Neural network guided interpolation for mapping canopy height of China's forests by integrating GEDI and ICESat-2 data

Spatially continuous estimates of forest canopy height at national to global scales are critical for quantifying forest carbon storage, understanding forest ecosystem processes, and developing forest management and restoration policies to mitigate global climate change. Spaceborne light detection an...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing of environment Vol. 269; p. 112844
Main Authors Liu, Xiaoqiang, Su, Yanjun, Hu, Tianyu, Yang, Qiuli, Liu, Bingbing, Deng, Yufei, Tang, Hao, Tang, Zhiyao, Fang, Jingyun, Guo, Qinghua
Format Journal Article
LanguageEnglish
Published New York Elsevier Inc 01.02.2022
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Spatially continuous estimates of forest canopy height at national to global scales are critical for quantifying forest carbon storage, understanding forest ecosystem processes, and developing forest management and restoration policies to mitigate global climate change. Spaceborne light detection and ranging (lidar) platforms, especially the Global Ecosystem Dynamics Investigation (GEDI) and Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) Advanced Topographic Laser Altimeter System (ATLAS), can measure forest canopy height in discrete footprints globally. Their coverage provides a promising data source for national to global-scale forest canopy height estimates. However, previous studies usually used a regression-based approach to develop spatially continuous forest canopy height distribution through the aid of optical images, which cannot take full advantage of the dense spaceborne lidar footprints and may still suffer from the saturation effect of optical images. In this study, we developed a novel neural network guided interpolation (NNGI) method to map forest canopy height by fusing GEDI, ICESat-2 ATLAS, and Sentinel-2 images. To evaluate the performance of the proposed NNGI method, we generated a 30-m forest canopy height product of China for the year 2019. More than 140 km2 drone-lidar data were collected across the country to train and validate the NNGI method. The results showed that the average forest canopy height of China is 15.90 m with a standard deviation of 5.77 m. We evaluated the interpolated forest canopy height product of China by over 1,100,000 GEDI validation footprints (R2 = 0.55, RMSE = 5.32 m), about 33 km2 drone-lidar validation data (R2 = 0.58, RMSE = 4.93 m), and over 59,000 field plot measurements (R2 = 0.60, RMSE = 4.88 m). Benefiting from the interpolation-based mapping strategy, the resulting product had almost no saturation effect in areas with tall forest canopies. The high mapping accuracy demonstrates the feasibility of the proposed NNGI method for monitoring spatially continuous forest canopy height at national to global scales by integrating multi-platform spaceborne lidar data and optical images, enabling opportunities to provide more accurate quantification of terrestrial carbon storage and better understanding of forest ecosystem processes. •Neural network guided interpolation (NNGI) was proposed to map forest canopy height.•Over 140 km2 drone lidar data were collected to train and validate the NNGI method.•A 30-m forest canopy height product of China was mapped with high accuracy by NNGI.•The NNGI method reduced the saturation effect of estimates in tall forests.•Fusion of GEDI and ICESat-2 alleviated the strip effect of each individual dataset.
AbstractList Spatially continuous estimates of forest canopy height at national to global scales are critical for quantifying forest carbon storage, understanding forest ecosystem processes, and developing forest management and restoration policies to mitigate global climate change. Spaceborne light detection and ranging (lidar) platforms, especially the Global Ecosystem Dynamics Investigation (GEDI) and Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) Advanced Topographic Laser Altimeter System (ATLAS), can measure forest canopy height in discrete footprints globally. Their coverage provides a promising data source for national to global-scale forest canopy height estimates. However, previous studies usually used a regression-based approach to develop spatially continuous forest canopy height distribution through the aid of optical images, which cannot take full advantage of the dense spaceborne lidar footprints and may still suffer from the saturation effect of optical images. In this study, we developed a novel neural network guided interpolation (NNGI) method to map forest canopy height by fusing GEDI, ICESat-2 ATLAS, and Sentinel-2 images. To evaluate the performance of the proposed NNGI method, we generated a 30-m forest canopy height product of China for the year 2019. More than 140 km² drone-lidar data were collected across the country to train and validate the NNGI method. The results showed that the average forest canopy height of China is 15.90 m with a standard deviation of 5.77 m. We evaluated the interpolated forest canopy height product of China by over 1,100,000 GEDI validation footprints (R² = 0.55, RMSE = 5.32 m), about 33 km² drone-lidar validation data (R² = 0.58, RMSE = 4.93 m), and over 59,000 field plot measurements (R² = 0.60, RMSE = 4.88 m). Benefiting from the interpolation-based mapping strategy, the resulting product had almost no saturation effect in areas with tall forest canopies. The high mapping accuracy demonstrates the feasibility of the proposed NNGI method for monitoring spatially continuous forest canopy height at national to global scales by integrating multi-platform spaceborne lidar data and optical images, enabling opportunities to provide more accurate quantification of terrestrial carbon storage and better understanding of forest ecosystem processes.
Spatially continuous estimates of forest canopy height at national to global scales are critical for quantifying forest carbon storage, understanding forest ecosystem processes, and developing forest management and restoration policies to mitigate global climate change. Spaceborne light detection and ranging (lidar) platforms, especially the Global Ecosystem Dynamics Investigation (GEDI) and Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) Advanced Topographic Laser Altimeter System (ATLAS), can measure forest canopy height in discrete footprints globally. Their coverage provides a promising data source for national to global-scale forest canopy height estimates. However, previous studies usually used a regression-based approach to develop spatially continuous forest canopy height distribution through the aid of optical images, which cannot take full advantage of the dense spaceborne lidar footprints and may still suffer from the saturation effect of optical images. In this study, we developed a novel neural network guided interpolation (NNGI) method to map forest canopy height by fusing GEDI, ICESat-2 ATLAS, and Sentinel-2 images. To evaluate the performance of the proposed NNGI method, we generated a 30-m forest canopy height product of China for the year 2019. More than 140 km2 drone-lidar data were collected across the country to train and validate the NNGI method. The results showed that the average forest canopy height of China is 15.90 m with a standard deviation of 5.77 m. We evaluated the interpolated forest canopy height product of China by over 1,100,000 GEDI validation footprints (R2 = 0.55, RMSE = 5.32 m), about 33 km2 drone-lidar validation data (R2 = 0.58, RMSE = 4.93 m), and over 59,000 field plot measurements (R2 = 0.60, RMSE = 4.88 m). Benefiting from the interpolation-based mapping strategy, the resulting product had almost no saturation effect in areas with tall forest canopies. The high mapping accuracy demonstrates the feasibility of the proposed NNGI method for monitoring spatially continuous forest canopy height at national to global scales by integrating multi-platform spaceborne lidar data and optical images, enabling opportunities to provide more accurate quantification of terrestrial carbon storage and better understanding of forest ecosystem processes.
Spatially continuous estimates of forest canopy height at national to global scales are critical for quantifying forest carbon storage, understanding forest ecosystem processes, and developing forest management and restoration policies to mitigate global climate change. Spaceborne light detection and ranging (lidar) platforms, especially the Global Ecosystem Dynamics Investigation (GEDI) and Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) Advanced Topographic Laser Altimeter System (ATLAS), can measure forest canopy height in discrete footprints globally. Their coverage provides a promising data source for national to global-scale forest canopy height estimates. However, previous studies usually used a regression-based approach to develop spatially continuous forest canopy height distribution through the aid of optical images, which cannot take full advantage of the dense spaceborne lidar footprints and may still suffer from the saturation effect of optical images. In this study, we developed a novel neural network guided interpolation (NNGI) method to map forest canopy height by fusing GEDI, ICESat-2 ATLAS, and Sentinel-2 images. To evaluate the performance of the proposed NNGI method, we generated a 30-m forest canopy height product of China for the year 2019. More than 140 km2 drone-lidar data were collected across the country to train and validate the NNGI method. The results showed that the average forest canopy height of China is 15.90 m with a standard deviation of 5.77 m. We evaluated the interpolated forest canopy height product of China by over 1,100,000 GEDI validation footprints (R2 = 0.55, RMSE = 5.32 m), about 33 km2 drone-lidar validation data (R2 = 0.58, RMSE = 4.93 m), and over 59,000 field plot measurements (R2 = 0.60, RMSE = 4.88 m). Benefiting from the interpolation-based mapping strategy, the resulting product had almost no saturation effect in areas with tall forest canopies. The high mapping accuracy demonstrates the feasibility of the proposed NNGI method for monitoring spatially continuous forest canopy height at national to global scales by integrating multi-platform spaceborne lidar data and optical images, enabling opportunities to provide more accurate quantification of terrestrial carbon storage and better understanding of forest ecosystem processes. •Neural network guided interpolation (NNGI) was proposed to map forest canopy height.•Over 140 km2 drone lidar data were collected to train and validate the NNGI method.•A 30-m forest canopy height product of China was mapped with high accuracy by NNGI.•The NNGI method reduced the saturation effect of estimates in tall forests.•Fusion of GEDI and ICESat-2 alleviated the strip effect of each individual dataset.
