest canopy height product of China for the year 2019. More than 140 km² drone-lidar data were collected across the country to train and validate the NNGI method. The results showed that the average forest canopy height of China is 15.90 m with a standard deviation of 5.77 m. We evaluated the interpolated forest canopy height product of China by over 1,100,000 GEDI validation footprints (R² = 0.55, RMSE = 5.32 m), about 33 km² drone-lidar validation data (R² = 0.58, RMSE = 4.93 m), and over 59,000 field plot measurements (R² = 0.60, RMSE = 4.88 m). Benefiting from the interpolation-based mapping strategy, the resulting product had almost no saturation effect in areas with tall forest canopies. The high mapping accuracy demonstrates the feasibility of the proposed NNGI method for monitoring spatially continuous forest canopy height at national to global scales by integrating multi-platform spaceborne lidar data and optical images, enabling opportunities to provide more accurate quantification of terrestrial carbon storage and better understanding of forest ecosystem processes. Spatially continuous estimates of forest canopy height at national to global scales are critical for quantifying forest carbon storage, understanding forest ecosystem processes, and developing forest management and restoration policies to mitigate global climate change. Spaceborne light detection and ranging (lidar) platforms, especially the Global Ecosystem Dynamics Investigation (GEDI) and Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) Advanced Topographic Laser Altimeter System (ATLAS), can measure forest canopy height in discrete footprints globally. Their coverage provides a promising data source for national to global-scale forest canopy height estimates. However, previous studies usually used a regression-based approach to develop spatially continuous forest canopy height distribution through the aid of optical images, which cannot take full advantage of the dense spaceborne lidar footprints and may still suffer from the saturation effect of optical images. In this study, we developed a novel neural network guided interpolation (NNGI) method to map forest canopy height by fusing GEDI, ICESat-2 ATLAS, and Sentinel-2 images. To evaluate the performance of the proposed NNGI method, we generated a 30-m forest canopy height product of China for the year 2019. More than 140 km2 drone-lidar data were collected across the country to train and validate the NNGI method. The results showed that the average forest canopy height of China is 15.90 m with a standard deviation of 5.77 m. We evaluated the interpolated forest canopy height product of China by over 1,100,000 GEDI validation footprints (R2 = 0.55, RMSE = 5.32 m), about 33 km2 drone-lidar validation data (R2 = 0.58, RMSE = 4.93 m), and over 59,000 field plot measurements (R2 = 0.60, RMSE = 4.88 m). Benefiting from the interpolation-based mapping strategy, the resulting product had almost no saturation effect in areas with tall forest canopies. The high mapping accuracy demonstrates the feasibility of the proposed NNGI method for monitoring spatially continuous forest canopy height at national to global scales by integrating multi-platform spaceborne lidar data and optical images, enabling opportunities to provide more accurate quantification of terrestrial carbon storage and better understanding of forest ecosystem processes. Spatially continuous estimates of forest canopy height at national to global scales are critical for quantifying forest carbon storage, understanding forest ecosystem processes, and developing forest management and restoration policies to mitigate global climate change. Spaceborne light detection and ranging (lidar) platforms, especially the Global Ecosystem Dynamics Investigation (GEDI) and Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) Advanced Topographic Laser Altimeter System (ATLAS), can measure forest canopy height in discrete footprints globally. Their coverage provides a promising data source for national to global-scale forest canopy height estimates. However, previous studies usually used a regression-based approach to develop spatially continuous forest canopy height distribution through the aid of optical images, which cannot take full advantage of the dense spaceborne lidar footprints and may still suffer from the saturation effect of optical images. In this study, we developed a novel neural network guided interpolation (NNGI) method to map forest canopy height by fusing GEDI, ICESat-2 ATLAS, and Sentinel-2 images. To evaluate the performance of the proposed NNGI method, we generated a 30-m forest canopy height product of China for the year 2019. More than 140 km2 drone-lidar data were collected across the country to train and validate the NNGI method. The results showed that the average forest canopy height of China is 15.90 m with a standard deviation of 5.77 m. We evaluated the interpolated forest canopy height product of China by over 1,100,000 GEDI validation footprints (R2 = 0.55, RMSE = 5.32 m), about 33 km2 drone-lidar validation data (R2 = 0.58, RMSE = 4.93 m), and over 59,000 field plot measurements (R2 = 0.60, RMSE = 4.88 m). Benefiting from the interpolation-based mapping strategy, the resulting product had almost no saturation effect in areas with tall forest canopies. The high mapping accuracy demonstrates the feasibility of the proposed NNGI method for monitoring spatially continuous forest canopy height at national to global scales by integrating multi-platform spaceborne lidar data and optical images, enabling opportunities to provide more accurate quantification of terrestrial carbon storage and better understanding of forest ecosystem processes. •Neural network guided interpolation (NNGI) was proposed to map forest canopy height.•Over 140 km2 drone lidar data were collected to train and validate the NNGI method.•A 30-m forest canopy height product of China was mapped with high accuracy by NNGI.•The NNGI method reduced the saturation effect of estimates in tall forests.•Fusion of GEDI and ICESat-2 alleviated the strip effect of each individual dataset. |
ArticleNumber | 112844 |
Author | Guo, Qinghua Liu, Xiaoqiang Deng, Yufei Fang, Jingyun Tang, Zhiyao Su, Yanjun Hu, Tianyu Liu, Bingbing Tang, Hao Yang, Qiuli |
Author_xml | – sequence: 1 givenname: Xiaoqiang surname: Liu fullname: Liu, Xiaoqiang organization: State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China – sequence: 2 givenname: Yanjun surname: Su fullname: Su, Yanjun email: ysu@ibcas.ac.cn organization: State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China – sequence: 3 givenname: Tianyu surname: Hu fullname: Hu, Tianyu organization: State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China – sequence: 4 givenname: Qiuli surname: Yang fullname: Yang, Qiuli organization: State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China – sequence: 5 givenname: Bingbing surname: Liu fullname: Liu, Bingbing organization: College of Resources and Environmental Sciences, Xinjiang University, Urumqi 830002, China – sequence: 6 givenname: Yufei surname: Deng fullname: Deng, Yufei organization: College of Resources and Environmental Sciences, Xinjiang University, Urumqi 830002, China – sequence: 7 givenname: Hao surname: Tang fullname: Tang, Hao organization: Department of Geography, Faculty of Arts and Social Sciences, National University of Singapore, Singapore 117570, Singapore – sequence: 8 givenname: Zhiyao surname: Tang fullname: Tang, Zhiyao organization: Institute of Ecology, College of Urban and Environmental Science, Peking University, Beijing 100871, China – sequence: 9 givenname: Jingyun surname: Fang fullname: Fang, Jingyun organization: Institute of Ecology, College of Urban and Environmental Science, Peking University, Beijing 100871, China – sequence: 10 givenname: Qinghua surname: Guo fullname: Guo, Qinghua organization: Institute of Ecology, College of Urban and Environmental Science, Peking University, Beijing 100871, China |
