Effect of pulse frequency and current density on anomalous composition and nanomechanical property of electrodeposited Ni–Co films
Effect of pulse frequency and current density on the anomalous cobalt content and nanomechanical property of the electrodeposited nickel–cobalt (Ni–Co) films has been investigated. The composition, morphology, phase and hardness of the Ni–Co alloy films were examined by scanning electron microscope...
Saved in:
Published in | Thin solid films Vol. 517; no. 17; pp. 4800 - 4804 |
---|---|
Main Authors | , |
Format | Journal Article Conference Proceeding |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.07.2009
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Effect of pulse frequency and current density on the anomalous cobalt content and nanomechanical property of the electrodeposited nickel–cobalt (Ni–Co) films has been investigated. The composition, morphology, phase and hardness of the Ni–Co alloy films were examined by scanning electron microscope with an attached energy dispersive X-ray spectroscope, X-ray diffraction and nanoindentation techniques, respectively. The different Co composition of the Ni–Co films codeposited from the fixed sulfamate–chloride bath is subject to the pulse frequencies and current densities. The frequencies varied from 0 to 100 Hz and current densities varied from 1 to 20 ASD (ampere per square decimeter). The Co composition has no significant variation in pulse electrodeposition but it is greatly influenced by current densities from 22.53% at 1 ASD decreased to 13.39% at 20 ASD under DC codeposition. The mean hardness of Ni–Co films has no eminent change at a pulse frequency of 10–100 Hz but it decreases with current densities from 8.72 GPa (1 ASD) to 7.13 GPa (20 ASD). The smoother morphology can be obtained at higher pulse frequency or lower current density. Good Ni–Co films with high hardness and smooth morphology can be obtained by reducing current density and increasing pulse frequency. |
---|---|
AbstractList | Effect of pulse frequency and current density on the anomalous cobalt content and nanomechanical property of the electrodeposited nickel-cobalt (Ni-Co) films has been investigated. The composition, morphology, phase and hardness of the Ni-Co alloy films were examined by scanning electron microscope with an attached energy dispersive X-ray spectroscope, X-ray diffraction and nanoindentation techniques, respectively. The different Co composition of the Ni-Co films codeposited from the fixed sulfamate-chloride bath is subject to the pulse frequencies and current densities. The frequencies varied from 0 to 100 Hz and current densities varied from 1 to 20 ASD (ampere per square decimeter). The Co composition has no significant variation in pulse electrodeposition but it is greatly influenced by current densities from 22.53% at 1 ASD decreased to 13.39% at 20 ASD under DC codeposition. The mean hardness of Ni-Co films has no eminent change at a pulse frequency of 10-100 Hz but it decreases with current densities from 8.72 GPa (1 ASD) to 7.13 GPa (20 ASD). The smoother morphology can be obtained at higher pulse frequency or lower current density. Good Ni-Co films with high hardness and smooth morphology can be obtained by reducing current density and increasing pulse frequency. Effect of pulse frequency and current density on the anomalous cobalt content and nanomechanical property of the electrodeposited nickel–cobalt (Ni–Co) films has been investigated. The composition, morphology, phase and hardness of the Ni–Co alloy