ArticleNumber 112844
Author Guo, Qinghua
Liu, Xiaoqiang
Deng, Yufei
Fang, Jingyun
Tang, Zhiyao
Su, Yanjun
Hu, Tianyu
Liu, Bingbing
Tang, Hao
Yang, Qiuli
Author_xml – sequence: 1
  givenname: Xiaoqiang
  surname: Liu
  fullname: Liu, Xiaoqiang
  organization: State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
– sequence: 2
  givenname: Yanjun
  surname: Su
  fullname: Su, Yanjun
  email: ysu@ibcas.ac.cn
  organization: State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
– sequence: 3
  givenname: Tianyu
  surname: Hu
  fullname: Hu, Tianyu
  organization: State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
– sequence: 4
  givenname: Qiuli
  surname: Yang
  fullname: Yang, Qiuli
  organization: State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
– sequence: 5
  givenname: Bingbing
  surname: Liu
  fullname: Liu, Bingbing
  organization: College of Resources and Environmental Sciences, Xinjiang University, Urumqi 830002, China
– sequence: 6
  givenname: Yufei
  surname: Deng
  fullname: Deng, Yufei
  organization: College of Resources and Environmental Sciences, Xinjiang University, Urumqi 830002, China
– sequence: 7
  givenname: Hao
  surname: Tang
  fullname: Tang, Hao
  organization: Department of Geography, Faculty of Arts and Social Sciences, National University of Singapore, Singapore 117570, Singapore
– sequence: 8
  givenname: Zhiyao
  surname: Tang
  fullname: Tang, Zhiyao
  organization: Institute of Ecology, College of Urban and Environmental Science, Peking University, Beijing 100871, China
– sequence: 9
  givenname: Jingyun
  surname: Fang
  fullname: Fang, Jingyun
  organization: Institute of Ecology, College of Urban and Environmental Science, Peking University, Beijing 100871, China
– sequence: 10
  givenname: Qinghua
  surname: Guo
  fullname: Guo, Qinghua
  organization: Institute of Ecology, College of Urban and Environmental Science, Peking University, Beijing 100871, China
BookMark eNp9kT1v2zAURYkiBeIk_QHZCHRoF7n8kiihU-G4qYEgHdrOBEU-2XRlUiWpFP73peNOGTK95ZyHi3uv0IUPHhC6pWRJCW0-7ZcxwZIRRpeUslaIN2hBW9lVRBJxgRaEcFEJVstLdJXSnhBat5Iu0NMjzFGP2EP-G-JvvJ2dBYudzxCnMOrsgsdDiPigp8n5LTbah-mId-C2u4zDgFc75_WHdIIg5YT747O9jcUt_P36boO1t3izWv_QuWLY6qxv0NtBjwne_b_X6NfX9c_Vt-rh-_1m9eWhMoKJXPW0b5kRRlo5MEtasAO3fSON5nUjNGO86QVYS6zo-NDqfqi5aPvOFrphXPBr9PH8d4rhz1zyqYNLBsZRewhzUqzhjSBdzXlB379A92GOvqQrFJNtQ2h3ouiZMjGkFGFQU3QHHY-KEnVaQu1VWUKdllDnJYojXzjG5edmc9RufNX8fDahdPTkIKpkHHgD1kUwWdngXrH_AVnZpRs
CitedBy_id crossref_primary_10_3390_rs16193650
crossref_primary_10_1016_j_jag_2023_103643
crossref_primary_10_3390_rs16234603
crossref_primary_10_1109_JSTARS_2025_3527631
crossref_primary_10_3389_ffgc_2024_1354508
crossref_primary_10_3390_f15071211
crossref_primary_10_3389_ffgc_2023_1333868
crossref_primary_10_1016_j_isprsjprs_2024_08_001
crossref_primary_10_1080_10095020_2023_2249037
crossref_primary_10_1016_j_jag_2025_104455
crossref_primary_10_1016_j_ecoinf_2023_102404
crossref_primary_10_3390_f14010013
crossref_primary_10_1016_j_isprsjprs_2023_01_005
crossref_primary_10_1080_15481603_2024_2396807
crossref_primary_10_3390_rs15225364
crossref_primary_10_1111_2041_210X_14401
crossref_primary_10_1016_j_ecoinf_2023_102082
crossref_primary_10_3390_rs15235436
crossref_primary_10_1016_j_jag_2024_104348
crossref_primary_10_5194_essd_16_5267_2024
crossref_primary_10_3390_rs15010001
crossref_primary_10_1080_01431161_2024_2391093
crossref_primary_10_3390_rs16010110
crossref_primary_10_5194_essd_15_897_2023
crossref_primary_10_1016_j_rse_2023_113570
crossref_primary_10_1038_s41598_024_78615_9
crossref_primary_10_3390_rs15061548
crossref_primary_10_1007_s11356_024_34415_2
crossref_primary_10_3390_rs16162913
crossref_primary_10_1007_s40725_024_00223_7
crossref_primary_10_1016_j_rse_2023_113693
crossref_primary_10_1016_j_xinn_2023_100515
crossref_primary_10_3390_f15020369
crossref_primary_10_1016_j_jag_2024_103941
crossref_primary_10_3390_rs15082080
crossref_primary_10_1038_s41467_024_48546_0
crossref_primary_10_1109_TGRS_2024_3412629
crossref_primary_10_1016_j_jag_2024_104234
crossref_primary_10_3390_rs16132321
crossref_primary_10_3390_f15081315
crossref_primary_10_1016_j_rse_2022_113280
crossref_primary_10_1109_TGRS_2023_3341796
crossref_primary_10_1016_j_ecolind_2024_112639
crossref_primary_10_1016_j_catena_2024_108488
crossref_primary_10_1016_j_jag_2024_103798
crossref_primary_10_1016_j_ecolind_2024_112763
crossref_primary_10_3390_drones6090240
crossref_primary_10_3390_f14071414
crossref_primary_10_1016_j_ecolind_2023_111092
crossref_primary_10_3390_rs16203798
crossref_primary_10_3390_f15081290
crossref_primary_10_1016_j_jag_2024_104123
crossref_primary_10_1080_17538947_2023_2190625
crossref_primary_10_3390_rs15245686
crossref_primary_10_1111_phor_12507
crossref_primary_10_1080_01431161_2023_2189035
crossref_primary_10_3390_f15081440
crossref_primary_10_3390_s24051651
crossref_primary_10_1016_j_rse_2024_114226
crossref_primary_10_3390_f15071132
crossref_primary_10_1016_j_envres_2024_120561
crossref_primary_10_1109_JSTARS_2024_3461843
crossref_primary_10_3390_f15122095
crossref_primary_10_34133_remotesensing_0160
crossref_primary_10_1080_10095020_2023_2286377
crossref_primary_10_3390_rs16122138
crossref_primary_10_1016_j_ecoinf_2024_102574
crossref_primary_10_1093_jpe_rtae039
crossref_primary_10_1016_j_fecs_2025_100293
crossref_primary_10_3390_f15122139
crossref_primary_10_3390_rs15163946
crossref_primary_10_3390_rs15112882
crossref_primary_10_1038_s43017_023_00508_8
crossref_primary_10_1016_j_srs_2024_100152
crossref_primary_10_1016_j_inffus_2023_102149
crossref_primary_10_3390_f15060992
crossref_primary_10_3390_rs15153738
crossref_primary_10_3390_f16040570
crossref_primary_10_3390_rs15092275
crossref_primary_10_3390_f14050876
crossref_primary_10_3390_rs15225391
crossref_primary_10_3389_fpls_2024_1505414
crossref_primary_10_1016_j_jag_2023_103431
crossref_primary_10_3390_rs14235968
crossref_primary_10_3390_f15091539
crossref_primary_10_3390_f15111907
crossref_primary_10_1016_j_agrformet_2023_109592
crossref_primary_10_3390_rs16183485
crossref_primary_10_1016_j_srs_2024_100144
crossref_primary_10_3390_f14030454
crossref_primary_10_3390_su151511525
crossref_primary_10_1029_2024GL110312
crossref_primary_10_1016_j_ophoto_2023_100053
crossref_primary_10_3390_f14112138
crossref_primary_10_3390_rs15020515
crossref_primary_10_34133_ehs_0160
crossref_primary_10_1016_j_ecolind_2024_112157
crossref_primary_10_1109_TGRS_2022_3231926
crossref_primary_10_1016_j_scitotenv_2024_173487
crossref_primary_10_1016_j_jag_2025_104474
crossref_primary_10_1007_s00468_022_02378_x
crossref_primary_10_1080_15481603_2025_2477869
crossref_primary_10_1111_gcb_70055
crossref_primary_10_3390_ani13081294
crossref_primary_10_3390_rs14225651
crossref_primary_10_3390_f15112039
crossref_primary_10_3390_f15071161
crossref_primary_10_3390_rs15020467
crossref_primary_10_1016_j_isprsjprs_2024_01_024
crossref_primary_10_3390_f14061270
crossref_primary_10_3390_rs16071268
crossref_primary_10_3390_rs17010085
crossref_primary_10_5194_essd_16_803_2024
crossref_primary_10_1080_15481603_2023_2203303
crossref_primary_10_1016_j_fecs_2022_100046
crossref_primary_10_11728_cjss2023_06_2023_0074
crossref_primary_10_1016_j_rse_2024_114384
crossref_primary_10_1080_15481603_2022_2085354
crossref_primary_10_1080_15481603_2024_2374150
crossref_primary_10_3390_rs14153615
crossref_primary_10_3390_rs14153618
crossref_primary_10_3390_rs15225374
crossref_primary_10_3389_fpls_2024_1361297
Cites_doi 10.1016/j.rse.2021.112571
10.1145/361002.361007
10.1016/j.rse.2021.112533
10.1016/0893-6080(89)90020-8
10.1016/j.isprsjprs.2016.03.016
10.14358/PERS.76.6.701
10.1007/s11430-014-4905-5
10.2307/143141
10.1111/tgis.12176
10.1080/2150704X.2018.1425560
10.1016/j.rse.2011.11.026
10.1016/j.foreco.2004.03.048
10.1016/j.rse.2015.12.002
10.1080/01431161.2017.1285083
10.1016/j.rse.2018.11.005
10.1029/2008JG000883
10.1016/j.isprsjprs.2014.09.002
10.1029/2005GL023971
10.1191/0309133303pp360ra
10.3390/rs13010077
10.1016/S0924-2716(02)00124-7
10.1029/EO081i048p00583
10.1016/j.rse.2019.111218
10.1016/j.rse.2020.112110
10.1016/j.isprsjprs.2013.11.009
10.1088/1748-9326/4/3/034009
10.3390/rs70912563
10.1016/S0169-5347(03)00070-3
10.1016/j.geoderma.2003.08.018
10.1016/j.rse.2017.06.031
10.1029/2010GL043622
10.1016/S0034-4257(02)00056-1
10.1016/j.isprsjprs.2018.06.021
10.1016/j.rse.2018.02.019
10.1080/17538947.2016.1227380
10.1016/j.isprsjprs.2018.11.001
10.1016/j.cageo.2007.05.001
10.1016/j.isprsjprs.2018.11.008
10.1016/j.isprsjprs.2015.02.007
10.1002/ecy.1645
10.1890/070001
10.1002/ecy.1580
10.1002/2017GL075710
10.1016/j.spasta.2012.08.001
10.1109/MGRS.2020.3032713
10.1016/j.isprsjprs.2017.04.020
10.1016/j.biocon.2019.01.032
10.1029/2005GL024009
10.1016/j.rse.2015.12.005
10.1080/19475683.2018.1534890
10.1016/j.rse.2020.112165
10.1016/j.foreco.2015.05.032
10.1029/2011JG001708
10.1016/S0034-4257(99)00022-X
10.1002/joc.5086
10.2307/1932254
10.1016/j.rse.2016.12.029
10.1080/01431160500396493
ContentType Journal Article
Copyright 2021 Elsevier Inc.
