A Review of Anomaly Detection in Automated Surveillance

As surveillance becomes ubiquitous, the amount of data to be processed grows along with the demand for manpower to interpret the data. A key goal of surveillance is to detect behaviors that can be considered anomalous. As a result, an extensive body of research in automated surveillance has been dev...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on systems, man and cybernetics. Part C, Applications and reviews Vol. 42; no. 6; pp. 1257 - 1272
Main Authors Sodemann, A. A., Ross, M. P., Borghetti, B. J.
Format Journal Article
LanguageEnglish
Published New-York, NY IEEE 01.11.2012
Institute of Electrical and Electronics Engineers
Subjects
Online AccessGet full text
ISSN1094-6977
1558-2442
DOI10.1109/TSMCC.2012.2215319

Cover

Loading…
Abstract As surveillance becomes ubiquitous, the amount of data to be processed grows along with the demand for manpower to interpret the data. A key goal of surveillance is to detect behaviors that can be considered anomalous. As a result, an extensive body of research in automated surveillance has been developed, often with the goal of automatic detection of anomalies. Research into anomaly detection in automated surveillance covers a wide range of domains, employing a vast array of techniques. This review presents an overview of recent research approaches on the topic of anomaly detection in automated surveillance. The reviewed studies are analyzed across five aspects: surveillance target, anomaly definitions and assumptions, types of sensors used and the feature extraction processes, learning methods, and modeling algorithms.
AbstractList As surveillance becomes ubiquitous, the amount of data to be processed grows along with the demand for manpower to interpret the data. A key goal of surveillance is to detect behaviors that can be considered anomalous. As a result, an extensive body of research in automated surveillance has been developed, often with the goal of automatic detection of anomalies. Research into anomaly detection in automated surveillance covers a wide range of domains, employing a vast array of techniques. This review presents an overview of recent research approaches on the topic of anomaly detection in automated surveillance. The reviewed studies are analyzed across five aspects: surveillance target, anomaly definitions and assumptions, types of sensors used and the feature extraction processes, learning methods, and modeling algorithms.
Author Sodemann, A. A.
Ross, M. P.
Borghetti, B. J.
Author_xml – sequence: 1
  givenname: A. A.
  surname: Sodemann
  fullname: Sodemann, A. A.
  email: angela.sodemann@gmail.com
  organization: Coll. of Technol. & Innovation, Arizona State Univ., Phoenix, AZ, USA
– sequence: 2
  givenname: M. P.
  surname: Ross
  fullname: Ross, M. P.
  email: matthew.ross@us.af.mil
  organization: U.S. Air Force Acad., Colorado Springs, CO, USA
– sequence: 3
  givenname: B. J.
  surname: Borghetti
  fullname: Borghetti, B. J.
  email: brett.borghetti@afit.edu
