Effect of cadmium and calcium treatments on phytochelatin and glutathione levels in citrus plants

Industry residues, phosphate fertilisers and wastewater as a source of irrigation have considerably increased levels of heavy metals in the soil, mainly cadmium (Cd(2+)). To test the effects of a calcium (Ca(2+)) treatment on Cd(2+) accumulation and plant tolerance to this heavy metal, plants of two...

Full description

Saved in:
Bibliographic Details
Published inPlant biology (Stuttgart, Germany) Vol. 16; no. 1; pp. 79 - 87
Main Authors López-Climent, M. F., Arbona, V., Pérez-Clemente, R. M., Zandalinas, S. I., Gómez-Cadenas, A.
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.01.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Industry residues, phosphate fertilisers and wastewater as a source of irrigation have considerably increased levels of heavy metals in the soil, mainly cadmium (Cd(2+)). To test the effects of a calcium (Ca(2+)) treatment on Cd(2+) accumulation and plant tolerance to this heavy metal, plants of two citrus genotypes, Cleopatra mandarin (CM) and Carrizo citrange (CC), were watered with increasing concentrations of Cd(2+), and phytochelatin (PC) and glutathione (GSH) content were measured. Both genotypes were able to synthesise PCs in response to heavy metal intoxication, although CM seems to be a better Cd(2+) excluder than CC. However, data indicate that CC plants had a higher capacity for regenerating GSH than CM plants. In this context, the effects of Ca(2+) treatment on Cd(2+) accumulation, plant survival and PC, GSH and oxidised glutathione (GSSG) content were assessed. Data indicate that treatment with Ca(2+) had two positive effects on citrus physiology: it reduced Cd(+2) uptake into roots and also increased GSH content (even in the absence of Cd(2+)). Overall, the data indicate that although Cd(2+) exclusion is a powerful mechanism to avoid heavy metal build-up into photosynthetic organs, the capacity to maintain optimum GSH levels to feed PC biosynthesis could also be an important factor in stress tolerance.
AbstractList Abstract Industry residues, phosphate fertilisers and wastewater as a source of irrigation have considerably increased levels of heavy metals in the soil, mainly cadmium (Cd 2+ ). To test the effects of a calcium (Ca 2+ ) treatment on Cd 2+ accumulation and plant tolerance to this heavy metal, plants of two citrus genotypes, Cleopatra mandarin ( CM ) and Carrizo citrange ( CC ), were watered with increasing concentrations of Cd 2+ , and phytochelatin ( PC ) and glutathione ( GSH ) content were measured. Both genotypes were able to synthesise PC s in response to heavy metal intoxication, although CM seems to be a better Cd 2+ excluder than CC . However, data indicate that CC plants had a higher capacity for regenerating GSH than CM plants. In this context, the effects of Ca 2+ treatment on Cd 2+ accumulation, plant survival and PC , GSH and oxidised glutathione ( GSSG ) content were assessed. Data indicate that treatment with Ca 2+ had two positive effects on citrus physiology: it reduced Cd +2 uptake into roots and also increased GSH content (even in the absence of Cd 2+ ). Overall, the data indicate that although Cd 2+ exclusion is a powerful mechanism to avoid heavy metal build‐up into photosynthetic organs, the capacity to maintain optimum GSH levels to feed PC biosynthesis could also be an important factor in stress tolerance.
Industry residues, phosphate fertilisers and wastewater as a source of irrigation have considerably increased levels of heavy metals in the soil, mainly cadmium (Cd(2+)). To test the effects of a calcium (Ca(2+)) treatment on Cd(2+) accumulation and plant tolerance to this heavy metal, plants of two citrus genotypes, Cleopatra mandarin (CM) and Carrizo citrange (CC), were watered with increasing concentrations of Cd(2+), and phytochelatin (PC) and glutathione (GSH) content were measured. Both genotypes were able to synthesise PCs in response to heavy metal intoxication, although CM seems to be a better Cd(2+) excluder than CC. However, data indicate that CC plants had a higher capacity for regenerating GSH than CM plants. In this context, the effects of Ca(2+) treatment on Cd(2+) accumulation, plant survival and PC, GSH and oxidised glutathione (GSSG) content were assessed. Data indicate that treatment with Ca(2+) had two positive effects on citrus physiology: it reduced Cd(+2) uptake into roots and also increased GSH content (even in the absence of Cd(2+)). Overall, the data indicate that although Cd(2+) exclusion is a powerful mechanism to avoid heavy metal build-up into photosynthetic organs, the capacity to maintain optimum GSH levels to feed PC biosynthesis could also be an important factor in stress tolerance.