Copyright Elsevier BV Feb 2022
Copyright_xml – notice: 2021 Elsevier Inc.
– notice: Copyright Elsevier BV Feb 2022
DBID AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7TG
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KL.
KR7
L7M
L~C
L~D
P64
7S9
L.6
DOI 10.1016/j.rse.2021.112844
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Meteorological & Geoastrophysical Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Meteorological & Geoastrophysical Abstracts
Biotechnology Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
Environmental Sciences
EISSN 1879-0704
ExternalDocumentID 10_1016_j_rse_2021_112844
S0034425721005642
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29P
4.4
41~
457
4G.
53G
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABPPZ
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACPRK
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HMA
HMC
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SEN
SEP
SES
SEW
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TN5
TWZ
VOH
WH7
WUQ
XOL
ZCA
ZMT
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7QF
7QO
7QQ
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7TG
7U5
8BQ
8FD
C1K
EFKBS
F28
FR3
H8D
H8G
JG9
JQ2
KL.
KR7
L7M
L~C
L~D
P64
7S9
L.6
ID FETCH-LOGICAL-c424t-b1b82c4c7d7f2d08edf3db67ca3564a2236b4edd0d493f8abf5348b9df2d62343
IEDL.DBID .~1
ISSN 0034-4257
IngestDate Fri Jul 11 15:52:09 EDT 2025
Wed Aug 13 06:43:37 EDT 2025
Tue Jul 01 03:51:29 EDT 2025
Thu Apr 24 23:06:04 EDT 2025
Fri Feb 23 02:41:16 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Lidar
Spatial interpolation
GEDI
ICESat-2 ATLAS
Deep neural network
Forest canopy height
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c424t-b1b82c4c7d7f2d08edf3db67ca3564a2236b4edd0d493f8abf5348b9df2d62343
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2627860193
PQPubID 2045405
ParticipantIDs proquest_miscellaneous_2636409533
proquest_journals_2627860193
crossref_primary_10_1016_j_rse_2021_112844
crossref_citationtrail_10_1016_j_rse_2021_112844
elsevier_sciencedirect_doi_10_1016_j_rse_2021_112844
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2022
2022-02-00
20220201
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: February 2022
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Remote sensing of environment
PublicationYear 2022
Publisher Elsevier Inc
Elsevier BV
Publisher_xml – name: Elsevier Inc
– name: Elsevier BV
References Ba, Kiros, Hinton (bb0015) 2016
Waters (bb0380) 2016
Li, Guo, Tao, Kelly, Xu (bb0195) 2015; 102
Rabus, Eineder, Roth, Bamler (bb0290) 2003; 57
Hofton, Blair, Story, Yi (bb0140) 2019
Markus, Neumann, Martino, Abdalati, Brunt, Csatho, Farrell, Fricker, Gardner, Harding (bb0240) 2017; 190
Chen, Chen, Liao, Cao, Chen, Chen, He, Han, Peng, Lu (bb0030) 2015; 103
Masek, Hayes, Hughes, Healey, Turner (bb0245) 2015; 355
Potapov, Li, Hernandez-Serna, Tyukavina, Hansen, Kommareddy, Pickens, Turubanova, Tang, Silva (bb0285) 2021; 253
Zhu, Lu, Liu, Qin, Zhou (bb0415) 2018; 24
He, Zhang, Ren, Sun (bb0125) 2016
Lim, Treitz, Wulder, St-Onge, Flood (bb0215) 2003; 27
Schutz, Zwally, Shuman, Hancock, DiMarzio (bb0295) 2005; 32
Su, Ma, Guo (bb0320) 2017; 10
Fatoyinbo, Armston, Simard, Saatchi, Denbina, Lavalle, Hofton, Tang, Marselis, Pinto (bb0075) 2021; 264
Tobler (bb0335) 1970; 46
Turner, Spector, Gardiner, Fladeland, Sterling, Steininger (bb0340) 2003; 18
Li, Niu, Shang, Qin, Wang, Chen (bb0205) 2020; 92
Lefsky, Harding, Keller, Cohen, Carabajal, Del Bom Espirito-Santo, Hunter, de Oliveira Jr (bb0190) 2005; 32
Liu, Shen, Cao, Wang, Cao (bb0220) 2018; 146
García, Saatchi, Ustin, Balzter (bb0090) 2018; 66
Davies, Oram, Ancrenaz, Asner (bb0040) 2019; 232
Bergen, Goetz, Dubayah, Henebry, Hunsaker, Imhoff, Nelson, Parker, Radeloff (bb0025) 2009; 114
Drusch, Del Bello, Carlier, Colin, Fernandez, Gascon, Hoersch, Isola, Laberinti, Martimort (bb0055) 2012; 120
Dubayah, Hofton, Blair, Armston, Tang, Luthcke (bb0065) 2020
Farr, Kobrick (bb0070) 2000; 81
Lang, Kalischek, Armston, Schindler, Dubayah, Wegner (bb0180) 2021
Milanesi, Holderegger, Bollmann, Gugerli, Zellweger (bb0255) 2017; 98
Dubayah, Blair, Goetz, Fatoyinbo, Hansen, Healey, Hofton, Hurtt, Kellner, Luthcke (bb0060) 2020; 1
Guo, Su, Hu, Zhao, Wu, Li, Liu, Chen, Xu, Lin (bb0115) 2017; 38
Hou (bb0150) 2001
Vierling, Vierling, Gould, Martinuzzi, Clawges (bb0355) 2008; 6
Hengl, Heuvelink, Rossiter (bb0135) 2007; 33
Wilkes, Jones, Suarez, Mellor, Woodgate, Soto-Berelov, Haywood, Skidmore (bb0385) 2015; 7
Goodfellow, Bengio, Courville (bb0100) 2016
Zhao, Su, Hu, Chen, Gao, Wang, Jin, Guo (bb0405) 2018; 9
Hornik, Stinchcombe, White (bb0145) 1989; 2
Huang, Liu, Wang, Biging, Chen, Yang, Gong (bb0160) 2017; 129
Mitas, Mitasova (bb0260) 1999
Neuenschwander, Guenther, White, Duncanson, Montesano (bb0270) 2020; 251
MacArthur, MacArthur (bb0235) 1961; 42
Su, Guo, Xue, Hu, Alvarez, Tao, Fang (bb0315) 2016; 173
Hudak, Lefsky, Cohen, Berterretche (bb0165) 2002; 82
Wang, Gamon (bb0360) 2019; 231
Krizhevsky, Sutskever, Hinton (bb0175) 2012; 25
Li, Shen, Yuan, Zhang, Zhang (bb0200) 2017; 44
Wang, Lehtomäki, Liang, Pyörälä, Kukko, Jaakkola, Liu, Feng, Chen, Hyyppä (bb0375) 2019; 147
Neuenschwander, Pitts (bb0265) 2019; 221
Devlin, Chang, Lee, Toutanova (bb0045) 2018
McCombs, Roberts, Evans (bb0250) 2003; 49
Guo, Su, Hu, Guan, Jin, Zhang, Zhao, Xu, Wei, Kelly, Coops (bb0120) 2021; 9
Su, Guo (bb0310) 2014; 87
Wang, Li, Ding, Guo, Tang, Wang, Huang, Liu, Chen (bb0370) 2016; 174
Donoghue, Watt (bb0050) 2006; 27
Fick, Hijmans (bb0080) 2017; 37
Gorelick, Hancher, Dixon, Ilyushchenko, Thau, Moore (bb0105) 2017; 202
Zhao, Guo, Su, Xue (bb0400) 2016; 117
Simard, Pinto, Fisher, Baccini (bb0300) 2011; 116
Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (bb0350) 2017
Hengl, Heuvelink, Stein (bb0130) 2004; 120
Su, Guo, Jin, Guan, Sun, Ma, Hu, Wang, Li (bb0325) 2020
Lu, Mausel, Brondızio, Moran (bb0230) 2004; 198
Glorot, Bordes, Bengio (bb0095) 2011
Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (bb0305) 2014; 15
