Assessing spring phenology of a temperate woodland: A multiscale comparison of ground, unmanned aerial vehicle and Landsat satellite observations
The monitoring of forest phenology in a cost-effective manner, at a fine spatial scale and over relatively large areas remains a significant challenge. To address this issue, unmanned aerial vehicles (UAVs) appear to be a potential new platform for forest phenology monitoring. This article assesses...
Saved in:
Published in | Remote sensing of environment Vol. 223; pp. 229 - 242 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Elsevier Inc
15.03.2019
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The monitoring of forest phenology in a cost-effective manner, at a fine spatial scale and over relatively large areas remains a significant challenge. To address this issue, unmanned aerial vehicles (UAVs) appear to be a potential new platform for forest phenology monitoring. This article assesses the potential of UAV data to track the temporal dynamics of spring phenology, from the individual tree to woodland scale, and cross-compare UAV results against ground and satellite observations, in order to better understand characteristics of UAV data and assess potential for use in validation of satellite-derived phenology. A time series of UAV data (5 cm spatial resolution, ~7 day temporal resolution) were acquired in tandem with an intensive ground campaign during the spring season of 2015 across a 15 ha mixed woodland. Phenophase transition dates were estimated at an individual tree-level using UAV time series of Normalized Difference Vegetation Index (NDVI) and Green Chromatic Coordinate (GCC) and validated against visual observations of tree phenology. UAV-derived start of season dates could be predicted with an accuracy of <1 week. The analysis was scaled to a plot level, where ground (visual assessment and understorey development), UAV and Landsat metrics were compared, indicating UAV data is effective for tracking canopy phenology, as opposed to ecosystem dynamics detected by satellites. The UAV data were used to automatically map phenological events for individual trees across the whole woodland, demonstrating that contrasting canopy phenological events can occur within the extent of a single Landsat pixel. This, and a large temporal gap in the Landsat series, accounted for the poor relationships found between UAV- and Landsat-derived phenometrics (R2 < 0.50) in this study. An opportunity is now available to track very fine scale land surface changes over contiguous vegetation communities, providing information which could improve characterization of vegetation phenology at multiple scales.
•Spring phenology, from tree to woodland scale, is observed with UAV data.•UAV metrics are validated and better understood with aid of in situ observations.•UAV data captured species-specific phenology across local spatial extents.•Canopy phenology can be highly heterogeneous at the spatial resolution of Landsat.•An opportunity is now available to track very fine scale phenological changes. |
---|---|
AbstractList | The monitoring of forest phenology in a cost-effective manner, at a fine spatial scale and over relatively large areas remains a significant challenge. To address this issue, unmanned aerial vehicles (UAVs) appear to be a potential new platform for forest phenology monitoring. This article assesses the potential of UAV data to track the temporal dynamics of spring phenology, from the individual tree to woodland scale, and cross-compare UAV results against ground and satellite observations, in order to better understand characteristics of UAV data and assess potential for use in validation of satellite-derived phenology. A time series of UAV data (5 cm spatial resolution, ~7 day temporal resolution) were acquired in tandem with an intensive ground campaign during the spring season of 2015 across a 15 ha mixed woodland. Phenophase transition dates were estimated at an individual tree-level using UAV time series of Normalized Difference Vegetation Index (NDVI) and Green Chromatic Coordinate (GCC) and validated against visual observations of tree phenology. UAV-derived start of season dates could be predicted with an accuracy of <1 week. The analysis was scaled to a plot level, where ground (visual assessment and understorey development), UAV and Landsat metrics were compared, indicating UAV data is effective for tracking canopy phenology, as opposed to ecosystem dynamics detected by satellites. The UAV data were used to automatically map phenological events for individual trees across the whole woodland, demonstrating that contrasting canopy phenological events can occur within the extent of a single Landsat pixel. This, and a large temporal gap in the Landsat series, accounted for the poor relationships found between UAV- and Landsat-derived phenometrics (R2 < 0.50) in this study. An opportunity is now available to track very fine scale land surface changes over contiguous vegetation communities, providing information which could improve characterization of vegetation phenology at multiple scales.
•Spring phenology, from tree to woodland scale, is observed with UAV data.•UAV metrics are validated and better understood with aid of in situ observations.•UAV data captured species-specific phenology across local spatial extents.•Canopy phenology can be highly heterogeneous at the spatial resolution of Landsat.•An opportunity is now available to track very fine scale phenological changes. The monitoring of forest phenology in a cost-effective manner, at a fine spatial scale and over relatively large areas remains a significant challenge. To address this issue, unmanned aerial vehicles (UAVs) appear to be a potential new platform for forest phenology monitoring. This article assesses the potential of UAV data to track the temporal dynamics of spring phenology, from the individual tree to woodland scale, and cross-compare UAV results against ground and satellite observations, in order to better understand characteristics of UAV data and assess potential for use in validation of satellite-derived phenology. A time series of UAV data (5 cm spatial resolution, ~7 day temporal resolution) were acquired in tandem with an intensive ground campaign during the spring season of 2015 across a 15 ha mixed woodland. Phenophase transition dates were estimated at an individual tree-level using UAV time series of Normalized Difference Vegetation Index (NDVI) and Green Chromatic Coordinate (GCC) and validated against visual observations of tree phenology. UAV-derived start of season dates could be predicted with an accuracy of <1 week. The analysis was scaled to a plot level, where ground (visual assessment and understorey development), UAV and Landsat metrics were compared, indicating UAV data is effective for tracking canopy phenology, as opposed to ecosystem dynamics detected by satellites. The UAV data were used to automatically map phenological events for individual trees across the whole woodland, demonstrating that contrasting canopy phenological events can occur within the extent of a single Landsat pixel. This, and a large temporal gap in the Landsat series, accounted for the poor relationships found between UAV- and Landsat-derived phenometrics (R2 < 0.50) in this study. An opportunity is now available to track very fine scale land surface changes over contiguous vegetation communities, providing information which could improve characterization of vegetation phenology at multiple scales. The monitoring of forest phenology in a cost-effective manner, at a fine spatial scale and over relatively large areas remains a significant challenge. To address this issue, unmanned aerial vehicles (UAVs) appear to be a potential new platform for forest phenology monitoring. This article assesses the potential of UAV data to track the temporal dynamics of spring phenology, from the individual tree to woodland scale, and cross-compare UAV results against ground and satellite observations, in order to better understand characteristics of UAV data and assess potential for use in validation of satellite-derived phenology. A time series of UAV data (5 cm spatial resolution, ~7 day temporal resolution) were acquired in tandem with an intensive ground campaign during the spring season of 2015 across a 15 ha mixed woodland. Phenophase transition dates were estimated at an individual tree-level using UAV time series of Normalized Difference Vegetation Index (NDVI) and Green Chromatic Coordinate (GCC) and validated against visual observations of tree phenology. UAV-derived start of season dates could be predicted with an accuracy of <1 week. The analysis was scaled to a plot level, where ground (visual assessment and understorey development), UAV and Landsat metrics were compared, indicating UAV data is effective for tracking canopy phenology, as opposed to ecosystem dynamics detected by satellites. The UAV data were used to automatically map phenological events for individual trees across the whole woodland, demonstrating that contrasting canopy phenological events can occur within the extent of a single Landsat pixel. This, and a large temporal gap in the Landsat series, accounted for the poor relationships found between UAV- and Landsat-derived phenometrics (R² < 0.50) in this study. An opportunity is now available to track very fine scale land surface changes over contiguous vegetation communities, providing information which could improve characterization of vegetation phenology at multiple scales. |
Author | Berra, Elias Fernando Barr, Stuart Gaulton, Rachel |
Author_xml | – sequence: 1 givenname: Elias Fernando surname: Berra fullname: Berra, Elias Fernando email: eliasberra@gmail.com – sequence: 2 givenname: Rachel surname: Gaulton fullname: Gaulton, Rachel – sequence: 3 givenname: Stuart surname: Barr fullname: Barr, Stuart |
BookMark | eNp9kU1vGyEQhlGVSnU-fkBvSL300HUBsx-0Jytq00qWcmnOCLODg7ULW4Z1lZ_Rf1w27imHoGGGw_uMZngvyUWIAQh5z9maM958Pq4TwlowrtaMl2BvyIp3rapYy-QFWTG2kZUUdfuOXCIeGeN11_IV-btFBEQfDhSntJTpEUIc4uGJRkcNzTBOkEwG-ifGfjCh_0K3dJyH7NGaAaiN42SSxxgW4JDiHPpPdA6jCQF6aiB5M9ATPHpb1IWnu5LQZFouDIMvreMeIZ1M9jHgNXnrzIBw879ekYfv337d_qh293c_b7e7ykohc6VqpoQTXPRggXV1U0ojHXfKmV66TjlbjhNlf1f3neObvWz3SoDcmPKAzRX5eO47pfh7Bsx6LBuVgUyAOKMWQrBONg0TRfrhhfQY5xTKdFpwxZRq63pRtWeVTRExgdPW5-edcjJ-0JzpxSp91MUqvVilGS_BCslfkMWK0aSnV5mvZwbKH508JI3WQ7DQ-wQ26z76V-h_YRuxzw |