  organization: Air Force Inst. of Technol., Dayton, OH, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26818897$$DView record in Pascal Francis
BookMark eNp9kE9LwzAYh4MouE2_gF56Ebx09k3SJjmW-RcmgpvnkKVvIdK1s2kn-_ambuzgwVNCeH7v-8szJqd1UyMhV5BMARJ1t1y8zmZTmgCdUgopA3VCRpCmMqac09NwTxSPMyXEORl7_5kkwLliIyLy6B23Dr-jpozyulmbahfdY4e2c00duTrK-y68dlhEi77doqsqU1u8IGelqTxeHs4J-Xh8WM6e4_nb08ssn8eWU97FStiyVAUqI2UqVzSV1CaFAF5kGTIwRppUGWpsaGM5rqSQoCi3gCvGFSKbkNv93E3bfPXoO7123uJQApvea2CQZoIykAG9OaDGW1OVbejpvN60bm3anaaZBCmVCBzdc7ZtvG-xPCKQ6MGm_rWpB5v6YDOE5J-QdZ0ZHHWtcdX_0et91CHicVfGwj9D8R_LiIMQ
CODEN ITCRFH
CitedBy_id crossref_primary_10_1007_s11760_018_1267_z
crossref_primary_10_3390_s22093601
crossref_primary_10_12720_joig_2_1_22_27
crossref_primary_10_1038_s41598_024_81387_x
crossref_primary_10_1007_s00521_022_07758_5
crossref_primary_10_1007_s11042_021_10913_0
crossref_primary_10_1111_exsy_12564
crossref_primary_10_1007_s10462_016_9474_x
crossref_primary_10_1109_TCYB_2019_2931139
crossref_primary_10_1007_s11042_017_5061_7
crossref_primary_10_1109_TIP_2017_2695105
crossref_primary_10_1109_TCYB_2014_2330853
crossref_primary_10_1145_3459089
crossref_primary_10_1007_s10044_024_01279_8
crossref_primary_10_1007_s10618_017_0538_6
crossref_primary_10_1016_j_rineng_2023_101026
crossref_primary_10_1145_3417989
crossref_primary_10_1051_swsc_2015046
crossref_primary_10_3390_s22166080
crossref_primary_10_1007_s11390_017_1737_8
crossref_primary_10_1016_j_patrec_2018_03_004
crossref_primary_10_1109_ACCESS_2024_3510039
crossref_primary_10_1007_s00521_022_07120_9
crossref_primary_10_1080_23270012_2015_1029550
crossref_primary_10_1016_j_compchemeng_2022_107776
crossref_primary_10_1007_s11042_015_3025_3
crossref_primary_10_1109_TCSVT_2014_2358029
crossref_primary_10_1109_TCSS_2022_3230262
crossref_primary_10_1016_j_patcog_2023_109765
crossref_primary_10_1109_TNNLS_2021_3083152
crossref_primary_10_1007_s42979_023_02420_w
crossref_primary_10_1007_s11042_021_10570_3
crossref_primary_10_1016_j_asoc_2014_08_039
crossref_primary_10_1016_j_patcog_2016_09_016
crossref_primary_10_1007_s11280_018_0582_1
crossref_primary_10_1016_j_image_2016_06_007
crossref_primary_10_1109_ACCESS_2018_2878733
crossref_primary_10_1007_s11042_023_17889_z
crossref_primary_10_1016_j_engappai_2020_104094
crossref_primary_10_1007_s11042_016_3267_8
crossref_primary_10_1016_j_neucom_2024_128291
crossref_primary_10_4018_IJDLDC_330587
crossref_primary_10_1109_TITS_2022_3212921
crossref_primary_10_3390_jimaging4060079
crossref_primary_10_1109_TCYB_2016_2572609
crossref_primary_10_1007_s11042_021_10921_0
crossref_primary_10_1016_j_csl_2017_04_007
crossref_primary_10_1016_j_neucom_2019_08_044
crossref_primary_10_3233_JIFS_202292
crossref_primary_10_3390_rs10030434
crossref_primary_10_1007_s13735_022_00227_8
crossref_primary_10_31202_ecjse_258578
crossref_primary_10_1016_j_engappai_2018_08_009
crossref_primary_10_1016_j_ijleo_2017_07_064
crossref_primary_10_1016_j_neucom_2020_07_058
crossref_primary_10_1016_j_neucom_2024_128698
crossref_primary_10_1109_TMM_2018_2818942
crossref_primary_10_1049_cit2_12068
crossref_primary_10_1007_s10489_022_03903_8