BookMark | eNp9kT1v2zAURYkiBeIk_QHZCHRoF7n8kiihU-G4qYEgHdrOBEU-2XRlUiWpFP73peNOGTK95ZyHi3uv0IUPHhC6pWRJCW0-7ZcxwZIRRpeUslaIN2hBW9lVRBJxgRaEcFEJVstLdJXSnhBat5Iu0NMjzFGP2EP-G-JvvJ2dBYudzxCnMOrsgsdDiPigp8n5LTbah-mId-C2u4zDgFc75_WHdIIg5YT747O9jcUt_P36boO1t3izWv_QuWLY6qxv0NtBjwne_b_X6NfX9c_Vt-rh-_1m9eWhMoKJXPW0b5kRRlo5MEtasAO3fSON5nUjNGO86QVYS6zo-NDqfqi5aPvOFrphXPBr9PH8d4rhz1zyqYNLBsZRewhzUqzhjSBdzXlB379A92GOvqQrFJNtQ2h3ouiZMjGkFGFQU3QHHY-KEnVaQu1VWUKdllDnJYojXzjG5edmc9RufNX8fDahdPTkIKpkHHgD1kUwWdngXrH_AVnZpRs |
CitedBy_id | crossref_primary_10_3390_rs16193650 crossref_primary_10_1016_j_jag_2023_103643 crossref_primary_10_3390_rs16234603 crossref_primary_10_1109_JSTARS_2025_3527631 crossref_primary_10_3389_ffgc_2024_1354508 crossref_primary_10_3390_f15071211 crossref_primary_10_3389_ffgc_2023_1333868 crossref_primary_10_1016_j_isprsjprs_2024_08_001 crossref_primary_10_1080_10095020_2023_2249037 crossref_primary_10_1016_j_jag_2025_104455 crossref_primary_10_1016_j_ecoinf_2023_102404 crossref_primary_10_3390_f14010013 crossref_primary_10_1016_j_isprsjprs_2023_01_005 crossref_primary_10_1080_15481603_2024_2396807 crossref_primary_10_3390_rs15225364 crossref_primary_10_1111_2041_210X_14401 crossref_primary_10_1016_j_ecoinf_2023_102082 crossref_primary_10_3390_rs15235436 crossref_primary_10_1016_j_jag_2024_104348 crossref_primary_10_5194_essd_16_5267_2024 crossref_primary_10_3390_rs15010001 crossref_primary_10_1080_01431161_2024_2391093 crossref_primary_10_3390_rs16010110 crossref_primary_10_5194_essd_15_897_2023 crossref_primary_10_1016_j_rse_2023_113570 crossref_primary_10_1038_s41598_024_78615_9 crossref_primary_10_3390_rs15061548 crossref_primary_10_1007_s11356_024_34415_2 crossref_primary_10_3390_rs16162913 crossref_primary_10_1007_s40725_024_00223_7 crossref_primary_10_1016_j_rse_2023_113693 crossref_primary_10_1016_j_xinn_2023_100515 crossref_primary_10_3390_f15020369 crossref_primary_10_1016_j_jag_2024_103941 crossref_primary_10_3390_rs15082080 crossref_primary_10_1038_s41467_024_48546_0 crossref_primary_10_1109_TGRS_2024_3412629 crossref_primary_10_1016_j_jag_2024_104234 crossref_primary_10_3390_rs16132321 crossref_primary_10_3390_f15081315 crossref_primary_10_1016_j_rse_2022_113280 crossref_primary_10_1109_TGRS_2023_3341796 crossref_primary_10_1016_j_ecolind_2024_112639 crossref_primary_10_1016_j_catena_2024_108488 crossref_primary_10_1016_j_jag_2024_103798 crossref_primary_10_1016_j_ecolind_2024_112763 crossref_primary_10_3390_drones6090240 crossref_primary_10_3390_f14071414 crossref_primary_10_1016_j_ecolind_2023_111092 crossref_primary_10_3390_rs16203798 crossref_primary_10_3390_f15081290 crossref_primary_10_1016_j_jag_2024_104123 crossref_primary_10_1080_17538947_2023_2190625 crossref_primary_10_3390_rs15245686 crossref_primary_10_1111_phor_12507 crossref_primary_10_1080_01431161_2023_2189035 crossref_primary_10_3390_f15081440 crossref_primary_10_3390_s24051651 crossref_primary_10_1016_j_rse_2024_114226 crossref_primary_10_3390_f15071132 crossref_primary_10_1016_j_envres_2024_120561 crossref_primary_10_1109_JSTARS_2024_3461843 crossref_primary_10_3390_f15122095 crossref_primary_10_34133_remotesensing_0160 crossref_primary_10_1080_10095020_2023_2286377 crossref_primary_10_3390_rs16122138 crossref_primary_10_1016_j_ecoinf_2024_102574 crossref_primary_10_1093_jpe_rtae039 crossref_primary_10_1016_j_fecs_2025_100293 crossref_primary_10_3390_f15122139 crossref_primary_10_3390_rs15163946 crossref_primary_10_3390_rs15112882 crossref_primary_10_1038_s43017_023_00508_8 crossref_primary_10_1016_j_srs_2024_100152 crossref_primary_10_1016_j_inffus_2023_102149 crossref_primary_10_3390_f15060992 crossref_primary_10_3390_rs15153738 crossref_primary_10_3390_f16040570 crossref_primary_10_3390_rs15092275 crossref_primary_10_3390_f14050876 crossref_primary_10_3390_rs15225391 crossref_primary_10_3389_fpls_2024_1505414 crossref_primary_10_1016_j_jag_2023_103431 crossref_primary_10_3390_rs14235968 crossref_primary_10_3390_f15091539 crossref_primary_10_3390_f15111907 crossref_primary_10_1016_j_agrformet_2023_109592 crossref_primary_10_3390_rs16183485 crossref_primary_10_1016_j_srs_2024_100144 crossref_primary_10_3390_f14030454 crossref_primary_10_3390_su151511525 crossref_primary_10_1029_2024GL110312 crossref_primary_10_1016_j_ophoto_2023_100053 crossref_primary_10_3390_f14112138 crossref_primary_10_3390_rs15020515 crossref_primary_10_34133_ehs_0160 crossref_primary_10_1016_j_ecolind_2024_112157 crossref_primary_10_1109_TGRS_2022_3231926 crossref_primary_10_1016_j_scitotenv_2024_173487 crossref_primary_10_1016_j_jag_2025_104474 crossref_primary_10_1007_s00468_022_02378_x crossref_primary_10_1080_15481603_2025_2477869 crossref_primary_10_1111_gcb_70055 crossref_primary_10_3390_ani13081294 crossref_primary_10_3390_rs14225651 crossref_primary_10_3390_f15112039 crossref_primary_10_3390_f15071161 crossref_primary_10_3390_rs15020467 crossref_primary_10_1016_j_isprsjprs_2024_01_024 crossref_primary_10_3390_f14061270 crossref_primary_10_3390_rs16071268 crossref_primary_10_3390_rs17010085 crossref_primary_10_5194_essd_16_803_2024 crossref_primary_10_1080_15481603_2023_2203303 crossref_primary_10_1016_j_fecs_2022_100046 crossref_primary_10_11728_cjss2023_06_2023_0074 crossref_primary_10_1016_j_rse_2024_114384 crossref_primary_10_1080_15481603_2022_2085354 crossref_primary_10_1080_15481603_2024_2374150 crossref_primary_10_3390_rs14153615 crossref_primary_10_3390_rs14153618 crossref_primary_10_3390_rs15225374 crossref_primary_10_3389_fpls_2024_1361297 |
Cites_doi | 10.1016/j.rse.2021.112571 10.1145/361002.361007 10.1016/j.rse.2021.112533 10.1016/0893-6080(89)90020-8 10.1016/j.isprsjprs.2016.03.016 10.14358/PERS.76.6.701 10.1007/s11430-014-4905-5 10.2307/143141 10.1111/tgis.12176 10.1080/2150704X.2018.1425560 10.1016/j.rse.2011.11.026 10.1016/j.foreco.2004.03.048 10.1016/j.rse.2015.12.002 10.1080/01431161.2017.1285083 10.1016/j.rse.2018.11.005 10.1029/2008JG000883 10.1016/j.isprsjprs.2014.09.002 10.1029/2005GL023971 10.1191/0309133303pp360ra 10.3390/rs13010077 10.1016/S0924-2716(02)00124-7 10.1029/EO081i048p00583 10.1016/j.rse.2019.111218 10.1016/j.rse.2020.112110 10.1016/j.isprsjprs.2013.11.009 10.1088/1748-9326/4/3/034009 10.3390/rs70912563 10.1016/S0169-5347(03)00070-3 10.1016/j.geoderma.2003.08.018 10.1016/j.rse.2017.06.031 10.1029/2010GL043622 10.1016/S0034-4257(02)00056-1 10.1016/j.isprsjprs.2018.06.021 10.1016/j.rse.2018.02.019 10.1080/17538947.2016.1227380 10.1016/j.isprsjprs.2018.11.001 10.1016/j.cageo.2007.05.001 10.1016/j.isprsjprs.2018.11.008 10.1016/j.isprsjprs.2015.02.007 10.1002/ecy.1645 10.1890/070001 10.1002/ecy.1580 10.1002/2017GL075710 10.1016/j.spasta.2012.08.001 10.1109/MGRS.2020.3032713 10.1016/j.isprsjprs.2017.04.020 10.1016/j.biocon.2019.01.032 10.1029/2005GL024009 10.1016/j.rse.2015.12.005 10.1080/19475683.2018.1534890 10.1016/j.rse.2020.112165 10.1016/j.foreco.2015.05.032 10.1029/2011JG001708 10.1016/S0034-4257(99)00022-X 10.1002/joc.5086 10.2307/1932254 10.1016/j.rse.2016.12.029 10.1080/01431160500396493 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Inc. Copyright Elsevier BV Feb 2022 |
Copyright_xml | – notice: 2021 Elsevier Inc. – notice: Copyright Elsevier BV Feb 2022 |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7TG 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KL. KR7 L7M L~C L~D P64 7S9 L.6 |
DOI | 10.1016/j.rse.2021.112844 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Meteorological & Geoastrophysical Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Meteorological & Geoastrophysical Abstracts Biotechnology Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Meteorological & Geoastrophysical Abstracts - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Geology Environmental Sciences |