CitedBy_id | crossref_primary_10_3390_rs14020244 crossref_primary_10_1016_j_ecolind_2023_111041 crossref_primary_10_3390_rs13020276 crossref_primary_10_1016_j_ecolind_2021_108156 crossref_primary_10_1016_j_jag_2021_102435 crossref_primary_10_3390_rs13193810 crossref_primary_10_3390_challe14010012 crossref_primary_10_3390_rs14174310 crossref_primary_10_3390_rs14133160 crossref_primary_10_1186_s13007_021_00803_9 crossref_primary_10_1016_j_foreco_2023_121475 crossref_primary_10_3390_rs14215337 crossref_primary_10_1007_s11676_020_01155_1 crossref_primary_10_1016_j_agee_2023_108397 crossref_primary_10_3390_rs14174165 crossref_primary_10_1016_j_atech_2022_100103 crossref_primary_10_1016_j_ecoinf_2024_102660 crossref_primary_10_1111_nph_16488 crossref_primary_10_1016_j_agrformet_2024_109888 crossref_primary_10_3390_f12040425 crossref_primary_10_3390_rs14195003 crossref_primary_10_3390_rs15143599 crossref_primary_10_1016_j_isprsjprs_2024_08_011 crossref_primary_10_1016_j_jag_2022_102686 crossref_primary_10_1016_j_agrformet_2021_108578 crossref_primary_10_3390_rs15122995 crossref_primary_10_1016_j_jag_2023_103355 crossref_primary_10_3390_f12040397 crossref_primary_10_1007_s12145_023_01118_0 crossref_primary_10_1016_j_jvolgeores_2020_107143 crossref_primary_10_1016_j_ecoinf_2024_102594 crossref_primary_10_1016_j_envsoft_2020_104666 crossref_primary_10_1080_02827581_2020_1806350 crossref_primary_10_1080_17538947_2024_2356124 crossref_primary_10_3390_rs15030679 crossref_primary_10_1590_0001_3765202120200712 crossref_primary_10_3390_land12010078 crossref_primary_10_1016_j_rse_2019_05_026 crossref_primary_10_3390_rs13234873 crossref_primary_10_1016_j_rse_2020_111865 crossref_primary_10_3390_rs13214347 crossref_primary_10_1016_j_scitotenv_2024_175753 crossref_primary_10_1117_1_JRS_14_034501 crossref_primary_10_3390_rs12213670 crossref_primary_10_1016_j_isprsjprs_2021_10_023 crossref_primary_10_1016_j_ecoinf_2023_102239 crossref_primary_10_1080_07900627_2023_2293862 crossref_primary_10_1088_1748_9326_abbf7d crossref_primary_10_1016_j_agrformet_2023_109372 crossref_primary_10_1080_01431161_2023_2189033 crossref_primary_10_3390_rs13163100 crossref_primary_10_1093_jpe_rtab089 crossref_primary_10_3390_f13071039 crossref_primary_10_3390_rs15245689 crossref_primary_10_1016_j_isprsjprs_2023_11_024 crossref_primary_10_1007_s40725_023_00207_z crossref_primary_10_3390_drones4030056 crossref_primary_10_1016_j_isprsjprs_2019_04_009 crossref_primary_10_1111_geb_13910 crossref_primary_10_1002_rse2_184 crossref_primary_10_1016_j_isprsjprs_2020_10_017 crossref_primary_10_1016_j_patrec_2020_07_003 crossref_primary_10_1016_j_foreco_2020_118663 crossref_primary_10_3390_rs14246331 crossref_primary_10_3390_rs13081597 crossref_primary_10_3390_rs14143453 crossref_primary_10_3390_rs12030514 crossref_primary_10_1111_1365_2745_13656 crossref_primary_10_3390_rs12203426 crossref_primary_10_1016_j_ecoinf_2024_102987 crossref_primary_10_1016_j_foreco_2021_119402 crossref_primary_10_3390_rs17050876 crossref_primary_10_1016_j_agrformet_2021_108780 crossref_primary_10_1016_j_isprsjprs_2022_09_018 crossref_primary_10_3390_rs15092266 crossref_primary_10_1016_j_rse_2022_113310 crossref_primary_10_1016_j_jag_2022_103024 crossref_primary_10_3390_f12030297 crossref_primary_10_1016_j_isprsjprs_2022_04_002 crossref_primary_10_3390_rs12071199 crossref_primary_10_3390_rs12182970 crossref_primary_10_1016_j_agrformet_2019_107758 crossref_primary_10_1038_s41598_024_66338_w crossref_primary_10_3390_rs14246198 crossref_primary_10_1016_j_agrformet_2024_110182 crossref_primary_10_3390_drones5020039 crossref_primary_10_3390_f12030327 crossref_primary_10_3390_rs16152695 crossref_primary_10_1002_env_2733 crossref_primary_10_1016_j_jhydrol_2022_128755 crossref_primary_10_1016_j_indic_2023_100285 crossref_primary_10_1016_j_ecoinf_2022_101845 crossref_primary_10_3390_rs12182980 crossref_primary_10_1088_1755_1315_653_1_012102 crossref_primary_10_3390_rs15245642 crossref_primary_10_3389_fenvs_2023_1083328 crossref_primary_10_1016_j_foreco_2023_120854 crossref_primary_10_1186_s13595_022_01130_2 crossref_primary_10_3390_rs13101958 crossref_primary_10_1109_JSTARS_2023_3302571 crossref_primary_10_1016_j_rse_2019_111511 |
Cites_doi | 10.1016/j.rse.2014.03.017 10.1016/j.rse.2013.07.044 10.1016/j.agrformet.2016.12.008 10.1002/fee.1222 10.1016/j.agrformet.2017.02.026 10.1016/j.rse.2005.10.022 10.3390/rs2010290 10.5194/bg-13-5085-2016 10.1098/rstb.2010.0120 10.1016/j.scienta.2011.07.011 10.1016/j.rse.2005.03.011 10.1016/j.agrformet.2012.10.014 10.1080/2150704X.2012.744486 10.1111/j.1365-2699.2011.02549.x 10.1111/j.1365-2486.2010.02165.x 10.1080/01431160412331291297 10.1002/ecs2.1436 10.3390/rs5052200 10.1016/j.rse.2016.09.014 10.1016/j.rse.2013.04.005 10.1016/j.jag.2016.09.005 10.1890/120150 10.1111/j.1365-2486.2006.01193.x 10.1016/j.agrformet.2015.07.005 10.7848/ksgpc.2015.33.6.605 10.1111/j.1654-109X.2009.01053.x 10.3390/rs5104799 10.1016/j.rse.2007.01.004 10.1080/01431160802549237 10.1007/s10661-015-4996-2 10.3390/rs61111127 10.1111/j.1365-2486.2009.01910.x 10.1016/j.isprsjprs.2017.09.002 10.1007/s00484-003-0171-5 10.1890/08-2022.1 10.1016/j.rse.2010.08.013 10.1111/1365-2435.12026 10.1016/j.agrformet.2008.10.019 10.1177/0959683607085599 10.1002/wat2.1222 10.5194/isprsarchives-XL-1-W4-207-2015 10.1007/s10816-011-9104-5 10.1111/j.1365-2486.2003.00714.x 10.1002/ajpa.21090 10.1007/s11119-017-9504-y 10.1109/LGRS.2016.2584109 10.1080/01431161003762355 10.1111/j.1365-2486.2011.02521.x 10.1086/284319 10.2307/2404467 10.5194/bg-9-5373-2012 10.1016/j.rse.2014.10.012 10.1016/j.agrformet.2011.07.008 10.1109/TGRS.2017.2655365 10.1109/TGRS.2017.2683444 10.1016/j.rse.2013.01.010 10.1111/j.1469-8137.2011.03803.x 10.1080/01431161.2016.1271480 10.1016/j.rse.2011.06.020 10.1080/01431161.2016.1252477 10.1007/s11284-014-1239-x 10.1016/j.agrformet.2016.01.006 10.1007/s10980-009-9328-x 10.1016/j.isprsjprs.2018.05.022 10.1007/s11263-007-0107-3 10.3390/rs3112494 10.1016/j.agrformet.2017.10.015 10.1890/13-0652.1 10.1016/j.agrformet.2017.08.012 10.1016/j.rse.2013.01.011 10.1016/S0034-4257(02)00135-9 10.1016/j.ecoinf.2012.03.001 10.1890/070217 10.5194/bg-11-4305-2014 10.1002/2015GL063586 10.1016/j.agrformet.2011.09.009 10.1016/j.rse.2011.10.006 10.1016/j.agrformet.2017.05.007 10.3724/SP.J.1003.2013.06187 10.3390/rs10040635 10.3390/f6113899 10.1080/014311699211994 10.3390/s17122852 10.1111/j.1469-8137.2010.03252.x 10.3354/cr01228 10.1016/j.isprsjprs.2014.02.013 10.1016/j.rse.2015.01.011 10.1016/j.rse.2017.01.001 10.3390/rs5105193 10.1016/j.rse.2015.01.012 10.1016/j.rse.2012.08.027 10.1016/j.rse.2013.04.002 10.1016/j.geomorph.2016.11.021 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Inc. Copyright Elsevier BV Mar 15, 2019 |
Copyright_xml | – notice: 2019 Elsevier Inc. – notice: Copyright Elsevier BV Mar 15, 2019 |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7TG 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KL. KR7 L7M L~C L~D P64 7S9 L.6 |
DOI | 10.1016/j.rse.2019.01.010 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Meteorological & Geoastrophysical Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Meteorological & Geoastrophysical Abstracts Biotechnology Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Meteorological & Geoastrophysical Abstracts - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Materials Research Database AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Geology Environmental Sciences |
EISSN | 1879-0704 |
EndPage | 242 |
ExternalDocumentID | 10_1016_j_rse_2019_01_010 S0034425719300100 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABPPZ ABQEM ABQYD ABYKQ ACDAQ ACGFS ACIWK ACLVX ACPRK ACRLP ACSBN ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSE SSJ SSZ T5K TN5 TWZ WH7 ZCA ZMT ~02 ~G- ~KM 29P 41~ 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABEFU ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN ADXHL AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FA8 FEDTE FGOYB G-2 HMA HMC HVGLF HZ~ H~9 OHT R2- SEN SEP SEW SSH VOH WUQ XOL 7QF 7QO 7QQ 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7TG 7U5 8BQ 8FD C1K EFKBS F28 FR3 H8D H8G JG9 JQ2 KL. KR7 L7M L~C L~D P64 7S9 L.6 |
ID | FETCH-LOGICAL-c424t-95092f212dece0856ece64f1f9fad4f89fccccf2070f5d8f13b47b92e43a47be3 |
IEDL.DBID | .~1 |
ISSN | 0034-4257 |
IngestDate | Fri Jul 11 10:06:50 EDT 2025 Wed Aug 13 11:07:15 EDT 2025 Thu Apr 24 22:56:14 EDT 2025 Tue Jul 01 03:51:17 EDT 2025 Fri Feb 23 02:49:28 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Consumer-grade camera Drone Forest phenology Land surface phenology Individual tree level |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c424t-95092f212dece0856ece64f1f9fad4f89fccccf2070f5d8f13b47b92e43a47be3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 2190997552 |
PQPubID | 2045405 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2220846602 proquest_journals_2190997552 crossref_citationtrail_10_1016_j_rse_2019_01_010 crossref_primary_10_1016_j_rse_2019_01_010 elsevier_sciencedirect_doi_10_1016_j_rse_2019_01_010 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-03-15 |
PublicationDateYYYYMMDD | 2019-03-15 |
PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Remote sensing of environment |
PublicationYear | 2019 |
Publisher | Elsevier Inc Elsevier BV |
Publisher_xml | – name: Elsevier Inc – name: Elsevier BV |
