Assessing spring phenology of a temperate woodland: A multiscale comparison of ground, unmanned aerial vehicle and Landsat satellite observations

The monitoring of forest phenology in a cost-effective manner, at a fine spatial scale and over relatively large areas remains a significant challenge. To address this issue, unmanned aerial vehicles (UAVs) appear to be a potential new platform for forest phenology monitoring. This article assesses...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing of environment Vol. 223; pp. 229 - 242
Main Authors Berra, Elias Fernando, Gaulton, Rachel, Barr, Stuart
Format Journal Article
LanguageEnglish
Published New York Elsevier Inc 15.03.2019
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The monitoring of forest phenology in a cost-effective manner, at a fine spatial scale and over relatively large areas remains a significant challenge. To address this issue, unmanned aerial vehicles (UAVs) appear to be a potential new platform for forest phenology monitoring. This article assesses the potential of UAV data to track the temporal dynamics of spring phenology, from the individual tree to woodland scale, and cross-compare UAV results against ground and satellite observations, in order to better understand characteristics of UAV data and assess potential for use in validation of satellite-derived phenology. A time series of UAV data (5 cm spatial resolution, ~7 day temporal resolution) were acquired in tandem with an intensive ground campaign during the spring season of 2015 across a 15 ha mixed woodland. Phenophase transition dates were estimated at an individual tree-level using UAV time series of Normalized Difference Vegetation Index (NDVI) and Green Chromatic Coordinate (GCC) and validated against visual observations of tree phenology. UAV-derived start of season dates could be predicted with an accuracy of <1 week. The analysis was scaled to a plot level, where ground (visual assessment and understorey development), UAV and Landsat metrics were compared, indicating UAV data is effective for tracking canopy phenology, as opposed to ecosystem dynamics detected by satellites. The UAV data were used to automatically map phenological events for individual trees across the whole woodland, demonstrating that contrasting canopy phenological events can occur within the extent of a single Landsat pixel. This, and a large temporal gap in the Landsat series, accounted for the poor relationships found between UAV- and Landsat-derived phenometrics (R2 < 0.50) in this study. An opportunity is now available to track very fine scale land surface changes over contiguous vegetation communities, providing information which could improve characterization of vegetation phenology at multiple scales. •Spring phenology, from tree to woodland scale, is observed with UAV data.•UAV metrics are validated and better understood with aid of in situ observations.•UAV data captured species-specific phenology across local spatial extents.•Canopy phenology can be highly heterogeneous at the spatial resolution of Landsat.•An opportunity is now available to track very fine scale phenological changes.
AbstractList The monitoring of forest phenology in a cost-effective manner, at a fine spatial scale and over relatively large areas remains a significant challenge. To address this issue, unmanned aerial vehicles (UAVs) appear to be a potential new platform for forest phenology monitoring. This article assesses the potential of UAV data to track the temporal dynamics of spring phenology, from the individual tree to woodland scale, and cross-compare UAV results against ground and satellite observations, in order to better understand characteristics of UAV data and assess potential for use in validation of satellite-derived phenology. A time series of UAV data (5 cm spatial resolution, ~7 day temporal resolution) were acquired in tandem with an intensive ground campaign during the spring season of 2015 across a 15 ha mixed woodland. Phenophase transition dates were estimated at an individual tree-level using UAV time series of Normalized Difference Vegetation Index (NDVI) and Green Chromatic Coordinate (GCC) and validated against visual observations of tree phenology. UAV-derived start of season dates could be predicted with an accuracy of <1 week. The analysis was scaled to a plot level, where ground (visual assessment and understorey development), UAV and Landsat metrics were compared, indicating UAV data is effective for tracking canopy phenology, as opposed to ecosystem dynamics detected by satellites. The UAV data were used to automatically map phenological events for individual trees across the whole woodland, demonstrating that contrasting canopy phenological events can occur within the extent of a single Landsat pixel. This, and a large temporal gap in the Landsat series, accounted for the poor relationships found between UAV- and Landsat-derived phenometrics (R2 < 0.50) in this study. An opportunity is now available to track very fine scale land surface changes over contiguous vegetation communities, providing information which could improve characterization of vegetation phenology at multiple scales. •Spring phenology, from tree to woodland scale, is observed with UAV data.•UAV metrics are validated and better understood with aid of in situ observations.•UAV data captured species-specific phenology across local spatial extents.•Canopy phenology can be highly heterogeneous at the spatial resolution of Landsat.•An opportunity is now available to track very fine scale phenological changes.
The monitoring of forest phenology in a cost-effective manner, at a fine spatial scale and over relatively large areas remains a significant challenge. To address this issue, unmanned aerial vehicles (UAVs) appear to be a potential new platform for forest phenology monitoring. This article assesses the potential of UAV data to track the temporal dynamics of spring phenology, from the individual tree to woodland scale, and cross-compare UAV results against ground and satellite observations, in order to better understand characteristics of UAV data and assess potential for use in validation of satellite-derived phenology. A time series of UAV data (5 cm spatial resolution, ~7 day temporal resolution) were acquired in tandem with an intensive ground campaign during the spring season of 2015 across a 15 ha mixed woodland. Phenophase transition dates were estimated at an individual tree-level using UAV time series of Normalized Difference Vegetation Index (NDVI) and Green Chromatic Coordinate (GCC) and validated against visual observations of tree phenology. UAV-derived start of season dates could be predicted with an accuracy of <1 week. The analysis was scaled to a plot level, where ground (visual assessment and understorey development), UAV and Landsat metrics were compared, indicating UAV data is effective for tracking canopy phenology, as opposed to ecosystem dynamics detected by satellites. The UAV data were used to automatically map phenological events for individual trees across the whole woodland, demonstrating that contrasting canopy phenological events can occur within the extent of a single Landsat pixel. This, and a large temporal gap in the Landsat series, accounted for the poor relationships found between UAV- and Landsat-derived phenometrics (R2 < 0.50) in this study. An opportunity is now available to track very fine scale land surface changes over contiguous vegetation communities, providing information which could improve characterization of vegetation phenology at multiple scales.
The monitoring of forest phenology in a cost-effective manner, at a fine spatial scale and over relatively large areas remains a significant challenge. To address this issue, unmanned aerial vehicles (UAVs) appear to be a potential new platform for forest phenology monitoring. This article assesses the potential of UAV data to track the temporal dynamics of spring phenology, from the individual tree to woodland scale, and cross-compare UAV results against ground and satellite observations, in order to better understand characteristics of UAV data and assess potential for use in validation of satellite-derived phenology. A time series of UAV data (5 cm spatial resolution, ~7 day temporal resolution) were acquired in tandem with an intensive ground campaign during the spring season of 2015 across a 15 ha mixed woodland. Phenophase transition dates were estimated at an individual tree-level using UAV time series of Normalized Difference Vegetation Index (NDVI) and Green Chromatic Coordinate (GCC) and validated against visual observations of tree phenology. UAV-derived start of season dates could be predicted with an accuracy of <1 week. The analysis was scaled to a plot level, where ground (visual assessment and understorey development), UAV and Landsat metrics were compared, indicating UAV data is effective for tracking canopy phenology, as opposed to ecosystem dynamics detected by satellites. The UAV data were used to automatically map phenological events for individual trees across the whole woodland, demonstrating that contrasting canopy phenological events can occur within the extent of a single Landsat pixel. This, and a large temporal gap in the Landsat series, accounted for the poor relationships found between UAV- and Landsat-derived phenometrics (R² < 0.50) in this study. An opportunity is now available to track very fine scale land surface changes over contiguous vegetation communities, providing information which could improve characterization of vegetation phenology at multiple scales.
Author Berra, Elias Fernando
Barr, Stuart
Gaulton, Rachel
Author_xml – sequence: 1
  givenname: Elias Fernando
  surname: Berra
  fullname: Berra, Elias Fernando
  email: eliasberra@gmail.com
– sequence: 2
  givenname: Rachel
  surname: Gaulton
  fullname: Gaulton, Rachel
– sequence: 3