EISSN | 1879-0704 |
ExternalDocumentID | 10_1016_j_rse_2021_112844 S0034425721005642 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29P 4.4 41~ 457 4G. 53G 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABFYP ABJNI ABLST ABMAC ABPPZ ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACIWK ACLVX ACPRK ACRLP ACSBN ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HMA HMC HVGLF HZ~ H~9 IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SEN SEP SES SEW SPC SPCBC SSE SSJ SSZ T5K TN5 TWZ VOH WH7 WUQ XOL ZCA ZMT ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7QF 7QO 7QQ 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7TG 7U5 8BQ 8FD C1K EFKBS F28 FR3 H8D H8G JG9 JQ2 KL. KR7 L7M L~C L~D P64 7S9 L.6 |
ID | FETCH-LOGICAL-c424t-b1b82c4c7d7f2d08edf3db67ca3564a2236b4edd0d493f8abf5348b9df2d62343 |
IEDL.DBID | .~1 |
ISSN | 0034-4257 |
IngestDate | Fri Jul 11 15:52:09 EDT 2025 Wed Aug 13 06:43:37 EDT 2025 Tue Jul 01 03:51:29 EDT 2025 Thu Apr 24 23:06:04 EDT 2025 Fri Feb 23 02:41:16 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Lidar Spatial interpolation GEDI ICESat-2 ATLAS Deep neural network Forest canopy height |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c424t-b1b82c4c7d7f2d08edf3db67ca3564a2236b4edd0d493f8abf5348b9df2d62343 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 2627860193 |
PQPubID | 2045405 |
ParticipantIDs | proquest_miscellaneous_2636409533 proquest_journals_2627860193 crossref_primary_10_1016_j_rse_2021_112844 crossref_citationtrail_10_1016_j_rse_2021_112844 elsevier_sciencedirect_doi_10_1016_j_rse_2021_112844 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2022 2022-02-00 20220201 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: February 2022 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Remote sensing of environment |
PublicationYear | 2022 |
Publisher | Elsevier Inc Elsevier BV |
Publisher_xml | – name: Elsevier Inc – name: Elsevier BV |
References | Ba, Kiros, Hinton (bb0015) 2016 Waters (bb0380) 2016 Li, Guo, Tao, Kelly, Xu (bb0195) 2015; 102 Rabus, Eineder, Roth, Bamler (bb0290) 2003; 57 Hofton, Blair, Story, Yi (bb0140) 2019 Markus, Neumann, Martino, Abdalati, Brunt, Csatho, Farrell, Fricker, Gardner, Harding (bb0240) 2017; 190 Chen, Chen, Liao, Cao, Chen, Chen, He, Han, Peng, Lu (bb0030) 2015; 103 Masek, Hayes, Hughes, Healey, Turner (bb0245) 2015; 355 Potapov, Li, Hernandez-Serna, Tyukavina, Hansen, Kommareddy, Pickens, Turubanova, Tang, Silva (bb0285) 2021; 253 Zhu, Lu, Liu, Qin, Zhou (bb0415) 2018; 24 He, Zhang, Ren, Sun (bb0125) 2016 Lim, Treitz, Wulder, St-Onge, Flood (bb0215) 2003; 27 Schutz, Zwally, Shuman, Hancock, DiMarzio (bb0295) 2005; 32 Su, Ma, Guo (bb0320) 2017; 10 Fatoyinbo, Armston, Simard, Saatchi, Denbina, Lavalle, Hofton, Tang, Marselis, Pinto (bb0075) 2021; 264 Tobler (bb0335) 1970; 46 Turner, Spector, Gardiner, Fladeland, Sterling, Steininger (bb0340) 2003; 18 Li, Niu, Shang, Qin, Wang, Chen (bb0205) 2020; 92 Lefsky, Harding, Keller, Cohen, Carabajal, Del Bom Espirito-Santo, Hunter, de Oliveira Jr (bb0190) 2005; 32 Liu, Shen, Cao, Wang, Cao (bb0220) 2018; 146 García, Saatchi, Ustin, Balzter (bb0090) 2018; 66 Davies, Oram, Ancrenaz, Asner (bb0040) 2019; 232 Bergen, Goetz, Dubayah, Henebry, Hunsaker, Imhoff, Nelson, Parker, Radeloff (bb0025) 2009; 114 Drusch, Del Bello, Carlier, Colin, Fernandez, Gascon, Hoersch, Isola, Laberinti, Martimort (bb0055) 2012; 120 Dubayah, Hofton, Blair, Armston, Tang, Luthcke (bb0065) 2020 Farr, Kobrick (bb0070) 2000; 81 Lang, Kalischek, Armston, Schindler, Dubayah, Wegner (bb0180) 2021 Milanesi, Holderegger, Bollmann, Gugerli, Zellweger (bb0255) 2017; 98 Dubayah, Blair, Goetz, Fatoyinbo, Hansen, Healey, Hofton, Hurtt, Kellner, Luthcke (bb0060) 2020; 1 Guo, Su, Hu, Zhao, Wu, Li, Liu, Chen, Xu, Lin (bb0115) 2017; 38 Hou (bb0150) 2001 Vierling, Vierling, Gould, Martinuzzi, Clawges (bb0355) 2008; 6 Hengl, Heuvelink, Rossiter (bb0135) 2007; 33 Wilkes, Jones, Suarez, Mellor, Woodgate, Soto-Berelov, Haywood, Skidmore (bb0385) 2015; 7 Goodfellow, Bengio, Courville (bb0100) 2016 Zhao, Su, Hu, Chen, Gao, Wang, Jin, Guo (bb0405) 2018; 9 Hornik, Stinchcombe, White (bb0145) 1989; 2 Huang, Liu, Wang, Biging, Chen, Yang, Gong (bb0160) 2017; 129 Mitas, Mitasova (bb0260) 1999 Neuenschwander, Guenther, White, Duncanson, Montesano (bb0270) 2020; 251 MacArthur, MacArthur (bb0235) 1961; 42 Su, Guo, Xue, Hu, Alvarez, Tao, Fang (bb0315) 2016; 173 Hudak, Lefsky, Cohen, Berterretche (bb0165) 2002; 82 Wang, Gamon (bb0360) 2019; 231 Krizhevsky, Sutskever, Hinton (bb0175) 2012; 25 Li, Shen, Yuan, Zhang, Zhang (bb0200) 2017; 44 Wang, Lehtomäki, Liang, Pyörälä, Kukko, Jaakkola, Liu, Feng, Chen, Hyyppä (bb0375) 2019; 147 Neuenschwander, Pitts (bb0265) 2019; 221 Devlin, Chang, Lee, Toutanova (bb0045) 2018 McCombs, Roberts, Evans (bb0250) 2003; 49 Guo, Su, Hu, Guan, Jin, Zhang, Zhao, Xu, Wei, Kelly, Coops (bb0120) 2021; 9 Su, Guo (bb0310) 2014; 87 Wang, Li, Ding, Guo, Tang, Wang, Huang, Liu, Chen (bb0370) 2016; 174 Donoghue, Watt (bb0050) 2006; 27 Fick, Hijmans (bb0080) 2017; 37 Gorelick, Hancher, Dixon, Ilyushchenko, Thau, Moore (bb0105) 2017; 202 Zhao, Guo, Su, Xue (bb0400) 2016; 117 Simard, Pinto, Fisher, Baccini (bb0300) 2011; 116 Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (bb0350) 2017 Hengl, Heuvelink, Stein (bb0130) 2004; 120 Su, Guo, Jin, Guan, Sun, Ma, Hu, Wang, Li (bb0325) 2020 Lu, Mausel, Brondızio, Moran (bb0230) 2004; 198 Glorot, Bordes, Bengio (bb0095) 2011 Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (bb0305) 2014; 15 Gao, Pan, Chen, Wu, Ren, Hu (bb0085) 2016; 20 Guo, Li, Yu, Alvarez (bb0110) 2010; 76 Zheng, Liu, Hsieh (bb0410) 2013 Bentley (bb0020) 1975; 18 Hu, Sun, Su, Guan, Sun, Kelly, Guo (bb0155) 2021; 13 Yang, Wang, Li, Luo, Xi, Gao, Zeng (bb0395) 2015; 58 Tao, Guo, Li, Wang, Fang (bb0330) 2016; 97 Chiles, Delfiner (bb0035) 2009 Lefsky (bb0185) 2010; 37 Kingma, Ba (bb0170) 2014 Asner (bb0010) 2009; 4 Liu, Cheng, Chen (bb0225) 2021; 264 Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg (bb0275) 2011; 12 Popescu, Zhou, Nelson, Neuenschwander, Sheridan, Narine, Walsh (bb0280) 2018; 208 Liang, Hyyppä, Kaartinen, Lehtomäki, Pyörälä, Pfeifer, Holopainen, Brolly, Francesco, Hackenberg (bb0210) 2018; 144 Van Leeuwen, Huete, Laing (bb0345) 1999; 69 Wang, Stein, Gao, Ge (bb0365) 2012; 2 Xu, Hutchinson (bb0390) 2011 Abadi, Barham, Chen, Chen, Davis, Dean, Devin, Ghemawat, Irving, Isard (bb0005) 2016 Chiles (10.1016/j.rse.2021.112844_bb0035) 2009 Hofton (10.1016/j.rse.2021.112844_bb0140) 2019 Markus (10.1016/j.rse.2021.112844_bb0240) 2017; 190 Abadi (10.1016/j.rse.2021.112844_bb0005) 2016 Neuenschwander (10.1016/j.rse.2021.112844_bb0265) 2019; 221 Rabus (10.1016/j.rse.2021.112844_bb0290) 2003; 57 Guo (10.1016/j.rse.2021.112844_bb0120) 2021; 9 Hornik (10.1016/j.rse.2021.112844_bb0145) 1989; 2 Li (10.1016/j.rse.2021.112844_bb0195) 2015; 102 Devlin (10.1016/j.rse.2021.112844_bb0045) 2018 McCombs (10.1016/j.rse.2021.112844_bb0250) 2003; 49 Lu (10.1016/j.rse.2021.112844_bb0230) 2004; 198 Hou (10.1016/j.rse.2021.112844_bb0150) 2001 Hudak (10.1016/j.rse.2021.112844_bb0165) 2002; 82 Gorelick (10.1016/j.rse.2021.112844_bb0105) 2017; 202 Huang (10.1016/j.rse.2021.112844_bb0160) 2017; 129 Bentley (10.1016/j.rse.2021.112844_bb0020) 1975; 18 Guo (10.1016/j.rse.2021.112844_bb0115) 2017; 38 Gao (10.1016/j.rse.2021.112844_bb0085) 2016; 20 Li (10.1016/j.rse.2021.112844_bb0205) 2020; 92 Milanesi (10.1016/j.rse.2021.112844_bb0255) 2017; 98 Popescu (10.1016/j.rse.2021.112844_bb0280) 2018; 208 Zhao (10.1016/j.rse.2021.112844_bb0405) 2018; 9 Lefsky (10.1016/j.rse.2021.112844_bb0185) 2010; 37 Fatoyinbo (10.1016/j.rse.2021.112844_bb0075) 2021; 264 Wang (10.1016/j.rse.2021.112844_bb0375) 2019; 147 Farr (10.1016/j.rse.2021.112844_bb0070) 2000; 81 Hengl (10.1016/j.rse.2021.112844_bb0130) 2004; 120 Liu (10.1016/j.rse.2021.112844_bb0225) 2021; 264 Lim (10.1016/j.rse.2021.112844_bb0215) 2003; 27 Chen (10.1016/j.rse.2021.112844_bb0030) 2015; 103 Schutz (10.1016/j.rse.2021.112844_bb0295) 2005; 32 Zhao (10.1016/j.rse.2021.112844_bb0400) 2016; 117 Hengl (10.1016/j.rse.2021.112844_bb0135) 2007; 33 García (10.1016/j.rse.2021.112844_bb0090) 2018; 66 Neuenschwander (10.1016/j.rse.2021.112844_bb0270) 2020; 251 Donoghue (10.1016/j.rse.2021.112844_bb0050) 2006; 27 Simard (10.1016/j.rse.2021.112844_bb0300) 2011; 116 Wang (10.1016/j.rse.2021.112844_bb0365) 2012; 2 Su (10.1016/j.rse.2021.112844_bb0310) 2014; 87 Pedregosa (10.1016/j.rse.2021.112844_bb0275) 2011; 12 Potapov (10.1016/j.rse.2021.112844_bb0285) 2021; 253 Liang (10.1016/j.rse.2021.112844_bb0210) 2018; 144 Davies (10.1016/j.rse.2021.112844_bb0040) 2019; 232 Wang (10.1016/j.rse.2021.112844_bb0370) 2016; 174 He (10.1016/j.rse.2021.112844_bb0125) 2016 Turner (10.1016/j.rse.2021.112844_bb0340) 2003; 18 Hu (10.1016/j.rse.2021.112844_bb0155) 2021; 13 Tao (10.1016/j.rse.2021.112844_bb0330) 2016; 97 Zheng (10.1016/j.rse.2021.112844_bb0410) 2013 Dubayah (10.1016/j.rse.2021.112844_bb0065) 2020 Mitas (10.1016/j.rse.2021.112844_bb0260) 1999 Lang (10.1016/j.rse.2021.112844_bb0180) 2021 MacArthur (10.1016/j.rse.2021.112844_bb0235) 1961; 42 Goodfellow (10.1016/j.rse.2021.112844_bb0100) 2016 Li (10.1016/j.rse.2021.112844_bb0200) 2017; 44 Yang (10.1016/j.rse.2021.112844_bb0395) 2015; 58 Drusch (10.1016/j.rse.2021.112844_bb0055) 2012; 120 Dubayah (10.1016/j.rse.2021.112844_bb0060) 2020; 1 Masek (10.1016/j.rse.2021.112844_bb0245) 2015; 355 Wang (10.1016/j.rse.2021.112844_bb0360) 2019; 231 Zhu (10.1016/j.rse.2021.112844_bb0415) 2018; 24 Krizhevsky (10.1016/j.rse.2021.112844_bb0175) 2012; 25 Su (10.1016/j.rse.2021.112844_bb0320) 2017; 10 Su (10.1016/j.rse.2021.112844_bb0325) 2020 Kingma (10.1016/j.rse.2021.112844_bb0170) 2014 Vaswani (10.1016/j.rse.2021.112844_bb0350) 2017 Lefsky (10.1016/j.rse.2021.112844_bb0190) 2005; 32 Vierling (10.1016/j.rse.2021.112844_bb0355) 2008; 6 Wilkes (10.1016/j.rse.2021.112844_bb0385) 2015; 7 Guo (10.1016/j.rse.2021.112844_bb0110) 2010; 76 Srivastava (10.1016/j.rse.2021.112844_bb0305) 2014; 15 Asner (10.1016/j.rse.2021.112844_bb0010) 2009; 4 Waters (10.1016/j.rse.2021.112844_bb0380) 2016 Van Leeuwen (10.1016/j.rse.2021.112844_bb0345) 1999; 69 Fick (10.1016/j.rse.2021.112844_bb0080) 2017; 37 Liu (10.1016/j.rse.2021.112844_bb0220) 2018; 146 Bergen (10.1016/j.rse.2021.112844_bb0025) 2009; 114 Glorot (10.1016/j.rse.2021.112844_bb0095) 2011 Su (10.1016/j.rse.2021.112844_bb0315) 2016; 173 Ba (10.1016/j.rse.2021.112844_bb0015) 2016 Xu (10.1016/j.rse.2021.112844_bb0390) 2011 Tobler (10.1016/j.rse.2021.112844_bb0335) 1970; 46 |
References_xml | – year: 2016 ident: bb0100 article-title: Deep Learning – volume: 13 start-page: 77 year: 2021 ident: bb0155 article-title: Development and performance evaluation of a very low-cost UAV-Lidar system for forestry applications publication-title: Remote Sens. – year: 2016 ident: bb0015 article-title: Layer normalization. – volume: 81 start-page: 583 year: 2000 end-page: 585 ident: bb0070 article-title: Shuttle radar topography Mission produces a wealth of data publication-title: EOS Trans. Am. Geophys. Union – volume: 144 start-page: 137 year: 2018 end-page: 179 ident: bb0210 article-title: International benchmarking of terrestrial laser scanning approaches for forest inventories publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 190 start-page: 260 year: 2017 end-page: 273 ident: bb0240 article-title: The Ice, Cloud, and land Elevation satellite-2 (ICESat-2): science requirements, concept, and implementation publication-title: Remote Sens. Environ. – volume: 116 year: 2011 ident: bb0300 article-title: Mapping forest canopy height globally with spaceborne lidar publication-title: J. Geophys. Res. Biogeosci. – volume: 10 start-page: 307 year: 2017 end-page: 323 ident: bb0320 article-title: Fine-resolution forest tree height estimation across the Sierra Nevada through the integration of spaceborne LiDAR, airborne LiDAR, and optical imagery publication-title: Int. J. Digital Earth – year: 2021 ident: bb0180 article-title: Global canopy height estimation with GEDI LIDAR waveforms and Bayesian deep learning. – volume: 7 start-page: 12563 year: 2015 end-page: 12587 ident: bb0385 article-title: Mapping forest canopy height across large areas by upscaling ALS estimates with freely available satellite data publication-title: Remote Sens. – volume: 82 start-page: 397 year: 2002 end-page: 416 ident: bb0165 article-title: Integration of lidar and Landsat ETM+ data for estimating and mapping forest canopy height publication-title: Remote Sens. Environ. – year: 2017 ident: bb0350 article-title: Attention is all you need. – volume: 120 start-page: 75 year: 2004 end-page: 93 ident: bb0130 article-title: A generic framework for spatial prediction of soil variables based on regression-kriging publication-title: Geoderma – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: bb0275 article-title: Scikit-learn: machine learning in Python publication-title: J. Machine Learn. Res. – volume: 2 start-page: 1 year: 2012 end-page: 14 ident: bb0365 article-title: A review of spatial sampling publication-title: Spatial Stat. – volume: 15 start-page: 1929 year: 2014 end-page: 1958 ident: bb0305 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J. Machine Learn. Res. – year: 2018 ident: bb0045 article-title: Bert: pre-training of deep bidirectional transformers for language understanding. – start-page: 770 year: 2016 end-page: 778 ident: bb0125 article-title: Deep residual learning for image recognition publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 265 year: 2016 end-page: 283 ident: bb0005 article-title: Tensorflow: a system for large-scale machine learning publication-title: 12th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 16) – volume: 114 year: 2009 ident: bb0025 article-title: Remote sensing of vegetation 3-D structure for biodiversity and habitat: review and implications for lidar and radar spaceborne missions publication-title: J. Geophys. Res. Biogeosci. – start-page: 315 year: 2011 end-page: 323 ident: bb0095 article-title: Deep sparse rectifier neural networks publication-title: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics – volume: 102 start-page: 198 year: 2015 end-page: 208 ident: bb0195 article-title: Lidar with multi-temporal MODIS provide a means to upscale predictions of forest biomass publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 18 start-page: 509 year: 1975 end-page: 517 ident: bb0020 article-title: Multidimensional binary search trees used for associative searching publication-title: Commun. ACM – volume: 117 start-page: 79 year: 2016 end-page: 91 ident: bb0400 article-title: Improved progressive TIN densification filtering algorithm for airborne LiDAR data in forested areas publication-title: ISPRS J. Photogramm. Remote Sens. – year: 2019 ident: bb0140 article-title: Algorithm Theoretical Basis Document (ATBD) for GEDI Transmit and Receive Waveform Processing for L1 and L2 Products – volume: 208 start-page: 154 year: 2018 end-page: 170 ident: bb0280 article-title: Photon counting LiDAR: an adaptive ground and canopy height retrieval algorithm for ICESat-2 data publication-title: Remote Sens. Environ. – year: 2020 ident: bb0325 article-title: The development and evaluation of a backpack LiDAR system for accurate and efficient forest inventory publication-title: IEEE Geosci. Remote Sens. Lett. – year: 2011 ident: bb0390 article-title: ANUCLIM Version 6.1 User Guide – volume: 9 start-page: 393 year: 2018 end-page: 402 ident: bb0405 article-title: A global corrected SRTM DEM product for vegetated areas publication-title: Remote Sens. Lett. – volume: 49 start-page: 457 year: 2003 end-page: 466 ident: bb0250 article-title: Influence of fusing lidar and multispectral imagery on remotely sensed estimates of stand density and mean tree height in a managed loblolly pine plantation publication-title: For. Sci. – volume: 1 year: 2020 ident: bb0060 article-title: The global ecosystem dynamics investigation: high-resolution laser ranging of the Earth’s forests and topography publication-title: Sci. Remote Sens. – volume: 146 start-page: 465 year: 2018 end-page: 482 ident: bb0220 article-title: Estimating forest structural attributes using UAV-LiDAR data in Ginkgo plantations publication-title: ISPRS J. Photogramm. Remote Sens. – year: 2014 ident: bb0170 article-title: Adam: A Method for Stochastic Optimization – volume: 174 start-page: 24 year: 2016 end-page: 43 ident: bb0370 article-title: A combined GLAS and MODIS estimation of the global distribution of mean forest canopy height publication-title: Remote Sens. Environ. – volume: 202 start-page: 18 year: 2017 end-page: 27 ident: bb0105 article-title: Google Earth Engine: Planetary-scale geospatial analysis for everyone publication-title: Remote Sens. Environ. – volume: 37 year: 2010 ident: bb0185 article-title: A global forest canopy height map from the moderate resolution imaging spectroradiometer and the geoscience laser altimeter system publication-title: Geophys. Res. Lett. – volume: 18 start-page: 306 year: 2003 end-page: 314 ident: bb0340 article-title: Remote sensing for biodiversity science and conservation publication-title: Trends Ecol. Evol. – volume: 33 start-page: 1301 year: 2007 end-page: 1315 ident: bb0135 article-title: About regression-kriging: from equations to case studies publication-title: Comput. Geosci. – volume: 264 year: 2021 ident: bb0225 article-title: Performance evaluation of GEDI and ICESat-2 laser altimeter data for terrain and canopy height retrievals publication-title: Remote Sens. Environ. – volume: 221 start-page: 247 year: 2019 end-page: 259 ident: bb0265 article-title: The ATL08 land and vegetation product for the ICESat-2 Mission publication-title: Remote Sens. Environ. – volume: 251 year: 2020 ident: bb0270 article-title: Validation of ICESat-2 terrain and canopy heights in boreal forests publication-title: Remote Sens. Environ. – volume: 253 year: 2021 ident: bb0285 article-title: Mapping global forest canopy height through integration of GEDI and Landsat data publication-title: Remote Sens. Environ. – volume: 27 start-page: 88 year: 2003 end-page: 106 ident: bb0215 article-title: LiDAR remote sensing of forest structure publication-title: Prog. Phys. Geogr. – volume: 4 year: 2009 ident: bb0010 article-title: Tropical forest carbon assessment: integrating satellite and airborne mapping approaches publication-title: Environ. Res. Lett. – volume: 198 start-page: 149 year: 2004 end-page: 167 ident: bb0230 article-title: Relationships between forest stand parameters and Landsat TM spectral responses in the Brazilian Amazon Basin publication-title: For. Ecol. Manag. – volume: 44 year: 2017 ident: bb0200 article-title: Estimating ground-level PM2. 5 by fusing satellite and station observations: a geo-intelligent deep learning approach publication-title: Geophys. Res. Lett. – volume: 103 start-page: 7 year: 2015 end-page: 27 ident: bb0030 article-title: Global land cover mapping at 30 m resolution: a POK-based operational approach publication-title: ISPRS J. Photogramm. Remote Sens. – start-page: 1436 year: 2013 end-page: 1444 ident: bb0410 article-title: U-air: when urban air quality inference meets big data publication-title: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – volume: 98 start-page: 393 year: 2017 end-page: 402 ident: bb0255 article-title: Three-dimensional habitat structure and landscape genetics: a step forward in estimating functional connectivity publication-title: Ecology – volume: 46 start-page: 234 year: 1970 end-page: 240 ident: bb0335 article-title: A computer movie simulating urban growth in the Detroit region publication-title: Econ. Geogr. – volume: 37 start-page: 4302 year: 2017 end-page: 4315 ident: bb0080 article-title: WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas publication-title: Int. J. Climatol. – volume: 32 year: 2005 ident: bb0295 article-title: Overview of the ICESat mission publication-title: Geophys. Res. Lett. – volume: 173 start-page: 187 year: 2016 end-page: 199 ident: bb0315 article-title: Spatial distribution of forest aboveground biomass in China: estimation through combination of spaceborne lidar, optical imagery, and forest inventory data publication-title: Remote Sens. Environ. – volume: 232 start-page: 97 year: 2019 end-page: 107 ident: bb0040 article-title: Combining behavioural and LiDAR data to reveal relationships between canopy structure and orangutan nest site selection in disturbed forests publication-title: Biol. Conserv. – volume: 2 start-page: 359 year: 1989 end-page: 366 ident: bb0145 article-title: Multilayer feedforward networks are universal approximators publication-title: Neural Netw. – volume: 6 start-page: 90 year: 2008 end-page: 98 ident: bb0355 article-title: Lidar: shedding new light on habitat characterization and modeling publication-title: Front. Ecol. Environ. – volume: 20 start-page: 735 year: 2016 end-page: 754 ident: bb0085 article-title: A spatial conditioned Latin hypercube sampling method for mapping using ancillary data publication-title: Trans. GIS – start-page: 113 year: 2001 end-page: 124 ident: bb0150 article-title: Vegetation atlas of China publication-title: Chinese Acad. Sci., the editorial board of vegetation map of China – volume: 38 start-page: 2954 year: 2017 end-page: 2972 ident: bb0115 article-title: An integrated UAV-borne lidar system for 3D habitat mapping in three forest ecosystems across China publication-title: Int. J. Remote Sens. – volume: 66 start-page: 159 year: 2018 end-page: 173 ident: bb0090 article-title: Modelling forest canopy height by integrating airborne LiDAR samples with satellite radar and multispectral imagery publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 129 start-page: 189 year: 2017 end-page: 199 ident: bb0160 article-title: Mapping vegetation heights in China using slope correction ICESat data, SRTM, MODIS-derived and climate data publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 24 start-page: 225 year: 2018 end-page: 240 ident: bb0415 article-title: Spatial prediction based on third law of geography publication-title: Ann. GIS – volume: 264 year: 2021 ident: bb0075 article-title: The NASA AfriSAR campaign: airborne SAR and lidar measurements of tropical forest structure and biomass in support of current and future space missions publication-title: Remote Sens. Environ. – volume: 231 year: 2019 ident: bb0360 article-title: Remote sensing of terrestrial plant biodiversity publication-title: Remote Sens. Environ. – year: 2009 ident: bb0035 article-title: Geostatistics: Modeling Spatial Uncertainty – volume: 87 start-page: 216 year: 2014 end-page: 228 ident: bb0310 article-title: A practical method for SRTM DEM correction over vegetated mountain areas publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 58 start-page: 96 year: 2015 end-page: 105 ident: bb0395 article-title: Forest canopy height mapping over China using GLAS and MODIS data publication-title: Sci. China Earth Sci. – volume: 57 start-page: 241 year: 2003 end-page: 262 ident: bb0290 article-title: The shuttle radar topography mission—a new class of digital elevation models acquired by spaceborne radar publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 27 start-page: 2161 year: 2006 end-page: 2175 ident: bb0050 