crossref_primary_10_1007_s10586_019_02928_y
crossref_primary_10_1007_s11042_021_11817_9
crossref_primary_10_1016_j_imavis_2020_104078
crossref_primary_10_1177_00491241221099554
crossref_primary_10_3390_app12031021
crossref_primary_10_1016_j_imavis_2023_104817
crossref_primary_10_1016_j_infrared_2018_01_010
crossref_primary_10_1016_j_ymeth_2023_04_007
crossref_primary_10_1088_1742_6596_1176_2_022056
crossref_primary_10_1109_ACCESS_2022_3224023
crossref_primary_10_1007_s11042_020_08786_w
crossref_primary_10_1007_s10489_025_06338_z
crossref_primary_10_1109_ACCESS_2019_2915641
crossref_primary_10_18287_2412_6179_2018_42_3_476_482
crossref_primary_10_1007_s11042_023_14840_0
crossref_primary_10_1016_j_eswa_2021_116168
crossref_primary_10_1109_ACCESS_2020_2982906
crossref_primary_10_1016_j_engappai_2020_103859
crossref_primary_10_1007_s42979_023_02480_y
crossref_primary_10_1109_ACCESS_2023_3318600
crossref_primary_10_1016_j_neucom_2021_04_033
crossref_primary_10_1134_S0361768823080066
crossref_primary_10_3233_JIFS_240028
crossref_primary_10_1109_TIFS_2017_2705623
crossref_primary_10_1049_iet_ipr_2017_0367
crossref_primary_10_1155_js_5295932
crossref_primary_10_1007_s11042_023_14575_y
crossref_primary_10_3389_fgene_2019_00599
crossref_primary_10_1007_s10462_022_10258_6
crossref_primary_10_1109_TMM_2020_2984093
crossref_primary_10_1109_TCSVT_2023_3307655
crossref_primary_10_1007_s00138_021_01179_5
crossref_primary_10_1016_j_geoen_2024_212778
crossref_primary_10_1016_j_ijdrr_2017_02_021
crossref_primary_10_1007_s11042_022_13954_1
crossref_primary_10_31202_ecjse_67174
crossref_primary_10_1007_s11042_023_16434_2
crossref_primary_10_1109_TCSVT_2017_2731866
crossref_primary_10_1109_TSMC_2016_2638048
crossref_primary_10_1007_s41064_023_00253_z
crossref_primary_10_1109_TIA_2021_3131301
crossref_primary_10_1007_s00371_018_1499_5
crossref_primary_10_1016_j_compeleceng_2024_109811
crossref_primary_10_1016_j_patrec_2017_07_016
crossref_primary_10_1109_TPAMI_2020_3040591
crossref_primary_10_1155_2018_6323942
crossref_primary_10_1016_j_patcog_2015_02_019
crossref_primary_10_1007_s42979_024_02796_3
crossref_primary_10_1109_ACCESS_2021_3083060
crossref_primary_10_1109_TITS_2017_2674684
crossref_primary_10_1007_s11042_023_17425_z
crossref_primary_10_1117_1_JEI_26_5_051402
crossref_primary_10_1145_3312739
crossref_primary_10_1016_j_neucom_2016_08_156
crossref_primary_10_1007_s11042_021_11864_2
crossref_primary_10_5604_01_3001_0012_6833
crossref_primary_10_1007_s11042_019_7702_5
crossref_primary_10_1016_j_ins_2019_03_013
crossref_primary_10_1016_j_neucom_2016_09_063
crossref_primary_10_1016_j_trc_2022_103880
crossref_primary_10_1007_s11042_023_15009_5
Cites_doi 10.1016/j.cviu.2007.06.004
10.1002/scj.20411
10.1109/ICPR.2010.88
10.1109/CVPR.2005.61
10.1016/j.eswa.2009.01.034
10.1016/j.neucom.2009.10.028
10.1145/1523103.1523124
10.1109/ICIII.2009.506
10.1016/j.artint.2009.11.011
10.1109/ICCVW.2009.5457456
10.1109/CVPRW.2008.4563039
10.1109/ICDSC.2008.4635728
10.1109/AVSS.2009.65
10.1109/MOTION.2002.1182230
10.1109/CIDM.2007.368897
10.1109/ROBIO.2009.5420408
10.1109/ISSNIP.2008.4761973