Gao, Pan, Chen, Wu, Ren, Hu (bb0085) 2016; 20
Guo, Li, Yu, Alvarez (bb0110) 2010; 76
Zheng, Liu, Hsieh (bb0410) 2013
Bentley (bb0020) 1975; 18
Hu, Sun, Su, Guan, Sun, Kelly, Guo (bb0155) 2021; 13
Yang, Wang, Li, Luo, Xi, Gao, Zeng (bb0395) 2015; 58
Tao, Guo, Li, Wang, Fang (bb0330) 2016; 97
Chiles, Delfiner (bb0035) 2009
Lefsky (bb0185) 2010; 37
Kingma, Ba (bb0170) 2014
Asner (bb0010) 2009; 4
Liu, Cheng, Chen (bb0225) 2021; 264
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg (bb0275) 2011; 12
Popescu, Zhou, Nelson, Neuenschwander, Sheridan, Narine, Walsh (bb0280) 2018; 208
Liang, Hyyppä, Kaartinen, Lehtomäki, Pyörälä, Pfeifer, Holopainen, Brolly, Francesco, Hackenberg (bb0210) 2018; 144
Van Leeuwen, Huete, Laing (bb0345) 1999; 69
Wang, Stein, Gao, Ge (bb0365) 2012; 2
Xu, Hutchinson (bb0390) 2011
Abadi, Barham, Chen, Chen, Davis, Dean, Devin, Ghemawat, Irving, Isard (bb0005) 2016
Chiles (10.1016/j.rse.2021.112844_bb0035) 2009
Hofton (10.1016/j.rse.2021.112844_bb0140) 2019
Markus (10.1016/j.rse.2021.112844_bb0240) 2017; 190
Abadi (10.1016/j.rse.2021.112844_bb0005) 2016
Neuenschwander (10.1016/j.rse.2021.112844_bb0265) 2019; 221
Rabus (10.1016/j.rse.2021.112844_bb0290) 2003; 57
Guo (10.1016/j.rse.2021.112844_bb0120) 2021; 9
Hornik (10.1016/j.rse.2021.112844_bb0145) 1989; 2
Li (10.1016/j.rse.2021.112844_bb0195) 2015; 102
Devlin (10.1016/j.rse.2021.112844_bb0045) 2018
McCombs (10.1016/j.rse.2021.112844_bb0250) 2003; 49
Lu (10.1016/j.rse.2021.112844_bb0230) 2004; 198
Hou (10.1016/j.rse.2021.112844_bb0150) 2001
Hudak (10.1016/j.rse.2021.112844_bb0165) 2002; 82
Gorelick (10.1016/j.rse.2021.112844_bb0105) 2017; 202
Huang (10.1016/j.rse.2021.112844_bb0160) 2017; 129
Bentley (10.1016/j.rse.2021.112844_bb0020) 1975; 18
Guo (10.1016/j.rse.2021.112844_bb0115) 2017; 38
Gao (10.1016/j.rse.2021.112844_bb0085) 2016; 20
Li (10.1016/j.rse.2021.112844_bb0205) 2020; 92
Milanesi (10.1016/j.rse.2021.112844_bb0255) 2017; 98
Popescu (10.1016/j.rse.2021.112844_bb0280) 2018; 208
Zhao (10.1016/j.rse.2021.112844_bb0405) 2018; 9
Lefsky (10.1016/j.rse.2021.112844_bb0185) 2010; 37
Fatoyinbo (10.1016/j.rse.2021.112844_bb0075) 2021; 264
Wang (10.1016/j.rse.2021.112844_bb0375) 2019; 147
Farr (10.1016/j.rse.2021.112844_bb0070) 2000; 81
Hengl (10.1016/j.rse.2021.112844_bb0130) 2004; 120
Liu (10.1016/j.rse.2021.112844_bb0225) 2021; 264
Lim (10.1016/j.rse.2021.112844_bb0215) 2003; 27
Chen (10.1016/j.rse.2021.112844_bb0030) 2015; 103
Schutz (10.1016/j.rse.2021.112844_bb0295) 2005; 32
Zhao (10.1016/j.rse.2021.112844_bb0400) 2016; 117
Hengl (10.1016/j.rse.2021.112844_bb0135) 2007; 33
García (10.1016/j.rse.2021.112844_bb0090) 2018; 66
Neuenschwander (10.1016/j.rse.2021.112844_bb0270) 2020; 251
Donoghue (10.1016/j.rse.2021.112844_bb0050) 2006; 27
Simard (10.1016/j.rse.2021.112844_bb0300) 2011; 116
Wang (10.1016/j.rse.2021.112844_bb0365) 2012; 2
Su (10.1016/j.rse.2021.112844_bb0310) 2014; 87
Pedregosa (10.1016/j.rse.2021.112844_bb0275) 2011; 12
Potapov (10.1016/j.rse.2021.112844_bb0285) 2021; 253
Liang (10.1016/j.rse.2021.112844_bb0210) 2018; 144
Davies (10.1016/j.rse.2021.112844_bb0040) 2019; 232
Wang (10.1016/j.rse.2021.112844_bb0370) 2016; 174
He (10.1016/j.rse.2021.112844_bb0125) 2016
Turner (10.1016/j.rse.2021.112844_bb0340) 2003; 18
Hu (10.1016/j.rse.2021.112844_bb0155) 2021; 13
Tao (10.1016/j.rse.2021.112844_bb0330) 2016; 97
Zheng (10.1016/j.rse.2021.112844_bb0410) 2013
Dubayah (10.1016/j.rse.2021.112844_bb0065) 2020
Mitas (10.1016/j.rse.2021.112844_bb0260) 1999
Lang (10.1016/j.rse.2021.112844_bb0180) 2021
MacArthur (10.1016/j.rse.2021.112844_bb0235) 1961; 42
Goodfellow (10.1016/j.rse.2021.112844_bb0100) 2016
Li (10.1016/j.rse.2021.112844_bb0200) 2017; 44
Yang (10.1016/j.rse.2021.112844_bb0395) 2015; 58
Drusch (10.1016/j.rse.2021.112844_bb0055) 2012; 120
Dubayah (10.1016/j.rse.2021.112844_bb0060) 2020; 1
Masek (10.1016/j.rse.2021.112844_bb0245) 2015; 355
Wang (10.1016/j.rse.2021.112844_bb0360) 2019; 231
Zhu (10.1016/j.rse.2021.112844_bb0415) 2018; 24
Krizhevsky (10.1016/j.rse.2021.112844_bb0175) 2012; 25
Su (10.1016/j.rse.2021.112844_bb0320) 2017; 10
Su (10.1016/j.rse.2021.112844_bb0325) 2020
Kingma (10.1016/j.rse.2021.112844_bb0170) 2014
Vaswani (10.1016/j.rse.2021.112844_bb0350) 2017
Lefsky (10.1016/j.rse.2021.112844_bb0190) 2005; 32
Vierling (10.1016/j.rse.2021.112844_bb0355) 2008; 6
Wilkes (10.1016/j.rse.2021.112844_bb0385) 2015; 7
Guo (10.1016/j.rse.2021.112844_bb0110) 2010; 76
Srivastava (10.1016/j.rse.2021.112844_bb0305) 2014; 15
Asner (10.1016/j.rse.2021.112844_bb0010) 2009; 4
Waters (10.1016/j.rse.2021.112844_bb0380) 2016
Van Leeuwen (10.1016/j.rse.2021.112844_bb0345) 1999; 69
Fick (10.1016/j.rse.2021.112844_bb0080) 2017; 37
Liu (10.1016/j.rse.2021.112844_bb0220) 2018; 146
Bergen (10.1016/j.rse.2021.112844_bb0025) 2009; 114
Glorot (10.1016/j.rse.2021.112844_bb0095) 2011
Su (10.1016/j.rse.2021.112844_bb0315) 2016; 173
Ba (10.1016/j.rse.2021.112844_bb0015) 2016
Xu (10.1016/j.rse.2021.112844_bb0390) 2011
Tobler (10.1016/j.rse.2021.112844_bb0335) 1970; 46
References_xml – year: 2016
  ident: bb0100
  article-title: Deep Learning
– volume: 13
  start-page: 77
  year: 2021
  ident: bb0155
  article-title: Development and performance evaluation of a very low-cost UAV-Lidar system for forestry applications
  publication-title: Remote Sens.
– year: 2016
  ident: bb0015
  article-title: Layer normalization.
– volume: 81
  start-page: 583
  year: 2000
  end-page: 585
  ident: bb0070
  article-title: Shuttle radar topography Mission produces a wealth of data
  publication-title: EOS Trans. Am. Geophys. Union
– volume: 144
  start-page: 137
  year: 2018
  end-page: 179
  ident: bb0210
  article-title: International benchmarking of terrestrial laser scanning approaches for forest inventories
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 190
  start-page: 260
  year: 2017
  end-page: 273
  ident: bb0240
  article-title: The Ice, Cloud, and land Elevation satellite-2 (ICESat-2): science requirements, concept, and implementation
  publication-title: Remote Sens. Environ.