article-title: Using LiDAR to compare forest height estimates from IKONOS and Landsat ETM+ data in Sitka spruce plantation forests publication-title: Int. J. Remote Sens. – volume: 120 start-page: 25 year: 2012 end-page: 36 ident: bb0055 article-title: Sentinel-2: ESA’s optical high-resolution mission for GMES operational services publication-title: Remote Sens. Environ. – start-page: 1 year: 2016 end-page: 15 ident: bb0380 article-title: T obler's First Law of Geography. International Encyclopedia of Geography – volume: 9 start-page: 232 year: 2021 end-page: 257 ident: bb0120 article-title: Lidar boosts 3D ecological observations and Modelings: a review and perspective publication-title: IEEE Geosci. Remote Sens. Magaz. – year: 1999 ident: bb0260 article-title: Spatial interpolation publication-title: Geographical Information Systems: Principles, Techniques, Management and Applications – volume: 69 start-page: 264 year: 1999 end-page: 280 ident: bb0345 article-title: MODIS vegetation index compositing approach: a prototype with AVHRR data publication-title: Remote Sens. Environ. – volume: 32 year: 2005 ident: bb0190 article-title: Estimates of forest canopy height and aboveground biomass using ICESat publication-title: Geophys. Res. Lett. – volume: 25 start-page: 1097 year: 2012 end-page: 1105 ident: bb0175 article-title: Imagenet classification with deep convolutional neural networks publication-title: Adv. Neural Inf. Proces. Syst. – volume: 97 start-page: 3265 year: 2016 end-page: 3270 ident: bb0330 article-title: Global patterns and determinants of forest canopy height publication-title: Ecology – volume: 147 start-page: 132 year: 2019 end-page: 145 ident: bb0375 article-title: Is field-measured tree height as reliable as believed–a comparison study of tree height estimates from field measurement, airborne laser scanning and terrestrial laser scanning in a boreal forest publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 92 year: 2020 ident: bb0205 article-title: High-resolution mapping of forest canopy height using machine learning by coupling ICESat-2 LiDAR with Sentinel-1, Sentinel-2 and Landsat-8 data publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 42 start-page: 594 year: 1961 end-page: 598 ident: bb0235 article-title: On bird species diversity publication-title: Ecology – volume: 76 start-page: 701 year: 2010 end-page: 712 ident: bb0110 article-title: Effects of topographic variability and lidar sampling density on several DEM interpolation methods publication-title: Photogramm. Eng. Remote. Sens. – year: 2020 ident: bb0065 article-title: GEDI L2A Elevation and Height Metrics Data Global Footprint Level V001. NASA EOSDIS Land Processes DAAC. Accessed 2021-04-21from – volume: 355 start-page: 109 year: 2015 end-page: 123 ident: bb0245 article-title: The role of remote sensing in process-scaling studies of managed forest ecosystems publication-title: For. Ecol. Manag. – volume: 264 year: 2021 ident: 10.1016/j.rse.2021.112844_bb0225 article-title: Performance evaluation of GEDI and ICESat-2 laser altimeter data for terrain and canopy height retrievals publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112571 – year: 2020 ident: 10.1016/j.rse.2021.112844_bb0325 article-title: The development and evaluation of a backpack LiDAR system for accurate and efficient forest inventory publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 18 start-page: 509 year: 1975 ident: 10.1016/j.rse.2021.112844_bb0020 article-title: Multidimensional binary search trees used for associative searching publication-title: Commun. ACM doi: 10.1145/361002.361007 – volume: 264 year: 2021 ident: 10.1016/j.rse.2021.112844_bb0075 article-title: The NASA AfriSAR campaign: airborne SAR and lidar measurements of tropical forest structure and biomass in support of current and future space missions publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112533 – volume: 12 start-page: 2825 year: 2011 ident: 10.1016/j.rse.2021.112844_bb0275 article-title: Scikit-learn: machine learning in Python publication-title: J. Machine Learn. Res. – volume: 2 start-page: 359 year: 1989 ident: 10.1016/j.rse.2021.112844_bb0145 article-title: Multilayer feedforward networks are universal approximators publication-title: Neural Netw. doi: 10.1016/0893-6080(89)90020-8 – volume: 15 start-page: 1929 year: 2014 ident: 10.1016/j.rse.2021.112844_bb0305 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J. Machine Learn. Res. – volume: 117 start-page: 79 year: 2016 ident: 10.1016/j.rse.2021.112844_bb0400 article-title: Improved progressive TIN densification filtering algorithm for airborne LiDAR data in forested areas publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2016.03.016 – volume: 76 start-page: 701 year: 2010 ident: 10.1016/j.rse.2021.112844_bb0110 article-title: Effects of topographic variability and lidar sampling density on several DEM interpolation methods publication-title: Photogramm. Eng. Remote. Sens. doi: 10.14358/PERS.76.6.701 – year: 1999 ident: 10.1016/j.rse.2021.112844_bb0260 article-title: Spatial interpolation – volume: 58 start-page: 96 year: 2015 ident: 10.1016/j.rse.2021.112844_bb0395 article-title: Forest canopy height mapping over China using GLAS and MODIS data publication-title: Sci. China Earth Sci. doi: 10.1007/s11430-014-4905-5 – year: 2021 ident: 10.1016/j.rse.2021.112844_bb0180 – volume: 46 start-page: 234 year: 1970 ident: 10.1016/j.rse.2021.112844_bb0335 article-title: A computer movie simulating urban growth in the Detroit region publication-title: Econ. Geogr. doi: 10.2307/143141 – volume: 20 start-page: 735 year: 2016 ident: 10.1016/j.rse.2021.112844_bb0085 article-title: A spatial conditioned Latin hypercube sampling method for mapping using ancillary data publication-title: Trans. GIS doi: 10.1111/tgis.12176 – volume: 9 start-page: 393 year: 2018 ident: 10.1016/j.rse.2021.112844_bb0405 article-title: A global corrected SRTM DEM product for vegetated areas publication-title: Remote Sens. Lett. doi: 10.1080/2150704X.2018.1425560 – start-page: 315 year: 2011 ident: 10.1016/j.rse.2021.112844_bb0095 article-title: Deep sparse rectifier neural networks – volume: 120 start-page: 25 year: 2012 ident: 10.1016/j.rse.2021.112844_bb0055 article-title: Sentinel-2: ESA’s optical high-resolution mission for GMES operational services publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.11.026 – start-page: 770 year: 2016 ident: 10.1016/j.rse.2021.112844_bb0125 article-title: Deep residual learning for image recognition – volume: 198 start-page: 149 year: 2004 ident: 10.1016/j.rse.2021.112844_bb0230 article-title: Relationships between forest stand parameters and Landsat TM spectral responses in the Brazilian Amazon Basin publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2004.03.048 – year: 2020 ident: 10.1016/j.rse.2021.112844_bb0065 – volume: 173 start-page: 187 year: 2016 ident: 10.1016/j.rse.2021.112844_bb0315 article-title: Spatial distribution of forest aboveground biomass in China: estimation through combination of spaceborne lidar, optical imagery, and forest inventory data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.12.002 – volume: 38 start-page: 2954 year: 2017 ident: 10.1016/j.rse.2021.112844_bb0115 article-title: An integrated UAV-borne lidar system for 3D habitat mapping in three forest ecosystems across China publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2017.1285083 – volume: 221 start-page: 247 year: 2019 ident: 10.1016/j.rse.2021.112844_bb0265 article-title: The ATL08 land and vegetation product for the ICESat-2 Mission publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.11.005 – volume: 114 year: 2009 ident: 10.1016/j.rse.2021.112844_bb0025 article-title: Remote sensing of vegetation 3-D structure for biodiversity and habitat: review