A simple mathematical model of cell clustering by chemotaxis
•This paper presents a simple mathematical model of how cells (and small clusters of cells) can combine to form large clusters due to chemotaxis.•An exact expression is used to simulate how the chemical signals produced by the cells diffuses and spreads out.•The effect that changing some of the para...
Saved in:
Published in | Mathematical biosciences Vol. 294; pp. 62 - 70 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.12.2017
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •This paper presents a simple mathematical model of how cells (and small clusters of cells) can combine to form large clusters due to chemotaxis.•An exact expression is used to simulate how the chemical signals produced by the cells diffuses and spreads out.•The effect that changing some of the parameters in the model, such as the initial concentration strength and the diffusion constant, has on the final distribution of the cells is investigated and discussed.
Chemotaxis is the process by which cells and clusters of cells follow chemical signals in order to combine and form larger clusters. The spreading of the chemical signal from any given cell can be modeled using the linear diffusion equation, and the standard equations of motion can be used to determine how a cell, or cluster of cells, moves in response to the chemical signal. The resulting differential equations for the cell locations are integrated through time using the fourth-order Runge–Kutta method. The effect which changing the initial concentration magnitude, diffusion constant and velocity damping parameter has on the shape of the final clusters of cells is investigated and discussed. |
---|---|
AbstractList | Chemotaxis is the process by which cells and clusters of cells follow chemical signals in order to combine and form larger clusters. The spreading of the chemical signal from any given cell can be modeled using the linear diffusion equation, and the standard equations of motion can be used to determine how a cell, or cluster of cells, moves in response to the chemical signal. The resulting differential equations for the cell locations are integrated through time using the fourth-order Runge-Kutta method. The effect which changing the initial concentration magnitude, diffusion constant and velocity damping parameter has on the shape of the final clusters of cells is investigated and discussed. Chemotaxis is the process by which cells and clusters of cells follow chemical signals in order to combine and form larger clusters. The spreading of the chemical signal from any given cell can be modeled using the linear diffusion equation, and the standard equations of motion can be used to determine how a cell, or cluster of cells, moves in response to the chemical signal. The resulting differential equations for the cell locations are integrated through time using the fourth-order Runge-Kutta method. The effect which changing the initial concentration magnitude, diffusion constant and velocity damping parameter has on the shape of the final clusters of cells is investigated and discussed.Chemotaxis is the process by which cells and clusters of cells follow chemical signals in order to combine and form larger clusters. The spreading of the chemical signal from any given cell can be