MVMD-TCCA: A method for gesture classification based on surface electromyographic signals

Gesture recognition plays a fundamental role in enabling nonverbal communication and interaction, as well as assisting individuals with motor impairments in performing daily tasks. Surface electromyographic (sEMG) signals, which can effectively detect and predict motor intentions, are integral to ac...

Full description

Saved in:
Bibliographic Details
Published inJournal of electromyography and kinesiology Vol. 82; p. 103006
Main Authors Chen, Wenjie, Zhang, Shenke, Sun, Xiantao, Zhang, Cheng, Liu, Yuanyuan
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.06.2025
Subjects
Online AccessGet full text
ISSN1050-6411
1873-5711
1873-5711
DOI10.1016/j.jelekin.2025.103006

Cover

Loading…
Abstract Gesture recognition plays a fundamental role in enabling nonverbal communication and interaction, as well as assisting individuals with motor impairments in performing daily tasks. Surface electromyographic (sEMG) signals, which can effectively detect and predict motor intentions, are integral to achieving accurate gesture classification. This paper proposes a method, the multivariate variational mode decomposition and the two-channel convolutional neural network with added attention mechanism (MVMD-TCCA), to enhance the accuracy of gesture classification for motor intention recognition. The MVMD technique is utilized to decompose and fuse sEMG signals, enriching signal content and improving feature representation. To further optimize gesture classification performance, the convolutional block attention module (CBAM) and CrissCross attention mechanism are integrated into the neural network, enabling superior learning of local and spatial features. The experimental results show that the MVMD-TCCA method achieves an average classification accuracy of 85.09 % on the NinaPro DB2 dataset, representing a 13.46 % improvement compared to the use of the original signal, and an average classification accuracy of 97.90 % on the dataset collected from 15 subjects, reflecting a 1.70 % improvement over the original signal. These findings underscore the critical role of accurate gesture classification in facilitating daily task assistance for cerebral infarction patients, demonstrating the potential of the proposed approach.
AbstractList Gesture recognition plays a fundamental role in enabling nonverbal communication and interaction, as well as assisting individuals with motor impairments in performing daily tasks. Surface electromyographic (sEMG) signals, which can effectively detect and predict motor intentions, are integral to achieving accurate gesture classification. This paper proposes a method, the multivariate variational mode decomposition and the two-channel convolutional neural network with added attention mechanism (MVMD-TCCA), to enhance the accuracy of gesture classification for motor intention recognition. The MVMD technique is utilized to decompose and fuse sEMG signals, enriching signal content and improving feature representation. To further optimize gesture classification performance, the convolutional block attention module (CBAM) and CrissCross attention mechanism are integrated into the neural network, enabling superior learning of local and spatial features. The experimental results show that the MVMD-TCCA method achieves an average classification accuracy of 85.09 % on the NinaPro DB2 dataset, representing a 13.46 % improvement compared to the use of the original signal, and an average classification accuracy of 97.90 % on the dataset collected from 15 subjects, reflecting a 1.70 % improvement over the original signal. These findings underscore the critical role of accurate gesture classification in facilitating daily task assistance for cerebral infarction patients, demonstrating the potential of the proposed approach.
