MVMD-TCCA: A method for gesture classification based on surface electromyographic signals
Gesture recognition plays a fundamental role in enabling nonverbal communication and interaction, as well as assisting individuals with motor impairments in performing daily tasks. Surface electromyographic (sEMG) signals, which can effectively detect and predict motor intentions, are integral to ac...
Saved in:
Published in | Journal of electromyography and kinesiology Vol. 82; p. 103006 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.06.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1050-6411 1873-5711 1873-5711 |
DOI | 10.1016/j.jelekin.2025.103006 |
Cover
Loading…
Abstract | Gesture recognition plays a fundamental role in enabling nonverbal communication and interaction, as well as assisting individuals with motor impairments in performing daily tasks. Surface electromyographic (sEMG) signals, which can effectively detect and predict motor intentions, are integral to achieving accurate gesture classification. This paper proposes a method, the multivariate variational mode decomposition and the two-channel convolutional neural network with added attention mechanism (MVMD-TCCA), to enhance the accuracy of gesture classification for motor intention recognition. The MVMD technique is utilized to decompose and fuse sEMG signals, enriching signal content and improving feature representation. To further optimize gesture classification performance, the convolutional block attention module (CBAM) and CrissCross attention mechanism are integrated into the neural network, enabling superior learning of local and spatial features. The experimental results show that the MVMD-TCCA method achieves an average classification accuracy of 85.09 % on the NinaPro DB2 dataset, representing a 13.46 % improvement compared to the use of the original signal, and an average classification accuracy of 97.90 % on the dataset collected from 15 subjects, reflecting a 1.70 % improvement over the original signal. These findings underscore the critical role of accurate gesture classification in facilitating daily task assistance for cerebral infarction patients, demonstrating the potential of the proposed approach. |
---|---|
AbstractList | Gesture recognition plays a fundamental role in enabling nonverbal communication and interaction, as well as assisting individuals with motor impairments in performing daily tasks. Surface electromyographic (sEMG) signals, which can effectively detect and predict motor intentions, are integral to achieving accurate gesture classification. This paper proposes a method, the multivariate variational mode decomposition and the two-channel convolutional neural network with added attention mechanism (MVMD-TCCA), to enhance the accuracy of gesture classification for motor intention recognition. The MVMD technique is utilized to decompose and fuse sEMG signals, enriching signal content and improving feature representation. To further optimize gesture classification performance, the convolutional block attention module (CBAM) and CrissCross attention mechanism are integrated into the neural network, enabling superior learning of local and spatial features. The experimental results show that the MVMD-TCCA method achieves an average classification accuracy of 85.09 % on the NinaPro DB2 dataset, representing a 13.46 % improvement compared to the use of the original signal, and an average classification accuracy of 97.90 % on the dataset collected from 15 subjects, reflecting a 1.70 % improvement over the original signal. These findings underscore the critical role of accurate gesture classification in facilitating daily task assistance for cerebral infarction patients, demonstrating the potential of the proposed approach. AbstractGesture recognition plays a fundamental role in enabling nonverbal communication and interaction, as well as assisting individuals with motor impairments in performing daily tasks. Surface electromyographic (sEMG) signals, which can effectively detect and predict motor intentions, are integral to achieving accurate gesture classification. This paper proposes a method, the multivariate variational mode decomposition and the two-channel convolutional neural network with added attention mechanism (MVMD-TCCA), to enhance the accuracy of gesture classification for motor intention recognition. The MVMD technique is utilized to decompose and fuse sEMG signals, enriching signal content and improving feature representation. To further optimize gesture classification performance, the convolutional block attention module (CBAM) and CrissCross attention mechanism are integrated into the neural network, enabling superior learning of local and