Author López-Climent, M. F.
Zandalinas, S. I.
Arbona, V.
Gómez-Cadenas, A.
Pérez-Clemente, R. M.
Author_xml – sequence: 1
  givenname: M. F.
  surname: López-Climent
  fullname: López-Climent, M. F.
  organization: Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castelló, Spain
– sequence: 2
  givenname: V.
  surname: Arbona
  fullname: Arbona, V.
  organization: Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castelló, Spain
– sequence: 3
  givenname: R. M.
  surname: Pérez-Clemente
  fullname: Pérez-Clemente, R. M.
  organization: Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castelló, Spain
– sequence: 4
  givenname: S. I.
  surname: Zandalinas
  fullname: Zandalinas, S. I.
  organization: Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castelló, Spain
– sequence: 5
  givenname: A.
  surname: Gómez-Cadenas
  fullname: Gómez-Cadenas, A.
  email: A. Gómez Cadenas, Departamento de Ciencias Agrarias y del Medio Natural Universitat Jaume I, Campus Riu Sec, E-12071 Castelló, Spain., aurelio.gomez@uji.es
  organization: Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castelló, Spain
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23574491$$D View this record in MEDLINE/PubMed
BookMark eNo9kEtPwzAQhC1URGnhwB9AOcIhxY6d2DmiqhSkCA6AkLhYjrOhAedB7CD673EfdC870ny7Gs0EjZq2AYQuCJ4RPzedyWckwjg5QqeEURGKhPPRVsdeYzpGE2s_MSYsxeQEjSMac8ZScorUoixBu6AtA62KuhrqQDWF10ZvtOtBuRoaZ4O2CbrV2rV6BUa5qtlyH2Zwyq0qnycw8APGBt7RlesHG3RG-cMzdFwqY-F8v6fo9W7xMr8Ps6flw_w2CzWLmAtVqRQFTglLGNelpiIvYp6qVJNYFVRoDiWOBSRRzFKd5GkCRBdRlNIiFywXdIqudn-7vv0ewDpZV1aD8SGgHawkPIqIiDneoNc7VPettT2UsuurWvVrSbDcNCp9o3LbqGcv92-HvIbiQP5X6IFwB1TWwe_BV_2XTDjlsXx7XErGBZ1nz5l8p39VoYNc
CitedBy_id crossref_primary_10_1016_j_lwt_2022_113587
crossref_primary_10_1016_j_plaphy_2019_09_016
crossref_primary_10_3390_plants11121559
crossref_primary_10_1007_s11738_017_2596_1
crossref_primary_10_1007_s00709_020_01605_x
crossref_primary_10_1007_s11284_018_1560_x
crossref_primary_10_15406_hij_2020_04_00176
crossref_primary_10_1016_j_ecoenv_2018_07_125
crossref_primary_10_1007_s11270_016_3115_5
crossref_primary_10_3390_molecules24122196
crossref_primary_10_1016_j_apsoil_2015_03_013
crossref_primary_10_1111_ppl_12746
crossref_primary_10_1007_s11356_018_1529_x
crossref_primary_10_1016_j_jhazmat_2018_12_099
crossref_primary_10_1016_j_scitotenv_2020_137810
crossref_primary_10_1016_j_chemosphere_2023_138435
crossref_primary_10_1128_spectrum_00200_24
crossref_primary_10_5424_sjar_2016144_10117