AbstractGesture recognition plays a fundamental role in enabling nonverbal communication and interaction, as well as assisting individuals with motor impairments in performing daily tasks. Surface electromyographic (sEMG) signals, which can effectively detect and predict motor intentions, are integral to achieving accurate gesture classification. This paper proposes a method, the multivariate variational mode decomposition and the two-channel convolutional neural network with added attention mechanism (MVMD-TCCA), to enhance the accuracy of gesture classification for motor intention recognition. The MVMD technique is utilized to decompose and fuse sEMG signals, enriching signal content and improving feature representation. To further optimize gesture classification performance, the convolutional block attention module (CBAM) and CrissCross attention mechanism are integrated into the neural network, enabling superior learning of local and spatial features. The experimental results show that the MVMD-TCCA method achieves an average classification accuracy of 85.09 % on the NinaPro DB2 dataset, representing a 13.46 % improvement compared to the use of the original signal, and an average classification accuracy of 97.90 % on the dataset collected from 15 subjects, reflecting a 1.70 % improvement over the original signal. These findings underscore the critical role of accurate gesture classification in facilitating daily task assistance for cerebral infarction patients, demonstrating the potential of the proposed approach.
Gesture recognition plays a fundamental role in enabling nonverbal communication and interaction, as well as assisting individuals with motor impairments in performing daily tasks. Surface electromyographic (sEMG) signals, which can effectively detect and predict motor intentions, are integral to achieving accurate gesture classification. This paper proposes a method, the multivariate variational mode decomposition and the two-channel convolutional neural network with added attention mechanism (MVMD-TCCA), to enhance the accuracy of gesture classification for motor intention recognition. The MVMD technique is utilized to decompose and fuse sEMG signals, enriching signal content and improving feature representation. To further optimize gesture classification performance, the convolutional block attention module (CBAM) and CrissCross attention mechanism are integrated into the neural network, enabling superior learning of local and spatial features. The experimental results show that the MVMD-TCCA method achieves an average classification accuracy of 85.09 % on the NinaPro DB2 dataset, representing a 13.46 % improvement compared to the use of the original signal, and an average classification accuracy of 97.90 % on the dataset collected from 15 subjects, reflecting a 1.70 % improvement over the original signal. These findings underscore the critical role of accurate gesture classification in facilitating daily task assistance for cerebral infarction patients, demonstrating the potential of the proposed approach.Gesture recognition plays a fundamental role in enabling nonverbal communication and interaction, as well as assisting individuals with motor impairments in performing daily tasks. Surface electromyographic (sEMG) signals, which can effectively detect and predict motor intentions, are integral to achieving accurate gesture classification. This paper proposes a method, the multivariate variational mode decomposition and the two-channel convolutional neural network with added attention mechanism (MVMD-TCCA), to enhance the accuracy of gesture classification for motor intention recognition. The MVMD technique is utilized to decompose and fuse sEMG signals, enriching signal content and improving feature representation. To further optimize gesture classification performance, the convolutional block attention module (CBAM) and CrissCross attention mechanism are integrated into the neural network, enabling superior learning of local and spatial features. The experimental results show that the MVMD-TCCA method achieves an average classification accuracy of 85.09 % on the NinaPro DB2 dataset, representing a 13.46 % improvement compared to the use of the original signal, and an average classification accuracy of 97.90 % on the dataset collected from 15 subjects, reflecting a 1.70 % improvement over the original signal. These findings underscore the critical role of accurate gesture classification in facilitating daily task assistance for cerebral infarction patients, demonstrating the potential of the proposed approach.
ArticleNumber 103006
Author Zhang, Shenke
Liu, Yuanyuan
Chen, Wenjie
Sun, Xiantao
Zhang, Cheng
Author_xml – sequence: 1
  givenname: Wenjie
  surname: Chen
  fullname: Chen, Wenjie
  email: wjchen@ahu.edu.cn
– sequence: 2
  givenname: Shenke
  orcidid: 0009-0008-3369-4818
  surname: Zhang
  fullname: Zhang, Shenke
– sequence: 3
  givenname: Xiantao
  surname: Sun
  fullname: Sun, Xiantao
  email: xtsun@ahu.edu.cn
– sequence: 4
  givenname: Cheng
  surname: Zhang
  fullname: Zhang, Cheng
– sequence: 5
  givenname: Yuanyuan
  surname: Liu