– volume: 116
  year: 2011
  ident: bb0300
  article-title: Mapping forest canopy height globally with spaceborne lidar
  publication-title: J. Geophys. Res. Biogeosci.
– volume: 10
  start-page: 307
  year: 2017
  end-page: 323
  ident: bb0320
  article-title: Fine-resolution forest tree height estimation across the Sierra Nevada through the integration of spaceborne LiDAR, airborne LiDAR, and optical imagery
  publication-title: Int. J. Digital Earth
– year: 2021
  ident: bb0180
  article-title: Global canopy height estimation with GEDI LIDAR waveforms and Bayesian deep learning.
– volume: 7
  start-page: 12563
  year: 2015
  end-page: 12587
  ident: bb0385
  article-title: Mapping forest canopy height across large areas by upscaling ALS estimates with freely available satellite data
  publication-title: Remote Sens.
– volume: 82
  start-page: 397
  year: 2002
  end-page: 416
  ident: bb0165
  article-title: Integration of lidar and Landsat ETM+ data for estimating and mapping forest canopy height
  publication-title: Remote Sens. Environ.
– year: 2017
  ident: bb0350
  article-title: Attention is all you need.
– volume: 120
  start-page: 75
  year: 2004
  end-page: 93
  ident: bb0130
  article-title: A generic framework for spatial prediction of soil variables based on regression-kriging
  publication-title: Geoderma
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: bb0275
  article-title: Scikit-learn: machine learning in Python
  publication-title: J. Machine Learn. Res.
– volume: 2
  start-page: 1
  year: 2012
  end-page: 14
  ident: bb0365
  article-title: A review of spatial sampling
  publication-title: Spatial Stat.
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  ident: bb0305
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Machine Learn. Res.
– year: 2018
  ident: bb0045
  article-title: Bert: pre-training of deep bidirectional transformers for language understanding.
– start-page: 770
  year: 2016
  end-page: 778
  ident: bb0125
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 265
  year: 2016
  end-page: 283
  ident: bb0005
  article-title: Tensorflow: a system for large-scale machine learning
  publication-title: 12th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 16)
– volume: 114
  year: 2009
  ident: bb0025
  article-title: Remote sensing of vegetation 3-D structure for biodiversity and habitat: review and implications for lidar and radar spaceborne missions
  publication-title: J. Geophys. Res. Biogeosci.
– start-page: 315
  year: 2011
  end-page: 323
  ident: bb0095
  article-title: Deep sparse rectifier neural networks
  publication-title: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics
– volume: 102
  start-page: 198
  year: 2015
  end-page: 208
  ident: bb0195
  article-title: Lidar with multi-temporal MODIS provide a means to upscale predictions of forest biomass
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 18
  start-page: 509
  year: 1975
  end-page: 517
  ident: bb0020
  article-title: Multidimensional binary search trees used for associative searching
  publication-title: Commun. ACM
– volume: 117
  start-page: 79
  year: 2016
  end-page: 91
  ident: bb0400
  article-title: Improved progressive TIN densification filtering algorithm for airborne LiDAR data in forested areas
  publication-title: ISPRS J. Photogramm. Remote Sens.
– year: 2019
  ident: bb0140
  article-title: Algorithm Theoretical Basis Document (ATBD) for GEDI Transmit and Receive Waveform Processing for L1 and L2 Products
– volume: 208
  start-page: 154
  year: 2018
  end-page: 170
  ident: bb0280
  article-title: Photon counting LiDAR: an adaptive ground and canopy height retrieval algorithm for ICESat-2 data
  publication-title: Remote Sens. Environ.
– year: 2020
  ident: bb0325
  article-title: The development and evaluation of a backpack LiDAR system for accurate and efficient forest inventory
  publication-title: IEEE Geosci. Remote Sens. Lett.
– year: 2011
  ident: bb0390
  article-title: ANUCLIM Version 6.1 User Guide
– volume: 9
  start-page: 393
  year: 2018
  end-page: 402
  ident: bb0405
  article-title: A global corrected SRTM DEM product for vegetated areas
  publication-title: Remote Sens. Lett.
– volume: 49
  start-page: 457
  year: 2003
  end-page: 466
  ident: bb0250
  article-title: Influence of fusing lidar and multispectral imagery on remotely sensed estimates of stand density and mean tree height in a managed loblolly pine plantation
  publication-title: For. Sci.
– volume: 1
  year: 2020
  ident: bb0060
  article-title: The global ecosystem dynamics investigation: high-resolution laser ranging of the Earth’s forests and topography
  publication-title: Sci. Remote Sens.
– volume: 146
  start-page: 465
  year: 2018
  end-page: 482
  ident: bb0220
  article-title: Estimating forest structural attributes using UAV-LiDAR data in Ginkgo plantations
  publication-title: ISPRS J. Photogramm. Remote Sens.
– year: 2014
  ident: bb0170
  article-title: Adam: A Method for Stochastic Optimization
– volume: 174
  start-page: 24
  year: 2016
  end-page: 43
  ident: bb0370
  article-title: A combined GLAS and MODIS estimation of the global distribution of mean forest canopy height
  publication-title: Remote Sens. Environ.
– volume: 202
  start-page: 18
  year: 2017
  end-page: 27
  ident: bb0105
  article-title: Google Earth Engine: Planetary-scale geospatial analysis for everyone
  publication-title: Remote Sens. Environ.
– volume: 37
  year: 2010
  ident: bb0185
  article-title: A global forest canopy height map from the moderate resolution imaging spectroradiometer and the geoscience laser altimeter system
  publication-title: Geophys. Res. Lett.
– volume: 18
  start-page: 306
  year: 2003
  end-page: 314
  ident: bb0340
  article-title: Remote sensing for biodiversity science and conservation
  publication-title: Trends Ecol. Evol.
– volume: 33
  start-page: 1301
  year: 2007
  end-page: 1315
  ident: bb0135
  article-title: About regression-kriging: from equations to case studies
  publication-title: Comput. Geosci.
– volume: 264
  year: 2021
  ident: bb0225
  article-title: Performance evaluation of GEDI and ICESat-2 laser altimeter data for terrain and canopy height retrievals
  publication-title: Remote Sens. Environ.
– volume: 221
  start-page: 247
  year: 2019
  end-page: 259
  ident: bb0265
  article-title: The ATL08 land and vegetation product for the ICESat-2 Mission
  publication-title: Remote Sens. Environ.
– volume: 251
  year: 2020
  ident: bb0270
  article-title: Validation of ICESat-2 terrain and canopy heights in boreal forests
  publication-title: Remote Sens. Environ.
– volume: 253
  year: 2021
  ident: bb0285
  article-title: Mapping global forest canopy height through integration of GEDI and Landsat data
  publication-title: Remote Sens. Environ.
– volume: 27
  start-page: 88
  year: 2003
  end-page: 106
  ident: bb0215
  article-title: LiDAR remote sensing of forest structure
  publication-title: Prog. Phys. Geogr.
– volume: 4
  year: 2009
  ident: bb0010
  article-title: Tropical forest carbon assessment: integrating satellite and airborne mapping approaches
  publication-title: Environ. Res. Lett.
– volume: 198
  start-page: 149
  year: 2004
  end-page: 167
  ident: bb0230
  article-title: Relationships between forest stand parameters and Landsat TM spectral responses in the Brazilian Amazon Basin
  publication-title: For. Ecol. Manag.
– volume: 44
  year: 2017
  ident: bb0200
  article-title: Estimating ground-level PM2. 5 by fusing satellite and station observations: a geo-intelligent deep learning approach
  publication-title: Geophys. Res. Lett.
– volume: 103
  start-page: 7
  year: 2015
  end-page: 27
  ident: bb0030
  article-title: Global land cover mapping at 30 m resolution: a POK-based operational approach
  publication-title: ISPRS J. Photogramm. Remote Sens.
– start-page: 1436
  year: 2013
  end-page: 1444
  ident: bb0410
  article-title: U-air: when urban air quality inference meets big data
  publication-title: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– volume: 98
  start-page: 393
  year: 2017
  end-page: 402
  ident: bb0255
  article-title: Three-dimensional habitat structure and landscape genetics: a step forward in estimating functional connectivity
  publication-title: Ecology
– volume: 46
  start-page: 234
  year: 1970
  end-page: 240
  ident: bb0335
  article-title: A computer movie simulating urban growth in the Detroit region
  publication-title: Econ. Geogr.
– volume: 37
  start-page: 4302
  year: 2017
  end-page: 4315
  ident: bb0080
  article-title: WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas
  publication-title: Int. J. Climatol.
– volume: 32
  year: 2005
  ident: bb0295
  article-title: Overview of the ICESat mission
  publication-title: Geophys. Res. Lett.
– volume: 173
  start-page: 187
  year: 2016
  end-page: 199
  ident: bb0315
  article-title: Spatial distribution of forest aboveground biomass in China: estimation through combination of spaceborne lidar, optical imagery, and forest inventory data
  publication-title: Remote Sens. Environ.
– volume: 232
  start-page: 97
  year: 2019
  end-page: 107
  ident: bb0040
  article-title: Combining behavioural and LiDAR data to reveal relationships between canopy structure and orangutan nest site selection in disturbed forests
  publication-title: Biol. Conserv.