spatial features. The experimental results show that the MVMD-TCCA method achieves an average classification accuracy of 85.09 % on the NinaPro DB2 dataset, representing a 13.46 % improvement compared to the use of the original signal, and an average classification accuracy of 97.90 % on the dataset collected from 15 subjects, reflecting a 1.70 % improvement over the original signal. These findings underscore the critical role of accurate gesture classification in facilitating daily task assistance for cerebral infarction patients, demonstrating the potential of the proposed approach. Gesture recognition plays a fundamental role in enabling nonverbal communication and interaction, as well as assisting individuals with motor impairments in performing daily tasks. Surface electromyographic (sEMG) signals, which can effectively detect and predict motor intentions, are integral to achieving accurate gesture classification. This paper proposes a method, the multivariate variational mode decomposition and the two-channel convolutional neural network with added attention mechanism (MVMD-TCCA), to enhance the accuracy of gesture classification for motor intention recognition. The MVMD technique is utilized to decompose and fuse sEMG signals, enriching signal content and improving feature representation. To further optimize gesture classification performance, the convolutional block attention module (CBAM) and CrissCross attention mechanism are integrated into the neural network, enabling superior learning of local and spatial features. The experimental results show that the MVMD-TCCA method achieves an average classification accuracy of 85.09 % on the NinaPro DB2 dataset, representing a 13.46 % improvement compared to the use of the original signal, and an average classification accuracy of 97.90 % on the dataset collected from 15 subjects, reflecting a 1.70 % improvement over the original signal. These findings underscore the critical role of accurate gesture classification in facilitating daily task assistance for cerebral infarction patients, demonstrating the potential of the proposed approach.Gesture recognition plays a fundamental role in enabling nonverbal communication and interaction, as well as assisting individuals with motor impairments in performing daily tasks. Surface electromyographic (sEMG) signals, which can effectively detect and predict motor intentions, are integral to achieving accurate gesture classification. This paper proposes a method, the multivariate variational mode decomposition and the two-channel convolutional neural network with added attention mechanism (MVMD-TCCA), to enhance the accuracy of gesture classification for motor intention recognition. The MVMD technique is utilized to decompose and fuse sEMG signals, enriching signal content and improving feature representation. To further optimize gesture classification performance, the convolutional block attention module (CBAM) and CrissCross attention mechanism are integrated into the neural network, enabling superior learning of local and spatial features. The experimental results show that the MVMD-TCCA method achieves an average classification accuracy of 85.09 % on the NinaPro DB2 dataset, representing a 13.46 % improvement compared to the use of the original signal, and an average classification accuracy of 97.90 % on the dataset collected from 15 subjects, reflecting a 1.70 % improvement over the original signal. These findings underscore the critical role of accurate gesture classification in facilitating daily task assistance for cerebral infarction patients, demonstrating the potential of the proposed approach. |
ArticleNumber | 103006 |
Author | Zhang, Shenke Liu, Yuanyuan Chen, Wenjie Sun, Xiantao Zhang, Cheng |
Author_xml | – sequence: 1 givenname: Wenjie surname: Chen fullname: Chen, Wenjie email: wjchen@ahu.edu.cn – sequence: 2 givenname: Shenke orcidid: 0009-0008-3369-4818 surname: Zhang fullname: Zhang, Shenke – sequence: 3 givenname: Xiantao surname: Sun fullname: Sun, Xiantao email: xtsun@ahu.edu.cn – sequence: 4 givenname: Cheng surname: Zhang fullname: Zhang, Cheng – sequence: 5 givenname: Yuanyuan surname: Liu fullname: Liu, Yuanyuan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40174312$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkV-L1DAUxYPs4v7Rj6D00ZeON2nTZgRdhlFXYRcfHESfQprczKbbNmPSCvPtN2VmfRBEn-4hnHs4-d0LcjL4AQl5QWFBgVav20WLHd67YcGA8fRWAFRPyDkVdZHzmtKTpIFDXpWUnpGLGFsAWoOAp-SsTKosKDsnP26_3b7PN-v16k22ynoc77zJrA_ZFuM4Bcx0p2J01mk1Oj9kjYposiTiFKzSmKUSegy-3_ttULs7p7PotoPq4jNyatPA58d5STYfP2zWn_KbL9ef16ubXJesHHNhBdpKLxstKo7LStQVmFoUpeHMskI1yPkSrNAW0JqyYZQqNLVNBlpaW1ySV4fYXfA_p1Ra9i5q7Do1oJ-iLKjgtShZDcn68midmh6N3AXXq7CXjzSSgR8MOvgYA9rfFgpypi5beaQuZ-ryQD3tXR32MP3zl8Mgo3Y4aDQuJDrSePfPhHd_JOjODQl6d497jK2fwsxUUhmZBPl1vux8WMYBoGDfU8Dbvwf8R4EHJma2FA |