films were examined by scanning electron microscope with an attached energy dispersive X-ray spectroscope, X-ray diffraction and nanoindentation techniques, respectively. The different Co composition of the Ni–Co films codeposited from the fixed sulfamate–chloride bath is subject to the pulse frequencies and current densities. The frequencies varied from 0 to 100 Hz and current densities varied from 1 to 20 ASD (ampere per square decimeter). The Co composition has no significant variation in pulse electrodeposition but it is greatly influenced by current densities from 22.53% at 1 ASD decreased to 13.39% at 20 ASD under DC codeposition. The mean hardness of Ni–Co films has no eminent change at a pulse frequency of 10–100 Hz but it decreases with current densities from 8.72 GPa (1 ASD) to 7.13 GPa (20 ASD). The smoother morphology can be obtained at higher pulse frequency or lower current density. Good Ni–Co films with high hardness and smooth morphology can be obtained by reducing current density and increasing pulse frequency. |
Author | Chang, W.T. Chung, C.K. |
Author_xml | – sequence: 1 givenname: C.K. surname: Chung fullname: Chung, C.K. email: ckchung@mail.ncku.edu.tw – sequence: 2 givenname: W.T. surname: Chang fullname: Chang, W.T. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21714233$$DView record in Pascal Francis |
BookMark | eNp9kT1u3DAUhInAAbJ2coB0bJJOMv8kSnAVLOwkgGE3SU1Q5CPChUTKpNbAdi58A98wJwnlNVykcEXgcT4-zswpOgkxAEKfKakpoe35rl6yqxkhfU14TTr5Dm1oJ_uKSU5P0IYQQaqW9OQDOs15RwihjPENerx0DsyCo8PzfsyAXYK7PQRzwDpYbPYpQViwhZD9csAxlHGc9Bj3GZs4zbGM_fPU4rBegfmjgzd6xHOKM6QVchjGsiRFC88AWHzj_z48bSN2fpzyR_Te6bL808t5hn5fXf7a_qiub7__3H67roxgYqn6YXBAOXeGQiNlQzlrRSfp4Kjm0mpHpOukaZvGCjcw1wrBRYlk6ERnGaf8DH09vlu-VkzmRU0-GxhHHaAYUlxI3vd9U4RfXoQ6Fysu6WB8VnPyk04HxaikgnFedPSoMynmnMC9SihRay9qp0ovau1FEa5KL4WR_zHGL3oNcUnaj2-SF0cSSkb3HpLKxpeqwPpU4lU2-jfof9QrrXg |
CODEN | THSFAP |
CitedBy_id | crossref_primary_10_1088_2053_1591_ab1bb0 crossref_primary_10_1007_s00339_024_07516_5 crossref_primary_10_1080_00084433_2016_1190542 crossref_primary_10_1007_s00542_009_0955_6 crossref_primary_10_1080_10402004_2016_1230687 crossref_primary_10_1108_ACMM_05_2023_2806 crossref_primary_10_1149_1945_7111_ab9a02 crossref_primary_10_1108_ACMM_04_2014_1378 crossref_primary_10_1007_s10853_020_05042_2 crossref_primary_10_1016_j_electacta_2016_10_073 crossref_primary_10_1080_00202967_2021_2007594 crossref_primary_10_20964_2017_12_62 crossref_primary_10_1007_s00339_020_3423_x crossref_primary_10_1080_02670844_2016_1151577 crossref_primary_10_4028_www_scientific_net_AMR_479_481_497 crossref_primary_10_1007_s11665_016_2376_x crossref_primary_10_4028_www_scientific_net_AMR_602_604_565 crossref_primary_10_1016_j_addma_2023_103949 crossref_primary_10_3390_coatings9040232 crossref_primary_10_1007_s11426_013_4935_4 crossref_primary_10_1016_j_diamond_2025_112210 crossref_primary_10_1016_j_matchemphys_2021_124410 crossref_primary_10_1149_2_0441811jes crossref_primary_10_3390_coatings13071266 crossref_primary_10_1016_j_msea_2017_06_009 crossref_primary_10_1016_j_tsf_2010_10_044 crossref_primary_10_3390_ma13163475 crossref_primary_10_1007_s12666_019_01851_5 crossref_primary_10_1007_s10948_012_1774_z crossref_primary_10_1007_s11663_024_03345_2 crossref_primary_10_1016_j_electacta_2012_11_006 crossref_primary_10_1016_j_matlet_2010_10_064 crossref_primary_10_1007_s12034_016_1211_1 crossref_primary_10_1016_j_tsf_2012_03_062 crossref_primary_10_1002_adem_201801122 crossref_primary_10_1007_s11661_011_0605_3 crossref_primary_10_1016_j_promfg_2021_06_010 