crossref_primary_10_1016_j_ecoenv_2016_06_035
crossref_primary_10_1093_aobpla_plv143
crossref_primary_10_1016_j_jhazmat_2015_03_034
crossref_primary_10_1007_s42729_021_00652_4
crossref_primary_10_1016_j_foodchem_2020_128051
crossref_primary_10_1016_j_lwt_2022_113635
crossref_primary_10_3389_fpls_2023_1143963
crossref_primary_10_1038_s41598_018_19735_x
crossref_primary_10_1111_plb_12990
crossref_primary_10_1007_s11356_018_3857_2
crossref_primary_10_1016_j_plaphy_2020_10_007
crossref_primary_10_1016_j_ecoenv_2017_01_023
crossref_primary_10_1016_j_scienta_2018_11_023
crossref_primary_10_1080_15592324_2020_1761080
crossref_primary_10_1007_s00425_017_2664_1
crossref_primary_10_1080_09593330_2016_1170887
crossref_primary_10_1016_j_jplph_2018_06_005
crossref_primary_10_1016_j_scienta_2019_109061
crossref_primary_10_1007_s10265_023_01443_x
crossref_primary_10_1016_j_ecoenv_2019_06_048
crossref_primary_10_1007_s11356_016_6122_6
crossref_primary_10_1016_j_ecoenv_2017_10_068
crossref_primary_10_1071_FP16153
crossref_primary_10_1007_s11356_014_4017_y
crossref_primary_10_1007_s13762_024_05657_x
crossref_primary_10_1016_j_envexpbot_2020_104366
crossref_primary_10_1007_s11356_019_06826_z
Cites_doi 10.1002/bit.10656
10.1016/S0378-4290(98)00137-3
10.1016/j.chemosphere.2011.02.054
10.1073/pnas.052564899
10.1111/j.1399-3054.2007.01029.x
10.1016/S0098-8472(98)00058-6
10.1093/pcp/pcg059
10.1038/279409a0
10.1104/pp.108.131524
10.1016/j.envexpbot.2004.10.008
10.1016/j.envexpbot.2007.08.002
10.1007/s10535-011-0028-4
10.1016/j.jhazmat.2008.05.109
10.5511/plantbiotechnology.22.19
10.1104/pp.014118
10.1104/pp.108.127472
10.1146/annurev.arplant.53.100301.135154
10.1016/j.envexpbot.2010.04.004
10.1111/j.1744-7348.2008.00299.x
10.1016/j.tplants.2008.10.007
10.1016/j.envexpbot.2008.12.011
10.1093/jxb/erg064
10.1007/s12011-010-8929-1
10.1104/pp.98.3.853
10.1016/j.scitotenv.2007.10.038
10.1093/jxb/eri262
10.1007/BF00011897
10.1016/j.biochi.2006.07.003
10.1007/s002160050062
10.1016/j.geoderma.2006.08.024
10.1046/j.1365-313X.2002.01442.x
10.1055/s-2006-924171
10.1016/S0076-6879(85)13073-9
ContentType Journal Article
Copyright 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.
Copyright_xml – notice: 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
DOI 10.1111/plb.12006
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1438-8677
Editor Elzenga, T.
Editor_xml – sequence: 1
  givenname: T.
  surname: Elzenga
  fullname: Elzenga, T.
– sequence: 6
  givenname: T.
  surname: Elzenga
  fullname: Elzenga, T.
