A simple mathematical model of cell clustering by chemotaxis

•This paper presents a simple mathematical model of how cells (and small clusters of cells) can combine to form large clusters due to chemotaxis.•An exact expression is used to simulate how the chemical signals produced by the cells diffuses and spreads out.•The effect that changing some of the para...

Full description

Saved in:
Bibliographic Details
Published inMathematical biosciences Vol. 294; pp. 62 - 70
Main Author Harris, Paul J.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.12.2017
Elsevier Science Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •This paper presents a simple mathematical model of how cells (and small clusters of cells) can combine to form large clusters due to chemotaxis.•An exact expression is used to simulate how the chemical signals produced by the cells diffuses and spreads out.•The effect that changing some of the parameters in the model, such as the initial concentration strength and the diffusion constant, has on the final distribution of the cells is investigated and discussed. Chemotaxis is the process by which cells and clusters of cells follow chemical signals in order to combine and form larger clusters. The spreading of the chemical signal from any given cell can be modeled using the linear diffusion equation, and the standard equations of motion can be used to determine how a cell, or cluster of cells, moves in response to the chemical signal. The resulting differential equations for the cell locations are integrated through time using the fourth-order Runge–Kutta method. The effect which changing the initial concentration magnitude, diffusion constant and velocity damping parameter has on the shape of the final clusters of cells is investigated and discussed.
AbstractList Chemotaxis is the process by which cells and clusters of cells follow chemical signals in order to combine and form larger clusters. The spreading of the chemical signal from any given cell can be modeled using the linear diffusion equation, and the standard equations of motion can be used to determine how a cell, or cluster of cells, moves in response to the chemical signal. The resulting differential equations for the cell locations are integrated through time using the fourth-order Runge-Kutta method. The effect which changing the initial concentration magnitude, diffusion constant and velocity damping parameter has on the shape of the final clusters of cells is investigated and discussed.
Chemotaxis is the process by which cells and clusters of cells follow chemical signals in order to combine and form larger clusters. The spreading of the chemical signal from any given cell can be modeled using the linear diffusion equation, and the standard equations of motion can be used to determine how a cell, or cluster of cells, moves in response to the chemical signal. The resulting differential equations for the cell locations are integrated through time using the fourth-order Runge-Kutta method. The effect which changing the initial concentration magnitude, diffusion constant and velocity damping parameter has on the shape of the final clusters of cells is investigated and discussed.Chemotaxis is the process by which cells and clusters of cells follow chemical signals in order to combine and form larger clusters. The spreading of the chemical signal from any given cell can be modeled using the linear diffusion equation, and the standard equations of motion can be used to determine how a cell, or cluster of cells, moves in response to the chemical signal. The resulting differential equations for the cell locations are integrated through time using the fourth-order Runge-Kutta method. The effect which changing the initial concentration magnitude, diffusion constant and velocity damping parameter has on the shape of the final clusters of cells is investigated and discussed.
•This paper presents a simple mathematical model of how cells (and small clusters of cells) can combine to form large clusters due to chemotaxis.•An exact expression is used to simulate how the chemical signals produced by the cells diffuses and spreads out.•The effect that changing some of the parameters in the model, such as the initial concentration strength and the diffusion constant, has on the final distribution of the cells is investigated and discussed. Chemotaxis is the process by which cells and clusters of cells follow chemical signals in order to combine and form larger clusters. The spreading of the chemical signal from any given cell can be modeled using the linear diffusion equation, and the standard equations of motion can be used to determine how a cell, or cluster of cells, moves in response to the chemical signal. The resulting differential equations for the cell locations are integrated through time using the fourth-order Runge–Kutta method. The effect which changing the initial concentration magnitude, diffusion constant and velocity damping parameter has on the shape of the final clusters of cells is investigated and discussed.
Author Harris, Paul J.