  givenname: Stuart
  surname: Barr
  fullname: Barr, Stuart
BookMark eNp9kU1vGyEQhlGVSnU-fkBvSL300HUBsx-0Jytq00qWcmnOCLODg7ULW4Z1lZ_Rf1w27imHoGGGw_uMZngvyUWIAQh5z9maM958Pq4TwlowrtaMl2BvyIp3rapYy-QFWTG2kZUUdfuOXCIeGeN11_IV-btFBEQfDhSntJTpEUIc4uGJRkcNzTBOkEwG-ifGfjCh_0K3dJyH7NGaAaiN42SSxxgW4JDiHPpPdA6jCQF6aiB5M9ATPHpb1IWnu5LQZFouDIMvreMeIZ1M9jHgNXnrzIBw879ekYfv337d_qh293c_b7e7ykohc6VqpoQTXPRggXV1U0ojHXfKmV66TjlbjhNlf1f3neObvWz3SoDcmPKAzRX5eO47pfh7Bsx6LBuVgUyAOKMWQrBONg0TRfrhhfQY5xTKdFpwxZRq63pRtWeVTRExgdPW5-edcjJ-0JzpxSp91MUqvVilGS_BCslfkMWK0aSnV5mvZwbKH508JI3WQ7DQ-wQ26z76V-h_YRuxzw
CitedBy_id crossref_primary_10_3390_rs14020244
crossref_primary_10_1016_j_ecolind_2023_111041
crossref_primary_10_3390_rs13020276
crossref_primary_10_1016_j_ecolind_2021_108156
crossref_primary_10_1016_j_jag_2021_102435
crossref_primary_10_3390_rs13193810
crossref_primary_10_3390_challe14010012
crossref_primary_10_3390_rs14174310
crossref_primary_10_3390_rs14133160
crossref_primary_10_1186_s13007_021_00803_9
crossref_primary_10_1016_j_foreco_2023_121475
crossref_primary_10_3390_rs14215337
crossref_primary_10_1007_s11676_020_01155_1
crossref_primary_10_1016_j_agee_2023_108397
crossref_primary_10_3390_rs14174165
crossref_primary_10_1016_j_atech_2022_100103
crossref_primary_10_1016_j_ecoinf_2024_102660
crossref_primary_10_1111_nph_16488
crossref_primary_10_1016_j_agrformet_2024_109888
crossref_primary_10_3390_f12040425
crossref_primary_10_3390_rs14195003
crossref_primary_10_3390_rs15143599
crossref_primary_10_1016_j_isprsjprs_2024_08_011
crossref_primary_10_1016_j_jag_2022_102686
crossref_primary_10_1016_j_agrformet_2021_108578
crossref_primary_10_3390_rs15122995
crossref_primary_10_1016_j_jag_2023_103355
crossref_primary_10_3390_f12040397
crossref_primary_10_1007_s12145_023_01118_0
crossref_primary_10_1016_j_jvolgeores_2020_107143
crossref_primary_10_1016_j_ecoinf_2024_102594
crossref_primary_10_1016_j_envsoft_2020_104666
crossref_primary_10_1080_02827581_2020_1806350
crossref_primary_10_1080_17538947_2024_2356124
crossref_primary_10_3390_rs15030679
crossref_primary_10_1590_0001_3765202120200712
crossref_primary_10_3390_land12010078
crossref_primary_10_1016_j_rse_2019_05_026
crossref_primary_10_3390_rs13234873
crossref_primary_10_1016_j_rse_2020_111865
crossref_primary_10_3390_rs13214347
crossref_primary_10_1016_j_scitotenv_2024_175753
crossref_primary_10_1117_1_JRS_14_034501
crossref_primary_10_3390_rs12213670
crossref_primary_10_1016_j_isprsjprs_2021_10_023
crossref_primary_10_1016_j_ecoinf_2023_102239
crossref_primary_10_1080_07900627_2023_2293862
crossref_primary_10_1088_1748_9326_abbf7d
crossref_primary_10_1016_j_agrformet_2023_109372
crossref_primary_10_1080_01431161_2023_2189033
crossref_primary_10_3390_rs13163100
crossref_primary_10_1093_jpe_rtab089
crossref_primary_10_3390_f13071039
crossref_primary_10_3390_rs15245689
crossref_primary_10_1016_j_isprsjprs_2023_11_024
crossref_primary_10_1007_s40725_023_00207_z
crossref_primary_10_3390_drones4030056
crossref_primary_10_1016_j_isprsjprs_2019_04_009
crossref_primary_10_1111_geb_13910
crossref_primary_10_1002_rse2_184
crossref_primary_10_1016_j_isprsjprs_2020_10_017
crossref_primary_10_1016_j_patrec_2020_07_003
crossref_primary_10_1016_j_foreco_2020_118663
crossref_primary_10_3390_rs14246331
crossref_primary_10_3390_rs13081597
crossref_primary_10_3390_rs14143453
crossref_primary_10_3390_rs12030514
crossref_primary_10_1111_1365_2745_13656
crossref_primary_10_3390_rs12203426
crossref_primary_10_1016_j_ecoinf_2024_102987
crossref_primary_10_1016_j_foreco_2021_119402
crossref_primary_10_3390_rs17050876
crossref_primary_10_1016_j_agrformet_2021_108780
crossref_primary_10_1016_j_isprsjprs_2022_09_018
crossref_primary_10_3390_rs15092266
crossref_primary_10_1016_j_rse_2022_113310
crossref_primary_10_1016_j_jag_2022_103024
crossref_primary_10_3390_f12030297
crossref_primary_10_1016_j_isprsjprs_2022_04_002
crossref_primary_10_3390_rs12071199
crossref_primary_10_3390_rs12182970
crossref_primary_10_1016_j_agrformet_2019_107758
crossref_primary_10_1038_s41598_024_66338_w
crossref_primary_10_3390_rs14246198
crossref_primary_10_1016_j_agrformet_2024_110182
crossref_primary_10_3390_drones5020039
crossref_primary_10_3390_f12030327
crossref_primary_10_3390_rs16152695
crossref_primary_10_1002_env_2733
crossref_primary_10_1016_j_jhydrol_2022_128755
crossref_primary_10_1016_j_indic_2023_100285
crossref_primary_10_1016_j_ecoinf_2022_101845
crossref_primary_10_3390_rs12182980
crossref_primary_10_1088_1755_1315_653_1_012102
crossref_primary_10_3390_rs15245642
crossref_primary_10_3389_fenvs_2023_1083328
crossref_primary_10_1016_j_foreco_2023_120854
crossref_primary_10_1186_s13595_022_01130_2
crossref_primary_10_3390_rs13101958
crossref_primary_10_1109_JSTARS_2023_3302571
crossref_primary_10_1016_j_rse_2019_111511
Cites_doi 10.1016/j.rse.2014.03.017
10.1016/j.rse.2013.07.044
10.1016/j.agrformet.2016.12.008
10.1002/fee.1222
10.1016/j.agrformet.2017.02.026
10.1016/j.rse.2005.10.022
10.3390/rs2010290
10.5194/bg-13-5085-2016
10.1098/rstb.2010.0120
10.1016/j.scienta.2011.07.011
10.1016/j.rse.2005.03.011
10.1016/j.agrformet.2012.10.014
10.1080/2150704X.2012.744486
10.1111/j.1365-2699.2011.02549.x
10.1111/j.1365-2486.2010.02165.x
10.1080/01431160412331291297
10.1002/ecs2.1436
10.3390/rs5052200
10.1016/j.rse.2016.09.014
10.1016/j.rse.2013.04.005
10.1016/j.jag.2016.09.005
10.1890/120150
10.1111/j.1365-2486.2006.01193.x
10.1016/j.agrformet.2015.07.005
10.7848/ksgpc.2015.33.6.605
10.1111/j.1654-109X.2009.01053.x
10.3390/rs5104799
10.1016/j.rse.2007.01.004
10.1080/01431160802549237
10.1007/s10661-015-4996-2
10.3390/rs61111127
10.1111/j.1365-2486.2009.01910.x
10.1016/j.isprsjprs.2017.09.002
10.1007/s00484-003-0171-5
10.1890/08-2022.1
10.1016/j.rse.2010.08.013
10.1111/1365-2435.12026
10.1016/j.agrformet.2008.10.019
10.1177/0959683607085599
10.1002/wat2.1222
10.5194/isprsarchives-XL-1-W4-207-2015
10.1007/s10816-011-9104-5
10.1111/j.1365-2486.2003.00714.x
10.1002/ajpa.21090
10.1007/s11119-017-9504-y
10.1109/LGRS.2016.2584109
10.1080/01431161003762355
10.1111/j.1365-2486.2011.02521.x
10.1086/284319
10.2307/2404467
10.5194/bg-9-5373-2012
10.1016/j.rse.2014.10.012
10.1016/j.agrformet.2011.07.008
10.1109/TGRS.2017.2655365
10.1109/TGRS.2017.2683444
10.1016/j.rse.2013.01.010
10.1111/j.1469-8137.2011.03803.x
10.1080/01431161.2016.1271480
10.1016/j.rse.2011.06.020
10.1080/01431161.2016.1252477
10.1007/s11284-014-1239-x
10.1016/j.agrformet.2016.01.006
10.1007/s10980-009-9328-x
10.1016/j.isprsjprs.2018.05.022
10.1007/s11263-007-0107-3
10.3390/rs3112494
10.1016/j.agrformet.2017.10.015
10.1890/13-0652.1
10.1016/j.agrformet.2017.08.012
10.1016/j.rse.2013.01.011
10.1016/S0034-4257(02)00135-9
10.1016/j.ecoinf.2012.03.001
10.1890/070217
10.5194/bg-11-4305-2014
10.1002/2015GL063586
10.1016/j.agrformet.2011.09.009
10.1016/j.rse.2011.10.006
10.1016/j.agrformet.2017.05.007
10.3724/SP.J.1003.2013.06187
10.3390/rs10040635
10.3390/f6113899
10.1080/014311699211994
10.3390/s17122852
10.1111/j.1469-8137.2010.03252.x
10.3354/cr01228
10.1016/j.isprsjprs.2014.02.013
10.1016/j.rse.2015.01.011
10.1016/j.rse.2017.01.001
10.3390/rs5105193
10.1016/j.rse.2015.01.012
10.1016/j.rse.2012.08.027
10.1016/j.rse.2013.04.002
10.1016/j.geomorph.2016.11.021
ContentType Journal Article
Copyright 2019 Elsevier Inc.
Copyright Elsevier BV Mar 15, 2019
Copyright_xml – notice: 2019 Elsevier Inc.
– notice: Copyright Elsevier BV Mar 15, 2019
DBID AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7TG
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KL.
KR7
L7M
L~C
L~D
P64
7S9
L.6
DOI 10.1016/j.rse.2019.01.010
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Meteorological & Geoastrophysical Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Meteorological & Geoastrophysical Abstracts
Biotechnology Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Materials Research Database
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
Environmental Sciences
EISSN 1879-0704
EndPage 242
ExternalDocumentID 10_1016_j_rse_2019_01_010
S0034425719300100
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABPPZ
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACPRK
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TN5
TWZ
WH7
ZCA
ZMT
~02
~G-
~KM
29P
41~
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
ADXHL
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FA8
FEDTE
FGOYB
G-2
HMA
HMC
HVGLF
HZ~
H~9
OHT
R2-
SEN
SEP
SEW
SSH
VOH
WUQ
XOL
7QF
7QO
7QQ
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7TG
7U5
8BQ
8FD
C1K
EFKBS
F28
FR3
H8D
H8G
JG9
JQ2
KL.
KR7
L7M
L~C
L~D
P64
7S9
L.6
ID FETCH-LOGICAL-c424t-95092f212dece0856ece64f1f9fad4f89fccccf2070f5d8f13b47b92e43a47be3
IEDL.DBID .~1
ISSN 0034-4257
IngestDate Fri Jul 11 10:06:50 EDT 2025
Wed Aug 13 11:07:15 EDT 2025
Thu Apr 24 22:56:14 EDT 2025
Tue Jul 01 03:51:17 EDT 2025
Fri Feb 23 02:49:28 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Consumer-grade camera
Drone
Forest phenology
Land surface phenology
Individual tree level
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c424t-95092f212dece0856ece64f1f9fad4f89fccccf2070f5d8f13b47b92e43a47be3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2190997552
PQPubID 2045405
PageCount 14
ParticipantIDs proquest_miscellaneous_2220846602
proquest_journals_2190997552
crossref_citationtrail_10_1016_j_rse_2019_01_010
crossref_primary_10_1016_j_rse_2019_01_010
elsevier_sciencedirect_doi_10_1016_j_rse_2019_01_010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-03-15
PublicationDateYYYYMMDD 2019-03-15
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-15
  day: 15
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Remote sensing of environment
PublicationYear 2019
Publisher Elsevier Inc
Elsevier BV
Publisher_xml – name: Elsevier Inc
– name: Elsevier BV
References Samiappan, Turnage, Hathcock, Moorhead (bb0380) 2017; 38
Torresan, Berton, Federico Carotenuto, Gioli, Matese, Miglietta, Vagnoli, Zaldei, Wallace (bb0455) 2017; 38