– volume: 2
  start-page: 359
  year: 1989
  end-page: 366
  ident: bb0145
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Netw.
– volume: 6
  start-page: 90
  year: 2008
  end-page: 98
  ident: bb0355
  article-title: Lidar: shedding new light on habitat characterization and modeling
  publication-title: Front. Ecol. Environ.
– volume: 20
  start-page: 735
  year: 2016
  end-page: 754
  ident: bb0085
  article-title: A spatial conditioned Latin hypercube sampling method for mapping using ancillary data
  publication-title: Trans. GIS
– start-page: 113
  year: 2001
  end-page: 124
  ident: bb0150
  article-title: Vegetation atlas of China
  publication-title: Chinese Acad. Sci., the editorial board of vegetation map of China
– volume: 38
  start-page: 2954
  year: 2017
  end-page: 2972
  ident: bb0115
  article-title: An integrated UAV-borne lidar system for 3D habitat mapping in three forest ecosystems across China
  publication-title: Int. J. Remote Sens.
– volume: 66
  start-page: 159
  year: 2018
  end-page: 173
  ident: bb0090
  article-title: Modelling forest canopy height by integrating airborne LiDAR samples with satellite radar and multispectral imagery
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 129
  start-page: 189
  year: 2017
  end-page: 199
  ident: bb0160
  article-title: Mapping vegetation heights in China using slope correction ICESat data, SRTM, MODIS-derived and climate data
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 24
  start-page: 225
  year: 2018
  end-page: 240
  ident: bb0415
  article-title: Spatial prediction based on third law of geography
  publication-title: Ann. GIS
– volume: 264
  year: 2021
  ident: bb0075
  article-title: The NASA AfriSAR campaign: airborne SAR and lidar measurements of tropical forest structure and biomass in support of current and future space missions
  publication-title: Remote Sens. Environ.
– volume: 231
  year: 2019
  ident: bb0360
  article-title: Remote sensing of terrestrial plant biodiversity
  publication-title: Remote Sens. Environ.
– year: 2009
  ident: bb0035
  article-title: Geostatistics: Modeling Spatial Uncertainty
– volume: 87
  start-page: 216
  year: 2014
  end-page: 228
  ident: bb0310
  article-title: A practical method for SRTM DEM correction over vegetated mountain areas
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 58
  start-page: 96
  year: 2015
  end-page: 105
  ident: bb0395
  article-title: Forest canopy height mapping over China using GLAS and MODIS data
  publication-title: Sci. China Earth Sci.
– volume: 57
  start-page: 241
  year: 2003
  end-page: 262
  ident: bb0290
  article-title: The shuttle radar topography mission—a new class of digital elevation models acquired by spaceborne radar
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 27
  start-page: 2161
  year: 2006
  end-page: 2175
  ident: bb0050
  article-title: Using LiDAR to compare forest height estimates from IKONOS and Landsat ETM+ data in Sitka spruce plantation forests
  publication-title: Int. J. Remote Sens.
– volume: 120
  start-page: 25
  year: 2012
  end-page: 36
  ident: bb0055
  article-title: Sentinel-2: ESA’s optical high-resolution mission for GMES operational services
  publication-title: Remote Sens. Environ.
– start-page: 1
  year: 2016
  end-page: 15
  ident: bb0380
  article-title: T obler's First Law of Geography. International Encyclopedia of Geography
– volume: 9
  start-page: 232
  year: 2021
  end-page: 257
  ident: bb0120
  article-title: Lidar boosts 3D ecological observations and Modelings: a review and perspective
  publication-title: IEEE Geosci. Remote Sens. Magaz.
– year: 1999
  ident: bb0260
  article-title: Spatial interpolation
  publication-title: Geographical Information Systems: Principles, Techniques, Management and Applications
– volume: 69
  start-page: 264
  year: 1999
  end-page: 280
  ident: bb0345
  article-title: MODIS vegetation index compositing approach: a prototype with AVHRR data
  publication-title: Remote Sens. Environ.
– volume: 32
  year: 2005
  ident: bb0190
  article-title: Estimates of forest canopy height and aboveground biomass using ICESat
  publication-title: Geophys. Res. Lett.
– volume: 25
  start-page: 1097
  year: 2012
  end-page: 1105
  ident: bb0175
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Proces. Syst.
– volume: 97
  start-page: 3265
  year: 2016
  end-page: 3270
  ident: bb0330
  article-title: Global patterns and determinants of forest canopy height
  publication-title: Ecology
– volume: 147
  start-page: 132
  year: 2019
  end-page: 145
  ident: bb0375
  article-title: Is field-measured tree height as reliable as believed–a comparison study of tree height estimates from field measurement, airborne laser scanning and terrestrial laser scanning in a boreal forest
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 92
  year: 2020
  ident: bb0205
  article-title: High-resolution mapping of forest canopy height using machine learning by coupling ICESat-2 LiDAR with Sentinel-1, Sentinel-2 and Landsat-8 data
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 42
  start-page: 594
  year: 1961
  end-page: 598
  ident: bb0235
  article-title: On bird species diversity
  publication-title: Ecology
– volume: 76
  start-page: 701
  year: 2010
  end-page: 712
  ident: bb0110
  article-title: Effects of topographic variability and lidar sampling density on several DEM interpolation methods
  publication-title: Photogramm. Eng. Remote. Sens.
– year: 2020
  ident: bb0065
  article-title: GEDI L2A Elevation and Height Metrics Data Global Footprint Level V001. NASA EOSDIS Land Processes DAAC. Accessed 2021-04-21from
– volume: 355
  start-page: 109
  year: 2015
  end-page: 123
  ident: bb0245
  article-title: The role of remote sensing in process-scaling studies of managed forest ecosystems
  publication-title: For. Ecol. Manag.
– volume: 264
  year: 2021
  ident: 10.1016/j.rse.2021.112844_bb0225
  article-title: Performance evaluation of GEDI and ICESat-2 laser altimeter data for terrain and canopy height retrievals
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112571
– year: 2020
  ident: 10.1016/j.rse.2021.112844_bb0325
  article-title: The development and evaluation of a backpack LiDAR system for accurate and efficient forest inventory
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 18
  start-page: 509
  year: 1975
  ident: 10.1016/j.rse.2021.112844_bb0020
  article-title: Multidimensional binary search trees used for associative searching
  publication-title: Commun. ACM
  doi: 10.1145/361002.361007
– volume: 264
  year: 2021
  ident: 10.1016/j.rse.2021.112844_bb0075
  article-title: The NASA AfriSAR campaign: airborne SAR and lidar measurements of tropical forest structure and biomass in support of current and future space missions
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112533
– volume: 12
  start-page: 2825
  year: 2011
  ident: 10.1016/j.rse.2021.112844_bb0275
  article-title: Scikit-learn: machine learning in Python
  publication-title: J. Machine Learn. Res.
– volume: 2
  start-page: 359
  year: 1989
  ident: 10.1016/j.rse.2021.112844_bb0145
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Netw.
  doi: 10.1016/0893-6080(89)90020-8
– volume: 15
  start-page: 1929
  year: 2014
  ident: 10.1016/j.rse.2021.112844_bb0305
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Machine Learn. Res.
– volume: 117
  start-page: 79
  year: 2016
  ident: 10.1016/j.rse.2021.112844_bb0400
  article-title: Improved progressive TIN densification filtering algorithm for airborne LiDAR data in forested areas
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2016.03.016
– volume: 76
  start-page: 701
  year: 2010
  ident: 10.1016/j.rse.2021.112844_bb0110
  article-title: Effects of topographic variability and lidar sampling density on several DEM interpolation methods
  publication-title: Photogramm. Eng. Remote. Sens.
  doi: 10.14358/PERS.76.6.701
– year: 1999
  ident: 10.1016/j.rse.2021.112844_bb0260
  article-title: Spatial interpolation
– volume: 58
  start-page: 96
  year: 2015
  ident: 10.1016/j.rse.2021.112844_bb0395
  article-title: Forest canopy height mapping over China using GLAS and MODIS data
  publication-title: Sci. China Earth Sci.
  doi: 10.1007/s11430-014-4905-5
– year: 2021
  ident: 10.1016/j.rse.2021.112844_bb0180
– volume: 46
  start-page: 234
  year: 1970
  ident: 10.1016/j.rse.2021.112844_bb0335
  article-title: A computer movie simulating urban growth in the Detroit region
  publication-title: Econ. Geogr.
  doi: 10.2307/143141
– volume: 20
  start-page: 735
  year: 2016
  ident: 10.1016/j.rse.2021.112844_bb0085
  article-title: A spatial conditioned Latin hypercube sampling method for mapping using ancillary data
  publication-title: Trans. GIS
  doi: 10.1111/tgis.12176
– volume: 9
  start-page: 393
  year: 2018
  ident: 10.1016/j.rse.2021.112844_bb0405
  article-title: A global corrected SRTM DEM product for vegetated areas
  publication-title: Remote Sens. Lett.