Author_xml – sequence: 1
  givenname: Paul J.
  surname: Harris
  fullname: Harris, Paul J.
  email: p.j.harris@brighton.ac.uk
  organization: School of Computing, Engineering and Mathematics, University of Brighton, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29042211$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1LxDAURYMoOo7-ADdScOOmY77aNOhGxC8Q3Og6pMmLZmibMWlF_70ZRjcuZpOQcM7jce8h2h3CAAidELwgmNQXy0XfpgXFROT3AuNmB81II2TJCOO7aIYxrcqqqvkBOkxpiTNISL2PDqjEnFJCZujquki-X3VQ9Hp8h3x4o7uiDxa6IrjCQNcVppvSCNEPb0X7XZiMhVF_-XSE9pzuEhz_3nP0enf7cvNQPj3fP95cP5WGUz6WErPKUqcdNw4kY0IzDVhQJqQz0FphuZaaNK4GzK2uKZXcttA6a4WG2rA5Ot_MXcXwMUEaVe_TejM9QJiSIrKiFa0rgjN69g9dhikOeTtFcSWahnFJMnX6S01tD1atou91_FZ_uWRAbAATQ0oRnDJ-zNmEYYzad4pgtW5ALVVuQK0bWH_lBrJJ_pl_w7c5lxsHcoifHqJKxsNgwPoIZlQ2-C32D03VnT0
CitedBy_id crossref_primary_10_1016_j_mbs_2018_09_011
crossref_primary_10_1016_j_jtbi_2023_111646
crossref_primary_10_1016_j_jtbi_2024_111966
Cites_doi 10.1016/j.jtbi.2010.10.034
10.1016/j.cub.2007.04.004
10.1098/rsif.2012.0276
10.1016/0022-5193(71)90050-6
10.1016/j.mbs.2007.01.006
10.1016/S0006-3495(74)85952-7
10.1016/j.jcp.2015.12.038
10.1038/srep04736
10.1111/jcmm.12555
10.1002/mana.19981950106
10.1016/j.biosystems.2008.05.005
10.1016/S0092-8674(00)81297-0
10.1016/j.jim.2006.12.010
10.1002/dvdy.21207
10.1016/j.bpj.2013.06.022
10.3934/krm.2012.5.51
10.1007/s11538-012-9779-0
10.1002/1097-0169(200007)46:3<183::AID-CM3>3.0.CO;2-2
10.1016/j.gde.2007.05.010
10.1016/j.jtbi.2014.02.027
ContentType Journal Article
Copyright 2017
Copyright © 2017. Published by Elsevier Inc.
Copyright Elsevier Science Ltd. Dec 2017
Copyright_xml – notice: 2017
– notice: Copyright © 2017. Published by Elsevier Inc.
– notice: Copyright Elsevier Science Ltd. Dec 2017
DBID AAYXX
CITATION
NPM
7QL
7QO
7QP
7SN
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
DOI 10.1016/j.mbs.2017.10.008
DatabaseName CrossRef
PubMed
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ecology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Biotechnology Research Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Virology and AIDS Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Mathematics
EISSN 1879-3134
EndPage 70
ExternalDocumentID 29042211
10_1016_j_mbs_2017_10_008
S0025556417305497
Genre Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.GJ
.~1
0R~
186
1B1
1RT
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACIWK
ACPRK
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AETEA
AFFNX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMJ
HVGLF
HZ~
H~9
IHE
J1W
KOM
LW9
M26
M41
MO0
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SAB
SDF
SDG
SDP
SES
SEW
SME
SPCBC
SSA
SSZ
T5K
TN5
UNMZH
WH7
WUQ
XOL
XSW
YQT
ZCG
ZGI
ZXP
ZY4
~G-
~KM
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
NPM
7QL
7QO
7QP
7SN
7TK
7TM
7U9
8FD
C1K
EFKBS
FR3
H94
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-c424t-9035d2faf4cfe9337a3ae072379fcebd7d4a9a18f6e04da62294dbebfdd7ae6c3
IEDL.DBID .~1
ISSN 0025-5564
1879-3134
IngestDate Fri Jul 11 05:53:23 EDT 2025