Cites_doi | 10.1016/j.bspc.2022.103487 10.1016/j.bspc.2020.101872 10.1016/j.bspc.2019.101669 10.1007/s00500-020-05205-y 10.1007/s00521-018-3909-z 10.3390/s20030672 10.1109/TIM.2020.3036654 10.1109/JSEN.2023.3345731 10.1109/JSEN.2021.3068521 10.1177/17298806221119668 10.1016/j.eswa.2022.117340 10.1016/j.irbm.2023.100773 10.1109/ACCESS.2019.2914728 10.1109/JSEN.2022.3179535 10.1016/j.bspc.2020.102074 10.1038/sdata.2014.53 10.1109/TPAMI.2020.3007032 10.1109/TSP.2019.2951223 10.3389/fbioe.2021.779353 10.3390/s19143170 10.1371/journal.pone.0164050 10.1371/journal.pone.0206049 10.1016/j.bspc.2023.105084 10.1080/00222895.2018.1502146 10.1109/TSP.2013.2288675 10.1109/ACCESS.2022.3158667 10.1088/2057-1976/ac2354 10.1109/ACCESS.2019.2930005 10.1109/THMS.2023.3287594 10.1109/TNSRE.2023.3336317 10.1016/j.aej.2020.01.015 10.1016/j.heliyon.2024.e26763 10.1109/TBME.2019.2899222 10.1007/s00521-019-04142-8 10.1109/TBCAS.2019.2955641 10.1016/j.bspc.2024.106086 |
ContentType | Journal Article |
Copyright | 2025 Elsevier Ltd Elsevier Ltd Copyright © 2025 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2025 Elsevier Ltd – notice: Elsevier Ltd – notice: Copyright © 2025 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.jelekin.2025.103006 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1873-5711 |
EndPage | 103006 |
ExternalDocumentID | 40174312 10_1016_j_jelekin_2025_103006 S105064112500032X 1_s2_0_S105064112500032X |
Genre | Journal Article |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29K 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAWTL AAXKI AAXUO AAYWO ABBQC ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 D-I DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEB HMK HMO HVGLF HZ~ IHE J1W KOM M29 M41 MO0 N9A O-L O9- OAUVE OH. OHT OT. OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SPCBC SSH SSZ T5K TWZ UPT WUQ YQT Z5R ~G- AFCTW AGRNS RIG AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 EFLBG |
ID | FETCH-LOGICAL-c424t-8f8ef6c9bc865e968760d7834d52f23abe5590f8cf0efd4b211aed7f34d14ff3 |
IEDL.DBID | AIKHN |
ISSN | 1050-6411 1873-5711 |
IngestDate | Fri Sep 05 17:45:10 EDT 2025 Tue May 27 01:35:08 EDT 2025 Thu Jul 03 08:17:34 EDT 2025 Sat Jun 21 16:54:10 EDT 2025 Thu Jun 12 23:09:31 EDT 2025 Tue Aug 26 19:57:00 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Attention mechanisms Surface electromyographic signals Gesture recognition Multivariate variational modal decomposition |
Language | English |
License | Copyright © 2025 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c424t-8f8ef6c9bc865e968760d7834d52f23abe5590f8cf0efd4b211aed7f34d14ff3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0009-0008-3369-4818 |
PMID | 40174312 |
PQID | 3185784270 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | proquest_miscellaneous_3185784270 pubmed_primary_40174312 crossref_primary_10_1016_j_jelekin_2025_103006 elsevier_sciencedirect_doi_10_1016_j_jelekin_2025_103006 elsevier_clinicalkeyesjournals_1_s2_0_S105064112500032X elsevier_clinicalkey_doi_10_1016_j_jelekin_2025_103006 |
PublicationCentury | 2000 |
PublicationDate | 2025-06-01 |
PublicationDateYYYYMMDD | 2025-06-01 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Journal of electromyography and kinesiology |
PublicationTitleAlternate | J Electromyogr Kinesiol |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Chen, Li, Togo, Yokoi, Jiang (b0020) 2023; 53 Wei, Dai, Wong, Hu, Kankanhalli, Geng (b0150) 2019; 66 Qi, Jiang, Li, Sun, Tao (b0095) 2020; 32 Hu, Wong, Dai, Kankanhalli, Geng, Li (b0050) 2019; 7 Huang, Wang, Wei, Huang, Shi, Liu, Huang (b0055) 2023; 45 Rehman, Aftab (b0105) 2019; 67 Xu, Xiong (b0160) 2021; 21 Li, Li, Jiang, Chen, Liu (b0065) 2020; 32 Zhang, Yang, Fan, Yang, Li (b0175) 2022; 10 Dragomiretskiy, Zosso (b0030) 2014; 62 Bao, Zaidi, Xie, Yang, Zhang (b0010) 2021; 70 Qi, Jiang, Li, Sun, Tao (b0100) 2019; 7 Chen, Fu, Wu, Li, Zheng (b0015) 2020; 20 Tam, Boukadoum, Campeau-Lecours, Gosselin (b0125) 2020; 14 Li, Zhang, Wang, Zhang, Li, Bao (b0070) 2020; 62 Dogan, Tuncer (b0025) 2021; 25 Wei, Wang, Hu, Zhou, Feng, Lu, Tang, Jia (b0145) 2022; 74 Ergeneci, Bayram, Binningsley, Carter, Kosmas (b0035) 2024; 24 Khan, Khan, Farooq (b0060) 2021; 7 Mukhopadhyay, Samui (b0085) 2020; 55 Zhu, Guan, Li, Gao, Zou, Gao, Wang, Li, Cai (b0185) 2022; 19 Yang, Jiang, Sun, Tao, Tong, Jiang, Xu, Yun, Liu, Chen, Kong (b0165) 2021; 9 Zhang, Yang, Qian, Zhang (b0180) 2019; 19 Hu, Wong, Wei, Du, Kankanhalli, Geng (b0045) 2018; 13 Shen, Wang, Mao, Sun, Gu (b0110) 2022; 22 Song, Yan, Guo, Li, Li, Xi (b0115) 2023; 13 Zou, Cheng, Han (b0190) 2023; 86 