  doi: 10.1080/2150704X.2018.1425560
– start-page: 315
  year: 2011
  ident: 10.1016/j.rse.2021.112844_bb0095
  article-title: Deep sparse rectifier neural networks
– volume: 120
  start-page: 25
  year: 2012
  ident: 10.1016/j.rse.2021.112844_bb0055
  article-title: Sentinel-2: ESA’s optical high-resolution mission for GMES operational services
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.11.026
– start-page: 770
  year: 2016
  ident: 10.1016/j.rse.2021.112844_bb0125
  article-title: Deep residual learning for image recognition
– volume: 198
  start-page: 149
  year: 2004
  ident: 10.1016/j.rse.2021.112844_bb0230
  article-title: Relationships between forest stand parameters and Landsat TM spectral responses in the Brazilian Amazon Basin
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2004.03.048
– year: 2020
  ident: 10.1016/j.rse.2021.112844_bb0065
– volume: 173
  start-page: 187
  year: 2016
  ident: 10.1016/j.rse.2021.112844_bb0315
  article-title: Spatial distribution of forest aboveground biomass in China: estimation through combination of spaceborne lidar, optical imagery, and forest inventory data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.12.002
– volume: 38
  start-page: 2954
  year: 2017
  ident: 10.1016/j.rse.2021.112844_bb0115
  article-title: An integrated UAV-borne lidar system for 3D habitat mapping in three forest ecosystems across China
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2017.1285083
– volume: 221
  start-page: 247
  year: 2019
  ident: 10.1016/j.rse.2021.112844_bb0265
  article-title: The ATL08 land and vegetation product for the ICESat-2 Mission
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.11.005
– volume: 114
  year: 2009
  ident: 10.1016/j.rse.2021.112844_bb0025
  article-title: Remote sensing of vegetation 3-D structure for biodiversity and habitat: review and implications for lidar and radar spaceborne missions
  publication-title: J. Geophys. Res. Biogeosci.
  doi: 10.1029/2008JG000883
– start-page: 1436
  year: 2013
  ident: 10.1016/j.rse.2021.112844_bb0410
  article-title: U-air: when urban air quality inference meets big data
– volume: 103
  start-page: 7
  year: 2015
  ident: 10.1016/j.rse.2021.112844_bb0030
  article-title: Global land cover mapping at 30 m resolution: a POK-based operational approach
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2014.09.002
– volume: 32
  year: 2005
  ident: 10.1016/j.rse.2021.112844_bb0190
  article-title: Estimates of forest canopy height and aboveground biomass using ICESat
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2005GL023971
– volume: 27
  start-page: 88
  year: 2003
  ident: 10.1016/j.rse.2021.112844_bb0215
  article-title: LiDAR remote sensing of forest structure
  publication-title: Prog. Phys. Geogr.
  doi: 10.1191/0309133303pp360ra
– volume: 13
  start-page: 77
  year: 2021
  ident: 10.1016/j.rse.2021.112844_bb0155
  article-title: Development and performance evaluation of a very low-cost UAV-Lidar system for forestry applications
  publication-title: Remote Sens.
  doi: 10.3390/rs13010077
– volume: 57
  start-page: 241
  year: 2003
  ident: 10.1016/j.rse.2021.112844_bb0290
  article-title: The shuttle radar topography mission—a new class of digital elevation models acquired by spaceborne radar
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/S0924-2716(02)00124-7
– volume: 81
  start-page: 583
  year: 2000
  ident: 10.1016/j.rse.2021.112844_bb0070
  article-title: Shuttle radar topography Mission produces a wealth of data
  publication-title: EOS Trans. Am. Geophys. Union
  doi: 10.1029/EO081i048p00583
– volume: 231
  year: 2019
  ident: 10.1016/j.rse.2021.112844_bb0360
  article-title: Remote sensing of terrestrial plant biodiversity
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111218
– year: 2017
  ident: 10.1016/j.rse.2021.112844_bb0350
– volume: 251
  year: 2020
  ident: 10.1016/j.rse.2021.112844_bb0270
  article-title: Validation of ICESat-2 terrain and canopy heights in boreal forests
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.112110
– volume: 87
  start-page: 216
  year: 2014
  ident: 10.1016/j.rse.2021.112844_bb0310
  article-title: A practical method for SRTM DEM correction over vegetated mountain areas
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2013.11.009
– volume: 4
  year: 2009
  ident: 10.1016/j.rse.2021.112844_bb0010
  article-title: Tropical forest carbon assessment: integrating satellite and airborne mapping approaches
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/4/3/034009
– volume: 7
  start-page: 12563
  year: 2015
  ident: 10.1016/j.rse.2021.112844_bb0385
  article-title: Mapping forest canopy height across large areas by upscaling ALS estimates with freely available satellite data
  publication-title: Remote Sens.
  doi: 10.3390/rs70912563
– year: 2014
  ident: 10.1016/j.rse.2021.112844_bb0170
– volume: 18
  start-page: 306
  year: 2003
  ident: 10.1016/j.rse.2021.112844_bb0340
  article-title: Remote sensing for biodiversity science and conservation
  publication-title: Trends Ecol. Evol.
  doi: 10.1016/S0169-5347(03)00070-3
– year: 2016
  ident: 10.1016/j.rse.2021.112844_bb0015
– volume: 120
  start-page: 75
  year: 2004
  ident: 10.1016/j.rse.2021.112844_bb0130
  article-title: A generic framework for spatial prediction of soil variables based on regression-kriging
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2003.08.018
– volume: 202
  start-page: 18
  year: 2017
  ident: 10.1016/j.rse.2021.112844_bb0105
  article-title: Google Earth Engine: Planetary-scale geospatial analysis for everyone
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.06.031
– year: 2019
  ident: 10.1016/j.rse.2021.112844_bb0140
– volume: 37
  year: 2010
  ident: 10.1016/j.rse.2021.112844_bb0185
  article-title: A global forest canopy height map from the moderate resolution imaging spectroradiometer and the geoscience laser altimeter system
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2010GL043622
– volume: 82
  start-page: 397
  year: 2002
  ident: 10.1016/j.rse.2021.112844_bb0165
  article-title: Integration of lidar and Landsat ETM+ data for estimating and mapping forest canopy height
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(02)00056-1
– volume: 144
  start-page: 137
  year: 2018
  ident: 10.1016/j.rse.2021.112844_bb0210
  article-title: International benchmarking of terrestrial laser scanning approaches for forest inventories
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.06.021
– volume: 208
  start-page: 154
  year: 2018
  ident: 10.1016/j.rse.2021.112844_bb0280
  article-title: Photon counting LiDAR: an adaptive ground and canopy height retrieval algorithm for ICESat-2 data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.02.019
– volume: 92
  year: 2020
  ident: 10.1016/j.rse.2021.112844_bb0205
  article-title: High-resolution mapping of forest canopy height using machine learning by coupling ICESat-2 LiDAR with Sentinel-1, Sentinel-2 and Landsat-8 data
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 10
  start-page: 307
  year: 2017
  ident: 10.1016/j.rse.2021.112844_bb0320
  article-title: Fine-resolution forest tree height estimation across the Sierra Nevada through the integration of spaceborne LiDAR, airborne LiDAR, and optical imagery
  publication-title: Int. J. Digital Earth
  doi: 10.1080/17538947.2016.1227380
– volume: 146
  start-page: 465
  year: 2018
  ident: 10.1016/j.rse.2021.112844_bb0220
  article-title: Estimating forest structural attributes using UAV-LiDAR data in Ginkgo plantations
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.11.001
– start-page: 1
  year: 2016
  ident: 10.1016/j.rse.2021.112844_bb0380
– volume: 1
  year: 2020
  ident: 10.1016/j.rse.2021.112844_bb0060
  article-title: The global ecosystem dynamics investigation: high-resolution laser ranging of the Earth’s forests and topography
  publication-title: Sci. Remote Sens.
– volume: 49
  start-page: 457
  year: 2003
  ident: 10.1016/j.rse.2021.112844_bb0250
  article-title: Influence of fusing lidar and multispectral imagery on remotely sensed estimates of stand density and mean tree height in a managed loblolly pine plantation
  publication-title: For. Sci.
– volume: 33
  start-page: 1301
  year: 2007
  ident: 10.1016/j.rse.2021.112844_bb0135
  article-title: About regression-kriging: from equations to case studies
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2007.05.001
– volume: 147
  start-page: 132
  year: 2019
  ident: 10.1016/j.rse.2021.112844_bb0375
  article-title: Is field-measured tree height as reliable as believed–a comparison study of tree height estimates from field measurement, airborne laser scanning and terrestrial laser scanning in a boreal forest
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.11.008
– year: 2018
  ident: 10.1016/j.rse.2021.112844_bb0045
– year: 2011
  ident: 10.1016/j.rse.2021.112844_bb0390
– volume: 66
  start-page: 159
  year: 2018
  ident: 10.1016/j.rse.2021.112844_bb0090
  article-title: Modelling forest canopy height by integrating airborne LiDAR samples with satellite radar and multispectral imagery
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– year: 2009
  ident: 10.1016/j.rse.2021.112844_bb0035
– volume: 102
  start-page: 198
  year: 2015
  ident: 10.1016/j.rse.2021.112844_bb0195
  article-title: Lidar with multi-temporal MODIS provide a means to upscale predictions of forest biomass
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2015.02.007
– volume: 98
  start-page: 393
  year: 2017
  ident: 10.1016/j.rse.2021.112844_bb0255
  article-title: Three-dimensional habitat structure and landscape genetics: a step forward in estimating functional connectivity
  publication-title: Ecology
  doi: 10.1002/ecy.1645
– volume: 6
  start-page: 90
  year: 2008
  ident: 10.1016/j.rse.2021.112844_bb0355
  article-title: Lidar: shedding new light on habitat characterization and modeling
  publication-title: Front. Ecol. Environ.