10.1109/TSMCC.2008.919173
10.1109/TKDE.2007.1042
10.1109/ICPR.2010.98
10.1109/ICSPS.2010.5555261
10.1016/j.engappai.2009.08.002
10.1109/ICIP.2008.4711868
10.1109/ICCV.2005.248
10.1109/TKDE.2006.29
10.1109/TPAMI.2007.70731
10.1109/TKDE.2009.123
10.1109/GMAI.2006.31
10.1109/ICDSC.2008.4635683
10.1109/TCE.2009.5174427
10.1109/ICCIT.2007.35
10.1117/1.3509270
10.1109/ISSNIP.2005.1595608
10.1007/11867586_81
10.1360/jos180527
10.1016/S0262-8856(02)00127-0
10.1007/978-3-540-28633-2_125
10.1109/ICDSC.2008.4635732
10.1109/ICCVW.2009.5457455
10.1109/SITIS.2007.128
10.1007/s00138-008-0152-0
10.1109/TSMCC.2010.2048428
10.1109/CVPR.2009.5206641
10.1109/TSMCA.2004.838461
10.4304/jmm.5.4.310-321
10.1109/ICIECS.2009.5364586
10.1109/MMUL.2007.3
10.1109/ICMLC.2010.5580797
10.1109/34.868684
10.1023/A:1008159822101
10.1145/1839294.1839305
10.1109/ICPR.2006.806
10.1007/978-3-642-12712-0_28
10.1109/ICVGIP.2008.49
10.1109/ICCV.2009.5459342
10.1109/ICCIT.2009.206
10.1109/DYSPAN.2010.5457898
10.1109/TCSVT.2009.2013503
10.1109/TPAMI.2008.241
10.1109/AVSS.2005.1577239
10.1109/ICIA.2007.4295746
10.1109/TSMCC.2009.2027608
10.1109/ICPR.2010.878
10.1109/TSMCC.2004.829274
10.1007/978-3-642-19309-5_23
10.1109/AVSS.2010.61
10.1109/AVSS.2005.1577267
10.1016/j.rti.2005.02.002
10.1109/TSMCC.2010.2042446
10.1109/34.868677
10.1109/SIU.2006.1659883
10.1109/TSMCC.2009.2023380
10.1109/DCOSSW.2010.5593287
10.1145/1368436.1368476
10.1109/AIPR.2008.4906450
10.1142/S0218001409007612
10.1016/j.patcog.2010.07.023
10.1109/MLSP.2008.4685511
10.1007/s10846-008-9297-3
10.1109/ICAL.2008.4636454
10.1109/CVPR.2009.5206686
10.1109/AVSS.2007.4425300
10.1016/j.patcog.2007.10.022
10.1109/TIP.2008.919359
10.1016/j.sigpro.2009.04.008
10.1145/1541880.1541882
10.1109/AVSS.2010.70
10.1109/ICASSP.2007.367153
ContentType Journal Article
Copyright 2014 INIST-CNRS
Copyright_xml – notice: 2014 INIST-CNRS
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
7SC
7SP
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TSMCC.2012.2215319
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore : IEEE Electronic Library (IEL) [unlimited simultaenous users]
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore : IEEE Electronic Library (IEL) [unlimited simultaenous users]
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
Applied Sciences
EISSN 1558-2442
EndPage 1272
ExternalDocumentID 26818897
10_1109_TSMCC_2012_2215319
6392472
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5VS
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
ALLEH
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
F5P
HZ~
H~9
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
PZZ
RIA
RIE
RNS
VH1
AAYOK
AAYXX
CITATION
RIG
ATWAV
IPNFZ
IQODW
XFK
7SC
7SP
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c424t-97cff9de9a8858b2582c0d714d66e31aa8a59a2ac449c4eb8781924c1eb349ee3
IEDL.DBID RIE
ISSN 1094-6977
IngestDate Fri Jul 11 12:03:43 EDT 2025
Tue Sep 20 22:33:43 EDT 2022
Thu Apr 24 23:04:09 EDT 2025
Tue Jul 01 03:52:42 EDT 2025
Tue Aug 26 17:18:15 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Data analysis
Extraction process