Mon Jul 14 09:07:39 EDT 2025
Thu Apr 03 07:05:55 EDT 2025
Tue Jul 01 03:34:36 EDT 2025
Thu Apr 24 22:58:25 EDT 2025
Fri Feb 23 02:30:36 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Cell clustering
Diffusion equation
Mathematical model
Equations of motion
Chemotaxis
Language English
License Copyright © 2017. Published by Elsevier Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c424t-9035d2faf4cfe9337a3ae072379fcebd7d4a9a18f6e04da62294dbebfdd7ae6c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://research.brighton.ac.uk/en/publications/3a763676-b5eb-454b-84b9-1b3ad0237d60
PMID 29042211
PQID 2057883491
PQPubID 105577
PageCount 9
ParticipantIDs proquest_miscellaneous_1952526510
proquest_journals_2057883491
pubmed_primary_29042211
crossref_citationtrail_10_1016_j_mbs_2017_10_008
crossref_primary_10_1016_j_mbs_2017_10_008
elsevier_sciencedirect_doi_10_1016_j_mbs_2017_10_008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-12-01
PublicationDateYYYYMMDD 2017-12-01
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-12-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle Mathematical biosciences
PublicationTitleAlternate Math Biosci
PublicationYear 2017
Publisher Elsevier Inc
Elsevier Science Ltd
Publisher_xml – name: Elsevier Inc
– name: Elsevier Science Ltd
References Jia, Dajusta, Foty (bib0004) 2007; 236
Lapidus, Schiller (bib0013) 1974; 14
Hilderink, Spijker, Carlotti, Lange, Engelse, van Blitterswijk, de Koning, Karperien, van Apeldoorn (bib0005) 2015; 19
Shirasaki, Yamagishi, Suzuki, Izawa, Nakahara, Mizuno, Shoji, Heike, Harada, Nishikomori, Ohara (bib0011) 2014; 4
Eyiyurekli, Manley, Lelkes, Breen (bib0016) 2008; 93
Atkinson (bib0021) 1989
Lawrence, Struhl (bib0006) 1996; 85
Gajewski, Zacharias (bib0014) 1998; 195
Nitta, Tsuchiya, Yamauchi, Tamatani, Kanegasaki (bib0002) 2007; 320
Malawista, Chevance, Boxer (bib0001) 2000; 46
Baker, Maini (bib0007) 2007; 209
Kim, Reed, Rejniak (bib0017) 2014; 352
Raphael, Christodoulides, Delehanty, Long, Byers (bib0010) 2013; 105
Hoeller, Kay (bib0003) 2007; 17
Kornberg, Guha (bib0008) 2007; 17
Thompson, Yates, Baker (bib0018) 2012; 74
Elliott, Stinner, Venkataraman (bib0019) 2012; 9
Keller, Segel (bib0012) 1971; 30
Chertock, Kurganov, Wang, Wu (bib0015) 2012; 5
MacDonald, Mackenzie, Nolan, Insall (bib0020) 2016; 309
Wolpert (bib0009) 2011; 269
Eyiyurekli (10.1016/j.mbs.2017.10.008_bib0016) 2008; 93
MacDonald (10.1016/j.mbs.2017.10.008_bib0020) 2016; 309
Thompson (10.1016/j.mbs.2017.10.008_bib0018) 2012; 74
Raphael (10.1016/j.mbs.2017.10.008_bib0010) 2013; 105
Nitta (10.1016/j.mbs.2017.10.008_bib0002) 2007; 320
Jia (10.1016/j.mbs.2017.10.008_bib0004) 2007; 236
Elliott (10.1016/j.mbs.2017.10.008_bib0019) 2012; 9
Shirasaki (10.1016/j.mbs.2017.10.008_bib0011) 2014; 4
Lapidus (10.1016/j.mbs.2017.10.008_bib0013) 1974; 14
Baker (10.1016/j.mbs.2017.10.008_bib0007) 2007; 209
Wolpert (10.1016/j.mbs.2017.10.008_bib0009) 2011; 269
Gajewski (10.1016/j.mbs.2017.10.008_bib0014) 1998; 195
Lawrence (10.1016/j.mbs.2017.10.008_bib0006) 1996; 85
