Myocardin Is Involved in Mesothelial–Mesenchymal Transition of Human Pleural Mesothelial Cells

Pleural fibrosis is characterized by severe inflammation of the pleural space and pleural reorganization. Subsequent thickening of the visceral pleura contributes to lung stiffness and impaired lung function. Pleural mesothelial cells (PMCs) can become myofibroblasts mesothelial-mesenchymal transiti...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of respiratory cell and molecular biology Vol. 61; no. 1; pp. 86 - 96
Main Authors Tucker, Torry, Tsukasaki, Yoshikazu, Sakai, Tsuyoshi, Mitsuhashi, Shinya, Komatsu, Satoshi, Jeffers, Ann, Idell, Steven, Ikebe, Mitsuo
Format Journal Article
LanguageEnglish
Published United States American Thoracic Society 01.07.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Pleural fibrosis is characterized by severe inflammation of the pleural space and pleural reorganization. Subsequent thickening of the visceral pleura contributes to lung stiffness and impaired lung function. Pleural mesothelial cells (PMCs) can become myofibroblasts mesothelial-mesenchymal transition (MesoMT) and contribute to pleural organization, fibrosis, and rind formation. However, the mechanisms that underlie MesoMT remain unclear. Here, we investigated the role of myocardin in the induction of MesoMT. Transforming growth factor β (TGF-β) and thrombin induced MesoMT and markedly upregulated the expression of myocardin, but not myocardin-related transcription factor A (MRTF-A) or MRTF-B, in human PMCs (HPMCs). TGF-β stimulation notably induced the nuclear translocation of myocardin in HPMCs, whereas nuclear translocation of MRTF-A and MRTF-B was not observed. Several genes under the control of myocardin were upregulated in cells undergoing MesoMT, an effect that was accompanied by a dramatic cytoskeletal reorganization of HPMCs consistent with a migratory phenotype. Myocardin gene silencing blocked TGF-β- and thrombin-induced MesoMT. Although myocardin upregulation was blocked, MRTF-A and MRTF-B were unchanged. Myocardin, α-SMA, calponin, and smooth muscle myosin were notably upregulated in the thickened pleura of carbon black/bleomycin and empyema mouse models of fibrosing pleural injury. Similar results were observed in human nonspecific pleuritis. In a TGF-β mouse model of pleural fibrosis, PMC-specific knockout of myocardin protected against decrements in lung function. Further, TGF-β-induced pleural thickening was abolished by PMC-specific myocardin knockout, which was accompanied by a marked reduction of myocardin, calponin, and α-SMA expression compared with floxed-myocardin controls. These novel results show that myocardin participates in the development of MesoMT in HPMCs and contributes to the pathogenesis of pleural organization and fibrosis.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work.
Present address: Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois.
ISSN:1044-1549
1535-4989
1535-4989
DOI:10.1165/rcmb.2018-0121OC