Eastman, Sangermano, Machado, Rogan, Anyamba (bb0105) 2013; 5
Lechowicz (bb0215) 1984; 124
Wang, Blackburn, Onojeghuo, Dash, Zhou, Zhang, Atkinson (bb0485) 2017; 55
Ryu, Verfaillie, Macfarlane, Kobayashi, Sonnentag, Vargas, Ma, Baldocchi (bb0375) 2012; 126
Verhoeven (bb0475) 2012; 19
Richardson, Braswell, Hollinger, Jenkins, Ollinger (bb0360) 2009; 19
Liu, Hill, Zhang, Wang, Richardson, Hufkens, Filippa, Baldocchi, Ma, Verfaillie, Schaaf (bb0260) 2017; 237–238
Chuine, Kramer, Hänninen (bb0060) 2013
Morin, Roy, Sonie, Chuine (bb0305) 2010; 186
D'Odorico, Gonsamo, Gough, Bohrer, Morison, Wilkinson, Hanson, Gianelle, Fuentes, Buchmann (bb0090) 2015; 214–215
Brown, Dash, Ogutu, Richardson (bb0045) 2017; 247
Polgar, Primack (bb0345) 2011; 191
St-Onge, Audet, Begin (bb0425) 2015; 6
Norby, Hartz-Rubin, Verbrugge (bb0330) 2003; 9
Moore, Brown, Keenan, Duursma, van Dijk, Beringer, Culvenor, Evans, Huete, Hutley, Maier, Restrepo-Coupe, Sonnentag, Specht, Taylor, van Gorsel, Liddell (bb0300) 2016; 13
Delpierre, Guillemot, Dufrene, Cecchini, Nicolas (bb0085) 2017; 234
Jönsson, Cai, Melaas, Friedl, Eklundh (bb0185) 2018; 10
Mei, Durrieu (bb0265) 2004; 36
Lhermitte, Verbesselt, Verstraeten, Coppin (bb0220) 2011; 115
Melaas, Sulla-Menashe, Gray, Black, Morin, Richardson, Friedl (bb0275) 2016; 186
Thackeray, Sparks, Frederiksen, Burthe, Bacon, Bell, Botham, Brereton, Bright, Carvalho, Clutton-Brock, Dawson, Edwards, Elliott, Harrington, Johns, Jones, Jones, Leech, Roy, Scott, Smith, Smithers, Winfield, Wanless (bb0440) 2010; 16
Ryan, Williams, Hill, Grace, Woodhouse (bb0370) 2012
Delbart, Kergoat, Le Toan, Lhermitte, Picard (bb0075) 2005; 97
Fisher, Mustard, Vadeboncoeur (bb0130) 2006; 100
Baumann, Ozdogan, Richardson, Radeloff (bb0020) 2017; 54
Bartholomé, Belward (bb0015) 2005; 26
Higgins, Delgado-Cartay, February, Combrink (bb0145) 2011; 38
Schaber (bb0385) 2002
Peng, Zhang, Zhang, Liu, Liu, Huete, Huang, Wang, Luo, Zhang, Zhang (bb0340) 2017; 132
Ke, Quackenbush (bb0190) 2011; 32
Filippa, Cremonese, Migliavacca, Galvagno, Forkel, Wingate, Tomelleri, Morra di Cella, Richardson (bb0120) 2016; 220
Dandois, Ellis (bb0070) 2013; 136
Tang, Korner, Muraoka, Piao, Shen, Thackeray, Yang (bb0435) 2016; 7
Duncanson, Cook, Hurtt, Dubayah (bb0100) 2014; 154
Miao, Luan, Luo, Liu, Moore, Nath, He, Zhu, Cui (bb0285) 2013; 5
Hill, Wilson, George, Hinsley (bb0150) 2010; 13
USGS (bb0465) 2016
Liang, Schwartz (bb0230) 2009; 24
Fisher, Mustard (bb0125) 2007; 109
Richardson, O'Keefe (bb0355) 2009
Newcastle University (bb0325) 2015
Armitage, Alberto Ramirez, Mark Danson, Ogunbadewa (bb0010) 2013; 4
Ibáñez, Primack, Miller-Rushing, Ellwood, Higuchi, Lee, Kobori, Silander (bb0175) 2010; 365
Lisein, Michez, Claessens, Lejeune (bb0250) 2015
Hunt, Hively, Fujikawa, Linden, Daughtry, McCarty (bb0165) 2010; 2
Campoy, Ruiz, Egea (bb0055) 2011; 130
Snavely, Seitz, Szeliski (bb0410) 2008; 80
Woodget, Austrums, Maddock, Habit (bb0505) 2017; 4
Klosterman, Richardson (bb0200) 2017; 17
Smith (bb0400) 2009; 140
Berra, Gaulton, Barr (bb0030) 2016
Hufkens, Friedl, Sonnentag, Braswell, Milliman, Richardson (bb0160) 2012; 117
Lin, Chen, Chen, Tai (bb0245) 2018; 142
Zhang, Friedl, Schaaf, Strahler, Hodges, Gao, Reed, Huete (bb0525) 2003; 84
Thiel, Schmullius (bb0445) 2016
Michez, Piégay, Lisein, Claessens, Lejeune (bb0290) 2016; 188
Menzel, Sparks, Estrella, Koch, Aasa, Ahas, Alm-KÜBler, Bissolli, Braslavská, Briede (bb0280) 2006; 12
Tsingas (bb0460) 1992
Anderson, Gaston (bb0005) 2013; 11
Nasahara, Nagai (bb0320) 2015; 30
Thompson, Clark (bb0450) 2008; 18
White, Pontius, Schaberg (bb0495) 2014; 148
Burkart, Hecht, Kraska, Rascher (bb0050) 2018; 19
Hunter, Lechowicz (bb0170) 1992
Mizunuma, Wilkinson, Eaton, Mencuccini, Morison, Grace (bb0295) 2013; 27
Morisette, Richardson, Knapp, Fisher, Graham, Abatzoglou, Wilson, Breshears, Henebry, Hanes, Liang (bb0310) 2009; 7
Zhang (bb0520) 2015; 156
USGS (bb0470) 2016
Sparks (bb0420) 2014; 60
White, de Beurs, Didan, Inouye, Richardson, Jensen, O'Keefe, Zhang, Nemani, van Leeuwen, Brown, de Wit, Schaepman, Lin, Dettinger, Bailey, Kimball, Schwartz, Baldocchi, Lee, Lauenroth (bb0490) 2009; 15
Lim, La, Park, Lee, Pyeon, Kim (bb0240) 2015; 33
Rodriguez-Galiano, Dash, Atkinson (bb0365) 2015; 42
Sonnentag, Hufkens, Teshera-Sterne, Young, Friedl, Braswell, Milliman, O'Keefe, Richardson (bb0415) 2012; 152
Melaas, Friedl, Zhu (bb0270) 2013; 132
Panagiotidis, Abdollahnejad, Surový, Chiteculo (bb0335) 2016; 1–19
Hmimina, Dufrêne, Pontailler, Delpierre, Aubinet, Caquet, de Grandcourt, Burban, Flechard, Granier (bb0155) 2013; 132
James, Robson, d'Oleire-Oltmanns, Niethammer (bb0180) 2017; 280
Zhang, Friedl, Schaaf (bb0530) 2009; 30
Berra, Gibson-Poole, MacArthur, Gaulton, Hamilton (bb0025) 2015
Berra, Gaulton, Barr (bb0035) 2017; 55
Zaki, Latif, Zainal, Zainuddin (bb0515) 2015
Hernandez, Gonzalez-Ferreiro, Sarmento, Silva, Nunes, Correia, Fontes, Tomé, Diaz-Varela (bb0140) 2016; 2016
Li, Guo, Wang, Li, Chen, Zuo (bb0225) 2016; 13
Klosterman, Melaas, Wang, Martinez, Frederick, O'Keefe, Orwig, Wang, Sun, Schaaf, Friedl, Richardson (bb0210) 2018; 248
Edson, Wing (bb0110) 2011; 3
Keenan, Darby, Felts, Sonnentag, Friedl, Hufkens, O'Keefe, Klosterman, Munger, Toomey, Richardson (bb0195) 2014; 24
Brown, Hultine, Steltzer, Denny, Denslow, Granados, Henderson, Moore, Nagai, SanClements, Sanchez-Azofeifa, Sonnentag, Tazik, Richardson (bb0040) 2016; 14
Schaber, Badeck (bb0390) 2003; 47
Morris, Boyd, Crowe, Johnson, Smith (bb0315) 2013; 5
Schwartz, Hanes, Liang (bb0395) 2013; 169
Delbart, Beaubien, Kergoat, Le Toan (bb0080) 2015; 160
Wilkinson, Eaton, Broadmeadow, Morison (bb0500) 2012; 9
Elmore, Guinn, Minsley, Richardson (bb0115) 2012; 18
Zhao, Zhang, Tan, Song, Liang, Yu, Zhao (bb0540) 2012; 10
Smith, Milton (bb0405) 1999; 20
Donnelly, Yu, Caffarra, Hanes, Liang, Desai, Liu, Schwartz (bb0095) 2017; 243
Vitasse, Delzon, Dufrêne, Pontailler, Louvet, Kremer, Michalet (bb0480) 2009; 149
Klosterman, Hufkens, Gray, Melaas, Sonnentag, Lavine, Mitchell, Norman, Friedl, Richardson (bb0205) 2014; 11
Colomina, Molina (bb0065) 2014; 92
Garrity, Bohrer, Maurer, Mueller, Vogel, Curtis (bb0135) 2011; 151
Xin, Olofsson, Zhu, Tan, Woodcock (bb0510) 2013; 135
Liu, Liang, Schwartz, Donnelly, Wang, Schaaf, Liu (bb0255) 2015; 160
Zhang, Wang, Gao, Liu, Schaaf, Friedl, Yu, Jayavelu, Gray, Liu, Yan, Henebry (bb0535) 2017; 190
Storey, Choate, Lee (bb0430) 2014; 6
Polgar, Primack (bb0350) 2013; 21
Liang, Schwartz, Fei (bb0235) 2011; 115
Smith (10.1016/j.rse.2019.01.010_bb0400) 2009; 140
Zhang (10.1016/j.rse.2019.01.010_bb0520) 2015; 156
Duncanson (10.1016/j.rse.2019.01.010_bb0100) 2014; 154
Woodget (10.1016/j.rse.2019.01.010_bb0505) 2017; 4
Liu (10.1016/j.rse.2019.01.010_bb0255) 2015; 160
Zhang (10.1016/j.rse.2019.01.010_bb0525) 2003; 84
Tsingas (10.1016/j.rse.2019.01.010_bb0460) 1992
Armitage (10.1016/j.rse.2019.01.010_bb0010) 2013; 4
Anderson (10.1016/j.rse.2019.01.010_bb0005) 2013; 11
Delbart (10.1016/j.rse.2019.01.010_bb0075) 2005; 97
Fisher (10.1016/j.rse.2019.01.010_bb0130) 2006; 100
Polgar (10.1016/j.rse.2019.01.010_bb0350) 2013; 21
Donnelly (10.1016/j.rse.2019.01.010_bb0095) 2017; 243
Moore (10.1016/j.rse.2019.01.010_bb0300) 2016; 13
Liang (10.1016/j.rse.2019.01.010_bb0235) 2011; 115
Torresan (10.1016/j.rse.2019.01.010_bb0455) 2017; 38
Polgar (10.1016/j.rse.2019.01.010_bb0345) 2011; 191
Elmore (10.1016/j.rse.2019.01.010_bb0115) 2012; 18
Lisein (10.1016/j.rse.2019.01.010_bb0250) 2015
Panagiotidis (10.1016/j.rse.2019.01.010_bb0335) 2016; 1–19
Ke (10.1016/j.rse.2019.01.010_bb0190) 2011; 32
Sonnentag (10.1016/j.rse.2019.01.010_bb0415) 2012; 152
Garrity (10.1016/j.rse.2019.01.010_bb0135) 2011; 151
Mei (10.1016/j.rse.2019.01.010_bb0265) 2004; 36
Tang (10.1016/j.rse.2019.01.010_bb0435) 2016; 7
Hmimina (10.1016/j.rse.2019.01.010_bb0155) 2013; 132
Morris (10.1016/j.rse.2019.01.010_bb0315) 2013; 5
Campoy (10.1016/j.rse.2019.01.010_bb0055) 2011; 130
Brown (10.1016/j.rse.2019.01.010_bb0045) 2017; 247
Zaki (10.1016/j.rse.2019.01.010_bb0515) 2015
Zhao (10.1016/j.rse.2019.01.010_bb0540) 2012; 10
Schaber (10.1016/j.rse.2019.01.010_bb0390) 2003; 47
Ibáñez (10.1016/j.rse.2019.01.010_bb0175) 2010; 365
White (10.1016/j.rse.2019.01.010_bb0490) 2009; 15
Thompson (10.1016/j.rse.2019.01.010_bb0450) 2008; 18
Lhermitte (10.1016/j.rse.2019.01.010_bb0220) 2011; 115
Schwartz (10.1016/j.rse.2019.01.010_bb0395) 2013; 169
Schaber (10.1016/j.rse.2019.01.010_bb0385) 2002
Richardson (10.1016/j.rse.2019.01.010_bb0360) 2009; 19
Thiel (10.1016/j.rse.2019.01.010_bb0445) 2016
White (10.1016/j.rse.2019.01.010_bb0495) 2014; 148
Higgins (10.1016/j.rse.2019.01.010_bb0145) 2011; 38
Berra (10.1016/j.rse.2019.01.010_bb0035) 2017; 55
Thackeray (10.1016/j.rse.2019.01.010_bb0440) 2010; 16
Klosterman (10.1016/j.rse.2019.01.010_bb0205) 2014; 11
Dandois (10.1016/j.rse.2019.01.010_bb0070) 2013; 136
Storey (10.1016/j.rse.2019.01.010_bb0430) 2014; 6
Zhang (10.1016/j.rse.2019.01.010_bb0535) 2017; 190
D'Odorico (10.1016/j.rse.2019.01.010_bb0090) 2015; 214–215
Peng (10.1016/j.rse.2019.01.010_bb0340) 2017; 132
Miao (10.1016/j.rse.2019.01.010_bb0285) 2013; 5
Colomina (10.1016/j.rse.2019.01.010_bb0065) 2014; 92
Hunt (10.1016/j.rse.2019.01.010_bb0165) 2010; 2
Lim (10.1016/j.rse.2019.01.010_bb0240) 2015; 33
Vitasse (10.1016/j.rse.2019.01.010_bb0480) 2009; 149
Delbart (10.1016/j.rse.2019.01.010_bb0080) 2015; 160
Hill (10.1016/j.rse.2019.01.010_bb0150) 2010; 13
Smith (10.1016/j.rse.2019.01.010_bb0405) 1999; 20
Klosterman (10.1016/j.rse.2019.01.010_bb0210) 2018; 248
Chuine (10.1016/j.rse.2019.01.010_bb0060) 2013
Hunter (10.1016/j.rse.2019.01.010_bb0170) 1992
Richardson (10.1016/j.rse.2019.01.010_bb0355) 2009
Baumann (10.1016/j.rse.2019.01.010_bb0020) 2017; 54
Lin (10.1016/j.rse.2019.01.010_bb0245) 2018; 142
Melaas (10.1016/j.rse.2019.01.010_bb0270) 2013; 132
Eastman (10.1016/j.rse.2019.01.010_bb0105) 2013; 5
Ryu (10.1016/j.rse.2019.01.010_bb0375) 2012; 126