Hoeller (10.1016/j.mbs.2017.10.008_bib0003) 2007; 17
Hilderink (10.1016/j.mbs.2017.10.008_bib0005) 2015; 19
Kornberg (10.1016/j.mbs.2017.10.008_bib0008) 2007; 17
Keller (10.1016/j.mbs.2017.10.008_bib0012) 1971; 30
Atkinson (10.1016/j.mbs.2017.10.008_bib0021) 1989
Malawista (10.1016/j.mbs.2017.10.008_bib0001) 2000; 46
Chertock (10.1016/j.mbs.2017.10.008_bib0015) 2012; 5
Kim (10.1016/j.mbs.2017.10.008_bib0017) 2014; 352
References_xml – year: 1989
  ident: bib0021
  article-title: An Introduction to Numerical Analysis
– volume: 309
  start-page: 207
  year: 2016
  end-page: 226
  ident: bib0020
  article-title: A computational method for the coupled solution of reaction-diffusion equations on evolving domains and manifolds: Application to a model of cell migration and chemotaxis
  publication-title: J. Comp. Phys.
– volume: 320
  start-page: 155
  year: 2007
  end-page: 163
  ident: bib0002
  article-title: Quantitative analysis of eosinophil chemotaxis tracked using a novel optical device taxiscan
  publication-title: J. Immunol. Methods
– volume: 30
  start-page: 225
  year: 1971
  end-page: 234
  ident: bib0012
  article-title: Model for chemotaxis
  publication-title: J. Theor. Biol.
– volume: 209
  start-page: 30
  year: 2007
  end-page: 50
  ident: bib0007
  article-title: Travelling gradients in interacting morphogen systems
  publication-title: Math. Biosci.
– volume: 17
  start-page: 813
  year: 2007
  end-page: 817
  ident: bib0003
  article-title: Chemotaxis in the absence of pip3 gradients
  publication-title: Curr. Biol.
– volume: 236
  start-page: 2039
  year: 2007
  end-page: 2049
  ident: bib0004
  article-title: Tissue surface tensions guide in vitro self-assembly of rodent pancreatic islet cells
  publication-title: Dev. Dyn.
– volume: 9
  start-page: 3027
  year: 2012
  end-page: 3044
  ident: bib0019
  article-title: Modelling cell motility and chemotaxis with evolving surface finite elements
  publication-title: J. R. Soc. Interface
– volume: 19
  start-page: 1836
  year: 2015
  end-page: 1846
  ident: bib0005
  article-title: Controlled aggregation of primary human pancreatic islet cells leads to glucose-responsive pseudoislets comparable to native islets
  publication-title: J. Cell. Mol. Med.
– volume: 352
  start-page: 31
  year: 2014
  end-page: 50
  ident: bib0017
  article-title: The formation of tight tumor clusters affects the efficacy of cell cycle inhibitors: a hybrid model study
  publication-title: J. Theor. Biol.
– volume: 195
  start-page: 77
  year: 1998
  end-page: 114
  ident: bib0014
  article-title: Global behaviour of a reaction - diffusion system modelling chemotaxis
  publication-title: Math. Nachr.
– volume: 105
  start-page: 602
  year: 2013
  end-page: 608
  ident: bib0010
  article-title: Quantitative imaging of protein secretions from single cells in real time
  publication-title: Biophys. J.
– volume: 5
  start-page: 51
  year: 2012
  end-page: 95
  ident: bib0015
  article-title: On a chemotaxis model with saturated chemotactic flux
  publication-title: Kin. Rel. Mod.