modeled using the linear diffusion equation, and the standard equations of motion can be used to determine how a cell, or cluster of cells, moves in response to the chemical signal. The resulting differential equations for the cell locations are integrated through time using the fourth-order Runge-Kutta method. The effect which changing the initial concentration magnitude, diffusion constant and velocity damping parameter has on the shape of the final clusters of cells is investigated and discussed. •This paper presents a simple mathematical model of how cells (and small clusters of cells) can combine to form large clusters due to chemotaxis.•An exact expression is used to simulate how the chemical signals produced by the cells diffuses and spreads out.•The effect that changing some of the parameters in the model, such as the initial concentration strength and the diffusion constant, has on the final distribution of the cells is investigated and discussed. Chemotaxis is the process by which cells and clusters of cells follow chemical signals in order to combine and form larger clusters. The spreading of the chemical signal from any given cell can be modeled using the linear diffusion equation, and the standard equations of motion can be used to determine how a cell, or cluster of cells, moves in response to the chemical signal. The resulting differential equations for the cell locations are integrated through time using the fourth-order Runge–Kutta method. The effect which changing the initial concentration magnitude, diffusion constant and velocity damping parameter has on the shape of the final clusters of cells is investigated and discussed. |
Author | Harris, Paul J. |
Author_xml | – sequence: 1 givenname: Paul J. surname: Harris fullname: Harris, Paul J. email: p.j.harris@brighton.ac.uk organization: School of Computing, Engineering and Mathematics, University of Brighton, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29042211$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1LxDAURYMoOo7-ADdScOOmY77aNOhGxC8Q3Og6pMmLZmibMWlF_70ZRjcuZpOQcM7jce8h2h3CAAidELwgmNQXy0XfpgXFROT3AuNmB81II2TJCOO7aIYxrcqqqvkBOkxpiTNISL2PDqjEnFJCZujquki-X3VQ9Hp8h3x4o7uiDxa6IrjCQNcVppvSCNEPb0X7XZiMhVF_-XSE9pzuEhz_3nP0enf7cvNQPj3fP95cP5WGUz6WErPKUqcdNw4kY0IzDVhQJqQz0FphuZaaNK4GzK2uKZXcttA6a4WG2rA5Ot_MXcXwMUEaVe_TejM9QJiSIrKiFa0rgjN69g9dhikOeTtFcSWahnFJMnX6S01tD1atou91_FZ_uWRAbAATQ0oRnDJ-zNmEYYzad4pgtW5ALVVuQK0bWH_lBrJJ_pl_w7c5lxsHcoifHqJKxsNgwPoIZlQ2-C32D03VnT0 |
CitedBy_id | crossref_primary_10_1016_j_mbs_2018_09_011 crossref_primary_10_1016_j_jtbi_2023_111646 crossref_primary_10_1016_j_jtbi_2024_111966 |
Cites_doi | 10.1016/j.jtbi.2010.10.034 10.1016/j.cub.2007.04.004 10.1098/rsif.2012.0276 10.1016/0022-5193(71)90050-6 10.1016/j.mbs.2007.01.006 10.1016/S0006-3495(74)85952-7 10.1016/j.jcp.2015.12.038 10.1038/srep04736 10.1111/jcmm.12555 10.1002/mana.19981950106 10.1016/j.biosystems.2008.05.005 10.1016/S0092-8674(00)81297-0 10.1016/j.jim.2006.12.010 10.1002/dvdy.21207 10.1016/j.bpj.2013.06.022 10.3934/krm.2012.5.51 10.1007/s11538-012-9779-0 10.1002/1097-0169(200007)46:3<183::AID-CM3>3.0.CO;2-2 10.1016/j.gde.2007.05.010 10.1016/j.jtbi.2014.02.027 |
ContentType | Journal Article |
Copyright | 2017 Copyright © 2017. Published by Elsevier Inc. Copyright Elsevier Science Ltd. Dec 2017 |