crossref_primary_10_1007_s10854_020_02981_z crossref_primary_10_1016_j_jallcom_2011_07_090 crossref_primary_10_1016_j_rineng_2024_101833 crossref_primary_10_1007_s42341_025_00589_w crossref_primary_10_1016_j_surfcoat_2020_126404 crossref_primary_10_1016_j_surfcoat_2021_127337 crossref_primary_10_1016_j_jallcom_2015_10_154 crossref_primary_10_1016_j_surfcoat_2019_02_056 crossref_primary_10_1021_jp307612g crossref_primary_10_1021_jp201660w crossref_primary_10_1016_j_jallcom_2016_01_031 crossref_primary_10_3390_ma17236017 crossref_primary_10_1021_es404646e crossref_primary_10_3389_fmats_2022_891011 crossref_primary_10_1016_j_apsusc_2011_12_088 crossref_primary_10_1149_2_089310jes crossref_primary_10_1016_j_corsci_2020_108485 crossref_primary_10_1016_S1003_6326_16_64136_5 crossref_primary_10_1016_S1003_6326_21_65765_5 crossref_primary_10_1016_j_ijpvp_2024_105304 crossref_primary_10_1149_2_098311jes crossref_primary_10_1007_s12540_019_00404_1 crossref_primary_10_1080_23311916_2020_1856758 crossref_primary_10_1088_2053_1591_acb90a crossref_primary_10_1039_c2jm33689h crossref_primary_10_1007_s10008_012_1909_y crossref_primary_10_1142_S021797921450043X crossref_primary_10_1007_s00542_009_0944_9 crossref_primary_10_1016_j_actamat_2025_120953 crossref_primary_10_1149_1945_7111_ace47e crossref_primary_10_1016_j_electacta_2012_01_050 crossref_primary_10_1016_j_tsf_2019_04_022 crossref_primary_10_1016_j_surfcoat_2019_04_079 crossref_primary_10_4028_www_scientific_net_DDF_406_219 crossref_primary_10_3390_cryst13020303 crossref_primary_10_1016_j_surfcoat_2021_127709 crossref_primary_10_1016_j_mtcomm_2021_103097 crossref_primary_10_1007_s11665_023_07969_4 crossref_primary_10_1016_j_apsusc_2012_01_083 crossref_primary_10_1016_S1875_5372_16_30093_5 crossref_primary_10_20964_2022_06_77 crossref_primary_10_4061_2011_604395 crossref_primary_10_1002_adem_202100788 crossref_primary_10_1007_s40195_013_0162_4 crossref_primary_10_1016_j_apsusc_2014_11_011 crossref_primary_10_1016_j_arabjc_2015_10_008 crossref_primary_10_1007_s10854_013_1258_3 crossref_primary_10_31613_ceramist_2022_25_2_06 crossref_primary_10_1007_s10904_018_0999_0 crossref_primary_10_1016_j_jmmm_2016_12_146 |
Cites_doi | 10.1149/1.1394034 10.1016/j.apsusc.2004.08.033 10.1557/JMR.1992.1564 10.1016/j.electacta.2006.03.003 10.1149/1.2423692 10.1149/1.2096519 10.1016/S0013-4686(02)00281-5 10.1007/s10800-006-9162-7 10.1007/s00542-006-0194-z 10.1016/j.msea.2005.02.009 10.1149/1.1511753 10.1007/BF00573212 10.1149/1.1554916 10.1149/1.2180714 10.1149/1.1393963 10.1016/S0013-4686(03)00266-4 10.1016/0013-4686(61)80026-1 |
ContentType | Journal Article Conference Proceeding |
Copyright | 2009 Elsevier B.V. 2009 INIST-CNRS |
Copyright_xml | – notice: 2009 Elsevier B.V. – notice: 2009 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1016/j.tsf.2009.03.087 |
DatabaseName | CrossRef Pascal-Francis Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1879-2731 |
EndPage | 4804 |
ExternalDocumentID | 21714233 10_1016_j_tsf_2009_03_087 S0040609009004957 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYJJ ABFNM ABFRF ABJNI ABMAC ABNEU ABXDB ABXRA ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEFWE AEKER AENEX AEZYN AFFNX AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HMV HVGLF HX~ HZ~ IHE J1W KOM M24 M38 M41 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SMS SPC SPCBC SPD SPG SSM SSQ SSZ T5K TWZ VOH WH7 WUQ XFK ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH IQODW 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c424t-9bbfe133fc1e577513264871bf1a37daf07f87c655d4fb2f64434200b848d2313 |