– volume: 46
  start-page: 183
  year: 2000
  end-page: 189
  ident: bib0001
  article-title: Random locomotion and chemotaxis of human blood polymorphonuclear leukocytes from a patient with Leukocyte Adhesion Deficiency-1: normal displacement in close quarters via chimneying
  publication-title: Cell Motil. Cytoskeleton
– volume: 17
  start-page: 264
  year: 2007
  end-page: 271
  ident: bib0008
  article-title: Understanding morphogen gradients: a problem of dispersion and containment
  publication-title: Curr. Opin. Genet. Dev.
– volume: 93
  start-page: 226
  year: 2008
  end-page: 239
  ident: bib0016
  article-title: A computational model of chemotaxis-based cell aggregation
  publication-title: BioSysytems
– volume: 85
  start-page: 951
  year: 1996
  end-page: 961
  ident: bib0006
  article-title: Morphogens, compartments, and pattern: lessons from drosophila?
  publication-title: Cell
– volume: 4
  year: 2014
  ident: bib0011
  article-title: Real-time single-cell imaging of protein secretion
  publication-title: Sci. Rep.
– volume: 14
  start-page: 825
  year: 1974
  end-page: 834
  ident: bib0013
  article-title: A mathematical model for bacterial chemotaxis
  publication-title: Biophys. J.
– volume: 74
  start-page: 2793
  year: 2012
  end-page: 2809
  ident: bib0018
  article-title: Modelling cell migration and adhesion during development
  publication-title: Bull. Math. Biol.
– volume: 269
  start-page: 359
  year: 2011
  end-page: 365
  ident: bib0009
  article-title: Positional information and patterning revisited
  publication-title: J. Theor. Biol.
– volume: 269
  start-page: 359
  issue: 1
  year: 2011
  ident: 10.1016/j.mbs.2017.10.008_bib0009
  article-title: Positional information and patterning revisited
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2010.10.034
– volume: 17
  start-page: 813
  issue: 9
  year: 2007
  ident: 10.1016/j.mbs.2017.10.008_bib0003
  article-title: Chemotaxis in the absence of pip3 gradients
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2007.04.004
– volume: 9
  start-page: 3027
  year: 2012
  ident: 10.1016/j.mbs.2017.10.008_bib0019
  article-title: Modelling cell motility and chemotaxis with evolving surface finite elements
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2012.0276
– volume: 30
  start-page: 225
  year: 1971
  ident: 10.1016/j.mbs.2017.10.008_bib0012
  article-title: Model for chemotaxis
  publication-title: J. Theor. Biol.
  doi: 10.1016/0022-5193(71)90050-6
– volume: 209
  start-page: 30
  issue: 1
  year: 2007
  ident: 10.1016/j.mbs.2017.10.008_bib0007
  article-title: Travelling gradients in interacting morphogen systems
  publication-title: Math. Biosci.
  doi: 10.1016/j.mbs.2007.01.006
– volume: 14
  start-page: 825
  year: 1974
  ident: 10.1016/j.mbs.2017.10.008_bib0013
  article-title: A mathematical model for bacterial chemotaxis
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(74)85952-7
– volume: 309
  start-page: 207
  year: 2016
  ident: 10.1016/j.mbs.2017.10.008_bib0020
  article-title: A computational method for the coupled solution of reaction-diffusion equations on evolving domains and manifolds: Application to a model of cell migration and chemotaxis
  publication-title: J. Comp. Phys.
  doi: 10.1016/j.jcp.2015.12.038
– year: 1989
  ident: 10.1016/j.mbs.2017.10.008_bib0021
– volume: 4
  year: 2014
  ident: 10.1016/j.mbs.2017.10.008_bib0011
  article-title: Real-time single-cell imaging of protein secretion
  publication-title: Sci. Rep.
  doi: 10.1038/srep04736
– volume: 19
  start-page: 1836
  issue: 8
  year: 2015
  ident: 10.1016/j.mbs.2017.10.008_bib0005
  article-title: Controlled aggregation of primary human pancreatic islet cells leads to glucose-responsive pseudoislets comparable to native islets
  publication-title: J. Cell. Mol. Med.