Copyright_xml | – notice: 2017 – notice: Copyright © 2017. Published by Elsevier Inc. – notice: Copyright Elsevier Science Ltd. Dec 2017 |
DBID | AAYXX CITATION NPM 7QL 7QO 7QP 7SN 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 |
DOI | 10.1016/j.mbs.2017.10.008 |
DatabaseName | CrossRef PubMed Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ecology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Biotechnology Research Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Mathematics |
EISSN | 1879-3134 |
EndPage | 70 |
ExternalDocumentID | 29042211 10_1016_j_mbs_2017_10_008 S0025556417305497 |
Genre | Journal Article |
GroupedDBID | --- --K --M --Z -~X .GJ .~1 0R~ 186 1B1 1RT 1~. 1~5 29M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABFNM ABFRF ABGRD ABJNI ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACIWK ACPRK ACRLP ADBBV ADEZE ADMUD ADQTV AEBSH AEFWE AEKER AENEX AEQOU AETEA AFFNX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMJ HVGLF HZ~ H~9 IHE J1W KOM LW9 M26 M41 MO0 MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ SAB SDF SDG SDP SES SEW SME SPCBC SSA SSZ T5K TN5 UNMZH WH7 WUQ XOL XSW YQT ZCG ZGI ZXP ZY4 ~G- ~KM AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH NPM 7QL 7QO 7QP 7SN 7TK 7TM 7U9 8FD C1K EFKBS FR3 H94 M7N P64 RC3 7X8 |
ID | FETCH-LOGICAL-c424t-9035d2faf4cfe9337a3ae072379fcebd7d4a9a18f6e04da62294dbebfdd7ae6c3 |
IEDL.DBID | .~1 |
ISSN | 0025-5564 1879-3134 |
IngestDate | Fri Jul 11 05:53:23 EDT 2025 Mon Jul 14 09:07:39 EDT 2025 Thu Apr 03 07:05:55 EDT 2025 Tue Jul 01 03:34:36 EDT 2025 Thu Apr 24 22:58:25 EDT 2025 Fri Feb 23 02:30:36 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Cell clustering Diffusion equation Mathematical model Equations of motion Chemotaxis |
Language | English |
License | Copyright © 2017. Published by Elsevier Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c424t-9035d2faf4cfe9337a3ae072379fcebd7d4a9a18f6e04da62294dbebfdd7ae6c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://research.brighton.ac.uk/en/publications/3a763676-b5eb-454b-84b9-1b3ad0237d60 |
PMID | 29042211 |
PQID | 2057883491 |
PQPubID | 105577 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1952526510 proquest_journals_2057883491 pubmed_primary_29042211 crossref_citationtrail_10_1016_j_mbs_2017_10_008 crossref_primary_10_1016_j_mbs_2017_10_008 elsevier_sciencedirect_doi_10_1016_j_mbs_2017_10_008 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-12-01 |
PublicationDateYYYYMMDD | 2017-12-01 |
PublicationDate_xml | – month: 12 year: 2017 text: 2017-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | Mathematical biosciences |
PublicationTitleAlternate | Math Biosci |
PublicationYear | 2017 |
Publisher | Elsevier Inc Elsevier Science Ltd |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Science Ltd |
References | Jia, Dajusta, Foty (bib0004) 2007; 236 Lapidus, Schiller (bib0013) 1974; 14 Hilderink, Spijker, Carlotti, Lange, Engelse, van Blitterswijk, de Koning, Karperien, van Apeldoorn (bib0005) 2015; 19 Shirasaki, Yamagishi, Suzuki, Izawa, Nakahara, Mizuno, Shoji, Heike, Harada, Nishikomori, Ohara (bib0011) 2014; 4 Eyiyurekli, Manley, Lelkes, Breen (bib0016) 2008; 93 Atkinson (bib0021) 1989 Lawrence, Struhl (bib0006) 1996; 85 Gajewski, Zacharias (bib0014) 1998; 195 Nitta, Tsuchiya, Yamauchi, Tamatani, Kanegasaki (bib0002) 2007; 320 