EndPage 87
ExternalDocumentID 10_1111_plb_12006
23574491
ark_67375_WNG_4783CLSL_Z
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
29O
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAJUZ
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABCVL
ABEML
ABHUG
ABJNI
ABLJU
ABPTK
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AHBTC
AIAGR
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HVGLF
HZ~
IX1
J0M
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RIG
RJQFR
ROL
RTC
RX1
SUPJJ
SV3
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
ZZTAW
~02
~IA
~WT
AAHBH
AITYG
CGR
CUY
CVF
ECM
EIF
H13
HGLYW
NPM
OIG
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-c424t-afaa3e7314647cfc38bd579a9c15ad38c7ef058e62549c6b96e1cd2293db84b83
ISSN 1435-8603
IngestDate Fri Aug 16 09:00:51 EDT 2024
Fri Aug 23 00:47:50 EDT 2024
Sat Sep 28 08:02:15 EDT 2024
Wed Jan 17 05:01:05 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords cadmium toxicity
heavy metal
Abiotic stress
palliative treatment
Language English
License 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c424t-afaa3e7314647cfc38bd579a9c15ad38c7ef058e62549c6b96e1cd2293db84b83
Notes ark:/67375/WNG-4783CLSL-Z
Spanish Ministerio de Ciencia e Innovación
Universitat Jaume I/Fundació Bancaixa through - No. AGL2010-22195-C03-01/AGR; No. P11B2009-01
istex:BBFA9491C793793E9C9E9CA7D8F833FF28DA9FF2
ArticleID:PLB12006
Supplementary material S1. Identification of phytochelatins and thiol containing compounds by mass spectrometrySupplementary material S2. Typical symptoms of cadmium toxicity in citrusSupplementary material S3. Recovery assays were carried out for GSH and GSSG by spiking citrus root tissue (at the moment of sample grinding) with known amounts of standards of both analytes.Supplementary material S4. Effect of cadmium treatments on GSH and GSSG content in roots of two genotypes of citrus.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://repositori.uji.es/xmlui/bitstream/10234/127767/3/ID62101.pdf
PMID 23574491
PQID 1722185708
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_1722185708
crossref_primary_10_1111_plb_12006
pubmed_primary_23574491
istex_primary_ark_67375_WNG_4783CLSL_Z
PublicationCentury 2000
PublicationDate 2014-01-01
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – month: 01
  year: 2014
  text: 2014-01-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Plant biology (Stuttgart, Germany)
PublicationTitleAlternate Plant Biol J
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Tennstedt P., Peisker D., Böttcher C., Trampczynska A., Clemens S. (2009) Phytochelatin synthesis is essential for the detoxification of excess zinc and contributes significantly to the accumulation of zinc. Plant Physiology, 149, 938-948.
Boominathan R., Doran P.M. (2003) Cadmium tolerance and antioxidative defenses in hairy roots of the cadmium hyperaccumulator, Thlaspi caerulescens. Biotechnology and Bioengineering, 83, 158-167.
Grant C.A., Clarke J.M., Duguid S., Chaney R.L. (2008) Selection and breeding of plant cultivars to minimize cadmium accumulation. Science of the Total Environment, 390, 301-310.
Lee S., Moon J.S., Ko T.S., Petros D., Goldsbrough P.B., Korban S.S. (2003) Overexpression of Arabidopsis phytochelatin synthase paradoxically leads to hypersensitivity to cadmium stress. Plant Physiology, 131, 656-663.
McLaughlin M.J., Parker D.R., Clarke J.M. (1999) Metals and micronutrients - food safety issues. Field Crops Research, 60, 143-163.
Bañuls J., Legaz F., Primomillo E. (1991) Salinity-Calcium interactions on growth and ionic concentration of citrus plants. Plant and Soil, 133, 39-46.
Lima A.I.G., Pereira S.I.A., Figueira E.M.D.A.P., Caldeira G.C.N., De Matos Caldeira H.D.Q. (2006) Cadmium detoxification in roots of Pisum sativum seedlings: relationship between toxicity levels, thiol pool alterations and growth. Environmental and Experimental Botany, 55, 149-162.
Arbona V., Hossain Z., López-Climent M.F., Pérez-Clemente R.M., Gómez-Cadenas A. (2008) Antioxidant enzymatic activity is linked to waterlogging stress tolerance in citrus. Physiologia Plantarum, 132, 452-466.
Kirkham M.B. (2006) Cadmium in plants on polluted soils: effects of soil factors, hyperaccumulation and amendments. Geoderma, 137, 19-32.
Perfus-Barbeoch L., Leonhardt N., Vavasseur A., Forestier C. (2002) Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status. Plant Journal, 32, 539-548.
Arbona V., López-Climent M.F., Perez-Clemente R.M., Gómez-Cadenas A. (2009) Maintenance of a high photosynthetic performance is linked to flooding tolerance in citrus. Environmental and Experimental Botany, 66, 135-142.