Measurement sensor
anomaly detection
Pattern recognition
Abnormal behavior
machine learning
Modeling
Outlier
behavior classification
Surveillance
Behavioral analysis
Automatic measurement
Classification
Feature extraction
Anomaly
automated surveillance
Learning algorithm
Artificial intelligence
Pattern extraction
Monitoring
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/USG.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c424t-97cff9de9a8858b2582c0d714d66e31aa8a59a2ac449c4eb8781924c1eb349ee3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1315672318
PQPubID 23500
PageCount 16
ParticipantIDs pascalfrancis_primary_26818897
crossref_primary_10_1109_TSMCC_2012_2215319
proquest_miscellaneous_1315672318
crossref_citationtrail_10_1109_TSMCC_2012_2215319
ieee_primary_6392472
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-11-01
PublicationDateYYYYMMDD 2012-11-01
PublicationDate_xml – month: 11
  year: 2012
  text: 2012-11-01
  day: 01
PublicationDecade 2010
PublicationPlace New-York, NY
PublicationPlace_xml – name: New-York, NY
PublicationTitle IEEE transactions on systems, man and cybernetics. Part C, Applications and reviews
PublicationTitleAbbrev TSMCC
PublicationYear 2012
Publisher IEEE
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
References ref57
ref56
ref59
ref58
ref53
ref52
ref55
ref54
mecocci (ref44) 2003
gong (ref19) 2003; 29
yin (ref91) 2009
ref51
ref50
ref46
ref45
ref48
zhang (ref73) 2010; 23
ref47
ref42
ref41
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref39
ref38
wang (ref25) 2007; 1
ref24
ref23
zhicheng (ref72) 2008
ref20
ref22
ref21
ref28
ref29
hayashi (ref26) 2009
ref13
ref12
ref15
ref14
ref96
ref11
ref98
ref10
zhang (ref78) 2008
ref17
ref16
ref18
ref93
ref92
ref95
ref94
ref90
ref89
ref85
ref88
ref87
sayood (ref100) 2006
ji (ref101) 2010; 40
ref82
ref81
ref84
ref83
ref80
andersson (ref27) 2009
ref79
ref75
ref74
ref77
ref102
ref76
chae (ref86) 2006
ref2
ref1
blei (ref99) 2003; 3
ref71
ref70
ref68
ref67
ref69
ref64
ref66
ref65
duque (ref60) 2006
jan (ref63) 2003; 2
beal (ref97) 2002; 1
ref62
ref61
References_xml – ident: ref48
  doi: 10.1016/j.cviu.2007.06.004
– ident: ref82
  doi: 10.1002/scj.20411
– ident: ref95
  doi: 10.1109/ICPR.2010.88
– year: 2006
  ident: ref100
  publication-title: Introduction to Data Compression
– ident: ref16
  doi: 10.1109/CVPR.2005.61
– ident: ref68
  doi: 10.1016/j.eswa.2009.01.034
– ident: ref35
  doi: 10.1016/j.neucom.2009.10.028
– start-page: 337
  year: 2009
  ident: ref91
  article-title: Abnormal behavior recognition using self-adaptive hidden Markov models
  publication-title: Proc Int Conf Image Anal Recog
– ident: ref84
  doi: 10.1145/1523103.1523124
– ident: ref90
  doi: 10.1109/ICIII.2009.506
– ident: ref98
  doi: 10.1016/j.artint.2009.11.011
– ident: ref70
  doi: 10.1109/ICCVW.2009.5457456
– ident: ref88
  doi: 10.1109/CVPRW.2008.4563039
– ident: ref36
  doi: 10.1109/ICDSC.2008.4635728
– ident: ref52
  doi: 10.1109/AVSS.2009.65
– ident: ref54
  doi: 10.1109/MOTION.2002.1182230
– ident: ref58
  doi: 10.1109/CIDM.2007.368897
– ident: ref30