Sun, Xu, Li, Xu, Kong, Jiang, Tao, Chen (b0120) 2020; 59 MacLellan, Ellis (b0080) 2019; 51 Gritsenko, Hardesty, Boots, Yakovenko (b0040) 2016; 11 Wang, Wan, Meng, Zeng, Akay, Chen, Chen (b0135) 2024; 92 Woo, Park, Lee, Kweon (b0155) 2018 Lu, Wang, Zhou, Wei, Xu (b0075) 2022; 203 Niu, Shi, Niu, Jia, Fan, Gui, Wang (b0090) 2024; 10 Tuncer, Dogan, Subasi (b0130) 2020; 58 Atzori, Gijsberts, Castellini, Caputo, Hager, Elsig, Giatsidis, Bassetto, Müller (b0005) 2014; 1 Zhang, Yu, Guo, Huo, Han (b0170) 2023; 31 Wei, Wang, Zhou, Feng, Hu, Lu, Jiang, Wang (b0140) 2023; 44 Hu (10.1016/j.jelekin.2025.103006_b0050) 2019; 7 Atzori (10.1016/j.jelekin.2025.103006_b0005) 2014; 1 Shen (10.1016/j.jelekin.2025.103006_b0110) 2022; 22 Sun (10.1016/j.jelekin.2025.103006_b0120) 2020; 59 Wei (10.1016/j.jelekin.2025.103006_b0145) 2022; 74 Xu (10.1016/j.jelekin.2025.103006_b0160) 2021; 21 Niu (10.1016/j.jelekin.2025.103006_b0090) 2024; 10 Song (10.1016/j.jelekin.2025.103006_b0115) 2023; 13 Tuncer (10.1016/j.jelekin.2025.103006_b0130) 2020; 58 Wei (10.1016/j.jelekin.2025.103006_b0150) 2019; 66 Ergeneci (10.1016/j.jelekin.2025.103006_b0035) 2024; 24 Li (10.1016/j.jelekin.2025.103006_b0065) 2020; 32 Mukhopadhyay (10.1016/j.jelekin.2025.103006_b0085) 2020; 55 Qi (10.1016/j.jelekin.2025.103006_b0095) 2020; 32 Zou (10.1016/j.jelekin.2025.103006_b0190) 2023; 86 Wei (10.1016/j.jelekin.2025.103006_b0140) 2023; 44 Zhang (10.1016/j.jelekin.2025.103006_b0180) 2019; 19 Lu (10.1016/j.jelekin.2025.103006_b0075) 2022; 203 Qi (10.1016/j.jelekin.2025.103006_b0100) 2019; 7 Khan (10.1016/j.jelekin.2025.103006_b0060) 2021; 7 Li (10.1016/j.jelekin.2025.103006_b0070) 2020; 62 Zhu (10.1016/j.jelekin.2025.103006_b0185) 2022; 19 Tam (10.1016/j.jelekin.2025.103006_b0125) 2020; 14 Hu (10.1016/j.jelekin.2025.103006_b0045) 2018; 13 Chen (10.1016/j.jelekin.2025.103006_b0020) 2023; 53 Huang (10.1016/j.jelekin.2025.103006_b0055) 2023; 45 Woo (10.1016/j.jelekin.2025.103006_b0155) 2018 Yang (10.1016/j.jelekin.2025.103006_b0165) 2021; 9 Wang (10.1016/j.jelekin.2025.103006_b0135) 2024; 92 Dogan (10.1016/j.jelekin.2025.103006_b0025) 2021; 25 Zhang (10.1016/j.jelekin.2025.103006_b0175) 2022; 10 Gritsenko (10.1016/j.jelekin.2025.103006_b0040) 2016; 11 Bao (10.1016/j.jelekin.2025.103006_b0010) 2021; 70 Zhang (10.1016/j.jelekin.2025.103006_b0170) 2023; 31 Chen (10.1016/j.jelekin.2025.103006_b0015) 2020; 20 Dragomiretskiy (10.1016/j.jelekin.2025.103006_b0030) 2014; 62 MacLellan (10.1016/j.jelekin.2025.103006_b0080) 2019; 51 Rehman (10.1016/j.jelekin.2025.103006_b0105) 2019; 67 |
References_xml | – volume: 14 start-page: 232 year: 2020 end-page: 243 ident: b0125 article-title: A fully embedded adaptive real-time hand gesture classifier leveraging HD-sEMG and deep learning publication-title: IEEE Trans. Biomed. Circuits Syst. – volume: 20 start-page: 15 year: 2020 ident: b0015 article-title: Hand gesture recognition using compact CNN via surface electromyography signals publication-title: Sensors. – volume: 55 start-page: 8 year: 2020 ident: b0085 article-title: An experimental study on upper limb position invariant EMG signal classification based on deep neural network publication-title: Biomed. Signal Process. Control. – volume: 1 start-page: 13 year: 2014 ident: b0005 article-title: Electromyography data for non-invasive naturally-controlled robotic hand prostheses publication-title: Sci. Data. – volume: 58 start-page: 12 year: 2020 ident: b0130 article-title: Surface EMG signal classification using ternary pattern and discrete wavelet transform based feature extraction for hand movement recognition publication-title: Biomed. Signal Process. Control. – volume: 62 start-page: 531 year: 2014 end-page: 544 ident: b0030 article-title: Variational mode decomposition publication-title: IEEE Trans. Signal Process. – volume: 59 start-page: 1149 year: 2020 end-page: 1157 ident: b0120 article-title: Intelligent human computer interaction based on non redundant EMG signal publication-title: Alex. Eng. J. – volume: 53 start-page: 935 year: 2023 end-page: 944 ident: b0020 article-title: A layered sEMG-FMG hybrid sensor for hand motion recognition from forearm muscle activities publication-title: IEEE t. Hum.