Döring S., Korhammer S., Oetken M., Markert B. (2000) Analysis of phytochelatins in plant matrices by pre-column derivatisation, high-performance liquid chromatography and fluorescence detection. Fresenius' Journal of Analytical Chemistry, 366, 316-318.
Podazza G., Rosa M., Gonzalez J.A., Hilal M., Prado F.E. (2006) Cadmium induces changes in sucrose partitioning, invertase activities, and membrane functionality in roots of Rangpur lime (Citrus limonia L Osbeck). Plant Biology, 8, 706-714.
Anderson M.E. (1985) Determination of glutathione and glutathione disulfide in biological samples. Methods in Enzymology, 113, 548-555.
López-Climent M.F., Arbona V., Pérez-Clemente R.M., Gómez-Cadenas A. (2008) Relationship between salt tolerance and photosynthetic machinery performance in citrus. Environmental and Experimental Botany, 62, 176-184.
López-Climent M.F., Arbona V., Pérez-Clemente R.M., Gómez-Cadenas A. (2011) Effects of cadmium on gas exchange and phytohormone contents in citrus. Biologia Plantarum, 55, 187-190.
Tian S.K., Lu L.L., Zhang J., Wang K., Brown P.H., He Z.L., Liang J., Yang X.E. (2011) Calcium protects roots of Sedum alfredii H. against cadmium-induced oxidative stress. Chemosphere, 84, 63-69.
Moreno-Jiménez E., Peñalosa J.M., Manzano R., Carpena-Ruiz R.O., Gamarra R., Esteban E. (2009) Heavy metals distribution in soils surrounding an abandoned mine in NW Madrid (Spain) and their transference to wild flora. Journal of Hazardous Materials, 162, 854-859.
Suzuki N. (2005) Alleviation by calcium of cadmium-induced root growth inhibition in Arabidopsis seedlings. Plant Biotechnology, 22, 19-25.
Cai Y., Cao F., Cheng W., Zhang G., Wu F. (2011) Modulation of exogenous glutathione in phytochelatins and photosynthetic performance against Cd stress in the two rice genotypes differing in Cd tolerance. Biological Trace Element Research, 143, 1159-1173.
Yang T., Poovaiah B.W. (2002) Hydrogen peroxide homeostasis: activation of plant catalase by calcium/calmodulin. Proceedings of the National Academy of Sciences USA, 19, 4097-4102.
Gratao P.L., Monteiro C.C., Antunes A.M., Peres L.E.P., Azevedo R.A. (2008) Acquired tolerance of tomato (Lycopersicon esculentum cv Micro-Tom) plants to cadmium-induced stress. Annals of Applied Biology, 153, 321-333.
Cobbett C., Goldsbrough P. (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annual Review of Plant Biology, 53, 159-182.
Moya J.L., Gómez-Cadenas A., Primo-Millo E., Talon M. (2003) Chloride absorption in salt-sensitive Carrizo citrange and salt-tolerant Cleopatra mandarin citrus rootstocks is linked to water use. Journal of Experimental Botany, 54, 825-833.
di Toppi L.S., Gabbrielli R. (1999) Response to cadmium in higher plants. Environmental and Experimental Botany, 41, 105-130.
Rodríguez-Serrano M., Romero-Puertas M.C., Pazmino D.M., Testillano P.S., Risueno M.C., del Rio L.A. (2009) Cellular response of pea plants to cadmium toxicity: cross talk between reactive oxygen species, nitric oxide, and calcium. Plant Physiology, 150, 229-243.
Hara M., Fujinaga M., Kuboi T. (2005) Metal binding by citrus dehydrin with histidine-rich domains. Journal of Experimental Botany, 56, 2695-2703.
Singh P.K., Tewari R.K. (2003) Cadmium toxicity induced changes in plant water relations and oxidative metabolism of Brassica juncea L. plants. Journal of Environmental Biology, 24, 107-112.
Clemens S. (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie, 88, 1707-1719.