Ryan (10.1016/j.rse.2019.01.010_bb0370) 2012
Rodriguez-Galiano (10.1016/j.rse.2019.01.010_bb0365) 2015; 42
Klosterman (10.1016/j.rse.2019.01.010_bb0200) 2017; 17
Morisette (10.1016/j.rse.2019.01.010_bb0310) 2009; 7
Berra (10.1016/j.rse.2019.01.010_bb0025) 2015
Delpierre (10.1016/j.rse.2019.01.010_bb0085) 2017; 234
Morin (10.1016/j.rse.2019.01.010_bb0305) 2010; 186
St-Onge (10.1016/j.rse.2019.01.010_bb0425) 2015; 6
Liu (10.1016/j.rse.2019.01.010_bb0260) 2017; 237–238
Mizunuma (10.1016/j.rse.2019.01.010_bb0295) 2013; 27
Newcastle University (10.1016/j.rse.2019.01.010_bb0325) 2015
USGS (10.1016/j.rse.2019.01.010_bb0470) 2016
Berra (10.1016/j.rse.2019.01.010_bb0030) 2016
Xin (10.1016/j.rse.2019.01.010_bb0510) 2013; 135
Filippa (10.1016/j.rse.2019.01.010_bb0120) 2016; 220
USGS (10.1016/j.rse.2019.01.010_bb0465) 2016
Menzel (10.1016/j.rse.2019.01.010_bb0280) 2006; 12
Hernandez (10.1016/j.rse.2019.01.010_bb0140) 2016; 2016
Nasahara (10.1016/j.rse.2019.01.010_bb0320) 2015; 30
Li (10.1016/j.rse.2019.01.010_bb0225) 2016; 13
Fisher (10.1016/j.rse.2019.01.010_bb0125) 2007; 109
Norby (10.1016/j.rse.2019.01.010_bb0330) 2003; 9
Melaas (10.1016/j.rse.2019.01.010_bb0275) 2016; 186
Hufkens (10.1016/j.rse.2019.01.010_bb0160) 2012; 117
Sparks (10.1016/j.rse.2019.01.010_bb0420) 2014; 60
Wilkinson (10.1016/j.rse.2019.01.010_bb0500) 2012; 9
Jönsson (10.1016/j.rse.2019.01.010_bb0185) 2018; 10
Keenan (10.1016/j.rse.2019.01.010_bb0195) 2014; 24
Liang (10.1016/j.rse.2019.01.010_bb0230) 2009; 24
Wang (10.1016/j.rse.2019.01.010_bb0485) 2017; 55
Snavely (10.1016/j.rse.2019.01.010_bb0410) 2008; 80
Verhoeven (10.1016/j.rse.2019.01.010_bb0475) 2012; 19
Lechowicz (10.1016/j.rse.2019.01.010_bb0215) 1984; 124
Bartholomé (10.1016/j.rse.2019.01.010_bb0015) 2005; 26
James (10.1016/j.rse.2019.01.010_bb0180) 2017; 280
Samiappan (10.1016/j.rse.2019.01.010_bb0380) 2017; 38
Brown (10.1016/j.rse.2019.01.010_bb0040) 2016; 14
Edson (10.1016/j.rse.2019.01.010_bb0110) 2011; 3
Michez (10.1016/j.rse.2019.01.010_bb0290) 2016; 188
Burkart (10.1016/j.rse.2019.01.010_bb0050) 2018; 19
Zhang (10.1016/j.rse.2019.01.010_bb0530) 2009; 30
References_xml – volume: 140
  start-page: 476
  year: 2009
  end-page: 486
  ident: bb0400
  article-title: Use and misuse of the reduced major axis for line-fitting
  publication-title: Am. J. Phys. Anthropol.
– volume: 135
  start-page: 234
  year: 2013
  end-page: 247
  ident: bb0510
  article-title: Toward near real-time monitoring of forest disturbance by fusion of MODIS and Landsat data
  publication-title: Remote Sens. Environ.
– start-page: 275
  year: 2013
  end-page: 288
  ident: bb0060
  article-title: Plant Development Models
  publication-title: Phenology: An Integrative Environmental Science
– volume: 160
  start-page: 156
  year: 2015
  end-page: 165
  ident: bb0255
  article-title: Evaluating the potential of MODIS satellite data to track temporal dynamics of autumn phenology in a temperate mixed forest
  publication-title: Remote Sens. Environ.
– volume: 148
  start-page: 97
  year: 2014
  end-page: 107
  ident: bb0495
  article-title: Remote sensing of spring phenology in northeastern forests: a comparison of methods, field metrics and sources of uncertainty
  publication-title: Remote Sens. Environ.
– volume: 4
  start-page: 1
  year: 2017
  end-page: 20
  ident: bb0505
  article-title: Drones and digital photogrammetry: from classifications to continuums for monitoring river habitat and hydromorphology
  publication-title: Wiley Interdiscip. Rev. Water
– year: 2015
  ident: bb0325
  article-title: Cockle Park Weather Station Monthly Records
– volume: 156
  start-page: 457
  year: 2015
  end-page: 472
  ident: bb0520
  article-title: Reconstruction of a complete global time series of daily vegetation index trajectory from long-term AVHRR data
  publication-title: Remote Sens. Environ.
– volume: 15
  start-page: 2335
  year: 2009
  end-page: 2359
  ident: bb0490
  article-title: Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982–2006
  publication-title: Glob. Chang. Biol.
– volume: 214–215
  start-page: 25
  year: 2015
  end-page: 38
  ident: bb0090
  article-title: The match and mismatch between photosynthesis and land surface phenology of deciduous forests
  publication-title: Agric. For. Meteorol.
– start-page: 189
  year: 2016
  ident: bb0445
  article-title: Derivation of forest parameters from stereographic UAV data–a comparison with airborne lidar data
  publication-title: Living Planet Symposium
– start-page: 10
  year: 2015
  ident: bb0250
  article-title: Discrimination of deciduous tree species from time series of unmanned aerial system imagery
  publication-title: PLoS ONE
– volume: 13
  start-page: 86
  year: 2010
  end-page: 99
  ident: bb0150
  article-title: Mapping tree species in temperate deciduous woodland using time-series multi-spectral data
  publication-title: Appl. Veg. Sci.
– volume: 234
  start-page: 1
  year: 2017
  end-page: 10
  ident: bb0085
  article-title: Tree phenological ranks repeat from year to year and correlate with growth in temperate deciduous forests
  publication-title: Agric. For. Meteorol.
– volume: 152
  start-page: 159
  year: 2012
  end-page: 177
  ident: bb0415
  article-title: Digital repeat photography for phenological research in forest ecosystems
  publication-title: Agric. For. Meteorol.
– volume: 151
  start-page: 1741
  year: 2011
  end-page: 1752
  ident: bb0135
  article-title: A comparison of multiple phenology data sources for estimating seasonal transitions in deciduous forest carbon exchange
  publication-title: Agric. For. Meteorol.
– volume: 19
  start-page: 134
  year: 2018
  end-page: 146
  ident: bb0050
  article-title: Phenological analysis of unmanned aerial vehicle based time series of barley imagery with high temporal resolution
  publication-title: Precis. Agric.
– volume: 13
  start-page: 5085
  year: 2016
  end-page: 5102
  ident: bb0300
  article-title: Reviews and syntheses: Australian vegetation phenology: new insights from satellite remote sensing and digital repeat photography
  publication-title: Biogeosciences
– volume: 13
  start-page: 1330
  year: 2016
  end-page: 1334
  ident: bb0225
  article-title: Individual tree delineation in windbreaks using airborne-laser-scanning data and unmanned aerial vehicle stereo images
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 24
  start-page: 465
  year: 2009
  end-page: 472
  ident: bb0230
  article-title: Landscape phenology: an integrative approach to seasonal vegetation dynamics
  publication-title: Landsc. Ecol.
– volume: 109
  start-page: 261
  year: 2007
  end-page: 273
  ident: bb0125
  article-title: Cross-scalar satellite phenology from ground, Landsat, and MODIS data
  publication-title: Remote Sens. Environ.
– volume: 4
  start-page: 427
  year: 2013
  end-page: 435
  ident: bb0010
  article-title: Probability of cloud-free observation conditions across Great Britain estimated using MODIS cloud mask
  publication-title: Remote Sens. Lett.
– volume: 20
  start-page: 2653
  year: 1999
  end-page: 2662
  ident: bb0405
  article-title: The use of the empirical line method to calibrate remotely sensed data to reflectance
  publication-title: Int. J. Remote Sens.
– volume: 11
  start-page: 138
  year: 2013
  end-page: 146
  ident: bb0005
  article-title: Lightweight unmanned aerial vehicles will revolutionize spatial ecology
  publication-title: Front. Ecol. Environ.
– volume: 38
  start-page: 2165
  year: 2011
  end-page: 2175
  ident: bb0145
  article-title: Is there a temporal niche separation in the leaf phenology of savanna trees and grasses?
  publication-title: J. Biogeogr.
– volume: 10
  start-page: 635
  year: 2018
  ident: bb0185
  article-title: A method for robust estimation of vegetation seasonality from Landsat and Sentinel-2 time series data
  publication-title: Remote Sens.
– volume: 27
  start-page: 196
  year: 2013
  end-page: 207
  ident: bb0295
  article-title: The relationship between carbon dioxide uptake and canopy colour from two camera systems in a deciduous forest in southern England
  publication-title: Funct. Ecol.
– volume: 7
  start-page: 253
  year: 2009
  end-page: 260
  ident: bb0310
  article-title: Tracking the rhythm of the seasons in the face of global change: phenological research in the 21st century
  publication-title: Front. Ecol. Environ.
– volume: 5
  start-page: 2200
  year: 2013
  end-page: 2218
  ident: bb0315
  article-title: Exploring the potential for automatic extraction of vegetation phenological metrics from traffic webcams
  publication-title: Remote Sens.
– volume: 33
  start-page: 605
  year: 2015
  end-page: 614
  ident: bb0240
  article-title: Calculation of tree height and canopy crown from drone images using segmentation
  publication-title: J. Korean Soc. Surv. Geodesy Photogramm. Cartography
– volume: 5
  start-page: 4799
  year: 2013
  end-page: 4818
  ident: bb0105
  article-title: Global trends in seasonality of normalized difference vegetation index (NDVI), 1982–2011
  publication-title: Remote Sens.
– volume: 149
  start-page: 735
  year: 2009
  end-page: 744
  ident: bb0480
  article-title: Leaf phenology sensitivity to temperature in European trees: do within-species populations exhibit similar responses?
  publication-title: Agric. For. Meteorol.
– year: 1992
  ident: bb0460
  article-title: Automatisierung der Punktubertragung in der Aerotriangulation durch mehrfache digitale Bildzuordnung
– volume: 136
  start-page: 259
  year: 2013
  end-page: 276
  ident: bb0070
  article-title: High spatial resolution three-dimensional mapping of vegetation spectral dynamics using computer vision
  publication-title: Remote Sens. Environ.
– volume: 30
  start-page: 211
  year: 2015
  end-page: 223
  ident: bb0320
  article-title: Review: development of an in situ observation network for terrestrial ecological remote sensing: the Phenological Eyes Network (PEN)
  publication-title: Ecol. Res.