IEDL.DBID | .~1 |
ISSN | 0040-6090 |
IngestDate | Thu Jul 10 23:08:49 EDT 2025 Wed Apr 02 07:18:41 EDT 2025 Tue Jul 01 03:51:46 EDT 2025 Thu Apr 24 22:56:02 EDT 2025 Fri Feb 23 02:31:02 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Keywords | Anomalous codeposition Hardness Nickel–cobalt alloy Pulse electrodeposition Nanohardness Scanning electron microscopy Nickel alloys Phase composition Nanoindentation Mechanical properties XRD Dispersive spectrometry Thin films Nickel-cobalt alloy Chlorides Hardness testing Morphology Electrodeposition Hardness indentation Electrodeposited coatings Codeposition Current density Cobalt alloys |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MeetingName | 4th International Conference on Technological Advances of Thin Films and Surface Coatings |
MergedId | FETCHMERGED-LOGICAL-c424t-9bbfe133fc1e577513264871bf1a37daf07f87c655d4fb2f64434200b848d2313 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 34739995 |
PQPubID | 23500 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_34739995 pascalfrancis_primary_21714233 crossref_primary_10_1016_j_tsf_2009_03_087 crossref_citationtrail_10_1016_j_tsf_2009_03_087 elsevier_sciencedirect_doi_10_1016_j_tsf_2009_03_087 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-07-01 |
PublicationDateYYYYMMDD | 2009-07-01 |
PublicationDate_xml | – month: 07 year: 2009 text: 2009-07-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Thin solid films |
PublicationYear | 2009 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Oliver, Pharr (bib17) 1992; 7 Hu, Bai (bib11) 2002; 149 Hessami, Tobiaas (bib7) 1989; 136 Yin, Wei, Fu, Popov, Popova, White (bib8) 1995; 25 Bai, Hu (bib10) 2002; 47 . Wang, Gao, Xue, Liu, Xu (bib3) 2005; 242 Chung, Chang (bib16) 2007; 13 Bockris, Drazic, Despic (bib6) 1961; 4 Dahms, Croll (bib5) 1965; 112 Golodnitsky, Gudin, Volyanuk (bib13) 2000; 147 Orinakova, Turonova, Kladekova, Galova, Smith (bib1) 2006; 36 Qiao, Jing, Wang, Gao, Zhao, Zhou, Wang (bib2) 2006; 153 Gomez, Pane, Alcobe, Valles (bib14) 2006; 51 Shi, Sun, Zhou, Liu (bib15) 2005; 397 Zhuang, Podlaha (bib4) 2003; 150 Vaes, Fransaer, Celis (bib9) 2000; 147 Bai, Hu, Wen (bib12) 2003; 48 10.1016/j.tsf.2009.03.087_bib18 Hessami (10.1016/j.tsf.2009.03.087_bib7) 1989; 136 Golodnitsky (10.1016/j.tsf.2009.03.087_bib13) 2000; 147 Gomez (10.1016/j.tsf.2009.03.087_bib14) 2006; 51 Orinakova (10.1016/j.tsf.2009.03.087_bib1) 2006; 36 Dahms (10.1016/j.tsf.2009.03.087_bib5) 1965; 112 Bai (10.1016/j.tsf.2009.03.087_bib12) 2003; 48 Bockris (10.1016/j.tsf.2009.03.087_bib6) 1961; 4 Yin (10.1016/j.tsf.2009.03.087_bib8) 1995; 25 Bai (10.1016/j.tsf.2009.03.087_bib10) 2002; 47 Zhuang (10.1016/j.tsf.2009.03.087_bib4) 2003; 150 Qiao (10.1016/j.tsf.2009.03.087_bib2) 2006; 153 Shi (10.1016/j.tsf.2009.03.087_bib15) 2005; 397 Oliver (10.1016/j.tsf.2009.03.087_bib17) 1992; 7 Wang (10.1016/j.tsf.2009.03.087_bib3) 2005; 242 Vaes (10.1016/j.tsf.2009.03.087_bib9) 2000; 147 Chung (10.1016/j.tsf.2009.03.087_bib16) 2007; 13 Hu (10.1016/j.tsf.2009.03.087_bib11) 2002; 149 |