  doi: 10.1109/ROBIO.2009.5420408
– ident: ref93
  doi: 10.1109/ISSNIP.2008.4761973
– ident: ref2
  doi: 10.1109/TSMCC.2008.919173
– ident: ref23
  doi: 10.1109/TKDE.2007.1042
– ident: ref32
  doi: 10.1109/ICPR.2010.98
– ident: ref74
  doi: 10.1109/ICSPS.2010.5555261
– ident: ref1
  doi: 10.1016/j.engappai.2009.08.002
– ident: ref94
  doi: 10.1109/ICIP.2008.4711868
– ident: ref37
  doi: 10.1109/ICCV.2005.248
– ident: ref10
  doi: 10.1109/TKDE.2006.29
– ident: ref12
  doi: 10.1109/TPAMI.2007.70731
– ident: ref18
  doi: 10.1109/TKDE.2009.123
– ident: ref71
  doi: 10.1109/GMAI.2006.31
– ident: ref51
  doi: 10.1109/ICDSC.2008.4635683
– volume: 2
  start-page: 65
  year: 2003
  ident: ref63
  article-title: Suspicious behavior assessment for visual surveillance using neural network classifiers
  publication-title: Proc Int Conf Imaging Sci Syst Technol
– ident: ref79
  doi: 10.1109/TCE.2009.5174427
– ident: ref80
  doi: 10.1109/ICCIT.2007.35
– ident: ref47
  doi: 10.1117/1.3509270
– ident: ref13
  doi: 10.1109/ISSNIP.2005.1595608
– start-page: 898
  year: 2006
  ident: ref60
  article-title: The OBSERVER: An intelligent and automated video surveillance system
  publication-title: Proc Int Conf Image Anal Recognit
  doi: 10.1007/11867586_81
– ident: ref89
  doi: 10.1360/jos180527
– volume: 3
  start-page: 993
  year: 2003
  ident: ref99
  article-title: Latent Dirichlet allocation
  publication-title: J Mach Learn Res
– volume: 1
  start-page: 341
  year: 2007
  ident: ref25
  article-title: Abnormal activity recognition in office based on R transform
  publication-title: Proc IEEE Int Conf Image Process
– ident: ref4
  doi: 10.1016/S0262-8856(02)00127-0
– ident: ref17
  doi: 10.1007/978-3-540-28633-2_125
– ident: ref92
  doi: 10.1109/ICDSC.2008.4635732
– ident: ref53
  doi: 10.1109/ICCVW.2009.5457455
– ident: ref61
  doi: 10.1109/SITIS.2007.128
– volume: 29
  start-page: 321
  year: 2003
  ident: ref19
  article-title: Scene event recognition without tracking
  publication-title: Zidonghua Xuebao/Acta Automatica Sinica
– ident: ref8
  doi: 10.1007/s00138-008-0152-0
– ident: ref102
  doi: 10.1109/TSMCC.2010.2048428
– ident: ref33
  doi: 10.1109/CVPR.2009.5206641
– ident: ref46
  doi: 10.1109/TSMCA.2004.838461
– start-page: 187
  year: 2003
  ident: ref44
  article-title: Automatic detection of anomalous behavioural events for advanced real-time video surveillance
  publication-title: Proc IEEE Int Symp Comput Intell Meas Syst Appl
– ident: ref67
  doi: 10.4304/jmm.5.4.310-321
– ident: ref75
  doi: 10.1109/ICIECS.2009.5364586
– ident: ref59
  doi: 10.1109/MMUL.2007.3
– ident: ref81
  doi: 10.1109/ICMLC.2010.5580797
– ident: ref96
  doi: 10.1109/34.868684
– start-page: 396
  year: 2009
  ident: ref27
  article-title: Estimation of crowd behavior using sensor networks and sensor fusion
  publication-title: Proc 12th Int Conf Inform Fusion
– ident: ref22
  doi: 10.1023/A:1008159822101
– start-page: 143
  year: 2008
  ident: ref72
  article-title: Detecting pedestrian abnormal behavior based on fuzzy associative memory
  publication-title: Proc 4th Int Conf Nat Comput