– volume: 160
  start-page: 273
  year: 2015
  end-page: 280
  ident: bb0080
  article-title: Comparing land surface phenology with leafing and flowering observations from the PlantWatch citizen network
  publication-title: Remote Sens. Environ.
– volume: 21
  start-page: 111
  year: 2013
  end-page: 116
  ident: bb0350
  article-title: Leaf out phenology in temperate forests
  publication-title: Biodivers. Sci.
– volume: 24
  start-page: 1478
  year: 2014
  end-page: 1489
  ident: bb0195
  article-title: Tracking forest phenology and seasonal physiology using digital repeat photography: a critical assessment
  publication-title: Ecol. Appl.
– start-page: 237
  year: 2015
  end-page: 242
  ident: bb0515
  article-title: Individual tree crown (ITC) delineation using watershed transformation algorithm for tropical lowland dipterocarp
  publication-title: 2015 International Conference on Space Science and Communication (IconSpace)
– volume: 30
  start-page: 2061
  year: 2009
  end-page: 2074
  ident: bb0530
  article-title: Sensitivity of vegetation phenology detection to the temporal resolution of satellite data
  publication-title: Int. J. Remote Sens.
– volume: 124
  start-page: 821
  year: 1984
  end-page: 842
  ident: bb0215
  article-title: Why do temperate deciduous trees leaf out at different times? Adaptation and ecology of forest communities
  publication-title: Am. Nat.
– start-page: 42
  year: 2016
  ident: bb0465
  article-title: Landsat 4-7 climate data record (CDR) surface reflectance
  publication-title: Product Guide
– volume: 117
  start-page: 307
  year: 2012
  end-page: 321
  ident: bb0160
  article-title: Linking near-surface and satellite remote sensing measurements of deciduous broadleaf forest phenology
  publication-title: Remote Sens. Environ.
– volume: 7
  year: 2016
  ident: bb0435
  article-title: Emerging opportunities and challenges in phenology: a review
  publication-title: Ecosphere
– start-page: 597
  year: 1992
  end-page: 604
  ident: bb0170
  article-title: Predicting the timing of budburst in temperate trees
  publication-title: J. Appl. Ecol.
– volume: 97
  start-page: 26
  year: 2005
  end-page: 38
  ident: bb0075
  article-title: Determination of phenological dates in boreal regions using normalized difference water index
  publication-title: Remote Sens. Environ.
– volume: 16
  start-page: 3304
  year: 2010
  end-page: 3313
  ident: bb0440
  article-title: Trophic level asynchrony in rates of phenological change for marine, freshwater and terrestrial environments
  publication-title: Glob. Chang. Biol.
– volume: 55
  start-page: 4878
  year: 2017
  end-page: 4886
  ident: bb0035
  article-title: Commercial off-the-shelf digital cameras on unmanned aerial vehicles for multitemporal monitoring of vegetation reflectance and NDVI
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 186
  start-page: 900
  year: 2010
  end-page: 910
  ident: bb0305
  article-title: Changes in leaf phenology of three European oak species in response to experimental climate change
  publication-title: New Phytol.
– volume: 19
  start-page: 1417
  year: 2009
  end-page: 1428
  ident: bb0360
  article-title: Near-surface remote sensing of spatial and temporal variation in canopy phenology
  publication-title: Ecol. Appl.
– volume: 247
  start-page: 280
  year: 2017
  end-page: 292
  ident: bb0045
  article-title: On the relationship between continuous measures of canopy greenness derived using near-surface remote sensing and satellite-derived vegetation products
  publication-title: Agric. For. Meteorol.
– start-page: 146
  year: 2002
  ident: bb0385
  article-title: Phenology in Germany in the 20th century: methods, analyses and models
  publication-title: Department of Geoecology
– volume: 115
  start-page: 143
  year: 2011
  end-page: 157
  ident: bb0235
  article-title: Validating satellite phenology through intensive ground observation and landscape scaling in a mixed seasonal forest
  publication-title: Remote Sens. Environ.
– volume: 47
  start-page: 193
  year: 2003
  end-page: 201
  ident: bb0390
  article-title: Physiology-based phenology models for forest tree species in Germany
  publication-title: Int. J. Biometeorol.
– volume: 132
  start-page: 185
  year: 2017
  end-page: 198
  ident: bb0340
  article-title: Scaling effects on spring phenology detections from MODIS data at multiple spatial resolutions over the contiguous United States
  publication-title: ISPRS J. Photogramm. Remote Sens.
– start-page: 27
  year: 2016
  ident: bb0470
  article-title: Provisional landsat 8 surface reflectance code (LaSRC) product
  publication-title: Product Guide
– volume: 84
  start-page: 471
  year: 2003
  end-page: 475
  ident: bb0525
  article-title: Monitoring vegetation phenology using MODIS
  publication-title: Remote Sens. Environ.
– volume: 9
  start-page: 1792
  year: 2003
  end-page: 1801
  ident: bb0330
  article-title: Phenological responses in maple to experimental atmospheric warming and CO
  publication-title: Glob. Chang. Biol.
– volume: 42
  start-page: 2253
  year: 2015
  end-page: 2260
  ident: bb0365
  article-title: Intercomparison of satellite sensor land surface phenology and ground phenology in Europe
  publication-title: Geophys. Res. Lett.
– volume: 2
  start-page: 290
  year: 2010
  end-page: 305
  ident: bb0165
  article-title: Acquisition of NIR-green-blue digital photographs from unmanned aircraft for crop monitoring
  publication-title: Remote Sens.
– volume: 6
  start-page: 3899
  year: 2015
  end-page: 3922
  ident: bb0425
  article-title: Characterizing the height structure and composition of a boreal Forest using an individual tree crown approach applied to photogrammetric point clouds
  publication-title: Forests
– start-page: 87
  year: 2009
  end-page: 117
  ident: bb0355
  article-title: Phenological differences between understory and overstory
  publication-title: Phenology of Ecosystem Processes
– volume: 55
  start-page: 3885
  year: 2017
  end-page: 3899
  ident: bb0485
  article-title: Fusion of Landsat 8 OLI and Sentinel-2 MSI data
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 9
  start-page: 5373
  year: 2012
  end-page: 5389
  ident: bb0500
  article-title: Inter-annual variation of carbon uptake by a plantation oak woodland in south-eastern England
  publication-title: Biogeosciences
– volume: 10
  start-page: 65
  year: 2012
  end-page: 72
  ident: bb0540
  article-title: Using digital cameras for comparative phenological monitoring in an evergreen broad-leaved forest and a seasonal rain forest
  publication-title: Eco. Inform.
– volume: 169
  start-page: 136
  year: 2013
  end-page: 147
  ident: bb0395
  article-title: Comparing carbon flux and high-resolution spring phenological measurements in a northern mixed forest
  publication-title: Agric. For. Meteorol.
– volume: 80
  start-page: 189
  year: 2008
  end-page: 210
  ident: bb0410
  article-title: Modeling the world from Internet photo collections
  publication-title: Int. J. Comput. Vis.
– volume: 38
  start-page: 2427
  year: 2017
  end-page: 2447
  ident: bb0455
  article-title: Forestry applications of UAVs in Europe: a review
  publication-title: Int. J. Remote Sens.
– volume: 243
  start-page: 55
  year: 2017
  end-page: 67
  ident: bb0095
  article-title: Interspecific and interannual variation in the duration of spring phenophases in a northern mixed forest
  publication-title: Agric. For. Meteorol.
– volume: 14
  start-page: 84
  year: 2016
  end-page: 93
  ident: bb0040
  article-title: Using phenocams to monitor our changing Earth: toward a global phenocam network
  publication-title: Front. Ecol. Environ.
– volume: 188
  start-page: 1
  year: 2016
  end-page: 19
  ident: bb0290
  article-title: Classification of riparian forest species and health condition using multi-temporal and hyperspatial imagery from unmanned aerial system
  publication-title: Environ. Monit. Assess.
– volume: 92
  start-page: 79
  year: 2014
  end-page: 97
  ident: bb0065
  article-title: Unmanned aerial systems for photogrammetry and remote sensing: a review
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 3
  start-page: 2494
  year: 2011
  ident: bb0110
  article-title: Airborne light detection and ranging (LiDAR) for individual tree stem location, height, and biomass measurements
  publication-title: Remote Sens.
– volume: 186
  start-page: 452
  year: 2016
  end-page: 464
  ident: bb0275
  article-title: Multisite analysis of land surface phenology in North American temperate and boreal deciduous forests from Landsat
  publication-title: Remote Sens. Environ.
– volume: 191
  start-page: 926
  year: 2011
  end-page: 941
  ident: bb0345
  article-title: Leaf-out phenology of temperate woody plants: from trees to ecosystems
  publication-title: New Phytol.
– volume: 130
  start-page: 357
  year: 2011
  end-page: 372
  ident: bb0055
  article-title: Dormancy in temperate fruit trees in a global warming context: a review
  publication-title: Sci. Hortic.
– volume: 11
  start-page: 4305
  year: 2014
  end-page: 4320
  ident: bb0205
  article-title: Evaluating remote sensing of deciduous forest phenology at multiple spatial scales using PhenoCam imagery
  publication-title: Biogeosciences
– volume: 220
  start-page: 141
  year: 2016
  end-page: 150
  ident: bb0120
  article-title: Phenopix: a R package for image-based vegetation phenology
  publication-title: Agric. For. Meteorol.
– volume: 142
  start-page: 174
  year: 2018
  end-page: 189
  ident: bb0245
  article-title: Detecting newly grown tree leaves from unmanned-aerial-vehicle images using hyperspectral target detection techniques
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 26
  start-page: 1959
  year: 2005
  end-page: 1977
  ident: bb0015
  article-title: GLC2000: a new approach to global land cover mapping from Earth observation data
  publication-title: Int. J. Remote Sens.
– volume: 132
  start-page: 145
  year: 2013
  end-page: 158
  ident: bb0155
  article-title: Evaluation of the potential of MODIS satellite data to predict vegetation phenology in different biomes: an investigation using ground-based NDVI measurements
  publication-title: Remote Sens. Environ.
– volume: 17
  start-page: 2852
  year: 2017
  ident: bb0200
  article-title: Observing spring and fall phenology in a deciduous forest with aerial drone imagery
  publication-title: Sensors
– volume: 248
  start-page: 397
  year: 2018
  end-page: 407
  ident: bb0210
  article-title: Fine-scale perspectives on landscape phenology from unmanned aerial vehicle (UAV) photography
  publication-title: Agric. For. Meteorol.
– volume: 190
  start-page: 318
  year: 2017
  end-page: 330
  ident: bb0535
  article-title: Exploration of scaling effects on coarse resolution land surface phenology
  publication-title: Remote Sens. Environ.
– volume: 280
  start-page: 51
  year: 2017
  end-page: 66
  ident: bb0180
  article-title: Optimising UAV topographic surveys processed with structure-from-motion: ground control quality, quantity and bundle adjustment
  publication-title: Geomorphology
– volume: 38
  start-page: 2861
  year: 2017
  end-page: 2882
  ident: bb0380
  article-title: Mapping of invasive phragmites (common reed) in Gulf of Mexico coastal wetlands using multispectral imagery and small unmanned aerial systems
  publication-title: Int. J. Remote Sens.
– volume: 100
  start-page: 265
  year: 2006
  end-page: 279
  ident: bb0130
  article-title: Green leaf phenology at Landsat resolution: scaling from the field to the satellite
  publication-title: Remote Sens. Environ.
– volume: 5
  start-page: 5193
  year: 2013
  end-page: 5208
  ident: bb0285
  article-title: Analysis of the phenology in the Mongolian plateau by inter-comparison of global vegetation datasets
  publication-title: Remote Sens.
– year: 2012
  ident: bb0370
  article-title: Assessing the Phenology of Southern Tropical Africa: A Comparison of Hemispherical Photography, Scatterometry, and Optical/NIR Remote Sensing
– volume: 1–19
  year: 2016
  ident: bb0335
  article-title: Determining tree height and crown diameter from high-resolution UAV imagery
  publication-title: Int. J. Remote Sens.