  doi: 10.1111/jcmm.12555
– volume: 195
  start-page: 77
  year: 1998
  ident: 10.1016/j.mbs.2017.10.008_bib0014
  article-title: Global behaviour of a reaction - diffusion system modelling chemotaxis
  publication-title: Math. Nachr.
  doi: 10.1002/mana.19981950106
– volume: 93
  start-page: 226
  year: 2008
  ident: 10.1016/j.mbs.2017.10.008_bib0016
  article-title: A computational model of chemotaxis-based cell aggregation
  publication-title: BioSysytems
  doi: 10.1016/j.biosystems.2008.05.005
– volume: 85
  start-page: 951
  year: 1996
  ident: 10.1016/j.mbs.2017.10.008_bib0006
  article-title: Morphogens, compartments, and pattern: lessons from drosophila?
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81297-0
– volume: 320
  start-page: 155
  issue: 12
  year: 2007
  ident: 10.1016/j.mbs.2017.10.008_bib0002
  article-title: Quantitative analysis of eosinophil chemotaxis tracked using a novel optical device taxiscan
  publication-title: J. Immunol. Methods
  doi: 10.1016/j.jim.2006.12.010
– volume: 236
  start-page: 2039
  issue: 8
  year: 2007
  ident: 10.1016/j.mbs.2017.10.008_bib0004
  article-title: Tissue surface tensions guide in vitro self-assembly of rodent pancreatic islet cells
  publication-title: Dev. Dyn.
  doi: 10.1002/dvdy.21207
– volume: 105
  start-page: 602
  issue: 3
  year: 2013
  ident: 10.1016/j.mbs.2017.10.008_bib0010
  article-title: Quantitative imaging of protein secretions from single cells in real time
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2013.06.022
– volume: 5
  start-page: 51
  issue: 1
  year: 2012
  ident: 10.1016/j.mbs.2017.10.008_bib0015
  article-title: On a chemotaxis model with saturated chemotactic flux
  publication-title: Kin. Rel. Mod.
  doi: 10.3934/krm.2012.5.51
– volume: 74
  start-page: 2793
  year: 2012
  ident: 10.1016/j.mbs.2017.10.008_bib0018
  article-title: Modelling cell migration and adhesion during development
  publication-title: Bull. Math. Biol.
  doi: 10.1007/s11538-012-9779-0
– volume: 46
  start-page: 183
  issue: 3
  year: 2000
  ident: 10.1016/j.mbs.2017.10.008_bib0001
  article-title: Random locomotion and chemotaxis of human blood polymorphonuclear leukocytes from a patient with Leukocyte Adhesion Deficiency-1: normal displacement in close quarters via chimneying
  publication-title: Cell Motil. Cytoskeleton
  doi: 10.1002/1097-0169(200007)46:3<183::AID-CM3>3.0.CO;2-2
– volume: 17
  start-page: 264
  issue: 4
  year: 2007
  ident: 10.1016/j.mbs.2017.10.008_bib0008
  article-title: Understanding morphogen gradients: a problem of dispersion and containment
  publication-title: Curr. Opin. Genet. Dev.
  doi: 10.1016/j.gde.2007.05.010
– volume: 352
  start-page: 31
  year: 2014
  ident: 10.1016/j.mbs.2017.10.008_bib0017
  article-title: The formation of tight tumor clusters affects the efficacy of cell cycle inhibitors: a hybrid model study
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2014.02.027
SSID ssj0017116
Score 2.1878123
Snippet •This paper presents a simple mathematical model of how cells (and small clusters of cells) can combine to form large clusters due to chemotaxis.•An exact...