– ident: ref85
  doi: 10.1145/1839294.1839305
– ident: ref56
  doi: 10.1109/ICPR.2006.806
– ident: ref29
  doi: 10.1007/978-3-642-12712-0_28
– ident: ref15
  doi: 10.1109/ICVGIP.2008.49
– ident: ref39
  doi: 10.1109/ICCV.2009.5459342
– ident: ref50
  doi: 10.1109/ICCIT.2009.206
– ident: ref21
  doi: 10.1109/DYSPAN.2010.5457898
– ident: ref57
  doi: 10.1109/TCSVT.2009.2013503
– ident: ref55
  doi: 10.1109/TPAMI.2008.241
– ident: ref7
  doi: 10.1109/AVSS.2005.1577239
– ident: ref76
  doi: 10.1109/ICIA.2007.4295746
– start-page: 81
  year: 2008
  ident: ref78
  article-title: Detecting abnormal motion of pedestrian in video
  publication-title: Proc Int Conf Inf Autom
– volume: 40
  start-page: 13
  year: 2010
  ident: ref101
  article-title: Advances in view-invariant human motion analysis: A review
  publication-title: IEEE Trans Syst Man Cybern C Appl Rev
  doi: 10.1109/TSMCC.2009.2027608
– ident: ref28
  doi: 10.1109/ICPR.2010.878
– ident: ref5
  doi: 10.1109/TSMCC.2004.829274
– volume: 23
  start-page: 421
  year: 2010
  ident: ref73
  article-title: Abnormal behavior of pedestrian detection based on fuzzy theory
  publication-title: Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence
– ident: ref38
  doi: 10.1007/978-3-642-19309-5_23
– ident: ref65
  doi: 10.1109/AVSS.2010.61
– ident: ref24
  doi: 10.1109/AVSS.2005.1577267
– ident: ref64
  doi: 10.1016/j.rti.2005.02.002
– start-page: 27
  year: 2006
  ident: ref86
  article-title: Situation aware RFID system: Evaluating abnormal behavior detecting approach
  publication-title: Proc IEEE Workshop Softw Technol Future Embedded Ubiquitous Syst
– ident: ref9
  doi: 10.1109/TSMCC.2010.2042446
– ident: ref40
  doi: 10.1109/34.868677
– ident: ref42
  doi: 10.1109/SIU.2006.1659883
– ident: ref3
  doi: 10.1109/TSMCC.2009.2023380
– ident: ref20
  doi: 10.1109/DCOSSW.2010.5593287
– ident: ref83
  doi: 10.1145/1368436.1368476
– start-page: 869
  year: 2009
  ident: ref26
  article-title: Predicting unusual right-turn driving behavior at intersection
  publication-title: Proc IEEE Intell Veh Symp
– ident: ref6
  doi: 10.1109/AIPR.2008.4906450
– ident: ref69
  doi: 10.1142/S0218001409007612
– ident: ref41
  doi: 10.1016/j.patcog.2010.07.023
– ident: ref45
  doi: 10.1109/MLSP.2008.4685511
– ident: ref77
  doi: 10.1007/s10846-008-9297-3
– ident: ref31
  doi: 10.1109/ICAL.2008.4636454
– volume: 1
  start-page: 577
  year: 2002
  ident: ref97
  article-title: The infinite hidden Markov model
  publication-title: Adv Neural Inf Process Syst
– ident: ref87
  doi: 10.1109/CVPR.2009.5206686
– ident: ref62
  doi: 10.1109/AVSS.2007.4425300
– ident: ref14
  doi: 10.1016/j.patcog.2007.10.022
– ident: ref43
  doi: 10.1109/TIP.2008.919359
– ident: ref66
  doi: 10.1016/j.sigpro.2009.04.008
– ident: ref11
  doi: 10.1145/1541880.1541882
– ident: ref34
  doi: 10.1109/AVSS.2010.70
– ident: ref49
  doi: 10.1109/ICASSP.2007.367153
SSID ssj0014493
Score 2.4425266
Snippet As surveillance becomes ubiquitous, the amount of data to be processed grows along with the demand for manpower to interpret the data. A key goal of...