-Mach. Syst. – volume: 25 start-page: 1085 year: 2021 end-page: 1098 ident: b0025 article-title: A novel statistical decimal pattern-based surface electromyogram signal classification method using tunable q-factor wavelet transform publication-title: Soft Comput – volume: 22 start-page: 13318 year: 2022 end-page: 13325 ident: b0110 article-title: Movements classification through sEMG with convolutional vision transformer and stacking ensemble learning publication-title: IEEE Sens. J. – volume: 62 start-page: 17 year: 2020 ident: b0070 article-title: A review of the key technologies for sEMG-based human-robot interaction systems publication-title: Biomed. Signal Process. Control. – volume: 92 start-page: 12 year: 2024 ident: b0135 article-title: Optimization of inter-subject sEMG-based hand gesture recognition tasks using unsupervised domain adaptation techniques publication-title: Biomed. Signal Process. Control. – volume: 70 start-page: 9 year: 2021 ident: b0010 article-title: A CNN-LSTM hybrid model for wrist kinematics estimation using surface electromyography publication-title: IEEE Trans. Instrum. Meas. – volume: 9 start-page: 13 year: 2021 ident: b0165 article-title: Dynamic gesture recognition using surface EMG signals based on multi-stream residual network publication-title: Front. Bioeng. Biotechnol. – volume: 203 start-page: 20 year: 2022 ident: b0075 article-title: Continuous and simultaneous estimation of lower limb multi-joint angles from sEMG signals based on stacked convolutional and LSTM models publication-title: Expert Syst. Appl. – volume: 45 start-page: 6896 year: 2023 end-page: 6908 ident: b0055 article-title: CCNet: Criss-Cross attention for semantic segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 51 start-page: 428 year: 2019 end-page: 437 ident: b0080 article-title: Shoulder muscle activity dampens arm swing motion when altering upper limb mass characteristics during locomotion publication-title: J. Mot. Behav. – volume: 67 start-page: 6039 year: 2019 end-page: 6052 ident: b0105 article-title: Multivariate variational mode decomposition publication-title: IEEE Trans. Signal Process. – volume: 13 start-page: 21 year: 2023 ident: b0115 article-title: Review of sEMG for robot control: Techniques and applications publication-title: Appl. Sci.-Basel. – volume: 44 start-page: 15 year: 2023 ident: b0140 article-title: sEMG Signal-Based lower limb movements recognition using tunable Q-factor wavelet transform and kraskov entropy publication-title: Irbm. – volume: 86 start-page: 11 year: 2023 ident: b0190 article-title: Reconstruction of incomplete surface electromyography based on an adversarial autoencoder network publication-title: Biomed. Signal Process. Control. – volume: 7 start-page: 104108 year: 2019 end-page: 104120 ident: b0050 article-title: sEMG-Based gesture recognition with embedded virtual hand poses adversarial learning publication-title: IEEE Access. – volume: 74 start-page: 14 year: 2022 ident: b0145 article-title: Single-channel surface electromyography signal classification with variational mode decomposition and entropy feature for lower limb movements recognition publication-title: Biomed. Signal Process. Control. – volume: 13 start-page: 18 year: 2018 ident: b0045 article-title: A novel attention-based hybrid CNN-RN N architecture for sEMG-based gesture recognition publication-title: PLoS One. – volume: 7 start-page: 61378 year: 2019 end-page: 61387 ident: b0100 article-title: Intelligent human-computer interaction based on surface EMG gesture recognition publication-title: IEEE Access. – volume: 10 start-page: 19 year: 2024 ident: b0090 article-title: Motion intention recognition of the affected hand based on the sEMG and improved DenseNet network publication-title: Heliyon. – volume: 19 start-page: 15 year: 2019 ident: b0180 article-title: Real-time surface EMG pattern recognition for hand gestures based on an artificial neural network publication-title: Sensors. – volume: 32 start-page: 6343 year: 2020 end-page: 6351 ident: b0095 article-title: Surface EMG hand gesture recognition system based on PCA and GRNN publication-title: Neural Comp. Appl. – volume: 11 start-page: 18 year: 2016 ident: b0040 article-title: Biomechanical constraints underlying motor primitives derived from the musculoskeletal anatomy of the human arm publication-title: PLoS One. – volume: 32 start-page: 16795 year: 2020 end-page: 16806 ident: b0065 article-title: Surface EMG data aggregation processing for intelligent prosthetic action recognition publication-title: Neural Comp. Appl. – volume: 66 start-page: 2964 year: 2019 end-page: 2973 ident: b0150 article-title: Surface-electromyography-based gesture recognition by multi-view deep learning publication-title: IEEE Trans. Biomed. Eng. – volume: 10 start-page: 32928 year: 2022 end-page: 32937 ident: b0175 article-title: Research on sEMG-based gesture recognition by dual-view deep learning publication-title: IEEE Access. – volume: 7 year: 2021 ident: b0060 article-title: Pattern recognition of EMG signals for low level grip force classification publication-title: Biomedical Physics & Engineering Express. – volume: 21 start-page: 13019 year: 2021 end-page: 13028 ident: b0160 article-title: Advances and disturbances