References_xml | – volume: 136 start-page: 3611 year: 1989 ident: bib7 publication-title: J. Electrochem. Soc. – volume: 7 start-page: 1564 year: 1992 ident: bib17 publication-title: J. Mater. Res. – volume: 147 start-page: 4156 year: 2000 ident: bib13 publication-title: J. Electrochem. Soc. – volume: 36 start-page: 957 year: 2006 ident: bib1 publication-title: J. Appl. Electrochem. – volume: 153 start-page: C305 year: 2006 ident: bib2 publication-title: J. Electrochem. Soc. – volume: 397 start-page: 190 year: 2005 ident: bib15 publication-title: Mater. Sci. Eng. A – volume: 147 start-page: 3718 year: 2000 ident: bib9 publication-title: J. Electrochem. Soc. – volume: 4 start-page: 325 year: 1961 ident: bib6 publication-title: Electrochem. Acta – volume: 150 start-page: C219 year: 2003 ident: bib4 publication-title: J. Electrochem. Soc. – volume: 25 start-page: 543 year: 1995 ident: bib8 publication-title: J. Appl. Electrochem. – volume: 112 start-page: 771 year: 1965 ident: bib5 publication-title: J. Electrochem. Soc. – volume: 48 start-page: 2425 year: 2003 ident: bib12 publication-title: Electrochem. Acta – volume: 242 start-page: 326 year: 2005 ident: bib3 publication-title: Appl. Surf. Sci. – volume: 51 start-page: 5703 year: 2006 ident: bib14 publication-title: Electrochem. Acta – volume: 13 start-page: 537 year: 2007 ident: bib16 publication-title: Microsys. Technol. – volume: 47 start-page: 3447 year: 2002 ident: bib10 publication-title: Electrochem. Acta – volume: 149 start-page: C615 year: 2002 ident: bib11 publication-title: J. Electrochem. Soc. – reference: . – volume: 147 start-page: 4156 year: 2000 ident: 10.1016/j.tsf.2009.03.087_bib13 publication-title: J. Electrochem. Soc. doi: 10.1149/1.1394034 – volume: 242 start-page: 326 year: 2005 ident: 10.1016/j.tsf.2009.03.087_bib3 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2004.08.033 – volume: 7 start-page: 1564 year: 1992 ident: 10.1016/j.tsf.2009.03.087_bib17 publication-title: J. Mater. Res. doi: 10.1557/JMR.1992.1564 – volume: 51 start-page: 5703 year: 2006 ident: 10.1016/j.tsf.2009.03.087_bib14 publication-title: Electrochem. Acta doi: 10.1016/j.electacta.2006.03.003 – volume: 112 start-page: 771 year: 1965 ident: 10.1016/j.tsf.2009.03.087_bib5 publication-title: J. Electrochem. Soc. doi: 10.1149/1.2423692 – volume: 136 start-page: 3611 year: 1989 ident: 10.1016/j.tsf.2009.03.087_bib7 publication-title: J. Electrochem. Soc. doi: 10.1149/1.2096519 – volume: 47 start-page: 3447 year: 2002 ident: 10.1016/j.tsf.2009.03.087_bib10 publication-title: Electrochem. Acta doi: 10.1016/S0013-4686(02)00281-5 – volume: 36 start-page: 957 year: 2006 ident: 10.1016/j.tsf.2009.03.087_bib1 publication-title: J. Appl. Electrochem. doi: 10.1007/s10800-006-9162-7 – ident: 10.1016/j.tsf.2009.03.087_bib18 – volume: 13 start-page: 537 year: 2007 ident: 10.1016/j.tsf.2009.03.087_bib16 publication-title: Microsys. Technol. doi: 10.1007/s00542-006-0194-z – volume: 397 start-page: 190 year: 2005 ident: 10.1016/j.tsf.2009.03.087_bib15 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2005.02.009 – volume: 149 start-page: C615 year: 2002 ident: 10.1016/j.tsf.2009.03.087_bib11 publication-title: J. Electrochem. Soc. doi: 10.1149/1.1511753 – volume: 25 start-page: 543 year: 1995 ident: 10.1016/j.tsf.2009.03.087_bib8 publication-title: J. Appl. Electrochem. doi: 10.1007/BF00573212 – volume: 150 start-page: C219 year: 2003 ident: 10.1016/j.tsf.2009.03.087_bib4 publication-title: J. Electrochem. Soc. doi: 10.1149/1.1554916 – volume: 153 start-page: C305 year: 2006 ident: 10.1016/j.tsf.2009.03.087_bib2 publication-title: J. Electrochem. Soc. doi: 10.1149/1.2180714 – volume: 147 start-page: 3718 year: 2000 ident: 10.1016/j.tsf.2009.03.087_bib9 publication-title: J. Electrochem. Soc. doi: 10.1149/1.1393963 – volume: 48 start-page: 2425 year: 2003 ident: 10.1016/j.tsf.2009.03.087_bib12 publication-title: Electrochem. Acta doi: 10.1016/S0013-4686(03)00266-4 – volume: 4 start-page: 325 year: 1961 ident: 10.1016/j.tsf.2009.03.087_bib6 publication-title: Electrochem. Acta doi: 10.1016/0013-4686(61)80026-1 |