– volume: 60
  start-page: 87
  year: 2014
  end-page: 89
  ident: bb0420
  article-title: Local-scale adaptation to climate change: the village flower festival
  publication-title: Clim. Res.
– volume: 18
  start-page: 656
  year: 2012
  end-page: 674
  ident: bb0115
  article-title: Landscape controls on the timing of spring, autumn, and growing season length in mid-Atlantic forests
  publication-title: Glob. Chang. Biol.
– volume: 154
  start-page: 378
  year: 2014
  end-page: 386
  ident: bb0100
  article-title: An efficient, multi-layered crown delineation algorithm for mapping individual tree structure across multiple ecosystems
  publication-title: Remote Sens. Environ.
– volume: 54
  start-page: 72
  year: 2017
  end-page: 83
  ident: bb0020
  article-title: Phenology from Landsat when data is scarce: using MODIS and Dynamic Time-Warping to combine multi-year Landsat imagery to derive annual phenology curves
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 126
  start-page: 116
  year: 2012
  end-page: 125
  ident: bb0375
  article-title: Continuous observation of tree leaf area index at ecosystem scale using upward-pointing digital cameras
  publication-title: Remote Sens. Environ.
– volume: 115
  start-page: 3129
  year: 2011
  end-page: 3152
  ident: bb0220
  article-title: A comparison of time series similarity measures for classification and change detection of ecosystem dynamics
  publication-title: Remote Sens. Environ.
– volume: 32
  start-page: 3625
  year: 2011
  end-page: 3647
  ident: bb0190
  article-title: A comparison of three methods for automatic tree crown detection and delineation from high spatial resolution imagery
  publication-title: Int. J. Remote Sens.
– volume: 132
  start-page: 176
  year: 2013
  end-page: 185
  ident: bb0270
  article-title: Detecting interannual variation in deciduous broadleaf forest phenology using Landsat TM/ETM plus data
  publication-title: Remote Sens. Environ.
– volume: 18
  start-page: 95
  year: 2008
  end-page: 104
  ident: bb0450
  article-title: Is spring starting earlier?
  publication-title: The Holocene
– volume: 2016
  start-page: 25
  year: 2016
  ident: bb0140
  article-title: Using High Resolution UAV Imagery to Estimate Tree Variables in
– start-page: 3496
  year: 2016
  end-page: 3499
  ident: bb0030
  article-title: Use of a digital camera onboard a UAV to monitor spring phenology at individual tree level
  publication-title: 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
– volume: 365
  start-page: 3247
  year: 2010
  end-page: 3260
  ident: bb0175
  article-title: Forecasting phenology under global warming
  publication-title: Philos. Trans. R. Soc. Lond. B
– volume: 12
  start-page: 1969
  year: 2006
  end-page: 1976
  ident: bb0280
  article-title: European phenological response to climate change matches the warming pattern
  publication-title: Glob. Chang. Biol.
– volume: 19
  start-page: 132
  year: 2012
  end-page: 160
  ident: bb0475
  article-title: Near-infrared aerial crop mark archaeology: from its historical use to current digital implementations
  publication-title: J. Archaeol. Method Theory
– volume: 237–238
  start-page: 311
  year: 2017
  end-page: 325
  ident: bb0260
  article-title: Using data from Landsat, MODIS, VIIRS and PhenoCams to monitor the phenology of California oak/grass savanna and open grassland across spatial scales
  publication-title: Agric. For. Meteorol.
– start-page: 207
  year: 2015
  end-page: 214
  ident: bb0025
  article-title: Estimation of the spectral sensitivity functions of un-modified and modified commercial off-the-shelf digital cameras to enable their use as a multispectral imaging system for UAVs
  publication-title: Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci.
– volume: 36
  start-page: 218
  year: 2004
  end-page: 223
  ident: bb0265
  article-title: Tree crown delineation from digital elevation models and high resolution imagery
  publication-title: Proc. IAPRS
– volume: 6
  start-page: 11127
  year: 2014
  end-page: 11152
  ident: bb0430
  article-title: Landsat 8 operational land imager on-orbit geometric calibration and performance
  publication-title: Remote Sens.
– year: 2015
  ident: 10.1016/j.rse.2019.01.010_bb0325
– volume: 148
  start-page: 97
  year: 2014
  ident: 10.1016/j.rse.2019.01.010_bb0495
  article-title: Remote sensing of spring phenology in northeastern forests: a comparison of methods, field metrics and sources of uncertainty
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.03.017
– volume: 154
  start-page: 378
  year: 2014
  ident: 10.1016/j.rse.2019.01.010_bb0100
  article-title: An efficient, multi-layered crown delineation algorithm for mapping individual tree structure across multiple ecosystems
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.07.044
– start-page: 27
  year: 2016
  ident: 10.1016/j.rse.2019.01.010_bb0470
  article-title: Provisional landsat 8 surface reflectance code (LaSRC) product
– volume: 234
  start-page: 1
  year: 2017
  ident: 10.1016/j.rse.2019.01.010_bb0085
  article-title: Tree phenological ranks repeat from year to year and correlate with growth in temperate deciduous forests
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2016.12.008
– volume: 14
  start-page: 84
  year: 2016
  ident: 10.1016/j.rse.2019.01.010_bb0040
  article-title: Using phenocams to monitor our changing Earth: toward a global phenocam network
  publication-title: Front. Ecol. Environ.
  doi: 10.1002/fee.1222
– volume: 237–238
  start-page: 311
  year: 2017
  ident: 10.1016/j.rse.2019.01.010_bb0260
  article-title: Using data from Landsat, MODIS, VIIRS and PhenoCams to monitor the phenology of California oak/grass savanna and open grassland across spatial scales
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2017.02.026
– volume: 100
  start-page: 265
  year: 2006
  ident: 10.1016/j.rse.2019.01.010_bb0130
  article-title: Green leaf phenology at Landsat resolution: scaling from the field to the satellite
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2005.10.022
– volume: 2
  start-page: 290
  year: 2010
  ident: 10.1016/j.rse.2019.01.010_bb0165
  article-title: Acquisition of NIR-green-blue digital photographs from unmanned aircraft for crop monitoring
  publication-title: Remote Sens.
  doi: 10.3390/rs2010290
– volume: 13
  start-page: 5085
  year: 2016
  ident: 10.1016/j.rse.2019.01.010_bb0300
  article-title: Reviews and syntheses: Australian vegetation phenology: new insights from satellite remote sensing and digital repeat photography
  publication-title: Biogeosciences
  doi: 10.5194/bg-13-5085-2016
– volume: 365
  start-page: 3247
  year: 2010
  ident: 10.1016/j.rse.2019.01.010_bb0175
  article-title: Forecasting phenology under global warming
  publication-title: Philos. Trans. R. Soc. Lond. B
  doi: 10.1098/rstb.2010.0120
– volume: 130
  start-page: 357
  year: 2011
  ident: 10.1016/j.rse.2019.01.010_bb0055
  article-title: Dormancy in temperate fruit trees in a global warming context: a review
  publication-title: Sci. Hortic.
  doi: 10.1016/j.scienta.2011.07.011
– volume: 97
  start-page: 26
  year: 2005
  ident: 10.1016/j.rse.2019.01.010_bb0075
  article-title: Determination of phenological dates in boreal regions using normalized difference water index
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2005.03.011
– volume: 169
  start-page: 136
  year: 2013
  ident: 10.1016/j.rse.2019.01.010_bb0395
  article-title: Comparing carbon flux and high-resolution spring phenological measurements in a northern mixed forest
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2012.10.014
– volume: 4
  start-page: 427
  year: 2013
  ident: 10.1016/j.rse.2019.01.010_bb0010
  article-title: Probability of cloud-free observation conditions across Great Britain estimated using MODIS cloud mask
  publication-title: Remote Sens. Lett.
  doi: 10.1080/2150704X.2012.744486
– volume: 38
  start-page: 2165
  year: 2011
  ident: 10.1016/j.rse.2019.01.010_bb0145
  article-title: Is there a temporal niche separation in the leaf phenology of savanna trees and grasses?
  publication-title: J. Biogeogr.
  doi: 10.1111/j.1365-2699.2011.02549.x
– volume: 16
  start-page: 3304
  year: 2010
  ident: 10.1016/j.rse.2019.01.010_bb0440
  article-title: Trophic level asynchrony in rates of phenological change for marine, freshwater and terrestrial environments
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/j.1365-2486.2010.02165.x
– volume: 26
  start-page: 1959
  year: 2005
  ident: 10.1016/j.rse.2019.01.010_bb0015
  article-title: GLC2000: a new approach to global land cover mapping from Earth observation data
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160412331291297
– volume: 7
  year: 2016
  ident: 10.1016/j.rse.2019.01.010_bb0435
  article-title: Emerging opportunities and challenges in phenology: a review
  publication-title: Ecosphere
  doi: 10.1002/ecs2.1436
– volume: 5
  start-page: 2200
  year: 2013
  ident: 10.1016/j.rse.2019.01.010_bb0315
  article-title: Exploring the potential for automatic extraction of vegetation phenological metrics from traffic webcams
  publication-title: Remote Sens.
  doi: 10.3390/rs5052200
– volume: 186
  start-page: 452
  year: 2016
  ident: 10.1016/j.rse.2019.01.010_bb0275
  article-title: Multisite analysis of land surface phenology in North American temperate and boreal deciduous forests from Landsat
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.09.014
– start-page: 42
  year: 2016
  ident: 10.1016/j.rse.2019.01.010_bb0465
  article-title: Landsat 4-7 climate data record (CDR) surface reflectance
– volume: 136
  start-page: 259
  year: 2013
  ident: 10.1016/j.rse.2019.01.010_bb0070
  article-title: High spatial resolution three-dimensional mapping of vegetation spectral dynamics using computer vision
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.04.005
– start-page: 275
  year: 2013
  ident: 10.1016/j.rse.2019.01.010_bb0060
  article-title: Plant Development Models
– volume: 54
  start-page: 72
  year: 2017
  ident: 10.1016/j.rse.2019.01.010_bb0020
  article-title: Phenology from Landsat when data is scarce: using MODIS and Dynamic Time-Warping to combine multi-year Landsat imagery to derive annual phenology curves
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  doi: 10.1016/j.jag.2016.09.005
– volume: 1–19
  year: 2016
  ident: 10.1016/j.rse.2019.01.010_bb0335
  article-title: Determining tree height and crown diameter from high-resolution UAV imagery
  publication-title: Int. J. Remote Sens.