  doi: 10.1890/070001
– volume: 97
  start-page: 3265
  year: 2016
  ident: 10.1016/j.rse.2021.112844_bb0330
  article-title: Global patterns and determinants of forest canopy height
  publication-title: Ecology
  doi: 10.1002/ecy.1580
– volume: 44
  year: 2017
  ident: 10.1016/j.rse.2021.112844_bb0200
  article-title: Estimating ground-level PM2. 5 by fusing satellite and station observations: a geo-intelligent deep learning approach
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2017GL075710
– volume: 2
  start-page: 1
  year: 2012
  ident: 10.1016/j.rse.2021.112844_bb0365
  article-title: A review of spatial sampling
  publication-title: Spatial Stat.
  doi: 10.1016/j.spasta.2012.08.001
– volume: 9
  start-page: 232
  year: 2021
  ident: 10.1016/j.rse.2021.112844_bb0120
  article-title: Lidar boosts 3D ecological observations and Modelings: a review and perspective
  publication-title: IEEE Geosci. Remote Sens. Magaz.
  doi: 10.1109/MGRS.2020.3032713
– volume: 129
  start-page: 189
  year: 2017
  ident: 10.1016/j.rse.2021.112844_bb0160
  article-title: Mapping vegetation heights in China using slope correction ICESat data, SRTM, MODIS-derived and climate data
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.04.020
– volume: 232
  start-page: 97
  year: 2019
  ident: 10.1016/j.rse.2021.112844_bb0040
  article-title: Combining behavioural and LiDAR data to reveal relationships between canopy structure and orangutan nest site selection in disturbed forests
  publication-title: Biol. Conserv.
  doi: 10.1016/j.biocon.2019.01.032
– year: 2016
  ident: 10.1016/j.rse.2021.112844_bb0100
– volume: 32
  year: 2005
  ident: 10.1016/j.rse.2021.112844_bb0295
  article-title: Overview of the ICESat mission
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2005GL024009
– volume: 174
  start-page: 24
  year: 2016
  ident: 10.1016/j.rse.2021.112844_bb0370
  article-title: A combined GLAS and MODIS estimation of the global distribution of mean forest canopy height
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.12.005
– volume: 24
  start-page: 225
  year: 2018
  ident: 10.1016/j.rse.2021.112844_bb0415
  article-title: Spatial prediction based on third law of geography
  publication-title: Ann. GIS
  doi: 10.1080/19475683.2018.1534890
– volume: 253
  year: 2021
  ident: 10.1016/j.rse.2021.112844_bb0285
  article-title: Mapping global forest canopy height through integration of GEDI and Landsat data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.112165
– volume: 355
  start-page: 109
  year: 2015
  ident: 10.1016/j.rse.2021.112844_bb0245
  article-title: The role of remote sensing in process-scaling studies of managed forest ecosystems
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2015.05.032
– start-page: 265
  year: 2016
  ident: 10.1016/j.rse.2021.112844_bb0005
  article-title: Tensorflow: a system for large-scale machine learning
– volume: 116
  year: 2011
  ident: 10.1016/j.rse.2021.112844_bb0300
  article-title: Mapping forest canopy height globally with spaceborne lidar
  publication-title: J. Geophys. Res. Biogeosci.
  doi: 10.1029/2011JG001708
– volume: 69
  start-page: 264
  year: 1999
  ident: 10.1016/j.rse.2021.112844_bb0345
  article-title: MODIS vegetation index compositing approach: a prototype with AVHRR data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(99)00022-X
– volume: 37
  start-page: 4302
  year: 2017
  ident: 10.1016/j.rse.2021.112844_bb0080
  article-title: WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.5086
– volume: 42
  start-page: 594
  year: 1961
  ident: 10.1016/j.rse.2021.112844_bb0235
  article-title: On bird species diversity
  publication-title: Ecology
  doi: 10.2307/1932254
– volume: 190
  start-page: 260
  year: 2017
  ident: 10.1016/j.rse.2021.112844_bb0240
  article-title: The Ice, Cloud, and land Elevation satellite-2 (ICESat-2): science requirements, concept, and implementation
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.12.029
– volume: 27
  start-page: 2161
  year: 2006
  ident: 10.1016/j.rse.2021.112844_bb0050
  article-title: Using LiDAR to compare forest height estimates from IKONOS and Landsat ETM+ data in Sitka spruce plantation forests
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160500396493
– start-page: 113
  year: 2001
  ident: 10.1016/j.rse.2021.112844_bb0150
  article-title: Vegetation atlas of China
  publication-title: Chinese Acad. Sci., the editorial board of vegetation map of China
– volume: 25
  start-page: 1097
  year: 2012
  ident: 10.1016/j.rse.2021.112844_bb0175
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Proces. Syst.
SSID ssj0015871
Score 2.6635659
Snippet Spatially continuous estimates of forest canopy height at national to global scales are critical for quantifying forest carbon storage, understanding forest...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 112844
SubjectTerms altimeters
Canopies
canopy height
Carbon
Carbon sequestration
China
Climate change
Deep neural network
Ecosystem dynamics
Elevation
environment
Estimates
forest canopy
Forest canopy height
Forest ecosystems
Forest management
Forests
GEDI
Global climate
ice
ICESat-2 ATLAS
Interpolation
Laser altimeters
Lasers
Lidar
Mapping
Monitoring methods
Neural networks
Performance evaluation
Saturation
Spaceborne lidar
Spatial interpolation
standard deviation
Terrestrial ecosystems
topography
Title Neural network guided interpolation for mapping canopy height of China's forests by integrating GEDI and ICESat-2 data
URI https://dx.doi.org/10.1016/j.rse.2021.112844
https://www.proquest.com/docview/2627860193
https://www.proquest.com/docview/2636409533
Volume 269
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RaxQxEA6lIvoielo8rSWCIAixt8ncbvaxnNfeKfZFC30LySZpr-je0b0T7sXf7sxu9kTBPvi2bCZsmJnMTDbfzDD2Jtcayqz0AtzICogRhNauEtLG3DqPQnd0UPx8ns8u4OPl-HKPTfpcGIJVJtvf2fTWWqc3x4mbx6vFgnJ8FZDG4aEFvTiQHQYoSMvf_9zBPLKxLrqueQoEUfc3my3G67ahSpkyo0QaDfAv3_SXlW5dz-lj9ijFjPykW9YTthfqATuY_k5Rw8G0R5sBe5D6ml9vB-z-Wdu4d_uU_aAqHEhXd7BvfrVZ-OD5omuz1QHiOAaw_Lulig1XHFm-XG35dfvrlC8jbzttv22ICNfYcLflfa0Joj-bfphzW3s-n0y_2LWQnMCnz9jF6fTrZCZSzwVRgYS1cJnTsoKq8EWUfqSDj8q7vKisQh5bDCZyB8H7kYdSRW1dHCvQrvRIjZEUqAO2Xy_r8JxxqnWIAYzMAz2No5OVCpBZDBi9qkI5ZKOe26ZKBcmpL8Y30yPPbgwKyJCATCegIXu3m7LqqnHcRQy9CM0fKmXQW9w17bAXt0n7uTEyl4XGs2uphuz1bhh3Il2v2DosN0SjcqDyferF_335JXsoKbmixYQfsv317Sa8wpBn7Y5anT5i907mn2bnvwCMBf9N
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwELamTmi8IChMFAYYCQkJyVprXxLncSrdWrb1hU3am2XHzlYEabW0SP333CVOEUjsgbcoPivWnX13zt19x9iHVGvIR7kX4IZWQFmC0NoVQtoytc6j0B1dFC_n6fQavtwkN3ts3NXCUFpl1P2tTm-0dXxzHLl5vFosqMZXAe04vLSgFQfUw_uETpX02P7J7Hw63wUTEp21jfMUCJrQBTebNK_7msAy5YhqaTTAv8zTX4q6sT6nT9mT6Dbyk3Zlz9heqPrscPK7Sg0H4zGt--wgtja_2_bZo7Omd-_2OftJQBxIV7WZ3_x2s_DB80XbaavNiePow_IflkAbbjlyfbna8rvm7ylflrxptv2xJiJcY83dlndwE0R_Nvk847byfDaefLVrITnln75g16eTq_FUxLYLogAJa-FGTssCisxnpfRDHXypvEuzwipks0V_InUQvB96yFWprSsTBdrlHqnRmQJ1yHrVsgovGSe4Q_RhZBroKSmdLFSAkUWf0asi5AM27LhtiohJTq0xvpsu-eybQQEZEpBpBTRgn3ZTVi0gx0PE0InQ_LGrDBqMh6YddeI28UjXRqYy03h9zdWAvd8N42GkCIutwnJDNCoFQvBTr_7vy-_YwfTq8sJczObnr9ljSbUWTYr4Eeut7zfhDXpAa_c27vBfSlECDQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+network+guided+interpolation+for+mapping+canopy+height+of+China%27s+forests+by+integrating+GEDI+and+ICESat-2+data&rft.jtitle=Remote+sensing+of+environment&rft.au=Liu%2C+Xiaoqiang&rft.au=Su%2C+Yanjun&rft.au=Hu%2C+Tianyu&rft.au=Yang%2C+Qiuli&rft.date=2022-02-01&rft.issn=0034-4257&rft.volume=269&rft.spage=112844&rft_id=info:doi/10.1016%2Fj.rse.2021.112844&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_rse_2021_112844
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4257&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4257&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4257&client=summon