Chemotaxis is the process by which cells and clusters of cells follow chemical signals in order to combine and form larger clusters. The spreading of the...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 62
SubjectTerms Cell clustering
Cells
Chemotaxis
Clustering
Differential equations
Diffusion equation
Equations of motion
Mathematical model
Mathematical models
Organic chemistry
Runge-Kutta method
Signal processing
Title A simple mathematical model of cell clustering by chemotaxis
URI https://dx.doi.org/10.1016/j.mbs.2017.10.008
https://www.ncbi.nlm.nih.gov/pubmed/29042211
https://www.proquest.com/docview/2057883491
https://www.proquest.com/docview/1952526510
Volume 294
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxRBEC5CRNCDaHxtjKEFT8Ik0901PdPgZQmG1SU5iMHchn4NrCS7wd2F5OJvt2pe4CE5eBqmH0xTVVNdPVP1fQAfrcYmD1hkZYUpwyKazEUVs0iekPHBrFdcnHx2bmYX-O2yuNyBk6EWhtMqe9_f-fTWW_ctx700j28WC67xpXC4MCjJSOmUwxXlSA8gmz76M6Z5yFK29KctbSuPHv5stjle154Ru2V51CZ4VfftTffFnu0edPocnvXBo5h263sBO2m5B487Osm7PXh6NmKwrl_C56lYLxj7V1yPzTS5pb4Rq0bwJ3sRrraMlED7l_B3ghRImnO3i_UruDj98uNklvVcCVlAhZvM5rqIqnENhiZZrUunXcpLpUvbhORjGdFZJ6vGpByjM0pZjD75JsbSJRP0a9hdrpbpLQjjZShSnpw3FjHQecJETC5h0FXllJlAPkipDj2QOPNZXNVDxtivmgRbs2C5iQQ7gU_jlJsOReOhwTiIvv7HFGry8g9NOxjUVPfvIfeTR6o0WjmBD2M3vUEsY7dMq-26lrZQTBIg8wm86dQ7LlJZxkiTcv__1vQOnvBdl_5yALub39v0noKYjT9srfQQHk2_zmfnfJ1__zn_C6_C8MI
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEB5Sh9L2UNr0Ebdpq0JPhW1W0qy0gl5MaHCa2KcEclv0WnBI7FDbkPz7avYFPSSHXqUdEN9Io9Fq9H0A34zEOvdYZLrEmGERVGaDCFlIkZD4wYwT9Dh5NlfTC_x9WVzuwFH_FobKKrvY38b0Jlp3LYcdmoe3iwW98U3pcKGQp0maTjn6CewSO1Uxgt3Jyel0PlwmaN4ooDbKrWTQX242ZV43jki7uf7R1HiVD21PD6WfzTZ0_Apedvkjm7RDfA07cbkHT1tFyfs9eDEbaFjXb-DnhK0XRP_LbobmZNyo37BVzeivPfPXWyJLSFsYc_cs-TA5z94t1m_h4vjX-dE06-QSMo8CN5nJZRFEbWv0dTRSaittzLWQ2tQ-uqADWmN5WauYY7BKCIPBRVeHoG1UXr6D0XK1jPvAlOO-iHm0ThlEn44UKmC0Eb0sSyvUGPIepcp3XOIkaXFd9UVjV1UCtiJgqSkBO4bvg8ltS6Tx2MfYQ1_9MxuqFOgfMzvo3VR1S5H6U1AqJRo-hq9Dd1pEhLFdxtV2XXFTCNIJ4PkY3rfuHQYpDNGkcf7h_8b0BZ5Nz2dn1dnJ_PQjPKeethrmAEabP9v4KeU0G_e5m7N_AWk28dA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+simple+mathematical+model+of+cell+clustering+by+chemotaxis&rft.jtitle=Mathematical+biosciences&rft.au=Harris%2C+Paul+J.&rft.date=2017-12-01&rft.issn=0025-5564&rft.volume=294&rft.spage=62&rft.epage=70&rft_id=info:doi/10.1016%2Fj.mbs.2017.10.008&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_mbs_2017_10_008
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5564&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5564&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5564&client=summon