Na G.N., Salt D.E. (2010) The role of sulfur assimilation and sulfur-containing compounds in trace element homeostasis in plants. Environmental and Experimental Botany, 72, 18-25.
de Vos C.H.R., Vonk M.J., Vooijs R., Schat H. (1992) Glutathione depletion due to copper-induced phytochelatin synthesis causes oxidative stress in Silene cucubalus. Plant Physiology, 98, 853-885.
Nriagu J.O. (1979) Global inventory of natural and anthropogenic emissions of trace-metals to the atmosphere. Nature, 279, 409-411.
Arbona V., Flors V., Jacas J., García-Agustín P., Gómez-Cadenas A. (2003) Enzymatic and non-enzymatic antioxidant responses of Carrizo citrange, a salt-sensitive citrus rootstock, to different levels of salinity. Plant Cell Physiology, 44, 388-394.
Sharma S.S., Dietz K.J. (2009) The relationship between metal toxicity and cellular redox imbalance. Trends in Plant Science, 14, 43-50.
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
Singh P.K. (e_1_2_6_29_1) 2003; 24
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – ident: e_1_2_6_7_1
  doi: 10.1002/bit.10656
– ident: e_1_2_6_20_1
  doi: 10.1016/S0378-4290(98)00137-3
– ident: e_1_2_6_32_1
  doi: 10.1016/j.chemosphere.2011.02.054
– ident: e_1_2_6_35_1
  doi: 10.1073/pnas.052564899
– ident: e_1_2_6_4_1
  doi: 10.1111/j.1399-3054.2007.01029.x
– ident: e_1_2_6_33_1
  doi: 10.1016/S0098-8472(98)00058-6
– ident: e_1_2_6_3_1
  doi: 10.1093/pcp/pcg059
– volume: 24
  start-page: 107
  year: 2003
  ident: e_1_2_6_29_1
  article-title: Cadmium toxicity induced changes in plant water relations and oxidative metabolism of Brassica juncea L. plants
  publication-title: Journal of Environmental Biology
  contributor:
    fullname: Singh P.K.
– ident: e_1_2_6_24_1
  doi: 10.1038/279409a0
– ident: e_1_2_6_27_1
  doi: 10.1104/pp.108.131524
– ident: e_1_2_6_17_1
  doi: 10.1016/j.envexpbot.2004.10.008
– ident: e_1_2_6_18_1
  doi: 10.1016/j.envexpbot.2007.08.002
– ident: e_1_2_6_19_1
  doi: 10.1007/s10535-011-0028-4
– ident: e_1_2_6_21_1
  doi: 10.1016/j.jhazmat.2008.05.109
– ident: e_1_2_6_30_1
  doi: 10.5511/plantbiotechnology.22.19
– ident: e_1_2_6_16_1
  doi: 10.1104/pp.014118
– ident: e_1_2_6_31_1
  doi: 10.1104/pp.108.127472
– ident: e_1_2_6_10_1
  doi: 10.1146/annurev.arplant.53.100301.135154
– ident: e_1_2_6_23_1
  doi: 10.1016/j.envexpbot.2010.04.004
– ident: e_1_2_6_13_1
  doi: 10.1111/j.1744-7348.2008.00299.x
– ident: e_1_2_6_28_1
  doi: 10.1016/j.tplants.2008.10.007
– ident: e_1_2_6_5_1
  doi: 10.1016/j.envexpbot.2008.12.011
– ident: e_1_2_6_22_1
  doi: 10.1093/jxb/erg064
– ident: e_1_2_6_8_1
  doi: 10.1007/s12011-010-8929-1
– ident: e_1_2_6_34_1
  doi: 10.1104/pp.98.3.853
– ident: e_1_2_6_12_1
  doi: 10.1016/j.scitotenv.2007.10.038
– ident: e_1_2_6_14_1
  doi: 10.1093/jxb/eri262
– ident: e_1_2_6_6_1
  doi: 10.1007/BF00011897
– ident: e_1_2_6_9_1
  doi: 10.1016/j.biochi.2006.07.003
– ident: e_1_2_6_11_1
  doi: 10.1007/s002160050062
– ident: e_1_2_6_15_1
  doi: 10.1016/j.geoderma.2006.08.024
– ident: e_1_2_6_25_1
  doi: 10.1046/j.1365-313X.2002.01442.x
– ident: e_1_2_6_26_1
  doi: 10.1055/s-2006-924171
– ident: e_1_2_6_2_1
  doi: 10.1016/S0076-6879(85)13073-9
SSID ssj0014901
Score 2.3340185
Snippet Industry residues, phosphate fertilisers and wastewater as a source of irrigation have considerably increased levels of heavy metals in the soil, mainly...