and implications for lidar and radar spaceborne missions publication-title: J. Geophys. Res. Biogeosci. doi: 10.1029/2008JG000883 – start-page: 1436 year: 2013 ident: 10.1016/j.rse.2021.112844_bb0410 article-title: U-air: when urban air quality inference meets big data – volume: 103 start-page: 7 year: 2015 ident: 10.1016/j.rse.2021.112844_bb0030 article-title: Global land cover mapping at 30 m resolution: a POK-based operational approach publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2014.09.002 – volume: 32 year: 2005 ident: 10.1016/j.rse.2021.112844_bb0190 article-title: Estimates of forest canopy height and aboveground biomass using ICESat publication-title: Geophys. Res. Lett. doi: 10.1029/2005GL023971 – volume: 27 start-page: 88 year: 2003 ident: 10.1016/j.rse.2021.112844_bb0215 article-title: LiDAR remote sensing of forest structure publication-title: Prog. Phys. Geogr. doi: 10.1191/0309133303pp360ra – volume: 13 start-page: 77 year: 2021 ident: 10.1016/j.rse.2021.112844_bb0155 article-title: Development and performance evaluation of a very low-cost UAV-Lidar system for forestry applications publication-title: Remote Sens. doi: 10.3390/rs13010077 – volume: 57 start-page: 241 year: 2003 ident: 10.1016/j.rse.2021.112844_bb0290 article-title: The shuttle radar topography mission—a new class of digital elevation models acquired by spaceborne radar publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/S0924-2716(02)00124-7 – volume: 81 start-page: 583 year: 2000 ident: 10.1016/j.rse.2021.112844_bb0070 article-title: Shuttle radar topography Mission produces a wealth of data publication-title: EOS Trans. Am. Geophys. Union doi: 10.1029/EO081i048p00583 – volume: 231 year: 2019 ident: 10.1016/j.rse.2021.112844_bb0360 article-title: Remote sensing of terrestrial plant biodiversity publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111218 – year: 2017 ident: 10.1016/j.rse.2021.112844_bb0350 – volume: 251 year: 2020 ident: 10.1016/j.rse.2021.112844_bb0270 article-title: Validation of ICESat-2 terrain and canopy heights in boreal forests publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.112110 – volume: 87 start-page: 216 year: 2014 ident: 10.1016/j.rse.2021.112844_bb0310 article-title: A practical method for SRTM DEM correction over vegetated mountain areas publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2013.11.009 – volume: 4 year: 2009 ident: 10.1016/j.rse.2021.112844_bb0010 article-title: Tropical forest carbon assessment: integrating satellite and airborne mapping approaches publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/4/3/034009 – volume: 7 start-page: 12563 year: 2015 ident: 10.1016/j.rse.2021.112844_bb0385 article-title: Mapping forest canopy height across large areas by upscaling ALS estimates with freely available satellite data publication-title: Remote Sens. doi: 10.3390/rs70912563 – year: 2014 ident: 10.1016/j.rse.2021.112844_bb0170 – volume: 18 start-page: 306 year: 2003 ident: 10.1016/j.rse.2021.112844_bb0340 article-title: Remote sensing for biodiversity science and conservation publication-title: Trends Ecol. Evol. doi: 10.1016/S0169-5347(03)00070-3 – year: 2016 ident: 10.1016/j.rse.2021.112844_bb0015 – volume: 120 start-page: 75 year: 2004 ident: 10.1016/j.rse.2021.112844_bb0130 article-title: A generic framework for spatial prediction of soil variables based on regression-kriging publication-title: Geoderma doi: 10.1016/j.geoderma.2003.08.018 – volume: 202 start-page: 18 year: 2017 ident: 10.1016/j.rse.2021.112844_bb0105 article-title: Google Earth Engine: Planetary-scale geospatial analysis for everyone publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.06.031 – year: 2019 ident: 10.1016/j.rse.2021.112844_bb0140 – volume: 37 year: 2010 ident: 10.1016/j.rse.2021.112844_bb0185 article-title: A global forest canopy height map from the moderate resolution imaging spectroradiometer and the geoscience laser altimeter system publication-title: Geophys. Res. Lett. doi: 10.1029/2010GL043622 – volume: 82 start-page: 397 year: 2002 ident: 10.1016/j.rse.2021.112844_bb0165 article-title: Integration of lidar and Landsat ETM+ data for estimating and mapping forest canopy height publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(02)00056-1 – volume: 144 start-page: 137 year: 2018 ident: 10.1016/j.rse.2021.112844_bb0210 article-title: International benchmarking of terrestrial laser scanning approaches for forest inventories publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.06.021 – volume: 208 start-page: 154 year: 2018 ident: 10.1016/j.rse.2021.112844_bb0280 article-title: Photon counting LiDAR: an adaptive ground and canopy height retrieval algorithm for ICESat-2 data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.02.019 – volume: 92 year: 2020 ident: 10.1016/j.rse.2021.112844_bb0205 article-title: High-resolution mapping of forest canopy height using machine learning by coupling ICESat-2 LiDAR with Sentinel-1, Sentinel-2 and Landsat-8 data publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 10 start-page: 307 year: 2017 ident: 10.1016/j.rse.2021.112844_bb0320 article-title: Fine-resolution forest tree height estimation across the Sierra Nevada through the integration of spaceborne LiDAR, airborne LiDAR, and optical imagery publication-title: Int. J. Digital Earth doi: 10.1080/17538947.2016.1227380 – volume: 146 start-page: 465 year: 2018 ident: 10.1016/j.rse.2021.112844_bb0220 article-title: Estimating forest structural attributes using UAV-LiDAR data in Ginkgo plantations publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.11.001 – start-page: 1 year: 2016 ident: 10.1016/j.rse.2021.112844_bb0380 – volume: 1 year: 2020 ident: 10.1016/j.rse.2021.112844_bb0060 article-title: The global ecosystem dynamics investigation: high-resolution laser ranging of the Earth’s forests and topography publication-title: Sci. Remote Sens. – volume: 49 start-page: 457 year: 2003 ident: 10.1016/j.rse.2021.112844_bb0250 article-title: Influence of fusing lidar and multispectral imagery on remotely sensed estimates of stand density and mean tree height in a managed loblolly pine plantation publication-title: For. Sci. – volume: 33 start-page: 1301 year: 2007 ident: 10.1016/j.rse.2021.112844_bb0135 article-title: About regression-kriging: from equations to case studies publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2007.05.001 – volume: 147 start-page: 132 year: 2019 ident: 10.1016/j.rse.2021.112844_bb0375 article-title: Is field-measured tree height as reliable as believed–a comparison study of tree height estimates from field measurement, airborne laser scanning and terrestrial laser scanning in a boreal forest publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.11.008 – year: 2018 ident: 10.1016/j.rse.2021.112844_bb0045 – year: 2011 ident: 10.1016/j.rse.2021.112844_bb0390 – volume: 66 start-page: 159 year: 2018 ident: 10.1016/j.rse.2021.112844_bb0090 article-title: Modelling forest canopy height by integrating airborne LiDAR samples with satellite radar and multispectral imagery publication-title: Int. J. Appl. Earth Obs. Geoinf. – year: 2009 ident: 10.1016/j.rse.2021.112844_bb0035 – volume: 102 start-page: 198 year: 2015 ident: 10.1016/j.rse.2021.112844_bb0195 article-title: Lidar with multi-temporal MODIS provide a means to upscale predictions of forest biomass publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2015.02.007 – volume: 98 start-page: 393 year: 2017 ident: 10.1016/j.rse.2021.112844_bb0255 article-title: Three-dimensional habitat structure and landscape genetics: a step forward in estimating functional connectivity publication-title: Ecology doi: 10.1002/ecy.1645 – volume: 6 start-page: 90 year: 2008 ident: 10.1016/j.rse.2021.112844_bb0355 article-title: Lidar: shedding new light on habitat characterization and modeling publication-title: Front. Ecol. Environ. doi: 10.1890/070001 – volume: 97 start-page: 3265 year: 2016 ident: 10.1016/j.rse.2021.112844_bb0330 article-title: Global patterns and determinants of forest canopy height publication-title: Ecology doi: 10.1002/ecy.1580 – volume: 44 year: 2017 ident: 10.1016/j.rse.2021.112844_bb0200 article-title: Estimating ground-level PM2. 