References | Samiappan, Turnage, Hathcock, Moorhead (bb0380) 2017; 38 Torresan, Berton, Federico Carotenuto, Gioli, Matese, Miglietta, Vagnoli, Zaldei, Wallace (bb0455) 2017; 38 Eastman, Sangermano, Machado, Rogan, Anyamba (bb0105) 2013; 5 Lechowicz (bb0215) 1984; 124 Wang, Blackburn, Onojeghuo, Dash, Zhou, Zhang, Atkinson (bb0485) 2017; 55 Ryu, Verfaillie, Macfarlane, Kobayashi, Sonnentag, Vargas, Ma, Baldocchi (bb0375) 2012; 126 Verhoeven (bb0475) 2012; 19 Richardson, Braswell, Hollinger, Jenkins, Ollinger (bb0360) 2009; 19 Liu, Hill, Zhang, Wang, Richardson, Hufkens, Filippa, Baldocchi, Ma, Verfaillie, Schaaf (bb0260) 2017; 237–238 Chuine, Kramer, Hänninen (bb0060) 2013 Morin, Roy, Sonie, Chuine (bb0305) 2010; 186 D'Odorico, Gonsamo, Gough, Bohrer, Morison, Wilkinson, Hanson, Gianelle, Fuentes, Buchmann (bb0090) 2015; 214–215 Brown, Dash, Ogutu, Richardson (bb0045) 2017; 247 Polgar, Primack (bb0345) 2011; 191 St-Onge, Audet, Begin (bb0425) 2015; 6 Norby, Hartz-Rubin, Verbrugge (bb0330) 2003; 9 Moore, Brown, Keenan, Duursma, van Dijk, Beringer, Culvenor, Evans, Huete, Hutley, Maier, Restrepo-Coupe, Sonnentag, Specht, Taylor, van Gorsel, Liddell (bb0300) 2016; 13 Delpierre, Guillemot, Dufrene, Cecchini, Nicolas (bb0085) 2017; 234 Jönsson, Cai, Melaas, Friedl, Eklundh (bb0185) 2018; 10 Mei, Durrieu (bb0265) 2004; 36 Lhermitte, Verbesselt, Verstraeten, Coppin (bb0220) 2011; 115 Melaas, Sulla-Menashe, Gray, Black, Morin, Richardson, Friedl (bb0275) 2016; 186 Thackeray, Sparks, Frederiksen, Burthe, Bacon, Bell, Botham, Brereton, Bright, Carvalho, Clutton-Brock, Dawson, Edwards, Elliott, Harrington, Johns, Jones, Jones, Leech, Roy, Scott, Smith, Smithers, Winfield, Wanless (bb0440) 2010; 16 Ryan, Williams, Hill, Grace, Woodhouse (bb0370) 2012 Delbart, Kergoat, Le Toan, Lhermitte, Picard (bb0075) 2005; 97 Fisher, Mustard, Vadeboncoeur (bb0130) 2006; 100 Baumann, Ozdogan, Richardson, Radeloff (bb0020) 2017; 54 Bartholomé, Belward (bb0015) 2005; 26 Higgins, Delgado-Cartay, February, Combrink (bb0145) 2011; 38 Schaber (bb0385) 2002 Peng, Zhang, Zhang, Liu, Liu, Huete, Huang, Wang, Luo, Zhang, Zhang (bb0340) 2017; 132 Ke, Quackenbush (bb0190) 2011; 32 Filippa, Cremonese, Migliavacca, Galvagno, Forkel, Wingate, Tomelleri, Morra di Cella, Richardson (bb0120) 2016; 220 Dandois, Ellis (bb0070) 2013; 136 Tang, Korner, Muraoka, Piao, Shen, Thackeray, Yang (bb0435) 2016; 7 Duncanson, Cook, Hurtt, Dubayah (bb0100) 2014; 154 Miao, Luan, Luo, Liu, Moore, Nath, He, Zhu, Cui (bb0285) 2013; 5 Hill, Wilson, George, Hinsley (bb0150) 2010; 13 USGS (bb0465) 2016 Liang, Schwartz (bb0230) 2009; 24 Fisher, Mustard (bb0125) 2007; 109 Richardson, O'Keefe (bb0355) 2009 Newcastle University (bb0325) 2015 Armitage, Alberto Ramirez, Mark Danson, Ogunbadewa (bb0010) 2013; 4 Ibáñez, Primack, Miller-Rushing, Ellwood, Higuchi, Lee, Kobori, Silander (bb0175) 2010; 365 Lisein, Michez, Claessens, Lejeune (bb0250) 2015 Hunt, Hively, Fujikawa, Linden, Daughtry, McCarty (bb0165) 2010; 2 Campoy, Ruiz, Egea (bb0055) 2011; 130 Snavely, Seitz, Szeliski (bb0410) 2008; 80 Woodget, Austrums, Maddock, Habit (bb0505) 2017; 4 Klosterman, Richardson (bb0200) 2017; 17 Smith (bb0400) 2009; 140 Berra, Gaulton, Barr (bb0030) 2016 Hufkens, Friedl, Sonnentag, Braswell, Milliman, Richardson (bb0160) 2012; 117 Lin, Chen, Chen, Tai (bb0245) 2018; 142 Zhang, Friedl, Schaaf, Strahler, Hodges, Gao, Reed, Huete (bb0525) 2003; 84 Thiel, Schmullius (bb0445) 2016 Michez, Piégay, Lisein, Claessens, Lejeune (bb0290) 2016; 188 Menzel, Sparks, Estrella, Koch, Aasa, Ahas, Alm-KÜBler, Bissolli, Braslavská, Briede (bb0280) 2006; 12 Tsingas (bb0460) 1992 Anderson, Gaston (bb0005) 2013; 11 Nasahara, Nagai (bb0320) 2015; 30 Thompson, Clark (bb0450) 2008; 18 White, Pontius, Schaberg (bb0495) 2014; 148 Burkart, Hecht, Kraska, Rascher (bb0050) 2018; 19 Hunter, Lechowicz (bb0170) 1992 Mizunuma, Wilkinson, Eaton, Mencuccini, Morison, Grace (bb0295) 2013; 27 Morisette, Richardson, Knapp, Fisher, Graham, Abatzoglou, Wilson, Breshears, Henebry, Hanes, Liang (bb0310) 2009; 7 Zhang (bb0520) 2015; 156 USGS (bb0470) 2016 Sparks (bb0420) 2014; 60 White, de Beurs, Didan, Inouye, Richardson, Jensen, O'Keefe, Zhang, Nemani, van Leeuwen, Brown, de Wit, Schaepman, Lin, Dettinger, Bailey, Kimball, Schwartz, Baldocchi, Lee, Lauenroth (bb0490) 2009; 15 Lim, La, Park, Lee, Pyeon, Kim (bb0240) 2015; 33 Rodriguez-Galiano, Dash, Atkinson (bb0365) 2015; 42 Sonnentag, Hufkens, Teshera-Sterne, Young, Friedl, Braswell, Milliman, O'Keefe, Richardson (bb0415) 2012; 152 Melaas, Friedl, Zhu (bb0270) 2013; 132 Panagiotidis, Abdollahnejad, Surový, Chiteculo (bb0335) 2016; 1–19 Hmimina, Dufrêne, Pontailler, Delpierre, Aubinet, Caquet, de Grandcourt, Burban, Flechard, Granier (bb0155) 2013; 132 James, Robson, d'Oleire-Oltmanns, Niethammer (bb0180) 2017; 280 Zhang, Friedl, Schaaf (bb0530) 2009; 30 Berra, Gibson-Poole, MacArthur, Gaulton, Hamilton (bb0025) 2015 Berra, Gaulton, Barr (bb0035) 2017; 55 Zaki, Latif, Zainal, Zainuddin (bb0515) 2015 Hernandez, Gonzalez-Ferreiro, Sarmento, Silva, Nunes, Correia, Fontes, Tomé, Diaz-Varela (bb0140) 2016; 2016 Li, Guo, Wang, Li, Chen, Zuo (bb0225) 2016; 13 Klosterman, Melaas, Wang, Martinez, Frederick, O'Keefe, Orwig, Wang, Sun, Schaaf, Friedl, Richardson (bb0210) 2018; 248 Edson, Wing (bb0110) 2011; 3 Keenan, Darby, Felts, Sonnentag, Friedl, Hufkens, O'Keefe, Klosterman, Munger, Toomey, Richardson (bb0195) 2014; 24 Brown, Hultine, Steltzer, Denny, Denslow, Granados, Henderson, Moore, Nagai, SanClements, Sanchez-Azofeifa, Sonnentag, Tazik, Richardson (bb0040) 2016; 14 Schaber, Badeck (bb0390) 2003; 47 Morris, Boyd, Crowe, Johnson, Smith (bb0315) 2013; 5 Schwartz, Hanes, Liang (bb0395) 2013; 169 Delbart, Beaubien, Kergoat, Le Toan (bb0080) 2015; 160 Wilkinson, Eaton, Broadmeadow, Morison (bb0500) 2012; 9 Elmore, Guinn, Minsley, Richardson (bb0115) 2012; 18 Zhao, Zhang, Tan, Song, Liang, Yu, Zhao (bb0540) 2012; 10 Smith, Milton (bb0405) 1999; 20 Donnelly, Yu, Caffarra, Hanes, Liang, Desai, Liu, Schwartz (bb0095) 2017; 243 Vitasse, Delzon, Dufrêne, Pontailler, Louvet, Kremer, Michalet (bb0480) 2009; 149 Klosterman, Hufkens, Gray, Melaas, Sonnentag, Lavine, Mitchell, Norman, Friedl, Richardson (bb0205) 2014; 11 Colomina, Molina (bb0065) 2014; 92 Garrity, Bohrer, Maurer, Mueller, Vogel, Curtis (bb0135) 2011; 151 Xin, Olofsson, Zhu, Tan, Woodcock (bb0510) 2013; 135 Liu, Liang, Schwartz, Donnelly, Wang, Schaaf, Liu (bb0255) 2015; 160 Zhang, Wang, Gao, Liu, Schaaf, Friedl, Yu, Jayavelu, Gray, Liu, Yan, Henebry (bb0535) 2017; 190 Storey, Choate, Lee (bb0430) 2014; 6 Polgar, Primack (bb0350) 2013; 21 Liang, Schwartz, Fei (bb0235) 2011; 115 Smith (10.1016/j.rse.2019.01.010_bb0400) 2009; 140 Zhang (10.1016/j.rse.2019.01.010_bb0520) 2015; 156 Duncanson (10.1016/j.rse.2019.01.010_bb0100) 2014; 154 Woodget (10.1016/j.rse.2019.01.010_bb0505) 2017; 4 Liu (10.1016/j.rse.2019.01.010_bb0255) 2015; 160 Zhang (10.1016/j.rse.2019.01.010_bb0525) 2003; 84 Tsingas (10.1016/j.rse.2019.01.010_bb0460) 1992 Armitage (10.1016/j.rse.2019.01.010_bb0010) 2013; 4 Anderson (10.1016/j.rse.2019.01.010_bb0005) 2013; 11 Delbart (10.1016/j.rse.2019.01.010_bb0075) 2005; 97 Fisher (10.1016/j.rse.2019.01.010_bb0130) 2006; 100 Polgar (10.1016/j.rse.2019.01.010_bb0350) 2013; 21 Donnelly (10.1016/j.rse.2019.01.010_bb0095) 2017; 243 Moore (10.1016/j.rse.2019.01.010_bb0300) 2016; 13 Liang (10.1016/j.rse.2019.01.010_bb0235) 2011; 115 Torresan (10.1016/j.rse.2019.01.010_bb0455) 2017; 38 Polgar (10.1016/j.rse.2019.01.010_bb0345) 2011; 191 Elmore (10.1016/j.rse.2019.01.010_bb0115) 2012; 18 Lisein (10.1016/j.rse.2019.01.010_bb0250) 2015 Panagiotidis (10.1016/j.rse.2019.01.010_bb0335) 2016; 1–19 Ke (10.1016/j.rse.2019.01.010_bb0190) 2011; 32 Sonnentag (10.1016/j.rse.2019.01.010_bb0415) 2012; 152 Garrity (10.1016/j.rse.2019.01.010_bb0135) 2011; 151 Mei (10.1016/j.rse.2019.01.010_bb0265) 2004; 36 Tang (10.1016/j.rse.2019.01.010_bb0435) 2016; 7 Hmimina (10.1016/j.rse.2019.01.010_bb0155) 2013; 132 Morris (10.1016/j.rse.2019.01.010_bb0315) 2013; 5 Campoy (10.1016/j.rse.2019.01.010_bb0055) 2011; 130 Brown (10.1016/j.rse.2019.01.010_bb0045) 2017; 247 Zaki (10.1016/j.rse.2019.01.010_bb0515) 2015 Zhao (10.1016/j.rse.2019.01.010_bb0540) 2012; 10 Schaber (10.1016/j.rse.2019.01.010_bb0390) 2003; 47 Ibáñez (10.1016/j.rse.2019.01.010_bb0175) 2010; 365 White (10.1016/j.rse.2019.01.010_bb0490) 2009; 15 Thompson (10.1016/j.rse.2019.01.010_bb0450) 2008; 18 Lhermitte (10.1016/j.rse.2019.01.010_bb0220) 2011; 115 Schwartz (10.1016/j.rse.2019.01.010_bb0395) 2013; 169 Schaber (10.1016/j.rse.2019.01.010_bb0385) 2002 Richardson (10.1016/j.rse.2019.01.010_bb0360) 2009; 19 Thiel (10.1016/j.rse.2019.01.010_bb0445) 2016 White (10.1016/j.rse.2019.01.010_bb0495) 2014; 148 Higgins (10.1016/j.rse.2019.01.010_bb0145) 2011; 38 Berra (10.1016/j.rse.2019.01.010_bb0035) 2017; 55 Thackeray (10.1016/j.rse.2019.01.010_bb0440) 2010; 16 Klosterman (10.1016/j.rse.2019.01.010_bb0205) 2014; 11 Dandois (10.1016/j.rse.2019.01.010_bb0070) 2013; 136 Storey (10.1016/j.rse.2019.01.010_bb0430) 2014; 6 Zhang (10.1016/j.rse.2019.01.010_bb0535) 2017; 190 D'Odorico (10.1016/j.rse.2019.01.010_bb0090) 2015; 214–215 Peng (10.1016/j.rse.2019.01.010_bb0340) 2017; 132 Miao (10.1016/j.rse.2019.01.010_bb0285) 2013; 5 Colomina (10.1016/j.rse.2019.01.010_bb0065) 2014; 92 Hunt (10.1016/j.rse.2019.01.010_bb0165) 2010; 2 Lim (10.1016/j.rse.2019.01.010_bb0240) 2015; 33 Vitasse (10.1016/j.rse.2019.01.010_bb0480) 2009; 149 Delbart (10.1016/j.rse.2019.01.010_bb0080) 2015; 160 Hill (10.1016/j.rse.2019.01.010_bb0150) 2010; 13 Smith (10.1016/j.rse.2019.01.010_bb0405) 1999; 20 Klosterman (10.1016/j.rse.2019.01.010_bb0210) 2018; 248 Chuine (10.1016/j.rse.2019.01.010_bb0060) 2013 Hunter (10.1016/j.rse.2019.01.010_bb0170) 1992 Richardson (10.1016/j.rse.2019.01.010_bb0355) 2009 Baumann (10.1016/j.rse.2019.01.010_bb0020) 2017; 54 Lin (10.1016/j.rse.2019.01.010_bb0245) 2018; 142 Melaas (10.1016/j.rse.2019.01.010_bb0270) 2013; 132 Eastman (10.1016/j.rse.2019.01.010_bb0105) 2013; 5 Ryu (10.1016/j.rse.2019.01.010_bb0375) 2012; 126 Ryan (10.1016/j.rse.2019.01.010_bb0370) 2012 Rodriguez-Galiano (10.1016/j.rse.2019.01.010_bb0365) 2015; 42 Klosterman (10.1016/j.rse.2019.01.010_bb0200) 2017; 17 Morisette (10.1016/j.rse.2019.01.010_bb0310) 2009; 7 Berra (10.1016/j.rse.2019.01.010_bb0025) 2015 Delpierre (10.1016/j.rse.2019.01.010_bb0085) 2017; 234 Morin (10.1016/j.rse.2019.01.010_bb0305) 2010; 186 St-Onge (10.1016/j.rse.2019.01.010_bb0425) 2015; 6 Liu (10.1016/j.rse.2019.01.010_bb0260) 2017; 237–238 Mizunuma (10.1016/j.rse.2019.01.010_bb0295) 2013; 27 Newcastle University (10.1016/j.rse.2019.01.010_bb0325) 2015 USGS (10.1016/j.rse.2019.01.010_bb0470) 2016 Berra (10.1016/j.rse.2019.01.010_bb0030) 2016 Xin (10.1016/j.rse.2019.01.010_bb0510) 2013; 135 Filippa (10.1016/j.rse.2019.01.010_bb0120) 2016; 220 USGS (10.1016/j.rse.2019.01.010_bb0465) 2016 Menzel (10.1016/j.rse.2019.01.010_bb0280) 2006; 12 Hernandez (10.1016/j.rse.2019.01.010_bb0140) 2016; 2016 Nasahara (10.1016/j.rse.2019.01.010_bb0320) 2015; 30 Li (10.1016/j.rse.2019.01.010_bb0225) 2016; 13 Fisher (10.1016/j.rse.2019.01.010_bb0125) 2007; 109 Norby (10.1016/j.rse.2019.01.010_bb0330) 2003; 9 Melaas (10.1016/j.rse.2019.01.010_bb0275) 2016; 186 Hufkens (10.1016/j.rse.2019.01.010_bb0160) 2012; 117 Sparks (10.1016/j.rse.2019.01.010_bb0420) 2014; 60 Wilkinson (10.1016/j.rse.2019.01.010_bb0500) 2012; 9 Jönsson (10.1016/j.rse.2019.01.010_bb0185) 2018; 10 Keenan (10.1016/j.rse.2019.01.010_bb0195) 2014; 24 Liang (10.1016/j.rse.2019.01.010_bb0230) 2009; 24 Wang (10.1016/j.rse.2019.01.010_bb0485) 2017; 55 Snavely (10.1016/j.rse.2019.01.010_bb0410) 2008; 80 Verhoeven (10.1016/j.rse.2019.01.010_bb0475) 2012; 19 Lechowicz (10.1016/j.rse.2019.01.010_bb0215) 1984; 124 Bartholomé (10.1016/j.rse.2019.01.010_bb0015) 2005; 26 James (10.1016/j.rse.2019.01.010_bb0180) 2017; 280 Samiappan (10.1016/j.rse.2019.01.010_bb0380) 2017; 38 Brown (10.1016/j.rse.2019.01.010_bb0040) 2016; 14 Edson (10.1016/j.rse.2019.01.010_bb0110) 2011; 3 Michez (10.1016/j.rse.2019.01.010_bb0290) 2016; 188 Burkart (10.1016/j.rse.2019.01.010_bb0050) 2018; 19 Zhang (10.1016/j.rse.2019.01.010_bb0530) 2009; 30 |