SSID | ssj0001223 |
Score | 2.2709687 |
Snippet | Effect of pulse frequency and current density on the anomalous cobalt content and nanomechanical property of the electrodeposited nickel–cobalt (Ni–Co) films... Effect of pulse frequency and current density on the anomalous cobalt content and nanomechanical property of the electrodeposited nickel-cobalt (Ni-Co) films... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4800 |
SubjectTerms | Anomalous codeposition Composition and phase identification Condensed matter: structure, mechanical and thermal properties Cross-disciplinary physics: materials science; rheology Electrodeposition, electroplating Exact sciences and technology Hardness Materials science Mechanical and acoustical properties Methods of deposition of films and coatings; film growth and epitaxy Nickel–cobalt alloy Physical properties of thin films, nonelectronic Physics Pulse electrodeposition Structure and morphology; thickness Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) Thin film structure and morphology |
Title | Effect of pulse frequency and current density on anomalous composition and nanomechanical property of electrodeposited Ni–Co films |
URI | https://dx.doi.org/10.1016/j.tsf.2009.03.087 https://www.proquest.com/docview/34739995 |
Volume | 517 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fi9QwEB-OE0ER0VNx_bPmwSehd22TNtvHY_FYXdwH8fDeQpImsLLXlm334V7EB7-B39BP4kybrh7KPQiFQpo0ZWaSmWl-MwPw2pq88InFlaYFOii84FGROxMlqHyEyTUqXQoU_rDKF-fi_UV2cQDzMRaGYJVh7x_29H63Di0ngZonzXpNMb6ojOIipgvNfIooF0KSlB9__Q3zSNJ0j5yj3uPJZo_x6lofUlby45hQdf_WTfca3SLF_FDq4q9du1dFZw_gfrAh2enwmQ_hwFVHcPePzIJHcLtHdtr2EXwf8hOz2rNmh3Mxvx3Q01dMVyWzQ34mVhKQvbtidYXN9aXe1LuWEd48gLr6zhU9chQrTKxlDf3I39Igz0I5ndL1A1zJVuuf337Ma-bXm8v2MZyfvf00X0Sh9EJkRSq6qDDGO3RfvU1cJmWGPmuOrk1ifKK5LLWPpZ9Jm2dZKbxJPVpVXCAlzUzMSjQZ-RM4rOrKPQXmC45OX2pdOiuFsZmRhHjVucTXOJfrCcQj0ZUNecmpPMZGjQC0Lwr5RPUyCxVzhXyawJv9kGZIynFTZzFyUl2TLIVK46Zh02tc30-UUsn4lPMJvBrFQOGSpHMWXTlkjuJCotlXZM_-b-bncGc4siJM8As47LY79xItn85Me9Gewq3Td8vFiu7Lj5-XvwDjGwdV |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6VIgQIISgglp_WB05IaZPYiTdHtKJaoN1TK_Vm2Y4tbbVNok320AviwBvwhjwJM4mzUIF6QMop8cTRjD0_8TczAO-syQufWNxpWmCAwgseFbkzUYLGR5hco9GlROHTRT4_F58vsosdmI25MASrDLp_0Om9tg53jgI3j5rlknJ80RjFRUwXuvnyDtwVuH2pjcHh1984jyRNt9A5Gj4ebfYgr671oWYlP4wJVvdv4_So0S2yzA-9Lv5S270tOn4Cj4MTyT4M3_kUdly1Bw__KC24B_d6aKdtn8H3oUAxqz1rNjgX8-sBPn3NdFUyOxRoYiUh2btrVld4u77Sq3rTMgKcB1RXP7iiR46ShUm2rKE_-Wsi8iz00yldT-BKtlj-_PZjVjO_XF21z-H8-OPZbB6F3guRFanoosIY7zB-9TZxmZQZBq05xjaJ8YnmstQ-ln4qbZ5lpfAm9ehWcYGcNFMxLdFn5C9gt6or9xKYLzhGfal16bQUxmZGEuRV5xJf41yuJxCPTFc2FCan_hgrNSLQLhXKiRpmFirmCuU0gfdbkmaoynHbYDFKUt1YWgqtxm1k-zekvp0opZ7xKecTOBiXgcI9SQctunIoHMWFRL-vyF7938wHcH9-dnqiTj4tvryGB8P5FQGE38But964t-gGdWa_X-a_AJI-B0A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Thin+solid+films&rft.atitle=Effect+of+pulse+frequency+and+current+density+on+anomalous+composition+and+nanomechanical+property+of+electrodeposited+Ni%E2%80%95Co+films&rft.au=CHUNG%2C+C.+K&rft.au=CHANG%2C+W.+T&rft.date=2009-07-01&rft.pub=Elsevier&rft.issn=0040-6090&rft.volume=517&rft.issue=17&rft.spage=4800&rft.epage=4804&rft_id=info:doi/10.1016%2Fj.tsf.2009.03.087&rft.externalDBID=n%2Fa&rft.externalDocID=21714233 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0040-6090&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0040-6090&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0040-6090&client=summon |