5 by fusing satellite and station observations: a geo-intelligent deep learning approach publication-title: Geophys. Res. Lett. doi: 10.1002/2017GL075710 – volume: 2 start-page: 1 year: 2012 ident: 10.1016/j.rse.2021.112844_bb0365 article-title: A review of spatial sampling publication-title: Spatial Stat. doi: 10.1016/j.spasta.2012.08.001 – volume: 9 start-page: 232 year: 2021 ident: 10.1016/j.rse.2021.112844_bb0120 article-title: Lidar boosts 3D ecological observations and Modelings: a review and perspective publication-title: IEEE Geosci. Remote Sens. Magaz. doi: 10.1109/MGRS.2020.3032713 – volume: 129 start-page: 189 year: 2017 ident: 10.1016/j.rse.2021.112844_bb0160 article-title: Mapping vegetation heights in China using slope correction ICESat data, SRTM, MODIS-derived and climate data publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2017.04.020 – volume: 232 start-page: 97 year: 2019 ident: 10.1016/j.rse.2021.112844_bb0040 article-title: Combining behavioural and LiDAR data to reveal relationships between canopy structure and orangutan nest site selection in disturbed forests publication-title: Biol. Conserv. doi: 10.1016/j.biocon.2019.01.032 – year: 2016 ident: 10.1016/j.rse.2021.112844_bb0100 – volume: 32 year: 2005 ident: 10.1016/j.rse.2021.112844_bb0295 article-title: Overview of the ICESat mission publication-title: Geophys. Res. Lett. doi: 10.1029/2005GL024009 – volume: 174 start-page: 24 year: 2016 ident: 10.1016/j.rse.2021.112844_bb0370 article-title: A combined GLAS and MODIS estimation of the global distribution of mean forest canopy height publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.12.005 – volume: 24 start-page: 225 year: 2018 ident: 10.1016/j.rse.2021.112844_bb0415 article-title: Spatial prediction based on third law of geography publication-title: Ann. GIS doi: 10.1080/19475683.2018.1534890 – volume: 253 year: 2021 ident: 10.1016/j.rse.2021.112844_bb0285 article-title: Mapping global forest canopy height through integration of GEDI and Landsat data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.112165 – volume: 355 start-page: 109 year: 2015 ident: 10.1016/j.rse.2021.112844_bb0245 article-title: The role of remote sensing in process-scaling studies of managed forest ecosystems publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2015.05.032 – start-page: 265 year: 2016 ident: 10.1016/j.rse.2021.112844_bb0005 article-title: Tensorflow: a system for large-scale machine learning – volume: 116 year: 2011 ident: 10.1016/j.rse.2021.112844_bb0300 article-title: Mapping forest canopy height globally with spaceborne lidar publication-title: J. Geophys. Res. Biogeosci. doi: 10.1029/2011JG001708 – volume: 69 start-page: 264 year: 1999 ident: 10.1016/j.rse.2021.112844_bb0345 article-title: MODIS vegetation index compositing approach: a prototype with AVHRR data publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(99)00022-X – volume: 37 start-page: 4302 year: 2017 ident: 10.1016/j.rse.2021.112844_bb0080 article-title: WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas publication-title: Int. J. Climatol. doi: 10.1002/joc.5086 – volume: 42 start-page: 594 year: 1961 ident: 10.1016/j.rse.2021.112844_bb0235 article-title: On bird species diversity publication-title: Ecology doi: 10.2307/1932254 – volume: 190 start-page: 260 year: 2017 ident: 10.1016/j.rse.2021.112844_bb0240 article-title: The Ice, Cloud, and land Elevation satellite-2 (ICESat-2): science requirements, concept, and implementation publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.12.029 – volume: 27 start-page: 2161 year: 2006 ident: 10.1016/j.rse.2021.112844_bb0050 article-title: Using LiDAR to compare forest height estimates from IKONOS and Landsat ETM+ data in Sitka spruce plantation forests publication-title: Int. J. Remote Sens. doi: 10.1080/01431160500396493 – start-page: 113 year: 2001 ident: 10.1016/j.rse.2021.112844_bb0150 article-title: Vegetation atlas of China publication-title: Chinese Acad. Sci., the editorial board of vegetation map of China – volume: 25 start-page: 1097 year: 2012 ident: 10.1016/j.rse.2021.112844_bb0175 article-title: Imagenet classification with deep convolutional neural networks publication-title: Adv. Neural Inf. Proces. Syst. |
SSID | ssj0015871 |
Score | 2.6635659 |
Snippet | Spatially continuous estimates of forest canopy height at national to global scales are critical for quantifying forest carbon storage, understanding forest... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 112844 |
SubjectTerms | altimeters Canopies canopy height Carbon Carbon sequestration China Climate change Deep neural network Ecosystem dynamics Elevation environment Estimates forest canopy Forest canopy height Forest ecosystems Forest management Forests GEDI Global climate ice ICESat-2 ATLAS Interpolation Laser altimeters Lasers Lidar Mapping Monitoring methods Neural networks Performance evaluation Saturation Spaceborne lidar Spatial interpolation standard deviation Terrestrial ecosystems topography |
Title | Neural network guided interpolation for mapping canopy height of China's forests by integrating GEDI and ICESat-2 data |
URI | https://dx.doi.org/10.1016/j.rse.2021.112844 https://www.proquest.com/docview/2627860193 https://www.proquest.com/docview/2636409533 |
Volume | 269 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RaxQxEA6lIvoielo8rSWCIAixt8ncbvaxnNfeKfZFC30LySZpr-je0b0T7sXf7sxu9kTBPvi2bCZsmJnMTDbfzDD2Jtcayqz0AtzICogRhNauEtLG3DqPQnd0UPx8ns8u4OPl-HKPTfpcGIJVJtvf2fTWWqc3x4mbx6vFgnJ8FZDG4aEFvTiQHQYoSMvf_9zBPLKxLrqueQoEUfc3my3G67ahSpkyo0QaDfAv3_SXlW5dz-lj9ijFjPykW9YTthfqATuY_k5Rw8G0R5sBe5D6ml9vB-z-Wdu4d_uU_aAqHEhXd7BvfrVZ-OD5omuz1QHiOAaw_Lulig1XHFm-XG35dfvrlC8jbzttv22ICNfYcLflfa0Joj-bfphzW3s-n0y_2LWQnMCnz9jF6fTrZCZSzwVRgYS1cJnTsoKq8EWUfqSDj8q7vKisQh5bDCZyB8H7kYdSRW1dHCvQrvRIjZEUqAO2Xy_r8JxxqnWIAYzMAz2No5OVCpBZDBi9qkI5ZKOe26ZKBcmpL8Y30yPPbgwKyJCATCegIXu3m7LqqnHcRQy9CM0fKmXQW9w17bAXt0n7uTEyl4XGs2uphuz1bhh3Il2v2DosN0SjcqDyferF_335JXsoKbmixYQfsv317Sa8wpBn7Y5anT5i907mn2bnvwCMBf9N |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwELamTmi8IChMFAYYCQkJyVprXxLncSrdWrb1hU3am2XHzlYEabW0SP333CVOEUjsgbcoPivWnX13zt19x9iHVGvIR7kX4IZWQFmC0NoVQtoytc6j0B1dFC_n6fQavtwkN3ts3NXCUFpl1P2tTm-0dXxzHLl5vFosqMZXAe04vLSgFQfUw_uETpX02P7J7Hw63wUTEp21jfMUCJrQBTebNK_7msAy5YhqaTTAv8zTX4q6sT6nT9mT6Dbyk3Zlz9heqPrscPK7Sg0H4zGt--wgtja_2_bZo7Omd-_2OftJQBxIV7WZ3_x2s_DB80XbaavNiePow_IflkAbbjlyfbna8rvm7ylflrxptv2xJiJcY83dlndwE0R_Nvk847byfDaefLVrITnln75g16eTq_FUxLYLogAJa-FGTssCisxnpfRDHXypvEuzwipks0V_InUQvB96yFWprSsTBdrlHqnRmQJ1yHrVsgovGSe4Q_RhZBroKSmdLFSAkUWf0asi5AM27LhtiohJTq0xvpsu-eybQQEZEpBpBTRgn3ZTVi0gx0PE0InQ_LGrDBqMh6YddeI28UjXRqYy03h9zdWAvd8N42GkCIutwnJDNCoFQvBTr_7vy-_YwfTq8sJczObnr9ljSbUWTYr4Eeut7zfhDXpAa_c27vBfSlECDQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+network+guided+interpolation+for+mapping+canopy+height+of+China%27s+forests+by+integrating+GEDI+and+ICESat-2+data&rft.jtitle=Remote+sensing+of+environment&rft.au=Liu%2C+Xiaoqiang&rft.au=Su%2C+Yanjun&rft.au=Hu%2C+Tianyu&rft.au=Yang%2C+Qiuli&rft.date=2022-02-01&rft.issn=0034-4257&rft.volume=269&rft.spage=112844&rft_id=info:doi/10.1016%2Fj.rse.2021.112844&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_rse_2021_112844 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4257&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4257&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4257&client=summon |