in sEMG-based intentions and movements recognition: A review publication-title: IEEE Sens. J. – volume: 31 start-page: 4703 year: 2023 end-page: 4712 ident: b0170 article-title: Single-channel sEMG-based estimation of knee joint angle using a decomposition algorithm with a state-space model publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – start-page: 3 year: 2018 end-page: 19 ident: b0155 article-title: CBAM: Convolutional block attention module publication-title: Proceedings of the European conference on computer vision (ECCV) – volume: 24 start-page: 4821 year: 2024 end-page: 4830 ident: b0035 article-title: Attention-enhanced frequency-split convolution block for sEMG motion classification: Experiments on premier league and ninapro datasets publication-title: IEEE Sens. J. – volume: 19 start-page: 13 year: 2022 ident: b0185 article-title: Prediction of knee trajectory based on surface electromyogram with independent component analysis combined with support vector regression publication-title: Int. J. Adv. Robot. Syst. – volume: 74 start-page: 14 year: 2022 ident: 10.1016/j.jelekin.2025.103006_b0145 article-title: Single-channel surface electromyography signal classification with variational mode decomposition and entropy feature for lower limb movements recognition publication-title: Biomed. Signal Process. Control. doi: 10.1016/j.bspc.2022.103487 – volume: 58 start-page: 12 year: 2020 ident: 10.1016/j.jelekin.2025.103006_b0130 article-title: Surface EMG signal classification using ternary pattern and discrete wavelet transform based feature extraction for hand movement recognition publication-title: Biomed. Signal Process. Control. doi: 10.1016/j.bspc.2020.101872 – volume: 55 start-page: 8 year: 2020 ident: 10.1016/j.jelekin.2025.103006_b0085 article-title: An experimental study on upper limb position invariant EMG signal classification based on deep neural network publication-title: Biomed. Signal Process. Control. doi: 10.1016/j.bspc.2019.101669 – volume: 25 start-page: 1085 issue: 2 year: 2021 ident: 10.1016/j.jelekin.2025.103006_b0025 article-title: A novel statistical decimal pattern-based surface electromyogram signal classification method using tunable q-factor wavelet transform publication-title: Soft Comput doi: 10.1007/s00500-020-05205-y – volume: 32 start-page: 16795 issue: 22 year: 2020 ident: 10.1016/j.jelekin.2025.103006_b0065 article-title: Surface EMG data aggregation processing for intelligent prosthetic action recognition publication-title: Neural Comp. Appl. doi: 10.1007/s00521-018-3909-z – volume: 20 start-page: 15 issue: 3 year: 2020 ident: 10.1016/j.jelekin.2025.103006_b0015 article-title: Hand gesture recognition using compact CNN via surface electromyography signals publication-title: Sensors. doi: 10.3390/s20030672 – volume: 70 start-page: 9 year: 2021 ident: 10.1016/j.jelekin.2025.103006_b0010 article-title: A CNN-LSTM hybrid model for wrist kinematics estimation using surface electromyography publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2020.3036654 – volume: 24 start-page: 4821 issue: 4 year: 2024 ident: 10.1016/j.jelekin.2025.103006_b0035 article-title: Attention-enhanced frequency-split convolution block for sEMG motion classification: Experiments on premier league and ninapro datasets publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2023.3345731 – volume: 21 start-page: 13019 issue: 12 year: 2021 ident: 10.1016/j.jelekin.2025.103006_b0160 article-title: Advances and disturbances in sEMG-based intentions and movements recognition: A review publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2021.3068521 – volume: 19 start-page: 13 issue: 4 year: 2022 ident: 10.1016/j.jelekin.2025.103006_b0185 article-title: Prediction of knee trajectory based on surface electromyogram with independent component analysis combined with support vector regression publication-title: Int. J. Adv. Robot. Syst. doi: 10.1177/17298806221119668 – volume: 203 start-page: 20 year: 2022 ident: 10.1016/j.jelekin.2025.103006_b0075 article-title: Continuous and simultaneous estimation of lower limb multi-joint angles from sEMG signals based on stacked convolutional and LSTM models publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.117340 – volume: 44 start-page: 15 issue: 4 year: 2023 ident: 10.1016/j.jelekin.2025.103006_b0140 article-title: sEMG Signal-Based lower limb movements recognition using tunable Q-factor wavelet transform and kraskov entropy publication-title: Irbm. doi: 10.1016/j.irbm.2023.100773 – start-page: 3 year: 2018 ident: 10.1016/j.jelekin.2025.103006_b0155 article-title: CBAM: Convolutional block attention module – volume: 7 start-page: 61378 year: 2019 ident: 10.1016/j.jelekin.2025.103006_b0100 