Abstract Industry residues, phosphate fertilisers and wastewater as a source of irrigation have considerably increased levels of heavy metals in the soil,...
SourceID proquest
crossref
pubmed
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 79
SubjectTerms Abiotic stress
Cadmium - metabolism
Cadmium - pharmacology
cadmium toxicity
Calcium - metabolism
Calcium - pharmacology
Citrus - metabolism
Glutathione - metabolism
heavy metal
palliative treatment
Phytochelatins - metabolism
Plant Leaves - metabolism
Plant Roots - metabolism
Title Effect of cadmium and calcium treatments on phytochelatin and glutathione levels in citrus plants
URI https://api.istex.fr/ark:/67375/WNG-4783CLSL-Z/fulltext.pdf
https://www.ncbi.nlm.nih.gov/pubmed/23574491
https://search.proquest.com/docview/1722185708
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZg44EXxH3lJoMQLyhTkziJ87iVXYRCQWsrqr1YtuNMiJJUJZXYfj3n2Lm0gkmDlyjKxa3O-XJ8_PlcCHlrUq6iWBdeyOLQYyovvFQFzDNYiCRQfmFs94ZP4_h0xj7Oo3lP5tjsklrt66u_5pX8j1bhGugVs2T_QbPdoHABzkG_cAQNw_FGOm5KD2NkuMx_fFu7dhcgdY3nXQy53REAcdbYHQtj31wA8gX8NYw9rMDPXGDskA2N1TYNA7tLN0WeWtcV2xvV79uiTeCYTup1XV9Il_Nzgha-vNwgFjLcgz8Ml-bKGy1sDwFLvvahxAcrVbmMtC7Q9ovbt1_ZdyxxafnWs56zPUfmA5OILf4mDenb0BY-26AtjDO1DEwtVtPbssXxH5hzhtV1nNmaoq8x_suF2veRKOlnuHZXf_xZHM-yTEyP5tPbZDdI0gijQD-cdRXHYL049JsCVBjw1Q225bbs4hf46_o1ifVNpvfJvWZRQQ8cQh6QW6Z8SO4cVuD4Xz4i0sGEVgVtYEJBiLSBCe1hQquSbsHEPrcBE-pgQuGOgwl1MHlMZsdH09Gp13TW8DQLWO3JQsrQJCFMkyzRhQ65yqMklan2I5mHXCemGEbcxEgf6FilsfF1HoBrmCvOFA-fkJ0SfnaPUK0Vk8OYB5FmTPppmsOiuIDpXCmuh1ExIG9awYmlK6Ai2oUnSFdY6Q7IOyvS7gm5-o4Rh0kkvo5PBEt4OMommTgfkNetzAXYQdzckqWp1j8FOOIB1jUb8gF56pTRjYYlnRhL_Wc3ePs5udvD9QXZAWGal-B31uqVRcpvsT2H8g
link.rule.ids 315,786,790,27955,27956
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+cadmium+and+calcium+treatments+on+phytochelatin+and+glutathione+levels+in+citrus+plants&rft.jtitle=Plant+biology+%28Stuttgart%2C+Germany%29&rft.au=L%C3%B3pez-Climent%2C+M+F&rft.au=Arbona%2C+V&rft.au=P%C3%A9rez-Clemente%2C+R+M&rft.au=Zandalinas%2C+S+I&rft.date=2014-01-01&rft.eissn=1438-8677&rft.volume=16&rft.issue=1&rft.spage=79&rft.epage=87&rft_id=info:doi/10.1111%2Fplb.12006&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1435-8603&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1435-8603&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1435-8603&client=summon