– volume: 11
  start-page: 138
  year: 2013
  ident: 10.1016/j.rse.2019.01.010_bb0005
  article-title: Lightweight unmanned aerial vehicles will revolutionize spatial ecology
  publication-title: Front. Ecol. Environ.
  doi: 10.1890/120150
– volume: 12
  start-page: 1969
  year: 2006
  ident: 10.1016/j.rse.2019.01.010_bb0280
  article-title: European phenological response to climate change matches the warming pattern
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/j.1365-2486.2006.01193.x
– start-page: 87
  year: 2009
  ident: 10.1016/j.rse.2019.01.010_bb0355
  article-title: Phenological differences between understory and overstory
– volume: 36
  start-page: 218
  year: 2004
  ident: 10.1016/j.rse.2019.01.010_bb0265
  article-title: Tree crown delineation from digital elevation models and high resolution imagery
  publication-title: Proc. IAPRS
– start-page: 3496
  year: 2016
  ident: 10.1016/j.rse.2019.01.010_bb0030
  article-title: Use of a digital camera onboard a UAV to monitor spring phenology at individual tree level
– volume: 214–215
  start-page: 25
  year: 2015
  ident: 10.1016/j.rse.2019.01.010_bb0090
  article-title: The match and mismatch between photosynthesis and land surface phenology of deciduous forests
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2015.07.005
– volume: 33
  start-page: 605
  year: 2015
  ident: 10.1016/j.rse.2019.01.010_bb0240
  article-title: Calculation of tree height and canopy crown from drone images using segmentation
  publication-title: J. Korean Soc. Surv. Geodesy Photogramm. Cartography
  doi: 10.7848/ksgpc.2015.33.6.605
– volume: 13
  start-page: 86
  year: 2010
  ident: 10.1016/j.rse.2019.01.010_bb0150
  article-title: Mapping tree species in temperate deciduous woodland using time-series multi-spectral data
  publication-title: Appl. Veg. Sci.
  doi: 10.1111/j.1654-109X.2009.01053.x
– volume: 5
  start-page: 4799
  year: 2013
  ident: 10.1016/j.rse.2019.01.010_bb0105
  article-title: Global trends in seasonality of normalized difference vegetation index (NDVI), 1982–2011
  publication-title: Remote Sens.
  doi: 10.3390/rs5104799
– volume: 109
  start-page: 261
  year: 2007
  ident: 10.1016/j.rse.2019.01.010_bb0125
  article-title: Cross-scalar satellite phenology from ground, Landsat, and MODIS data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2007.01.004
– volume: 30
  start-page: 2061
  year: 2009
  ident: 10.1016/j.rse.2019.01.010_bb0530
  article-title: Sensitivity of vegetation phenology detection to the temporal resolution of satellite data
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160802549237
– year: 2012
  ident: 10.1016/j.rse.2019.01.010_bb0370
– volume: 188
  start-page: 1
  year: 2016
  ident: 10.1016/j.rse.2019.01.010_bb0290
  article-title: Classification of riparian forest species and health condition using multi-temporal and hyperspatial imagery from unmanned aerial system
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-015-4996-2
– volume: 6
  start-page: 11127
  year: 2014
  ident: 10.1016/j.rse.2019.01.010_bb0430
  article-title: Landsat 8 operational land imager on-orbit geometric calibration and performance
  publication-title: Remote Sens.
  doi: 10.3390/rs61111127
– volume: 15
  start-page: 2335
  year: 2009
  ident: 10.1016/j.rse.2019.01.010_bb0490
  article-title: Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982–2006
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/j.1365-2486.2009.01910.x
– volume: 132
  start-page: 185
  year: 2017
  ident: 10.1016/j.rse.2019.01.010_bb0340
  article-title: Scaling effects on spring phenology detections from MODIS data at multiple spatial resolutions over the contiguous United States
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.09.002
– volume: 47
  start-page: 193
  year: 2003
  ident: 10.1016/j.rse.2019.01.010_bb0390
  article-title: Physiology-based phenology models for forest tree species in Germany
  publication-title: Int. J. Biometeorol.
  doi: 10.1007/s00484-003-0171-5
– volume: 19
  start-page: 1417
  year: 2009
  ident: 10.1016/j.rse.2019.01.010_bb0360
  article-title: Near-surface remote sensing of spatial and temporal variation in canopy phenology
  publication-title: Ecol. Appl.
  doi: 10.1890/08-2022.1
– volume: 115
  start-page: 143
  year: 2011
  ident: 10.1016/j.rse.2019.01.010_bb0235
  article-title: Validating satellite phenology through intensive ground observation and landscape scaling in a mixed seasonal forest
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.08.013
– volume: 27
  start-page: 196
  year: 2013
  ident: 10.1016/j.rse.2019.01.010_bb0295
  article-title: The relationship between carbon dioxide uptake and canopy colour from two camera systems in a deciduous forest in southern England
  publication-title: Funct. Ecol.
  doi: 10.1111/1365-2435.12026
– volume: 149
  start-page: 735
  year: 2009
  ident: 10.1016/j.rse.2019.01.010_bb0480
  article-title: Leaf phenology sensitivity to temperature in European trees: do within-species populations exhibit similar responses?
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2008.10.019
– volume: 18
  start-page: 95
  year: 2008
  ident: 10.1016/j.rse.2019.01.010_bb0450
  article-title: Is spring starting earlier?
  publication-title: The Holocene
  doi: 10.1177/0959683607085599
– volume: 4
  start-page: 1
  year: 2017
  ident: 10.1016/j.rse.2019.01.010_bb0505
  article-title: Drones and digital photogrammetry: from classifications to continuums for monitoring river habitat and hydromorphology
  publication-title: Wiley Interdiscip. Rev. Water
  doi: 10.1002/wat2.1222
– start-page: 207
  year: 2015
  ident: 10.1016/j.rse.2019.01.010_bb0025
  article-title: Estimation of the spectral sensitivity functions of un-modified and modified commercial off-the-shelf digital cameras to enable their use as a multispectral imaging system for UAVs
  publication-title: Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci.
  doi: 10.5194/isprsarchives-XL-1-W4-207-2015
– volume: 19
  start-page: 132
  year: 2012
  ident: 10.1016/j.rse.2019.01.010_bb0475
  article-title: Near-infrared aerial crop mark archaeology: from its historical use to current digital implementations
  publication-title: J. Archaeol. Method Theory
  doi: 10.1007/s10816-011-9104-5
– volume: 9
  start-page: 1792
  year: 2003
  ident: 10.1016/j.rse.2019.01.010_bb0330
  article-title: Phenological responses in maple to experimental atmospheric warming and CO2 enrichment
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/j.1365-2486.2003.00714.x
– volume: 140
  start-page: 476
  year: 2009
  ident: 10.1016/j.rse.2019.01.010_bb0400
  article-title: Use and misuse of the reduced major axis for line-fitting
  publication-title: Am. J. Phys. Anthropol.
  doi: 10.1002/ajpa.21090
– volume: 19
  start-page: 134
  year: 2018
  ident: 10.1016/j.rse.2019.01.010_bb0050
  article-title: Phenological analysis of unmanned aerial vehicle based time series of barley imagery with high temporal resolution
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-017-9504-y
– volume: 13
  start-page: 1330
  year: 2016
  ident: 10.1016/j.rse.2019.01.010_bb0225
  article-title: Individual tree delineation in windbreaks using airborne-laser-scanning data and unmanned aerial vehicle stereo images
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2016.2584109
– volume: 32
  start-page: 3625
  year: 2011
  ident: 10.1016/j.rse.2019.01.010_bb0190
  article-title: A comparison of three methods for automatic tree crown detection and delineation from high spatial resolution imagery
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161003762355
– volume: 18
  start-page: 656
  year: 2012
  ident: 10.1016/j.rse.2019.01.010_bb0115
  article-title: Landscape controls on the timing of spring, autumn, and growing season length in mid-Atlantic forests
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/j.1365-2486.2011.02521.x
– volume: 124
  start-page: 821
  year: 1984
  ident: 10.1016/j.rse.2019.01.010_bb0215
  article-title: Why do temperate deciduous trees leaf out at different times? Adaptation and ecology of forest communities
  publication-title: Am. Nat.
  doi: 10.1086/284319
– start-page: 597
  year: 1992
  ident: 10.1016/j.rse.2019.01.010_bb0170
  article-title: Predicting the timing of budburst in temperate trees
  publication-title: J. Appl. Ecol.
  doi: 10.2307/2404467
– volume: 9
  start-page: 5373
  year: 2012
  ident: 10.1016/j.rse.2019.01.010_bb0500
  article-title: Inter-annual variation of carbon uptake by a plantation oak woodland in south-eastern England
  publication-title: Biogeosciences
  doi: 10.5194/bg-9-5373-2012
– volume: 156
  start-page: 457
  year: 2015
  ident: 10.1016/j.rse.2019.01.010_bb0520
  article-title: Reconstruction of a complete global time series of daily vegetation index trajectory from long-term AVHRR data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.10.012
– volume: 151
  start-page: 1741
  year: 2011
  ident: 10.1016/j.rse.2019.01.010_bb0135
  article-title: A comparison of multiple phenology data sources for estimating seasonal transitions in deciduous forest carbon exchange
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2011.07.008
– volume: 55
  start-page: 4878
  year: 2017
  ident: 10.1016/j.rse.2019.01.010_bb0035
  article-title: Commercial off-the-shelf digital cameras on unmanned aerial vehicles for multitemporal monitoring of vegetation reflectance and NDVI
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2017.2655365
– volume: 55
  start-page: 3885
  year: 2017
  ident: 10.1016/j.rse.2019.01.010_bb0485
  article-title: Fusion of Landsat 8 OLI and Sentinel-2 MSI data
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2017.2683444
– volume: 132
  start-page: 145
  year: 2013
  ident: 10.1016/j.rse.2019.01.010_bb0155
  article-title: Evaluation of the potential of MODIS satellite data to predict vegetation phenology in different biomes: an investigation using ground-based NDVI measurements
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.01.010
– volume: 191
  start-page: 926
  year: 2011
  ident: 10.1016/j.rse.2019.01.010_bb0345
  article-title: Leaf-out phenology of temperate woody plants: from trees to ecosystems
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2011.03803.x
– start-page: 237
  year: 2015
  ident: 10.1016/j.rse.2019.01.010_bb0515
  article-title: Individual tree crown (ITC) delineation using watershed transformation algorithm for tropical lowland dipterocarp
– volume: 38
  start-page: 2861
  year: 2017
  ident: 10.1016/j.rse.2019.01.010_bb0380
  article-title: Mapping of invasive phragmites (common reed) in Gulf of Mexico coastal wetlands using multispectral imagery and small unmanned aerial systems
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2016.1271480
– volume: 115
  start-page: 3129
  year: 2011
  ident: 10.1016/j.rse.2019.01.010_bb0220
  article-title: A comparison of time series similarity measures for classification and change detection of ecosystem dynamics
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.06.020
– volume: 38
  start-page: 2427
  year: 2017
  ident: 10.1016/j.rse.2019.01.010_bb0455
  article-title: Forestry applications of UAVs in Europe: a review
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2016.1252477
– volume: 30
  start-page: 211
  year: 2015
  ident: 10.1016/j.rse.2019.01.010_bb0320
  article-title: Review: development of an in situ observation network for terrestrial ecological remote sensing: the Phenological Eyes Network (PEN)
  publication-title: Ecol. Res.
  doi: 10.1007/s11284-014-1239-x
– volume: 220
  start-page: 141
  year: 2016
  ident: 10.1016/j.rse.2019.01.010_bb0120
  article-title: Phenopix: a R package for image-based vegetation phenology
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2016.01.006
– volume: 24
  start-page: 465
  year: 2009
  ident: 10.1016/j.rse.2019.01.010_bb0230
  article-title: Landscape phenology: an integrative approach to seasonal vegetation dynamics
  publication-title: Landsc. Ecol.
  doi: 10.1007/s10980-009-9328-x
– volume: 142
  start-page: 174
  year: 2018
  ident: 10.1016/j.rse.2019.01.010_bb0245
  article-title: Detecting newly grown tree leaves from unmanned-aerial-vehicle images using hyperspectral target detection techniques
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.05.022
– volume: 2016
  start-page: 25
  year: 2016
  ident: 10.1016/j.rse.2019.01.010_bb0140
– volume: 80
  start-page: 189
  year: 2008
  ident: 10.1016/j.rse.2019.01.010_bb0410
  article-title: Modeling the world from Internet photo collections
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-007-0107-3
– volume: 3
  start-page: 2494
  year: 2011
  ident: 10.1016/j.rse.2019.01.010_bb0110
  article-title: Airborne light detection and ranging (LiDAR) for individual tree stem location, height, and biomass measurements
  publication-title: Remote Sens.
  doi: 10.3390/rs3112494
– volume: 248
  start-page: 397
  year: 2018
  ident: 10.1016/j.rse.2019.01.010_bb0210
  article-title: Fine-scale perspectives on landscape phenology from unmanned aerial vehicle (UAV) photography
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2017.10.015
– volume: 24
  start-page: 1478
  year: 2014
  ident: 10.1016/j.rse.2019.01.010_bb0195
  article-title: Tracking forest phenology and seasonal physiology using digital repeat photography: a critical assessment
  publication-title: Ecol. Appl.