article-title: Intelligent human-computer interaction based on surface EMG gesture recognition publication-title: IEEE Access. doi: 10.1109/ACCESS.2019.2914728 – volume: 22 start-page: 13318 issue: 13 year: 2022 ident: 10.1016/j.jelekin.2025.103006_b0110 article-title: Movements classification through sEMG with convolutional vision transformer and stacking ensemble learning publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2022.3179535 – volume: 62 start-page: 17 year: 2020 ident: 10.1016/j.jelekin.2025.103006_b0070 article-title: A review of the key technologies for sEMG-based human-robot interaction systems publication-title: Biomed. Signal Process. Control. doi: 10.1016/j.bspc.2020.102074 – volume: 1 start-page: 13 year: 2014 ident: 10.1016/j.jelekin.2025.103006_b0005 article-title: Electromyography data for non-invasive naturally-controlled robotic hand prostheses publication-title: Sci. Data. doi: 10.1038/sdata.2014.53 – volume: 45 start-page: 6896 issue: 6 year: 2023 ident: 10.1016/j.jelekin.2025.103006_b0055 article-title: CCNet: Criss-Cross attention for semantic segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2020.3007032 – volume: 67 start-page: 6039 issue: 23 year: 2019 ident: 10.1016/j.jelekin.2025.103006_b0105 article-title: Multivariate variational mode decomposition publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2019.2951223 – volume: 9 start-page: 13 year: 2021 ident: 10.1016/j.jelekin.2025.103006_b0165 article-title: Dynamic gesture recognition using surface EMG signals based on multi-stream residual network publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2021.779353 – volume: 19 start-page: 15 issue: 14 year: 2019 ident: 10.1016/j.jelekin.2025.103006_b0180 article-title: Real-time surface EMG pattern recognition for hand gestures based on an artificial neural network publication-title: Sensors. doi: 10.3390/s19143170 – volume: 11 start-page: 18 issue: 10 year: 2016 ident: 10.1016/j.jelekin.2025.103006_b0040 article-title: Biomechanical constraints underlying motor primitives derived from the musculoskeletal anatomy of the human arm publication-title: PLoS One. doi: 10.1371/journal.pone.0164050 – volume: 13 start-page: 18 issue: 10 year: 2018 ident: 10.1016/j.jelekin.2025.103006_b0045 article-title: A novel attention-based hybrid CNN-RN N architecture for sEMG-based gesture recognition publication-title: PLoS One. doi: 10.1371/journal.pone.0206049 – volume: 86 start-page: 11 year: 2023 ident: 10.1016/j.jelekin.2025.103006_b0190 article-title: Reconstruction of incomplete surface electromyography based on an adversarial autoencoder network publication-title: Biomed. Signal Process. Control. doi: 10.1016/j.bspc.2023.105084 – volume: 51 start-page: 428 issue: 4 year: 2019 ident: 10.1016/j.jelekin.2025.103006_b0080 article-title: Shoulder muscle activity dampens arm swing motion when altering upper limb mass characteristics during locomotion publication-title: J. Mot. Behav. doi: 10.1080/00222895.2018.1502146 – volume: 13 start-page: 21 issue: 17 year: 2023 ident: 10.1016/j.jelekin.2025.103006_b0115 article-title: Review of sEMG for robot control: Techniques and applications publication-title: Appl. Sci.-Basel. – volume: 62 start-page: 531 issue: 3 year: 2014 ident: 10.1016/j.jelekin.2025.103006_b0030 article-title: Variational mode decomposition publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2013.2288675 – volume: 10 start-page: 32928 year: 2022 ident: 10.1016/j.jelekin.2025.103006_b0175 article-title: Research on sEMG-based gesture recognition by dual-view deep learning publication-title: IEEE Access. doi: 10.1109/ACCESS.2022.3158667 – volume: 7 issue: 6 year: 2021 ident: 10.1016/j.jelekin.2025.103006_b0060 article-title: Pattern recognition of EMG signals for low level grip force classification publication-title: Biomedical Physics & Engineering Express. doi: 10.1088/2057-1976/ac2354 – volume: 7 start-page: 104108 year: 2019 ident: 10.1016/j.jelekin.2025.103006_b0050 article-title: sEMG-Based gesture recognition with embedded virtual hand poses adversarial learning publication-title: IEEE Access. doi: 10.1109/ACCESS.2019.2930005 – volume: 53 start-page: 935 issue: 5 year: 2023 ident: 10.1016/j.jelekin.2025.103006_b0020 article-title: A layered sEMG-FMG hybrid sensor for hand motion recognition from forearm muscle activities publication-title: IEEE t. Hum.