Malawista, Chevance, Boxer (bib0001) 2000; 46 Baker, Maini (bib0007) 2007; 209 Kim, Reed, Rejniak (bib0017) 2014; 352 Raphael, Christodoulides, Delehanty, Long, Byers (bib0010) 2013; 105 Hoeller, Kay (bib0003) 2007; 17 Kornberg, Guha (bib0008) 2007; 17 Thompson, Yates, Baker (bib0018) 2012; 74 Elliott, Stinner, Venkataraman (bib0019) 2012; 9 Keller, Segel (bib0012) 1971; 30 Chertock, Kurganov, Wang, Wu (bib0015) 2012; 5 MacDonald, Mackenzie, Nolan, Insall (bib0020) 2016; 309 Wolpert (bib0009) 2011; 269 Eyiyurekli (10.1016/j.mbs.2017.10.008_bib0016) 2008; 93 MacDonald (10.1016/j.mbs.2017.10.008_bib0020) 2016; 309 Thompson (10.1016/j.mbs.2017.10.008_bib0018) 2012; 74 Raphael (10.1016/j.mbs.2017.10.008_bib0010) 2013; 105 Nitta (10.1016/j.mbs.2017.10.008_bib0002) 2007; 320 Jia (10.1016/j.mbs.2017.10.008_bib0004) 2007; 236 Elliott (10.1016/j.mbs.2017.10.008_bib0019) 2012; 9 Shirasaki (10.1016/j.mbs.2017.10.008_bib0011) 2014; 4 Lapidus (10.1016/j.mbs.2017.10.008_bib0013) 1974; 14 Baker (10.1016/j.mbs.2017.10.008_bib0007) 2007; 209 Wolpert (10.1016/j.mbs.2017.10.008_bib0009) 2011; 269 Gajewski (10.1016/j.mbs.2017.10.008_bib0014) 1998; 195 Lawrence (10.1016/j.mbs.2017.10.008_bib0006) 1996; 85 Hoeller (10.1016/j.mbs.2017.10.008_bib0003) 2007; 17 Hilderink (10.1016/j.mbs.2017.10.008_bib0005) 2015; 19 Kornberg (10.1016/j.mbs.2017.10.008_bib0008) 2007; 17 Keller (10.1016/j.mbs.2017.10.008_bib0012) 1971; 30 Atkinson (10.1016/j.mbs.2017.10.008_bib0021) 1989 Malawista (10.1016/j.mbs.2017.10.008_bib0001) 2000; 46 Chertock (10.1016/j.mbs.2017.10.008_bib0015) 2012; 5 Kim (10.1016/j.mbs.2017.10.008_bib0017) 2014; 352 |
References_xml | – year: 1989 ident: bib0021 article-title: An Introduction to Numerical Analysis – volume: 309 start-page: 207 year: 2016 end-page: 226 ident: bib0020 article-title: A computational method for the coupled solution of reaction-diffusion equations on evolving domains and manifolds: Application to a model of cell migration and chemotaxis publication-title: J. Comp. Phys. – volume: 320 start-page: 155 year: 2007 end-page: 163 ident: bib0002 article-title: Quantitative analysis of eosinophil chemotaxis tracked using a novel optical device taxiscan publication-title: J. Immunol. Methods – volume: 30 start-page: 225 year: 1971 end-page: 234 ident: bib0012 article-title: Model for chemotaxis publication-title: J. Theor. Biol. – volume: 209 start-page: 30 year: 2007 end-page: 50 ident: bib0007 article-title: Travelling gradients in interacting morphogen systems publication-title: Math. Biosci. – volume: 17 start-page: 813 year: 2007 end-page: 817 ident: bib0003 article-title: Chemotaxis in the absence of pip3 gradients publication-title: Curr. Biol. – volume: 236 start-page: 2039 year: 2007 end-page: 2049 ident: bib0004 article-title: Tissue surface tensions guide in vitro self-assembly of rodent pancreatic islet cells publication-title: Dev. Dyn. – volume: 9 start-page: 3027 year: 2012 end-page: 3044 ident: bib0019 article-title: Modelling cell motility and chemotaxis with evolving surface finite elements publication-title: J. R. Soc. Interface – volume: 19 start-page: 1836 year: 2015 end-page: 1846 ident: bib0005 article-title: Controlled aggregation of primary human pancreatic islet cells leads to glucose-responsive pseudoislets comparable to native islets publication-title: J. Cell. Mol. Med. – volume: 352 start-page: 31 year: 2014 end-page: 50 ident: bib0017 article-title: The formation of tight tumor clusters affects the efficacy of cell cycle inhibitors: a hybrid model study publication-title: J. Theor. Biol. – volume: 195 start-page: 77 year: 1998 end-page: 114 ident: bib0014 article-title: Global behaviour of a reaction - diffusion system modelling chemotaxis publication-title: Math. Nachr. – volume: 105 start-page: 602 year: 2013 end-page: 608 ident: bib0010 article-title: Quantitative imaging of protein secretions from single cells in real time publication-title: Biophys. J. – volume: 5 start-page: 51 year: 2012 end-page: 95 ident: bib0015 article-title: On a chemotaxis model with saturated chemotactic flux publication-title: Kin. Rel. Mod. – volume: 46 start-page: 183 year: 2000 end-page: 189 ident: bib0001 article-title: Random locomotion and chemotaxis of human blood polymorphonuclear leukocytes from a patient with Leukocyte Adhesion Deficiency-1: normal displacement in close quarters via chimneying publication-title: Cell Motil. Cytoskeleton – volume: 17 start-page: 264 year: 2007 end-page: 271 ident: bib0008 article-title: Understanding morphogen gradients: a problem of dispersion and containment publication-title: Curr. Opin. Genet. Dev. – volume: 93 start-page: 226 year: 2008 end-page: 239 ident: bib0016 article-title: A computational model of chemotaxis-based cell aggregation publication-title: BioSysytems – volume: 85 start-page: 951 year: 1996 end-page: 961 ident: bib0006 article-title: Morphogens, compartments, and pattern: lessons from drosophila? publication-title: Cell – volume: 4 year: 2014 ident: bib0011 article-title: Real-time single-cell imaging of protein secretion publication-title: Sci. Rep. – volume: 14 start-page: 825 year: 1974 end-page: 834 ident: bib0013 article-title: A mathematical model for bacterial chemotaxis publication-title: Biophys. J. – volume: 74 start-page: 2793 year: 2012 end-page: 2809 ident: bib0018 article-title: Modelling cell migration and adhesion during development publication-title: Bull. Math. Biol. – volume: 269 start-page: 359 year: 2011 end-page: 365 ident: bib0009 article-title: Positional information and patterning revisited publication-title: J. Theor. Biol. – volume: 269 start-page: 359 issue: 1 year: 2011 ident: 10.1016/j.mbs.2017.10.008_bib0009 article-title: Positional information and patterning revisited publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2010.10.034 – volume: 17 start-page: 813 issue: 9 year: 2007 ident: 10.1016/j.mbs.2017.10.008_bib0003 article-title: Chemotaxis in the absence of pip3 gradients publication-title: Curr. Biol. doi: 10.1016/j.cub.2007.04.004 – volume: 9 start-page: 3027 year: 2012 ident: 10.1016/j.mbs.2017.10.008_bib0019 article-title: Modelling cell motility and chemotaxis with evolving surface finite elements publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2012.0276 – volume: 30 start-page: 225 year: 1971 ident: 10.1016/j.mbs.2017.10.008_bib0012 article-title: Model for chemotaxis publication-title: J. Theor. Biol. doi: 10.1016/0022-5193(71)90050-6 – volume: 209 start-page: 30 issue: 1 year: 2007 ident: 10.1016/j.mbs.2017.10.008_bib0007 article-title: Travelling gradients in interacting morphogen systems publication-title: Math. Biosci. doi: 10.1016/j.mbs.2007.01.006 – volume: 14 start-page: 825 year: 1974 ident: 10.1016/j.mbs.2017.10.008_bib0013 article-title: A mathematical model for bacterial chemotaxis publication-title: Biophys. J. doi: 10.1016/S0006-3495(74)85952-7 – volume: 309 start-page: 207 year: 2016 ident: 10.1016/j.mbs.2017.10.008_bib0020 article-title: A computational method for the coupled solution of reaction-diffusion equations on evolving domains and manifolds: Application to a model of cell migration and chemotaxis publication-title: J. Comp. Phys. doi: 10.1016/j.jcp.2015.12.038 – year: 1989 ident: 10.1016/j.mbs.2017.10.008_bib0021 – volume: 4 year: 2014 ident: 10.1016/j.mbs.2017.10.008_bib0011 article-title: Real-time single-cell imaging of protein secretion publication-title: Sci. Rep. doi: 10.1038/srep04736 – volume: 19 start-page: 1836 issue: 8 year: 2015 ident: 10.1016/j.mbs.2017.10.008_bib0005 article-title: Controlled aggregation of primary human pancreatic islet cells leads to glucose-responsive pseudoislets comparable to native islets publication-title: J. Cell. Mol. Med. doi: 10.1111/jcmm.12555 – volume: 195 start-page: 77 year: 1998 ident: 10.1016/j.mbs.2017.10.008_bib0014 article-title: Global behaviour of a reaction - diffusion system modelling chemotaxis publication-title: Math. Nachr. doi: 10.1002/mana.19981950106 – volume: 93 start-page: 226 year: 2008 ident: 10.1016/j.mbs.2017.10.008_bib0016 article-title: A computational model of chemotaxis-based cell aggregation publication-title: BioSysytems doi: 10.1016/j.biosystems.2008.05.005 – volume: 85 start-page: 951 year: 1996 ident: 10.1016/j.mbs.2017.10.008_bib0006 article-title: Morphogens, compartments, and pattern: lessons from drosophila? publication-title: Cell doi: 10.1016/S0092-8674(00)81297-0 – volume: 320 start-page: 155 issue: 12 year: 2007 ident: 10.1016/j.mbs.2017.10.008_bib0002 article-title: Quantitative analysis of eosinophil chemotaxis tracked using a novel optical device taxiscan publication-title: J. Immunol. Methods doi: 10.1016/j.jim.2006.12.010 – volume: 236 start-page: 2039 issue: 8 year: 2007 ident: 10.1016/j.mbs.2017.10.008_bib0004 article-title: Tissue surface tensions guide in vitro self-assembly of rodent pancreatic islet cells publication-title: Dev. Dyn. doi: 10.1002/dvdy.21207 – volume: 105 start-page: 602 issue: 3 year: 2013 ident: 10.1016/j.mbs.2017.10.008_bib0010 article-title: Quantitative imaging of protein secretions from single cells in real time publication-title: Biophys. J. doi: 10.1016/j.bpj.2013.06.022 – volume: 5 start-page: 51 issue: 1 year: 2012 ident: 10.1016/j.mbs.2017.10.008_bib0015 article-title: On a chemotaxis model with saturated chemotactic flux publication-title: Kin. Rel. Mod. doi: 10.3934/krm.2012.5.51 – volume: 74 start-page: 2793 year: 2012 ident: 10.1016/j.mbs.2017.10.008_bib0018 article-title: Modelling cell migration and adhesion during development publication-title: Bull. Math. Biol. doi: 10.1007/s11538-012-9779-0 – volume: 46 start-page: 183 issue: 3 year: 2000 ident: 10.1016/j.mbs.2017.10.008_bib0001 article-title: Random locomotion and chemotaxis of human blood polymorphonuclear leukocytes from a patient with Leukocyte Adhesion Deficiency-1: normal displacement in close quarters via chimneying publication-title: Cell Motil. Cytoskeleton doi: 10.1002/1097-0169(200007)46:3<183::AID-CM3>3.0.CO;2-2 – volume: 17 start-page: 264 issue: 4 year: 2007 ident: 10.1016/j.mbs.2017.10.008_bib0008 article-title: Understanding morphogen gradients: a problem of dispersion and containment publication-title: Curr. Opin. Genet. Dev. doi: 10.1016/j.gde.2007.05.010 – volume: 352 start-page: 31 year: 2014 ident: 10.1016/j.mbs.2017.10.008_bib0017 article-title: The formation of tight tumor clusters affects the efficacy of cell cycle inhibitors: a hybrid model study publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2014.02.027 |
SSID | ssj0017116 |
Score | 2.1878123 |
Snippet | •This paper presents a simple mathematical model of how cells (and small clusters of cells) can combine to form large clusters due to chemotaxis.•An exact... Chemotaxis is the process by which cells and clusters of cells follow chemical signals in order to combine and form larger clusters. The spreading of the... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 62 |
SubjectTerms | Cell clustering Cells Chemotaxis Clustering Differential equations Diffusion equation Equations of motion Mathematical model Mathematical models Organic chemistry Runge-Kutta method Signal processing |
Title | A simple mathematical model of cell clustering by chemotaxis |
URI | https://dx.doi.org/10.1016/j.mbs.2017.10.008 https://www.ncbi.nlm.nih.gov/pubmed/29042211 https://www.proquest.com/docview/2057883491 https://www.proquest.com/docview/1952526510 |
Volume | 294 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxRBEC5CRNCDaHxtjKEFT8Ik0901PdPgZQmG1SU5iMHchn4NrCS7wd2F5OJvt2pe4CE5eBqmH0xTVVNdPVP1fQAfrcYmD1hkZYUpwyKazEUVs0iekPHBrFdcnHx2bmYX-O2yuNyBk6EWhtMqe9_f-fTWW_ctx700j28WC67xpXC4MCjJSOmUwxXlSA8gmz76M6Z5yFK29KctbSuPHv5stjle154Ru2V51CZ4VfftTffFnu0edPocnvXBo5h263sBO2m5B487Osm7PXh6NmKwrl_C56lYLxj7V1yPzTS5pb4Rq0bwJ3sRrraMlED7l_B3ghRImnO3i_UruDj98uNklvVcCVlAhZvM5rqIqnENhiZZrUunXcpLpUvbhORjGdFZJ6vGpByjM0pZjD75JsbSJRP0a9hdrpbpLQjjZShSnpw3FjHQecJETC5h0FXllJlAPkipDj2QOPNZXNVDxtivmgRbs2C5iQQ7gU_jlJsOReOhwTiIvv7HFGry8g9NOxjUVPfvIfeTR6o0WjmBD2M3vUEsY7dMq-26lrZQTBIg8wm86dQ7LlJZxkiTcv__1vQOnvBdl_5yALub39v0noKYjT9srfQQHk2_zmfnfJ1__zn_C6_C8MI |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEB5Sh9L2UNr0Ebdpq0JPhW1W0qy0gl5MaHCa2KcEclv0WnBI7FDbkPz7avYFPSSHXqUdEN9Io9Fq9H0A34zEOvdYZLrEmGERVGaDCFlIkZD4wYwT9Dh5NlfTC_x9WVzuwFH_FobKKrvY38b0Jlp3LYcdmoe3iwW98U3pcKGQp0maTjn6CewSO1Uxgt3Jyel0PlwmaN4ooDbKrWTQX242ZV43jki7uf7R1HiVD21PD6WfzTZ0_Apedvkjm7RDfA07cbkHT1tFyfs9eDEbaFjXb-DnhK0XRP_LbobmZNyo37BVzeivPfPXWyJLSFsYc_cs-TA5z94t1m_h4vjX-dE06-QSMo8CN5nJZRFEbWv0dTRSaittzLWQ2tQ-uqADWmN5WauYY7BKCIPBRVeHoG1UXr6D0XK1jPvAlOO-iHm0ThlEn44UKmC0Eb0sSyvUGPIepcp3XOIkaXFd9UVjV1UCtiJgqSkBO4bvg8ltS6Tx2MfYQ1_9MxuqFOgfMzvo3VR1S5H6U1AqJRo-hq9Dd1pEhLFdxtV2XXFTCNIJ4PkY3rfuHQYpDNGkcf7h_8b0BZ5Nz2dn1dnJ_PQjPKeethrmAEabP9v4KeU0G_e5m7N_AWk28dA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+simple+mathematical+model+of+cell+clustering+by+chemotaxis&rft.jtitle=Mathematical+biosciences&rft.au=Harris%2C+Paul+J.&rft.date=2017-12-01&rft.issn=0025-5564&rft.volume=294&rft.spage=62&rft.epage=70&rft_id=info:doi/10.1016%2Fj.mbs.2017.10.008&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_mbs_2017_10_008 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5564&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5564&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5564&client=summon |