References_xml | – volume: 140 start-page: 476 year: 2009 end-page: 486 ident: bb0400 article-title: Use and misuse of the reduced major axis for line-fitting publication-title: Am. J. Phys. Anthropol. – volume: 135 start-page: 234 year: 2013 end-page: 247 ident: bb0510 article-title: Toward near real-time monitoring of forest disturbance by fusion of MODIS and Landsat data publication-title: Remote Sens. Environ. – start-page: 275 year: 2013 end-page: 288 ident: bb0060 article-title: Plant Development Models publication-title: Phenology: An Integrative Environmental Science – volume: 160 start-page: 156 year: 2015 end-page: 165 ident: bb0255 article-title: Evaluating the potential of MODIS satellite data to track temporal dynamics of autumn phenology in a temperate mixed forest publication-title: Remote Sens. Environ. – volume: 148 start-page: 97 year: 2014 end-page: 107 ident: bb0495 article-title: Remote sensing of spring phenology in northeastern forests: a comparison of methods, field metrics and sources of uncertainty publication-title: Remote Sens. Environ. – volume: 4 start-page: 1 year: 2017 end-page: 20 ident: bb0505 article-title: Drones and digital photogrammetry: from classifications to continuums for monitoring river habitat and hydromorphology publication-title: Wiley Interdiscip. Rev. Water – year: 2015 ident: bb0325 article-title: Cockle Park Weather Station Monthly Records – volume: 156 start-page: 457 year: 2015 end-page: 472 ident: bb0520 article-title: Reconstruction of a complete global time series of daily vegetation index trajectory from long-term AVHRR data publication-title: Remote Sens. Environ. – volume: 15 start-page: 2335 year: 2009 end-page: 2359 ident: bb0490 article-title: Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982–2006 publication-title: Glob. Chang. Biol. – volume: 214–215 start-page: 25 year: 2015 end-page: 38 ident: bb0090 article-title: The match and mismatch between photosynthesis and land surface phenology of deciduous forests publication-title: Agric. For. Meteorol. – start-page: 189 year: 2016 ident: bb0445 article-title: Derivation of forest parameters from stereographic UAV data–a comparison with airborne lidar data publication-title: Living Planet Symposium – start-page: 10 year: 2015 ident: bb0250 article-title: Discrimination of deciduous tree species from time series of unmanned aerial system imagery publication-title: PLoS ONE – volume: 13 start-page: 86 year: 2010 end-page: 99 ident: bb0150 article-title: Mapping tree species in temperate deciduous woodland using time-series multi-spectral data publication-title: Appl. Veg. Sci. – volume: 234 start-page: 1 year: 2017 end-page: 10 ident: bb0085 article-title: Tree phenological ranks repeat from year to year and correlate with growth in temperate deciduous forests publication-title: Agric. For. Meteorol. – volume: 152 start-page: 159 year: 2012 end-page: 177 ident: bb0415 article-title: Digital repeat photography for phenological research in forest ecosystems publication-title: Agric. For. Meteorol. – volume: 151 start-page: 1741 year: 2011 end-page: 1752 ident: bb0135 article-title: A comparison of multiple phenology data sources for estimating seasonal transitions in deciduous forest carbon exchange publication-title: Agric. For. Meteorol. – volume: 19 start-page: 134 year: 2018 end-page: 146 ident: bb0050 article-title: Phenological analysis of unmanned aerial vehicle based time series of barley imagery with high temporal resolution publication-title: Precis. Agric. – volume: 13 start-page: 5085 year: 2016 end-page: 5102 ident: bb0300 article-title: Reviews and syntheses: Australian vegetation phenology: new insights from satellite remote sensing and digital repeat photography publication-title: Biogeosciences – volume: 13 start-page: 1330 year: 2016 end-page: 1334 ident: bb0225 article-title: Individual tree delineation in windbreaks using airborne-laser-scanning data and unmanned aerial vehicle stereo images publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 24 start-page: 465 year: 2009 end-page: 472 ident: bb0230 article-title: Landscape phenology: an integrative approach to seasonal vegetation dynamics publication-title: Landsc. Ecol. – volume: 109 start-page: 261 year: 2007 end-page: 273 ident: bb0125 article-title: Cross-scalar satellite phenology from ground, Landsat, and MODIS data publication-title: Remote Sens. Environ. – volume: 4 start-page: 427 year: 2013 end-page: 435 ident: bb0010 article-title: Probability of cloud-free observation conditions across Great Britain estimated using MODIS cloud mask publication-title: Remote Sens. Lett. – volume: 20 start-page: 2653 year: 1999 end-page: 2662 ident: bb0405 article-title: The use of the empirical line method to calibrate remotely sensed data to reflectance publication-title: Int. J. Remote Sens. – volume: 11 start-page: 138 year: 2013 end-page: 146 ident: bb0005 article-title: Lightweight unmanned aerial vehicles will revolutionize spatial ecology publication-title: Front. Ecol. Environ. – volume: 38 start-page: 2165 year: 2011 end-page: 2175 ident: bb0145 article-title: Is there a temporal niche separation in the leaf phenology of savanna trees and grasses? publication-title: J. Biogeogr. – volume: 10 start-page: 635 year: 2018 ident: bb0185 article-title: A method for robust estimation of vegetation seasonality from Landsat and Sentinel-2 time series data publication-title: Remote Sens. – volume: 27 start-page: 196 year: 2013 end-page: 207 ident: bb0295 article-title: The relationship between carbon dioxide uptake and canopy colour from two camera systems in a deciduous forest in southern England publication-title: Funct. Ecol. – volume: 7 start-page: 253 year: 2009 end-page: 260 ident: bb0310 article-title: Tracking the rhythm of the seasons in the face of global change: phenological research in the 21st century publication-title: Front. Ecol. Environ. – volume: 5 start-page: 2200 year: 2013 end-page: 2218 ident: bb0315 article-title: Exploring the potential for automatic extraction of vegetation phenological metrics from traffic webcams publication-title: Remote Sens. – volume: 33 start-page: 605 year: 2015 end-page: 614 ident: bb0240 article-title: Calculation of tree height and canopy crown from drone images using segmentation publication-title: J. Korean Soc. Surv. Geodesy Photogramm. Cartography – volume: 5 start-page: 4799 year: 2013 end-page: 4818 ident: bb0105 article-title: Global trends in seasonality of normalized difference vegetation index (NDVI), 1982–2011 publication-title: Remote Sens. – volume: 149 start-page: 735 year: 2009 end-page: 744 ident: bb0480 article-title: Leaf phenology sensitivity to temperature in European trees: do within-species populations exhibit similar responses? publication-title: Agric. For. Meteorol. – year: 1992 ident: bb0460 article-title: Automatisierung der Punktubertragung in der Aerotriangulation durch mehrfache digitale Bildzuordnung – volume: 136 start-page: 259 year: 2013 end-page: 276 ident: bb0070 article-title: High spatial resolution three-dimensional mapping of vegetation spectral dynamics using computer vision publication-title: Remote Sens. Environ. – volume: 30 start-page: 211 year: 2015 end-page: 223 ident: bb0320 article-title: Review: development of an in situ observation network for terrestrial ecological remote sensing: the Phenological Eyes Network (PEN) publication-title: Ecol. Res. – volume: 160 start-page: 273 year: 2015 end-page: 280 ident: bb0080 article-title: Comparing land surface phenology with leafing and flowering observations from the PlantWatch citizen network publication-title: Remote Sens. Environ. – volume: 21 start-page: 111 year: 2013 end-page: 116 ident: bb0350 article-title: Leaf out phenology in temperate forests publication-title: Biodivers. Sci. – volume: 24 start-page: 1478 year: 2014 end-page: 1489 ident: bb0195 article-title: Tracking forest phenology and seasonal physiology using digital repeat photography: a critical assessment publication-title: Ecol. Appl. – start-page: 237 year: 2015 end-page: 242 ident: bb0515 article-title: Individual tree crown (ITC) delineation using watershed transformation algorithm for tropical lowland dipterocarp publication-title: 2015 International Conference on Space Science and Communication (IconSpace) – volume: 30 start-page: 2061 year: 2009 end-page: 2074 ident: bb0530 article-title: Sensitivity of vegetation phenology detection to the temporal resolution of satellite data publication-title: Int. J. Remote Sens. – volume: 124 start-page: 821 year: 1984 end-page: 842 ident: bb0215 article-title: Why do temperate deciduous trees leaf out at different times? Adaptation and ecology of forest communities publication-title: Am. Nat. – start-page: 42 year: 2016 ident: bb0465 article-title: Landsat 4-7 climate data record (CDR) surface reflectance publication-title: Product Guide – volume: 117 start-page: 307 year: 2012 end-page: 321 ident: bb0160 article-title: Linking near-surface and satellite remote sensing measurements of deciduous broadleaf forest phenology publication-title: Remote Sens. Environ. – volume: 7 year: 2016 ident: bb0435 article-title: Emerging opportunities and challenges in phenology: a review publication-title: Ecosphere – start-page: 597 year: 1992 end-page: 604 ident: bb0170 article-title: Predicting the timing of budburst in temperate trees publication-title: J. Appl. Ecol. – volume: 97 start-page: 26 year: 2005 end-page: 38 ident: bb0075 article-title: Determination of phenological dates in boreal regions using normalized difference water index publication-title: Remote Sens. Environ. – volume: 16 start-page: 3304 year: 2010 end-page: 3313 ident: bb0440 article-title: Trophic level asynchrony in rates of phenological change for marine, freshwater and terrestrial environments publication-title: Glob. Chang. Biol. – volume: 55 start-page: 4878 year: 2017 end-page: 4886 ident: bb0035 article-title: Commercial off-the-shelf digital cameras on unmanned aerial vehicles for multitemporal monitoring of vegetation reflectance and NDVI publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 186 start-page: 900 year: 2010 end-page: 910 ident: bb0305 article-title: Changes in leaf phenology of three