SourceID proquest
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1257
SubjectTerms Abnormal behavior
Algorithms
Anomalies
anomaly detection
Applied sciences
Arrays
Artificial intelligence
Automated
automated surveillance
behavior classification
Cameras
Computer science; control theory; systems
Cybernetics
Data models
Data processing. List processing. Character string processing
Exact sciences and technology
Feature extraction
Learning
machine learning
Memory organisation. Data processing
Sensor phenomena and characterization
Software
Surveillance
Trajectory
Title A Review of Anomaly Detection in Automated Surveillance
URI https://ieeexplore.ieee.org/document/6392472
https://www.proquest.com/docview/1315672318
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2VnsoBaAtiC1SuxAEE2SaOHdvH1dKqqlQubaXeIseeSIg2qboJEvx6xk42Ki1C3KLEsZwZf7zJzLwBeJ9a43KHIe1XOjJQCp1UTtSJSrXyuUcvfWT7_FqcXIrTK3m1AZ-nXBhEjMFnOA-X0ZfvW9eHX2WHdJpyoWjDfUKG25CrNXkMhDBDML0RSUGgZp0gk5rDi_Oz5TJEcfE5pxMuD6w69w6hWFUlxETaFYmlHupZPNqa43lz_BzO1iMdwky-z_uumrtfD0gc__dTXsCzEXiyxTBTtmEDmx14eo-OcAe2x4W-Yh9GNuqPu6AWbPAfsLZmi6a9sdc_2RfsYghXw741bNF3dJeQKzvv735gKGNEnbyEy-Oji-VJMlZbSJzgokuMcnVtPBqrtdQVl5q71KtM-KLAPLNWW2kst44k7QRWWgUuNeEyMseFQcxfwWbTNvgaWMXrmlvSsvdSKMKIiAYlFgSVQuinnEG2Fn_pRiryUBHjuowmSWrKqLIyqKwcVTaDT9M7twMRxz9b7waZTy1Hcc9g_w8tT895QcBFGzWDg7XaS1pnwXliG2z7VZnlZOkqQsN67-99v4GtMIIhT_EtbHZ3Pb4jwNJV-3Gm_gbR_eUk
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5V5QAcgLYglkcxEgcQZJs4dmwfVwvVAt1eupV6ixx7IqG2CeomSPTXd5xko_IQ4hYljuXM2J5v4plvAN7E1rjUYUj7lY4clExHhRNlpGKtfOrRS9-xfR5ni1Px5UyebcGHMRcGEbvgM5yGy-4s39euDb_KDsiacqFow71Ddl8mfbbWeGYghOnD6Y2IMoI1mxSZ2BysTpbzeYjj4lNONi4NvDq3zFBXVyVERdo1CabsK1r8sTl3FufwISw3Y-0DTc6nbVNM3fVvNI7_-zGP4MEAPdmsnys7sIXVLty_RUi4CzvDUl-ztwMf9bs9UDPWnyCwumSzqr60Fz_ZR2y6IK6KfavYrG3oLmFXdtJe_cBQyIg6eQynh59W80U01FuInOCiiYxyZWk8Gqu11AWXmrvYq0T4LMM0sVZbaSy3jiTtBBZaBTY14RJyyIVBTJ_AdlVX-BRYwcuSW9Kz91IoQomIBiVmBJZC8KecQLIRf-4GMvJQE-Mi75yS2OSdyvKgsnxQ2QTej-9876k4_tl6L8h8bDmIewL7v2h5fM4zgi7aqAm83qg9p5UWjk9shXW7zpOUfF1FeFg_-3vfr-DuYrU8yo8-H399DvfCaPqsxRew3Vy1-JLgS1Psd7P2Bu-F6G0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Review+of+Anomaly+Detection+in+Automated+Surveillance&rft.jtitle=IEEE+transactions+on+systems%2C+man+and+cybernetics.+Part+C%2C+Applications+and+reviews&rft.au=SODEMANN%2C+Angela+A&rft.au=ROSS%2C+Matthew+P&rft.au=BORGHETTI%2C+Brett+J&rft.date=2012-11-01&rft.pub=Institute+of+Electrical+and+Electronics+Engineers&rft.issn=1094-6977&rft.eissn=1558-2442&rft.volume=42&rft.issue=6&rft.spage=1257&rft.epage=1272&rft_id=info:doi/10.1109%2Ftsmcc.2012.2215319&rft.externalDBID=n%2Fa&rft.externalDocID=26818897
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-6977&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-6977&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-6977&client=summon