  doi: 10.1890/13-0652.1
– volume: 247
  start-page: 280
  year: 2017
  ident: 10.1016/j.rse.2019.01.010_bb0045
  article-title: On the relationship between continuous measures of canopy greenness derived using near-surface remote sensing and satellite-derived vegetation products
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2017.08.012
– volume: 132
  start-page: 176
  year: 2013
  ident: 10.1016/j.rse.2019.01.010_bb0270
  article-title: Detecting interannual variation in deciduous broadleaf forest phenology using Landsat TM/ETM plus data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.01.011
– volume: 84
  start-page: 471
  year: 2003
  ident: 10.1016/j.rse.2019.01.010_bb0525
  article-title: Monitoring vegetation phenology using MODIS
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(02)00135-9
– volume: 10
  start-page: 65
  year: 2012
  ident: 10.1016/j.rse.2019.01.010_bb0540
  article-title: Using digital cameras for comparative phenological monitoring in an evergreen broad-leaved forest and a seasonal rain forest
  publication-title: Eco. Inform.
  doi: 10.1016/j.ecoinf.2012.03.001
– volume: 7
  start-page: 253
  year: 2009
  ident: 10.1016/j.rse.2019.01.010_bb0310
  article-title: Tracking the rhythm of the seasons in the face of global change: phenological research in the 21st century
  publication-title: Front. Ecol. Environ.
  doi: 10.1890/070217
– volume: 11
  start-page: 4305
  year: 2014
  ident: 10.1016/j.rse.2019.01.010_bb0205
  article-title: Evaluating remote sensing of deciduous forest phenology at multiple spatial scales using PhenoCam imagery
  publication-title: Biogeosciences
  doi: 10.5194/bg-11-4305-2014
– start-page: 10
  year: 2015
  ident: 10.1016/j.rse.2019.01.010_bb0250
  article-title: Discrimination of deciduous tree species from time series of unmanned aerial system imagery
  publication-title: PLoS ONE
– volume: 42
  start-page: 2253
  year: 2015
  ident: 10.1016/j.rse.2019.01.010_bb0365
  article-title: Intercomparison of satellite sensor land surface phenology and ground phenology in Europe
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2015GL063586
– volume: 152
  start-page: 159
  year: 2012
  ident: 10.1016/j.rse.2019.01.010_bb0415
  article-title: Digital repeat photography for phenological research in forest ecosystems
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2011.09.009
– volume: 117
  start-page: 307
  year: 2012
  ident: 10.1016/j.rse.2019.01.010_bb0160
  article-title: Linking near-surface and satellite remote sensing measurements of deciduous broadleaf forest phenology
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.10.006
– start-page: 146
  year: 2002
  ident: 10.1016/j.rse.2019.01.010_bb0385
  article-title: Phenology in Germany in the 20th century: methods, analyses and models
– volume: 243
  start-page: 55
  year: 2017
  ident: 10.1016/j.rse.2019.01.010_bb0095
  article-title: Interspecific and interannual variation in the duration of spring phenophases in a northern mixed forest
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2017.05.007
– volume: 21
  start-page: 111
  year: 2013
  ident: 10.1016/j.rse.2019.01.010_bb0350
  article-title: Leaf out phenology in temperate forests
  publication-title: Biodivers. Sci.
  doi: 10.3724/SP.J.1003.2013.06187
– volume: 10
  start-page: 635
  year: 2018
  ident: 10.1016/j.rse.2019.01.010_bb0185
  article-title: A method for robust estimation of vegetation seasonality from Landsat and Sentinel-2 time series data
  publication-title: Remote Sens.
  doi: 10.3390/rs10040635
– year: 1992
  ident: 10.1016/j.rse.2019.01.010_bb0460
– volume: 6
  start-page: 3899
  year: 2015
  ident: 10.1016/j.rse.2019.01.010_bb0425
  article-title: Characterizing the height structure and composition of a boreal Forest using an individual tree crown approach applied to photogrammetric point clouds
  publication-title: Forests
  doi: 10.3390/f6113899
– volume: 20
  start-page: 2653
  year: 1999
  ident: 10.1016/j.rse.2019.01.010_bb0405
  article-title: The use of the empirical line method to calibrate remotely sensed data to reflectance
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/014311699211994
– volume: 17
  start-page: 2852
  year: 2017
  ident: 10.1016/j.rse.2019.01.010_bb0200
  article-title: Observing spring and fall phenology in a deciduous forest with aerial drone imagery
  publication-title: Sensors
  doi: 10.3390/s17122852
– start-page: 189
  year: 2016
  ident: 10.1016/j.rse.2019.01.010_bb0445
  article-title: Derivation of forest parameters from stereographic UAV data–a comparison with airborne lidar data
– volume: 186
  start-page: 900
  year: 2010
  ident: 10.1016/j.rse.2019.01.010_bb0305
  article-title: Changes in leaf phenology of three European oak species in response to experimental climate change
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2010.03252.x
– volume: 60
  start-page: 87
  year: 2014
  ident: 10.1016/j.rse.2019.01.010_bb0420
  article-title: Local-scale adaptation to climate change: the village flower festival
  publication-title: Clim. Res.
  doi: 10.3354/cr01228
– volume: 92
  start-page: 79
  year: 2014
  ident: 10.1016/j.rse.2019.01.010_bb0065
  article-title: Unmanned aerial systems for photogrammetry and remote sensing: a review
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2014.02.013
– volume: 160
  start-page: 156
  year: 2015
  ident: 10.1016/j.rse.2019.01.010_bb0255
  article-title: Evaluating the potential of MODIS satellite data to track temporal dynamics of autumn phenology in a temperate mixed forest
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.01.011
– volume: 190
  start-page: 318
  year: 2017
  ident: 10.1016/j.rse.2019.01.010_bb0535
  article-title: Exploration of scaling effects on coarse resolution land surface phenology
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.01.001
– volume: 5
  start-page: 5193
  year: 2013
  ident: 10.1016/j.rse.2019.01.010_bb0285
  article-title: Analysis of the phenology in the Mongolian plateau by inter-comparison of global vegetation datasets
  publication-title: Remote Sens.
  doi: 10.3390/rs5105193
– volume: 160
  start-page: 273
  year: 2015
  ident: 10.1016/j.rse.2019.01.010_bb0080
  article-title: Comparing land surface phenology with leafing and flowering observations from the PlantWatch citizen network
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.01.012
– volume: 126
  start-page: 116
  year: 2012
  ident: 10.1016/j.rse.2019.01.010_bb0375
  article-title: Continuous observation of tree leaf area index at ecosystem scale using upward-pointing digital cameras
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.08.027
– volume: 135
  start-page: 234
  year: 2013
  ident: 10.1016/j.rse.2019.01.010_bb0510
  article-title: Toward near real-time monitoring of forest disturbance by fusion of MODIS and Landsat data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.04.002
– volume: 280
  start-page: 51
  year: 2017
  ident: 10.1016/j.rse.2019.01.010_bb0180
  article-title: Optimising UAV topographic surveys processed with structure-from-motion: ground control quality, quantity and bundle adjustment
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2016.11.021
SSID ssj0015871
Score 2.591326
Snippet The monitoring of forest phenology in a cost-effective manner, at a fine spatial scale and over relatively large areas remains a significant challenge. To...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 229
SubjectTerms Canopies
canopy
Consumer-grade camera
cost effectiveness
Drone
Ecosystem dynamics
ecosystems
Forest phenology
Forests
Individual tree level
Land surface phenology
Landsat
Landsat satellites
Monitoring
normalized difference vegetation index
Normalized difference vegetative index
Phenology
plant communities
Remote sensing
Satellite observation
Satellite tracking
Satellites
Spatial data
Spatial resolution
Spring
Spring (season)
Temporal resolution
temporal variation
Time series
time series analysis
trees
understory
Unmanned aerial vehicles
Vegetation
Vegetation index
Visual observation
Woodlands
Title Assessing spring phenology of a temperate woodland: A multiscale comparison of ground, unmanned aerial vehicle and Landsat satellite observations
URI https://dx.doi.org/10.1016/j.rse.2019.01.010
https://www.proquest.com/docview/2190997552
https://www.proquest.com/docview/2220846602
Volume 223
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hqqq9oHYp6vKSK_WEmpKHHxtuKwTdvjiBxM1yYltQlSwiu0hc-A_9x51xnFQgxKFRojxsJ1FmPDOOv5kB-FjVrna2dIlInU24S31SepUlUlmnjMpsEYK4_jyRszP-7Vycr8Bh7wtDsMoo-zuZHqR1vLIfv-b-9eUl-fgWnDgOTRAa2dC4nXNFXP75foB5ZGKiuqx5BU-odj-zGTBeNy1FyszKELmTnGif1k2PpHRQPcdvYC3ajGzavdZbWHHNCDaO_rmoYWHso-0IXsW85hd3I3j5JSTuvVuHP93sLioq1k3FMgJ3hUI298wwilFFAZYdIxQO4R0P2JQFvGGLdHSsHjIWUgPyBmnsJ7ZsrgyJamYCK7Nbd0EvybA9-0FuxGbBcKOwn3jreTX8BG7fwdnx0enhLInpGJKa53yRlGhb5B5VnUXyoqUmcSe5z3zpjeV-UvoaF5-jEPHCTnxWVFxVZe54YfDAFRuw2swb9x6YtKXySrhaTCru0WYyOMDnlXQWzUdp5BjSnhC6jrHKKWXGb92D0n5ppJ0m2uk0wzUdw97Q5LoL1PFcZd5TVz_gNo2K5Llm2z0n6NjVW40in7yPhcjH8GEoxk5KMy-mcfMl1snzFA09meab__fkLXhNZwR-y8Q2rC5ulm4HraFFtRvYfRdeTL9-n538BTbPDb8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fT9swED-hIsRepq0bWgfbjLSnaRH5YzvN3ioEK1D6BBJvlhPbAgQpIi0SH4NvzJ3jBG2aeFjUKFWdS6Le-e6cu_sdwPeyspU1hY1EbE3EbeyiwuVJJHNjc50nJvMgrqdzOT3nxxfiYg32u1oYSqsMur_V6V5bh1_2wr-5d3d1RTW-GSeJQxeEVja4bl8ndCoxgPXJ0cl03gcTxDhvG-dlPCKCLrjp07zuGwLLTAoP3kl1tP82T38pam99Dt_B2-A2skn7ZO9hzdZD2Dp4qVLDwTBNmyFshtbml49D2Pjte_c-foCnNsCLtoq10VhG-V1-kC0c04xgqghj2TJKxKGUx19swnzKYYOstKzqmxYSARWE1OYnW9W3mrQ1016a2YO9pIdkSM9mVEmslwx3Qv7ESy_K_j1w8xHODw_O9qdR6MgQVTzly6hA9yJ1aO0MchidNYkHyV3iCqcNd-PCVbi5FPWIE2bskqzkeVmklmcav9hsCwb1orafgElT5C4XthLjkjt0mzSu8XkprUEPUmo5grhjhKoCXDl1zbhRXV7atULeKeKdihP8xCP40ZPctVgdr53MO-6qPwROoS15jWynkwQVZnujUOtTAbIQ6Qh2-2GcpxR80bVdrPCcNI3R15Nx-vn_7vwNNqdnpzM1O5qfbMMbGqFcuETswGB5v7Jf0Dlall-D8D8DYVQQcA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessing+spring+phenology+of+a+temperate+woodland%3A+A+multiscale+comparison+of+ground%2C+unmanned+aerial+vehicle+and+Landsat+satellite+observations&rft.jtitle=Remote+sensing+of+environment&rft.au=Berra%2C+Elias+Fernando&rft.au=Gaulton%2C+Rachel&rft.au=Barr%2C+Stuart&rft.date=2019-03-15&rft.pub=Elsevier+BV&rft.issn=0034-4257&rft.eissn=1879-0704&rft.volume=223&rft.spage=229&rft_id=info:doi/10.1016%2Fj.rse.2019.01.010&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4257&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4257&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4257&client=summon