European oak species in response to experimental climate change publication-title: New Phytol. – volume: 19 start-page: 1417 year: 2009 end-page: 1428 ident: bb0360 article-title: Near-surface remote sensing of spatial and temporal variation in canopy phenology publication-title: Ecol. Appl. – volume: 247 start-page: 280 year: 2017 end-page: 292 ident: bb0045 article-title: On the relationship between continuous measures of canopy greenness derived using near-surface remote sensing and satellite-derived vegetation products publication-title: Agric. For. Meteorol. – start-page: 146 year: 2002 ident: bb0385 article-title: Phenology in Germany in the 20th century: methods, analyses and models publication-title: Department of Geoecology – volume: 115 start-page: 143 year: 2011 end-page: 157 ident: bb0235 article-title: Validating satellite phenology through intensive ground observation and landscape scaling in a mixed seasonal forest publication-title: Remote Sens. Environ. – volume: 47 start-page: 193 year: 2003 end-page: 201 ident: bb0390 article-title: Physiology-based phenology models for forest tree species in Germany publication-title: Int. J. Biometeorol. – volume: 132 start-page: 185 year: 2017 end-page: 198 ident: bb0340 article-title: Scaling effects on spring phenology detections from MODIS data at multiple spatial resolutions over the contiguous United States publication-title: ISPRS J. Photogramm. Remote Sens. – start-page: 27 year: 2016 ident: bb0470 article-title: Provisional landsat 8 surface reflectance code (LaSRC) product publication-title: Product Guide – volume: 84 start-page: 471 year: 2003 end-page: 475 ident: bb0525 article-title: Monitoring vegetation phenology using MODIS publication-title: Remote Sens. Environ. – volume: 9 start-page: 1792 year: 2003 end-page: 1801 ident: bb0330 article-title: Phenological responses in maple to experimental atmospheric warming and CO publication-title: Glob. Chang. Biol. – volume: 42 start-page: 2253 year: 2015 end-page: 2260 ident: bb0365 article-title: Intercomparison of satellite sensor land surface phenology and ground phenology in Europe publication-title: Geophys. Res. Lett. – volume: 2 start-page: 290 year: 2010 end-page: 305 ident: bb0165 article-title: Acquisition of NIR-green-blue digital photographs from unmanned aircraft for crop monitoring publication-title: Remote Sens. – volume: 6 start-page: 3899 year: 2015 end-page: 3922 ident: bb0425 article-title: Characterizing the height structure and composition of a boreal Forest using an individual tree crown approach applied to photogrammetric point clouds publication-title: Forests – start-page: 87 year: 2009 end-page: 117 ident: bb0355 article-title: Phenological differences between understory and overstory publication-title: Phenology of Ecosystem Processes – volume: 55 start-page: 3885 year: 2017 end-page: 3899 ident: bb0485 article-title: Fusion of Landsat 8 OLI and Sentinel-2 MSI data publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 9 start-page: 5373 year: 2012 end-page: 5389 ident: bb0500 article-title: Inter-annual variation of carbon uptake by a plantation oak woodland in south-eastern England publication-title: Biogeosciences – volume: 10 start-page: 65 year: 2012 end-page: 72 ident: bb0540 article-title: Using digital cameras for comparative phenological monitoring in an evergreen broad-leaved forest and a seasonal rain forest publication-title: Eco. Inform. – volume: 169 start-page: 136 year: 2013 end-page: 147 ident: bb0395 article-title: Comparing carbon flux and high-resolution spring phenological measurements in a northern mixed forest publication-title: Agric. For. Meteorol. – volume: 80 start-page: 189 year: 2008 end-page: 210 ident: bb0410 article-title: Modeling the world from Internet photo collections publication-title: Int. J. Comput. Vis. – volume: 38 start-page: 2427 year: 2017 end-page: 2447 ident: bb0455 article-title: Forestry applications of UAVs in Europe: a review publication-title: Int. J. Remote Sens. – volume: 243 start-page: 55 year: 2017 end-page: 67 ident: bb0095 article-title: Interspecific and interannual variation in the duration of spring phenophases in a northern mixed forest publication-title: Agric. For. Meteorol. – volume: 14 start-page: 84 year: 2016 end-page: 93 ident: bb0040 article-title: Using phenocams to monitor our changing Earth: toward a global phenocam network publication-title: Front. Ecol. Environ. – volume: 188 start-page: 1 year: 2016 end-page: 19 ident: bb0290 article-title: Classification of riparian forest species and health condition using multi-temporal and hyperspatial imagery from unmanned aerial system publication-title: Environ. Monit. Assess. – volume: 92 start-page: 79 year: 2014 end-page: 97 ident: bb0065 article-title: Unmanned aerial systems for photogrammetry and remote sensing: a review publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 3 start-page: 2494 year: 2011 ident: bb0110 article-title: Airborne light detection and ranging (LiDAR) for individual tree stem location, height, and biomass measurements publication-title: Remote Sens. – volume: 186 start-page: 452 year: 2016 end-page: 464 ident: bb0275 article-title: Multisite analysis of land surface phenology in North American temperate and boreal deciduous forests from Landsat publication-title: Remote Sens. Environ. – volume: 191 start-page: 926 year: 2011 end-page: 941 ident: bb0345 article-title: Leaf-out phenology of temperate woody plants: from trees to ecosystems publication-title: New Phytol. – volume: 130 start-page: 357 year: 2011 end-page: 372 ident: bb0055 article-title: Dormancy in temperate fruit trees in a global warming context: a review publication-title: Sci. Hortic. – volume: 11 start-page: 4305 year: 2014 end-page: 4320 ident: bb0205 article-title: Evaluating remote sensing of deciduous forest phenology at multiple spatial scales using PhenoCam imagery publication-title: Biogeosciences – volume: 220 start-page: 141 year: 2016 end-page: 150 ident: bb0120 article-title: Phenopix: a R package for image-based vegetation phenology publication-title: Agric. For. Meteorol. – volume: 142 start-page: 174 year: 2018 end-page: 189 ident: bb0245 article-title: Detecting newly grown tree leaves from unmanned-aerial-vehicle images using hyperspectral target detection techniques publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 26 start-page: 1959 year: 2005 end-page: 1977 ident: bb0015 article-title: GLC2000: a new approach to global land cover mapping from Earth observation data publication-title: Int. J. Remote Sens. – volume: 132 start-page: 145 year: 2013 end-page: 158 ident: bb0155 article-title: Evaluation of the potential of MODIS satellite data to predict vegetation phenology in different biomes: an investigation using ground-based NDVI measurements publication-title: Remote Sens. Environ. – volume: 17 start-page: 2852 year: 2017 ident: bb0200 article-title: Observing spring and fall phenology in a deciduous forest with aerial drone imagery publication-title: Sensors – volume: 248 start-page: 397 year: 2018 end-page: 407 ident: bb0210 article-title: Fine-scale perspectives on landscape phenology from unmanned aerial vehicle (UAV) photography publication-title: Agric. For. Meteorol. – volume: 190 start-page: 318 year: 2017 end-page: 330 ident: bb0535 article-title: Exploration of scaling effects on coarse resolution land surface phenology publication-title: Remote Sens. Environ. – volume: 280 start-page: 51 year: 2017 end-page: 66 ident: bb0180 article-title: Optimising UAV topographic surveys processed with structure-from-motion: ground control quality, quantity and bundle adjustment publication-title: Geomorphology – volume: 38 start-page: 2861 year: 2017 end-page: 2882 ident: bb0380 article-title: Mapping of invasive phragmites (common reed) in Gulf of Mexico coastal wetlands using multispectral imagery and small unmanned aerial systems publication-title: Int. J. Remote Sens. – volume: 100 start-page: 265 year: 2006 end-page: 279 ident: bb0130 article-title: Green leaf phenology at Landsat resolution: scaling from the field to the satellite publication-title: Remote Sens. Environ. – volume: 5 start-page: 5193 year: 2013 end-page: 5208 ident: bb0285 article-title: Analysis of the phenology in the Mongolian plateau by inter-comparison of global vegetation datasets publication-title: Remote Sens. – year: 2012 ident: bb0370 article-title: Assessing the Phenology of Southern Tropical Africa: A Comparison of Hemispherical Photography, Scatterometry, and Optical/NIR Remote Sensing – volume: 1–19 year: 2016 ident: bb0335 article-title: Determining tree height and crown diameter from high-resolution UAV imagery publication-title: Int. J. Remote Sens. – volume: 60 start-page: 87 year: 2014 end-page: 89 ident: bb0420 article-title: Local-scale adaptation to climate change: the village flower festival publication-title: Clim. Res. – volume: 18 start-page: 656 year: 2012 end-page: 674 ident: bb0115 article-title: Landscape controls on the timing of spring, autumn, and growing season length in mid-Atlantic forests publication-title: Glob. Chang. Biol. – volume: 154 start-page: 378 year: 2014 end-page: 386 ident: bb0100 article-title: An efficient, multi-layered crown delineation algorithm for mapping individual tree structure across multiple ecosystems publication-title: Remote Sens. Environ. – volume: 54 start-page: 72 year: 2017 end-page: 83 ident: bb0020 article-title: Phenology from Landsat when data is scarce: using MODIS and Dynamic Time-Warping to combine multi-year Landsat imagery to derive annual phenology curves publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 126 start-page: 116 year: 2012 end-page: 125 ident: bb0375 article-title: Continuous observation of tree leaf area index at ecosystem scale using upward-pointing digital cameras publication-title: Remote Sens. Environ. – volume: 115 start-page: 3129 year: 2011 end-page: 3152 ident: bb0220 article-title: A comparison of time series similarity measures for classification and change detection of ecosystem dynamics publication-title: Remote Sens. Environ. – volume: 32 start-page: 3625 year: 2011 end-page: 3647 ident: bb0190 article-title: A comparison of three methods for automatic tree crown detection and delineation from high spatial resolution imagery publication-title: Int. J. Remote Sens. – volume: 132 start-page: 176 year: 2013 end-page: 185 ident: bb0270 article-title: Detecting interannual variation in deciduous broadleaf forest phenology using Landsat