-Mach. Syst. doi: 10.1109/THMS.2023.3287594 – volume: 31 start-page: 4703 year: 2023 ident: 10.1016/j.jelekin.2025.103006_b0170 article-title: Single-channel sEMG-based estimation of knee joint angle using a decomposition algorithm with a state-space model publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2023.3336317 – volume: 59 start-page: 1149 issue: 3 year: 2020 ident: 10.1016/j.jelekin.2025.103006_b0120 article-title: Intelligent human computer interaction based on non redundant EMG signal publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2020.01.015 – volume: 10 start-page: 19 issue: 5 year: 2024 ident: 10.1016/j.jelekin.2025.103006_b0090 article-title: Motion intention recognition of the affected hand based on the sEMG and improved DenseNet network publication-title: Heliyon. doi: 10.1016/j.heliyon.2024.e26763 – volume: 66 start-page: 2964 issue: 10 year: 2019 ident: 10.1016/j.jelekin.2025.103006_b0150 article-title: Surface-electromyography-based gesture recognition by multi-view deep learning publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2019.2899222 – volume: 32 start-page: 6343 issue: 10 year: 2020 ident: 10.1016/j.jelekin.2025.103006_b0095 article-title: Surface EMG hand gesture recognition system based on PCA and GRNN publication-title: Neural Comp. Appl. doi: 10.1007/s00521-019-04142-8 – volume: 14 start-page: 232 issue: 2 year: 2020 ident: 10.1016/j.jelekin.2025.103006_b0125 article-title: A fully embedded adaptive real-time hand gesture classifier leveraging HD-sEMG and deep learning publication-title: IEEE Trans. Biomed. Circuits Syst. doi: 10.1109/TBCAS.2019.2955641 – volume: 92 start-page: 12 year: 2024 ident: 10.1016/j.jelekin.2025.103006_b0135 article-title: Optimization of inter-subject sEMG-based hand gesture recognition tasks using unsupervised domain adaptation techniques publication-title: Biomed. Signal Process. Control. doi: 10.1016/j.bspc.2024.106086 |
SSID | ssj0017080 |
Score | 2.436628 |
Snippet | Gesture recognition plays a fundamental role in enabling nonverbal communication and interaction, as well as assisting individuals with motor impairments in... AbstractGesture recognition plays a fundamental role in enabling nonverbal communication and interaction, as well as assisting individuals with motor... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 103006 |
SubjectTerms | Adult Attention mechanisms Electromyography - methods Female Gesture recognition Gestures Humans Male Multivariate variational modal decomposition Neural Networks, Computer Pattern Recognition, Automated - methods Physical Medicine and Rehabilitation Signal Processing, Computer-Assisted Surface electromyographic signals |
Title | MVMD-TCCA: A method for gesture classification based on surface electromyographic signals |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S105064112500032X https://www.clinicalkey.es/playcontent/1-s2.0-S105064112500032X https://dx.doi.org/10.1016/j.jelekin.2025.103006 https://www.ncbi.nlm.nih.gov/pubmed/40174312 https://www.proquest.com/docview/3185784270 |
Volume | 82 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFH_augsXxBgfBTYZCXFL69pO4nCLOqYC6i4UVE6W49hSi5ZNTXvYhb-d59gpQhsCcUusPDl6eX7v9_K-AN5YmhonC5OgdZWJ4M4lWmci4allFdVow52vd55fZrMv4uMyXR7AtK-F8WmVUfcHnd5p67gyjtwc36xW48-IDNCeIl7wPf05Wx7CEeNFlg7gqPzwaXa5DybkVIamBCl6Skjwq5BnvB6tUbt_X_lOqCz1FejUzz6630T9CYJ2pujiETyMGJKU4TWP4cA2j-GkbNB_vrolb0mX1dn9Lj-Bb_Ov8_NkMZ2W70hJwrxogkCV-LjSbmOJ8fDZ5wt1n4h4q1YTvGh3G6eNJXFOztVt6G29MsSnfKDQPoHFxfvFdJbEcQqJEUxsE-mkdZkpKiOz1BYZ6kFa-zkbdcoc47qy6F1QJ42j1tWiQtdQ2zp3-MBEOMefwqC5buxzILhQZczw3OZUaE6LWpham5rrAp3b1Axh1DNQ3YSmGarPJluryHHlOa4Cx4eQ9WxWfUUo6jCFav1vhPl9hLaNJ7FVE9UyRdUdaRmC3FP-JnD_sunrXhIUHkYfYdGNvd61ypei51KwnA7hWRCRPQPQkfVojb34_41fwgN_FzLVXsFgu9nZU8RE2-oMDkc_JmdR8n8CTWQKxQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwEB0tywEuCFhgy6eRELe0ru0kDreqsCqw3QsFlZPlOLbUos2umvawF347M3FShFgE4hY5thJNxjNv4jczAK88T13QhUvQu-pEyRASazOVyNSLklv04YHynedn2eyz-rBMlwcw7XNhiFbZ2f5o01tr3Y2MOmmOLler0SdEBuhPES9QTX8pljfgpkplTry-4fc9z2Occx1LEqQYJ-H0n2k8o_Vwjbb924rqoIqU8s85dT663kH9CYC2jujkLtzpECSbxJe8Bwe-vg9Hkxqj5_Mr9pq1nM72Z_kRfJ1_mb9NFtPp5A2bsNgtmiFMZXSqtNt45gg8E1uo_UCMfFrF8KLZbYJ1nnVdcs6vYmXrlWNE-ECVfQCLk3eL6SzpmikkTgm1TXTQPmSuKJ3OUl9kaAV5RV02qlQEIW3pMbbgQbvAfahUiYGh9VUecMJYhSAfwmF9UftjYDhQZsLJ3OdcWcmLSrnKukraAkPb1A1g2AvQXMaSGabnkq1NJ3FDEjdR4gPIejGbPh8ULZhBo_63hfl1C33T7cPGjE0jDDe_6coA9H7lL-r2Lw992WuCwa1I5yu29he7xlAieq6VyPkAHkUV2QsAw1jCauLx_z_4BdyaLean5vT92ccncJvuRM7aUzjcbnb-GaKjbfm81f4fkG8LkA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MVMD-TCCA%3A+A+method+for+gesture+classification+based+on+surface+electromyographic+signals&rft.jtitle=Journal+of+electromyography+and+kinesiology&rft.au=Chen%2C+Wenjie&rft.au=Zhang%2C+Shenke&rft.au=Sun%2C+Xiantao&rft.au=Zhang%2C+Cheng&rft.date=2025-06-01&rft.pub=Elsevier+Ltd&rft.issn=1050-6411&rft.volume=82&rft_id=info:doi/10.1016%2Fj.jelekin.2025.103006&rft.externalDocID=S105064112500032X |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F10506411%2FS1050641125X00031%2Fcov150h.gif |