TM/ETM plus data publication-title: Remote Sens. Environ. – volume: 18 start-page: 95 year: 2008 end-page: 104 ident: bb0450 article-title: Is spring starting earlier? publication-title: The Holocene – volume: 2016 start-page: 25 year: 2016 ident: bb0140 article-title: Using High Resolution UAV Imagery to Estimate Tree Variables in – start-page: 3496 year: 2016 end-page: 3499 ident: bb0030 article-title: Use of a digital camera onboard a UAV to monitor spring phenology at individual tree level publication-title: 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) – volume: 365 start-page: 3247 year: 2010 end-page: 3260 ident: bb0175 article-title: Forecasting phenology under global warming publication-title: Philos. Trans. R. Soc. Lond. B – volume: 12 start-page: 1969 year: 2006 end-page: 1976 ident: bb0280 article-title: European phenological response to climate change matches the warming pattern publication-title: Glob. Chang. Biol. – volume: 19 start-page: 132 year: 2012 end-page: 160 ident: bb0475 article-title: Near-infrared aerial crop mark archaeology: from its historical use to current digital implementations publication-title: J. Archaeol. Method Theory – volume: 237–238 start-page: 311 year: 2017 end-page: 325 ident: bb0260 article-title: Using data from Landsat, MODIS, VIIRS and PhenoCams to monitor the phenology of California oak/grass savanna and open grassland across spatial scales publication-title: Agric. For. Meteorol. – start-page: 207 year: 2015 end-page: 214 ident: bb0025 article-title: Estimation of the spectral sensitivity functions of un-modified and modified commercial off-the-shelf digital cameras to enable their use as a multispectral imaging system for UAVs publication-title: Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. – volume: 36 start-page: 218 year: 2004 end-page: 223 ident: bb0265 article-title: Tree crown delineation from digital elevation models and high resolution imagery publication-title: Proc. IAPRS – volume: 6 start-page: 11127 year: 2014 end-page: 11152 ident: bb0430 article-title: Landsat 8 operational land imager on-orbit geometric calibration and performance publication-title: Remote Sens. – year: 2015 ident: 10.1016/j.rse.2019.01.010_bb0325 – volume: 148 start-page: 97 year: 2014 ident: 10.1016/j.rse.2019.01.010_bb0495 article-title: Remote sensing of spring phenology in northeastern forests: a comparison of methods, field metrics and sources of uncertainty publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.03.017 – volume: 154 start-page: 378 year: 2014 ident: 10.1016/j.rse.2019.01.010_bb0100 article-title: An efficient, multi-layered crown delineation algorithm for mapping individual tree structure across multiple ecosystems publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.07.044 – start-page: 27 year: 2016 ident: 10.1016/j.rse.2019.01.010_bb0470 article-title: Provisional landsat 8 surface reflectance code (LaSRC) product – volume: 234 start-page: 1 year: 2017 ident: 10.1016/j.rse.2019.01.010_bb0085 article-title: Tree phenological ranks repeat from year to year and correlate with growth in temperate deciduous forests publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2016.12.008 – volume: 14 start-page: 84 year: 2016 ident: 10.1016/j.rse.2019.01.010_bb0040 article-title: Using phenocams to monitor our changing Earth: toward a global phenocam network publication-title: Front. Ecol. Environ. doi: 10.1002/fee.1222 – volume: 237–238 start-page: 311 year: 2017 ident: 10.1016/j.rse.2019.01.010_bb0260 article-title: Using data from Landsat, MODIS, VIIRS and PhenoCams to monitor the phenology of California oak/grass savanna and open grassland across spatial scales publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2017.02.026 – volume: 100 start-page: 265 year: 2006 ident: 10.1016/j.rse.2019.01.010_bb0130 article-title: Green leaf phenology at Landsat resolution: scaling from the field to the satellite publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2005.10.022 – volume: 2 start-page: 290 year: 2010 ident: 10.1016/j.rse.2019.01.010_bb0165 article-title: Acquisition of NIR-green-blue digital photographs from unmanned aircraft for crop monitoring publication-title: Remote Sens. doi: 10.3390/rs2010290 – volume: 13 start-page: 5085 year: 2016 ident: 10.1016/j.rse.2019.01.010_bb0300 article-title: Reviews and syntheses: Australian vegetation phenology: new insights from satellite remote sensing and digital repeat photography publication-title: Biogeosciences doi: 10.5194/bg-13-5085-2016 – volume: 365 start-page: 3247 year: 2010 ident: 10.1016/j.rse.2019.01.010_bb0175 article-title: Forecasting phenology under global warming publication-title: Philos. Trans. R. Soc. Lond. B doi: 10.1098/rstb.2010.0120 – volume: 130 start-page: 357 year: 2011 ident: 10.1016/j.rse.2019.01.010_bb0055 article-title: Dormancy in temperate fruit trees in a global warming context: a review publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2011.07.011 – volume: 97 start-page: 26 year: 2005 ident: 10.1016/j.rse.2019.01.010_bb0075 article-title: Determination of phenological dates in boreal regions using normalized difference water index publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2005.03.011 – volume: 169 start-page: 136 year: 2013 ident: 10.1016/j.rse.2019.01.010_bb0395 article-title: Comparing carbon flux and high-resolution spring phenological measurements in a northern mixed forest publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2012.10.014 – volume: 4 start-page: 427 year: 2013 ident: 10.1016/j.rse.2019.01.010_bb0010 article-title: Probability of cloud-free observation conditions across Great Britain estimated using MODIS cloud mask publication-title: Remote Sens. Lett. doi: 10.1080/2150704X.2012.744486 – volume: 38 start-page: 2165 year: 2011 ident: 10.1016/j.rse.2019.01.010_bb0145 article-title: Is there a temporal niche separation in the leaf phenology of savanna trees and grasses? publication-title: J. Biogeogr. doi: 10.1111/j.1365-2699.2011.02549.x – volume: 16 start-page: 3304 year: 2010 ident: 10.1016/j.rse.2019.01.010_bb0440 article-title: Trophic level asynchrony in rates of phenological change for marine, freshwater and terrestrial environments publication-title: Glob. Chang. Biol. doi: 10.1111/j.1365-2486.2010.02165.x – volume: 26 start-page: 1959 year: 2005 ident: 10.1016/j.rse.2019.01.010_bb0015 article-title: GLC2000: a new approach to global land cover mapping from Earth observation data publication-title: Int. J. Remote Sens. doi: 10.1080/01431160412331291297 – volume: 7 year: 2016 ident: 10.1016/j.rse.2019.01.010_bb0435 article-title: Emerging opportunities and challenges in phenology: a review publication-title: Ecosphere doi: 10.1002/ecs2.1436 – volume: 5 start-page: 2200 year: 2013 ident: 10.1016/j.rse.2019.01.010_bb0315 article-title: Exploring the potential for automatic extraction of vegetation phenological metrics from traffic webcams publication-title: Remote Sens. doi: 10.3390/rs5052200 – volume: 186 start-page: 452 year: 2016 ident: 10.1016/j.rse.2019.01.010_bb0275 article-title: Multisite analysis of land surface phenology in North American temperate and boreal deciduous forests from Landsat publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.09.014 – start-page: 42 year: 2016 ident: 10.1016/j.rse.2019.01.010_bb0465 article-title: Landsat 4-7 climate data record (CDR) surface reflectance – volume: 136 start-page: 259 year: 2013 ident: 10.1016/j.rse.2019.01.010_bb0070 article-title: High spatial resolution three-dimensional mapping of vegetation spectral dynamics using computer vision publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.04.005 – start-page: 275 year: 2013 ident: 10.1016/j.rse.2019.01.010_bb0060 article-title: Plant Development Models – volume: 54 start-page: 72 year: 2017 ident: 10.1016/j.rse.2019.01.010_bb0020 article-title: Phenology from Landsat when data is scarce: using MODIS and Dynamic Time-Warping to combine multi-year Landsat imagery to derive annual phenology curves publication-title: Int. J. Appl. Earth Obs. Geoinf. doi: 10.1016/j.jag.2016.09.005 – volume: 1–19 year: 2016 ident: 10.1016/j.rse.2019.01.010_bb0335 article-title: Determining tree height and crown diameter from high-resolution UAV imagery publication-title: Int. J. Remote Sens. – volume: 11 start-page: 138 year: 2013 ident: 10.1016/j.rse.2019.01.010_bb0005 article-title: Lightweight unmanned aerial vehicles will revolutionize spatial ecology publication-title: Front. Ecol. Environ. doi: 10.1890/120150 – volume: 12 start-page: 1969 year: 2006 ident: 10.1016/j.rse.2019.01.010_bb0280 article-title: European phenological response to climate change matches the warming pattern publication-title: Glob. Chang. Biol. doi: 10.1111/j.1365-2486.2006.01193.x – start-page: 87 year: 2009 ident: 10.1016/j.rse.2019.01.010_bb0355 article-title: Phenological differences between understory and overstory – volume: 36 start-page: 218 year: 2004 ident: 10.1016/j.rse.2019.01.010_bb0265 article-title: Tree crown delineation from digital elevation models and high resolution imagery publication-title: Proc. IAPRS – start-page: 3496 year: 2016 ident: 10.1016/j.rse.2019.01.010_bb0030 article-title: Use of a digital camera onboard a UAV to monitor spring phenology at individual tree level – volume: 214–215 start-page: 25 year: 2015 ident: 10.1016/j.rse.2019.01.010_bb0090 article-title: The match and mismatch between photosynthesis and land surface phenology of deciduous forests publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2015.07.005 – volume: 33 start-page: 605 year: 2015 ident: 10.1016/j.rse.2019.01.010_bb0240 article-title: Calculation of tree height and canopy crown from drone images using segmentation publication-title: J. Korean Soc. Surv. Geodesy Photogramm. Cartography doi: 10.7848/ksgpc.2015.33.6.605 – volume: 13 start-page: 86 year: 2010 ident: 10.1016/j.rse.2019.01.010_bb0150 article-title: Mapping tree species in temperate deciduous woodland using time-series multi-spectral data publication-title: Appl. Veg. Sci. doi: 10.1111/j.1654-109X.2009.01053.x – volume: 5 start-page: 4799 year: 2013 ident: 10.1016/j.rse.2019.01.010_bb0105 article-title: Global trends in seasonality of normalized difference vegetation index (NDVI), 1982–2011 publication-title: Remote Sens. doi: 10.3390/rs5104799 – volume: 109 start-page: 261 year: 2007 ident: 10.1016/j.rse.2019.01.010_bb0125 article-title: Cross-scalar satellite phenology from ground, Landsat, and MODIS data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2007.01.004 – volume: 30 start-page: 2061 year: 2009 ident: 10.1016/j.rse.2019.01.010_bb0530 article-title: Sensitivity of vegetation phenology detection to the temporal resolution of satellite data publication-title: Int. J. Remote Sens. doi: 10.1080/01431160802549237 – year: 2012 ident: 10.1016/j.rse.2019.01.010_bb0370 – volume: 188 start-page: 1 year: 2016 ident: 10.1016/j.rse.2019.01.010_bb0290 article-title: Classification of riparian forest species and health condition using multi-temporal and hyperspatial imagery from unmanned aerial system publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-015-4996-2 – volume: 6 start-page: 11127 year: 2014 ident: 10.1016/j.rse.2019.01.010_bb0430 article-title: Landsat 8 operational land imager on-orbit geometric calibration and performance publication-title: Remote Sens. doi: 10.3390/rs61111127 – volume: 15 start-page: 2335 year: 2009 ident: 10.1016/j.rse.2019.01.010_bb0490 article-title: Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982–2006 publication-title: Glob. Chang. Biol. doi: 10.1111/j.1365-2486.2009.01910.x – volume: 132 start-page: 185 year: 2017 ident: 10.1016/j.rse.2019.01.010_bb0340 article-title: Scaling effects on spring phenology detections from MODIS data at multiple spatial resolutions over the contiguous United States publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2017.09.002 – volume: 47 start-page: 193 year: 2003 ident: 10.1016/j.rse.2019.01.010_bb0390 article-title: Physiology-based phenology models for forest tree species in Germany publication-title: Int. J. Biometeorol. doi: 10.1007/s00484-003-0171-5 – volume: 19 start-page: 1417 year: 2009 ident: 10.1016/j.rse.2019.01.010_bb0360 article-title: Near-surface remote sensing of spatial and temporal variation in canopy phenology publication-title: Ecol. Appl. doi: 10.1890/08-2022.1 – volume: 115 start-page: 143 year: 2011 ident: 10.1016/j.rse.2019.01.010_bb0235 article-title: Validating satellite phenology through intensive ground observation and landscape scaling in a mixed seasonal forest publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2010.08.013 – volume: 27 start-page: 196 year: 2013 ident: 10.1016/j.rse.2019.01.010_bb0295 article-title: The relationship between carbon dioxide uptake and canopy colour from two camera systems in a deciduous forest in southern England publication-title: Funct. Ecol. doi: 10.1111/1365-2435.12026 – volume: 149 start-page: 735 year: 2009 ident: 10.1016/j.rse.2019.01.010_bb0480 article-title: Leaf phenology sensitivity to temperature in European trees: do within-species populations exhibit similar responses? publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2008.10.019 – volume: 18 start-page: 95 year: 2008 ident: 10.1016/j.rse.2019.01.010_bb0450 article-title: Is spring starting earlier? publication-title: The Holocene doi: 10.1177/0959683607085599 – volume: 4 start-page: 1 year: 2017 ident: 10.1016/j.rse.2019.01.010_bb0505 article-title: Drones and digital photogrammetry: from classifications to continuums for monitoring river habitat and hydromorphology publication-title: Wiley Interdiscip. Rev. Water doi: 10.1002/wat2.1222 – start-page: 207 year: 2015 ident: 10.1016/j.rse.2019.01.010_bb0025 article-title: Estimation of the spectral sensitivity functions of un-modified and modified commercial off-the-shelf digital cameras to enable their use as a multispectral imaging system for UAVs publication-title: Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. doi: 10.5194/isprsarchives-XL-1-W4-207-2015 – volume: 19 start-page: 132 year: 2012 ident: 10.1016/j.rse.2019.01.010_bb0475 article-title: Near-infrared aerial crop mark archaeology: from its historical use to current digital implementations publication-title: J. Archaeol. Method Theory doi: 10.1007/s10816-011-9104-5 – volume: 9 start-page: 1792 year: 2003 ident: 10.1016/j.rse.2019.01.010_bb0330 article-title: Phenological responses in maple to experimental atmospheric warming and CO2 enrichment publication-title: Glob. Chang. Biol. doi: 10.1111/j.1365-2486.2003.00714.x – volume: 140 start-page: 476 year: 2009 ident: 10.1016/j.rse.2019.01.010_bb0400 article-title: Use and misuse of the reduced major axis for line-fitting publication-title: Am. J. Phys. Anthropol. doi: 10.1002/ajpa.21090 – volume: 19 start-page: 134 year: 2018 ident: 10.1016/j.rse.2019.01.010_bb0050 article-title: Phenological analysis of unmanned aerial vehicle based time series of barley imagery with high temporal resolution publication-title: Precis. Agric. doi: 10.1007/s11119-017-9504-y – volume: 13 start-page: 1330 year: 2016 ident: 10.1016/j.rse.2019.01.010_bb0225 article-title: Individual tree delineation in windbreaks using airborne-laser-scanning data and unmanned aerial vehicle stereo images publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2016.2584109 – volume: 32 start-page: 3625 year: 2011 ident: 10.1016/j.rse.2019.01.010_bb0190 article-title: A comparison of three methods for automatic tree crown detection and delineation from high spatial resolution imagery publication-title: Int. J. Remote Sens. doi: 10.1080/01431161003762355 – volume: 18 start-page: 656 year: 2012 ident: 10.1016/j.rse.2019.01.010_bb0115 article-title: Landscape controls on the timing of spring, autumn, and growing season length in mid-Atlantic forests publication-title: Glob. Chang. Biol. doi: 10.1111/j.1365-2486.2011.02521.x – volume: 124 start-page: 821 year: 1984 ident: 10.1016/j.rse.2019.01.010_bb0215 article-title: Why do temperate deciduous trees leaf out at different times? Adaptation and ecology of forest communities publication-title: Am. Nat. doi: 10.1086/284319 – start-page: 597 year: 1992 ident: 10.1016/j.rse.2019.01.010_bb0170 article-title: Predicting the timing of budburst in temperate trees publication-title: J. Appl. Ecol. doi: 10.2307/2404467 – volume: 9 start-page: 5373 year: 2012 ident: 10.1016/j.rse.2019.01.010_bb0500 article-title: Inter-annual variation of carbon uptake by a plantation oak woodland in south-eastern England publication-title: Biogeosciences doi: 10.5194/bg-9-5373-2012 – volume: 156 start-page: 457 year: 2015 ident: 10.1016/j.rse.2019.01.010_bb0520 article-title: Reconstruction of a complete global time series of daily vegetation index trajectory from long-term AVHRR data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.10.012 – volume: 151 start-page: 1741 year: 2011 ident: 10.1016/j.rse.2019.01.010_bb0135 article-title: A comparison of multiple phenology data sources for estimating seasonal transitions in deciduous forest carbon exchange publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2011.07.008 – volume: 55 start-page: 4878 year: 2017 ident: 10.1016/j.rse.2019.01.010_bb0035 article-title: Commercial off-the-shelf digital cameras on unmanned aerial vehicles for multitemporal monitoring of vegetation reflectance and NDVI publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2017.2655365 – volume: 55 start-page: 3885 year: 2017 ident: 10.1016/j.rse.2019.01.010_bb0485 article-title: Fusion of Landsat 8 OLI and Sentinel-2 MSI data publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2017.2683444 – volume: 132 start-page: 145 year: 2013 ident: 10.1016/j.rse.2019.01.010_bb0155 article-title: Evaluation of the potential of MODIS satellite data to predict vegetation phenology in different biomes: an investigation using ground-based NDVI measurements publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.01.010 – volume: 191 start-page: 926 year: 2011 ident: 10.1016/j.rse.2019.01.010_bb0345 article-title: Leaf-out phenology of temperate woody plants: from trees to ecosystems publication-title: New Phytol. doi: 10.1111/j.1469-8137.2011.03803.x – start-page: 237 year: 2015 ident: 10.1016/j.rse.2019.01.010_bb0515 article-title: Individual tree crown (ITC) delineation using watershed transformation algorithm for tropical lowland dipterocarp – volume: 38 start-page: 2861 year: 2017 ident: 10.1016/j.rse.2019.01.010_bb0380 article-title: Mapping of invasive phragmites (common reed) in Gulf of Mexico coastal wetlands using multispectral imagery and small unmanned aerial systems publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2016.1271480 – volume: 115 start-page: 3129 year: 2011 ident: 10.1016/j.rse.2019.01.010_bb0220 article-title: A comparison of time series similarity measures for classification and change detection of ecosystem dynamics publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.06.020 – volume: 38 start-page: 2427 year: 2017 ident: 10.1016/j.rse.2019.01.010_bb0455 article-title: Forestry applications of UAVs in Europe: a review publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2016.1252477 – volume: 30 start-page: 211 year: 2015 ident: 10.1016/j.rse.2019.01.010_bb0320 article-title: Review: development of an in situ observation network for terrestrial ecological remote sensing: the Phenological Eyes Network (PEN) publication-title: Ecol. Res. doi: 10.1007/s11284-014-1239-x – volume: 220 start-page: 141 year: 2016 ident: 10.1016/j.rse.2019.01.010_bb0120 article-title: Phenopix: a R package for image-based vegetation phenology publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2016.01.006 – volume: 24 start-page: 465 year: 2009 ident: 10.1016/j.rse.2019.01.010_bb0230 article-title: Landscape phenology: an integrative approach to seasonal vegetation dynamics publication-title: Landsc. Ecol. doi: 10.1007/s10980-009-9328-x – volume: 142 start-page: 174 year: 2018 ident: 10.1016/j.rse.2019.01.010_bb0245 article-title: Detecting newly grown tree leaves from unmanned-aerial-vehicle images using hyperspectral target detection techniques publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.05.022 – volume: 2016 start-page: 25 year: 2016 ident: 10.1016/j.rse.2019.01.010_bb0140 – volume: 80 start-page: 189 year: 2008 ident: 10.1016/j.rse.2019.01.010_bb0410 article-title: Modeling the world from Internet photo collections publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-007-0107-3 – volume: 3 start-page: 2494 year: 2011 ident: 10.1016/j.rse.2019.01.010_bb0110 article-title: Airborne light detection and ranging (LiDAR) for individual tree stem location, height, and biomass measurements publication-title: Remote Sens. doi: 10.3390/rs3112494 – volume: 248 start-page: 397 year: 2018 ident: 10.1016/j.rse.2019.01.010_bb0210 article-title: Fine-scale perspectives on landscape phenology from unmanned aerial vehicle (UAV) photography publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2017.10.015 – volume: 24 start-page: 1478 year: 2014 ident: 10.1016/j.rse.2019.01.010_bb0195 article-title: Tracking forest phenology and seasonal physiology using digital repeat photography: a critical assessment publication-title: Ecol. Appl. doi: 10.1890/13-0652.1 – volume: 247 start-page: 280 year: 2017 ident: 10.1016/j.rse.2019.01.010_bb0045 article-title: On the relationship between continuous measures of canopy greenness derived using near-surface remote sensing and satellite-derived vegetation products publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2017.08.012 – volume: 132 start-page: 176 year: 2013 ident: 10.1016/j.rse.2019.01.010_bb0270 article-title: Detecting interannual variation in deciduous broadleaf forest phenology using Landsat TM/ETM plus data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.01.011 – volume: 84 start-page: 471 year: 2003 ident: 10.1016/j.rse.2019.01.010_bb0525 article-title: Monitoring vegetation phenology using MODIS publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(02)00135-9 – volume: 10 start-page: 65 year: 2012 ident: 10.1016/j.rse.2019.01.010_bb0540 article-title: Using digital cameras for comparative phenological monitoring in an evergreen broad-leaved forest and a seasonal rain forest publication-title: Eco. Inform. doi: 10.1016/j.ecoinf.2012.03.001 – volume: 7 start-page: 253 year: 2009 ident: 10.1016/j.rse.2019.01.010_bb0310 article-title: Tracking the rhythm of the seasons in the face of global change: phenological research in the 21st century publication-title: Front. Ecol. Environ. doi: 10.1890/070217 – volume: 11 start-page: 4305 year: 2014 ident: 10.1016/j.rse.2019.01.010_bb0205 article-title: Evaluating remote sensing of deciduous forest phenology at multiple spatial scales using PhenoCam imagery publication-title: Biogeosciences doi: 10.5194/bg-11-4305-2014 – start-page: 10 year: 2015 ident: 10.1016/j.rse.2019.01.010_bb0250 article-title: Discrimination of deciduous tree species from time series of unmanned aerial system imagery publication-title: PLoS ONE – volume: 42 start-page: 2253 year: 2015 ident: 10.1016/j.rse.2019.01.010_bb0365 article-title: Intercomparison of satellite sensor land surface phenology and ground phenology in Europe publication-title: Geophys. Res. Lett. doi: 10.1002/2015GL063586 – volume: 152 start-page: 159 year: 2012 ident: 10.1016/j.rse.2019.01.010_bb0415 article-title: Digital repeat photography for phenological research in forest ecosystems publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2011.09.009 – volume: 117 start-page: 307 year: 2012 ident: 10.1016/j.rse.2019.01.010_bb0160 article-title: Linking near-surface and satellite remote sensing measurements of deciduous broadleaf forest phenology publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.10.006 – start-page: 146 year: 2002 ident: 10.1016/j.rse.2019.01.010_bb0385 article-title: Phenology in Germany in the 20th century: methods, analyses and models – volume: 243 start-page: 55 year: 2017 ident: 10.1016/j.rse.2019.01.010_bb0095 article-title: Interspecific and interannual variation in the duration of spring phenophases in a northern mixed forest publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2017.05.007 – volume: 21 start-page: 111 year: 2013 ident: 10.1016/j.rse.2019.01.010_bb0350 article-title: Leaf out phenology in temperate forests publication-title: Biodivers. Sci. doi: 10.3724/SP.J.1003.2013.06187 – volume: 10 start-page: 635 year: 2018 ident: 10.1016/j.rse.2019.01.010_bb0185 article-title: A method for robust estimation of vegetation seasonality from Landsat and Sentinel-2 time series data publication-title: Remote Sens. doi: 10.3390/rs10040635 – year: 1992 ident: 10.1016/j.rse.2019.01.010_bb0460 – volume: 6 start-page: 3899 year: 2015 ident: 10.1016/j.rse.2019.01.010_bb0425 article-title: Characterizing the height structure and composition of a boreal Forest using an individual tree crown approach applied to photogrammetric point clouds publication-title: Forests doi: 10.3390/f6113899 – volume: 20 start-page: 2653 year: 1999 ident: 10.1016/j.rse.2019.01.010_bb0405 article-title: The use of the empirical line method to calibrate remotely sensed data to reflectance publication-title: Int. J. Remote Sens. doi: 10.1080/014311699211994 – volume: 17 start-page: 2852 year: 2017 ident: 10.1016/j.rse.2019.01.010_bb0200 article-title: Observing spring and fall phenology in a deciduous forest with aerial drone imagery publication-title: Sensors doi: 10.3390/s17122852 – start-page: 189 year: 2016 ident: 10.1016/j.rse.2019.01.010_bb0445 article-title: Derivation of forest parameters from stereographic UAV data–a comparison with airborne lidar data – volume: 186 start-page: 900 year: 2010 ident: 10.1016/j.rse.2019.01.010_bb0305 article-title: Changes in leaf phenology of three European oak species in response to experimental climate change publication-title: New Phytol. doi: 10.1111/j.1469-8137.2010.03252.x – volume: 60 start-page: 87 year: 2014 ident: 10.1016/j.rse.2019.01.010_bb0420 article-title: Local-scale adaptation to climate change: the village flower festival publication-title: Clim. Res. doi: 10.3354/cr01228 – volume: 92 start-page: 79 year: 2014 ident: 10.1016/j.rse.2019.01.010_bb0065 article-title: Unmanned aerial systems for photogrammetry and remote sensing: a review publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2014.02.013 – volume: 160 start-page: 156 year: 2015 ident: 10.1016/j.rse.2019.01.010_bb0255 article-title: Evaluating the potential of MODIS satellite data to track temporal dynamics of autumn phenology in a temperate mixed forest publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.01.011 – volume: 190 start-page: 318 year: 2017 ident: 10.1016/j.rse.2019.01.010_bb0535 article-title: Exploration of scaling effects on coarse resolution land surface phenology publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.01.001 – volume: 5 start-page: 5193 year: 2013 ident: 10.1016/j.rse.2019.01.010_bb0285 article-title: Analysis of the phenology in the Mongolian plateau by inter-comparison of global vegetation datasets publication-title: Remote Sens. doi: 10.3390/rs5105193 – volume: 160 start-page: 273 year: 2015 ident: 10.1016/j.rse.2019.01.010_bb0080 article-title: Comparing land surface phenology with leafing and flowering observations from the PlantWatch citizen network publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.01.012 – volume: 126 start-page: 116 year: 2012 ident: 10.1016/j.rse.2019.01.010_bb0375 article-title: Continuous observation of tree leaf area index at ecosystem scale using upward-pointing digital cameras publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.08.027 – volume: 135 start-page: 234 year: 2013 ident: 10.1016/j.rse.2019.01.010_bb0510 article-title: Toward near real-time monitoring of forest disturbance by fusion of MODIS and Landsat data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.04.002 – volume: 280 start-page: 51 year: 2017 ident: 10.1016/j.rse.2019.01.010_bb0180 article-title: Optimising UAV topographic surveys processed with structure-from-motion: ground control quality, quantity and bundle adjustment publication-title: Geomorphology doi: 10.1016/j.geomorph.2016.11.021 |
SSID | ssj0015871 |
Score | 2.591326 |
Snippet | The monitoring of forest phenology in a cost-effective manner, at a fine spatial scale and over relatively large areas remains a significant challenge. To... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 229 |
SubjectTerms | Canopies canopy Consumer-grade camera cost effectiveness Drone Ecosystem dynamics ecosystems Forest phenology Forests Individual tree level Land surface phenology Landsat Landsat satellites Monitoring normalized difference vegetation index Normalized difference vegetative index Phenology plant communities Remote sensing Satellite observation Satellite tracking Satellites Spatial data Spatial resolution Spring Spring (season) Temporal resolution temporal variation Time series time series analysis trees understory Unmanned aerial vehicles Vegetation Vegetation index Visual observation Woodlands |
Title | Assessing spring phenology of a temperate woodland: A multiscale comparison of ground, unmanned aerial vehicle and Landsat satellite observations |
URI | https://dx.doi.org/10.1016/j.rse.2019.01.010 https://www.proquest.com/docview/2190997552 https://www.proquest.com/docview/2220846602 |
Volume | 223 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hqqq9oHYp6vKSK_WEmpKHHxtuKwTdvjiBxM1yYltQlSwiu0hc-A_9x51xnFQgxKFRojxsJ1FmPDOOv5kB-FjVrna2dIlInU24S31SepUlUlmnjMpsEYK4_jyRszP-7Vycr8Bh7wtDsMoo-zuZHqR1vLIfv-b-9eUl-fgWnDgOTRAa2dC4nXNFXP75foB5ZGKiuqx5BU-odj-zGTBeNy1FyszKELmTnGif1k2PpHRQPcdvYC3ajGzavdZbWHHNCDaO_rmoYWHso-0IXsW85hd3I3j5JSTuvVuHP93sLioq1k3FMgJ3hUI298wwilFFAZYdIxQO4R0P2JQFvGGLdHSsHjIWUgPyBmnsJ7ZsrgyJamYCK7Nbd0EvybA9-0FuxGbBcKOwn3jreTX8BG7fwdnx0enhLInpGJKa53yRlGhb5B5VnUXyoqUmcSe5z3zpjeV-UvoaF5-jEPHCTnxWVFxVZe54YfDAFRuw2swb9x6YtKXySrhaTCru0WYyOMDnlXQWzUdp5BjSnhC6jrHKKWXGb92D0n5ppJ0m2uk0wzUdw97Q5LoL1PFcZd5TVz_gNo2K5Llm2z0n6NjVW40in7yPhcjH8GEoxk5KMy-mcfMl1snzFA09meab__fkLXhNZwR-y8Q2rC5ulm4HraFFtRvYfRdeTL9-n538BTbPDb8 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fT9swED-hIsRepq0bWgfbjLSnaRH5YzvN3ioEK1D6BBJvlhPbAgQpIi0SH4NvzJ3jBG2aeFjUKFWdS6Le-e6cu_sdwPeyspU1hY1EbE3EbeyiwuVJJHNjc50nJvMgrqdzOT3nxxfiYg32u1oYSqsMur_V6V5bh1_2wr-5d3d1RTW-GSeJQxeEVja4bl8ndCoxgPXJ0cl03gcTxDhvG-dlPCKCLrjp07zuGwLLTAoP3kl1tP82T38pam99Dt_B2-A2skn7ZO9hzdZD2Dp4qVLDwTBNmyFshtbml49D2Pjte_c-foCnNsCLtoq10VhG-V1-kC0c04xgqghj2TJKxKGUx19swnzKYYOstKzqmxYSARWE1OYnW9W3mrQ1016a2YO9pIdkSM9mVEmslwx3Qv7ESy_K_j1w8xHODw_O9qdR6MgQVTzly6hA9yJ1aO0MchidNYkHyV3iCqcNd-PCVbi5FPWIE2bskqzkeVmklmcav9hsCwb1orafgElT5C4XthLjkjt0mzSu8XkprUEPUmo5grhjhKoCXDl1zbhRXV7atULeKeKdihP8xCP40ZPctVgdr53MO-6qPwROoS15jWynkwQVZnujUOtTAbIQ6Qh2-2GcpxR80bVdrPCcNI3R15Nx-vn_7vwNNqdnpzM1O5qfbMMbGqFcuETswGB5v7Jf0Dlall-D8D8DYVQQcA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessing+spring+phenology+of+a+temperate+woodland%3A+A+multiscale+comparison+of+ground%2C+unmanned+aerial+vehicle+and+Landsat+satellite+observations&rft.jtitle=Remote+sensing+of+environment&rft.au=Berra%2C+Elias+Fernando&rft.au=Gaulton%2C+Rachel&rft.au=Barr%2C+Stuart&rft.date=2019-03-15&rft.pub=Elsevier+BV&rft.issn=0034-4257&rft.eissn=1879-0704&rft.volume=223&rft.spage=229&rft_id=info:doi/10.1016%2Fj.rse.2019.01.010&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4257&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4257&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4257&client=summon |