  fullname: Liu, Yuanyuan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40174312$$D View this record in MEDLINE/PubMed
BookMark eNqNkV-L1DAUxYPs4v7Rj6D00ZeON2nTZgRdhlFXYRcfHESfQprczKbbNmPSCvPtN2VmfRBEn-4hnHs4-d0LcjL4AQl5QWFBgVav20WLHd67YcGA8fRWAFRPyDkVdZHzmtKTpIFDXpWUnpGLGFsAWoOAp-SsTKosKDsnP26_3b7PN-v16k22ynoc77zJrA_ZFuM4Bcx0p2J01mk1Oj9kjYposiTiFKzSmKUSegy-3_ttULs7p7PotoPq4jNyatPA58d5STYfP2zWn_KbL9ef16ubXJesHHNhBdpKLxstKo7LStQVmFoUpeHMskI1yPkSrNAW0JqyYZQqNLVNBlpaW1ySV4fYXfA_p1Ra9i5q7Do1oJ-iLKjgtShZDcn68midmh6N3AXXq7CXjzSSgR8MOvgYA9rfFgpypi5beaQuZ-ryQD3tXR32MP3zl8Mgo3Y4aDQuJDrSePfPhHd_JOjODQl6d497jK2fwsxUUhmZBPl1vux8WMYBoGDfU8Dbvwf8R4EHJma2FA
Cites_doi 10.1016/j.bspc.2022.103487
10.1016/j.bspc.2020.101872
10.1016/j.bspc.2019.101669
10.1007/s00500-020-05205-y
10.1007/s00521-018-3909-z
10.3390/s20030672
10.1109/TIM.2020.3036654
10.1109/JSEN.2023.3345731
10.1109/JSEN.2021.3068521
10.1177/17298806221119668
10.1016/j.eswa.2022.117340
10.1016/j.irbm.2023.100773
10.1109/ACCESS.2019.2914728
10.1109/JSEN.2022.3179535
10.1016/j.bspc.2020.102074
10.1038/sdata.2014.53
10.1109/TPAMI.2020.3007032
10.1109/TSP.2019.2951223
10.3389/fbioe.2021.779353
10.3390/s19143170
10.1371/journal.pone.0164050
10.1371/journal.pone.0206049
10.1016/j.bspc.2023.105084
10.1080/00222895.2018.1502146
10.1109/TSP.2013.2288675
10.1109/ACCESS.2022.3158667
10.1088/2057-1976/ac2354
10.1109/ACCESS.2019.2930005
10.1109/THMS.2023.3287594
10.1109/TNSRE.2023.3336317
10.1016/j.aej.2020.01.015
10.1016/j.heliyon.2024.e26763
10.1109/TBME.2019.2899222
10.1007/s00521-019-04142-8
10.1109/TBCAS.2019.2955641
10.1016/j.bspc.2024.106086
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Elsevier Ltd
Copyright © 2025 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2025 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2025 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.jelekin.2025.103006
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1873-5711
EndPage 103006
ExternalDocumentID 40174312
10_1016_j_jelekin_2025_103006
S105064112500032X
1_s2_0_S105064112500032X
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29K
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAWTL
AAXKI
AAXUO
AAYWO
ABBQC
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
D-I
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEB
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OH.
OHT
OT.
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPCBC
SSH
SSZ
T5K
TWZ
UPT
WUQ
YQT
Z5R
~G-
AFCTW
AGRNS
RIG
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFLBG
ID FETCH-LOGICAL-c424t-8f8ef6c9bc865e968760d7834d52f23abe5590f8cf0efd4b211aed7f34d14ff3
IEDL.DBID AIKHN
ISSN 1050-6411
1873-5711
IngestDate Fri Sep 05 17:45:10 EDT 2025
Tue May 27 01:35:08 EDT 2025
Thu Jul 03 08:17:34 EDT 2025
Sat Jun 21 16:54:10 EDT 2025
Thu Jun 12 23:09:31 EDT 2025
Tue Aug 26 19:57:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Attention mechanisms
Surface electromyographic signals
Gesture recognition
Multivariate variational modal decomposition
Language English
License Copyright © 2025 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c424t-8f8ef6c9bc865e968760d7834d52f23abe5590f8cf0efd4b211aed7f34d14ff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0009-0008-3369-4818
PMID 40174312
PQID 3185784270
PQPubID 23479
PageCount 1
ParticipantIDs proquest_miscellaneous_3185784270
pubmed_primary_40174312
crossref_primary_10_1016_j_jelekin_2025_103006
elsevier_sciencedirect_doi_10_1016_j_jelekin_2025_103006
elsevier_clinicalkeyesjournals_1_s2_0_S105064112500032X
elsevier_clinicalkey_doi_10_1016_j_jelekin_2025_103006
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of electromyography and kinesiology
PublicationTitleAlternate J Electromyogr Kinesiol
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Chen, Li, Togo, Yokoi, Jiang (b0020) 2023; 53
Wei, Dai, Wong, Hu, Kankanhalli, Geng (b0150) 2019; 66
Qi, Jiang, Li, Sun, Tao (b0095) 2020; 32
Hu, Wong, Dai, Kankanhalli, Geng, Li (b0050) 2019; 7
Huang, Wang, Wei, Huang, Shi, Liu, Huang (b0055) 2023; 45
Rehman, Aftab (b0105) 2019; 67
Xu, Xiong (b0160) 2021; 21
Li, Li, Jiang, Chen, Liu (b0065) 2020; 32
Zhang, Yang, Fan, Yang, Li (b0175) 2022; 10
Dragomiretskiy, Zosso (b0030) 2014; 62
Bao, Zaidi, Xie, Yang, Zhang (b0010) 2021; 70
Qi, Jiang, Li, Sun, Tao (b0100) 2019; 7
Chen, Fu, Wu, Li, Zheng (b0015) 2020; 20
Tam, Boukadoum, Campeau-Lecours, Gosselin (b0125) 2020; 14
Li, Zhang, Wang, Zhang, Li, Bao (b0070) 2020; 62
Dogan, Tuncer (b0025) 2021; 25
Wei, Wang, Hu, Zhou, Feng, Lu, Tang, Jia (b0145) 2022; 74
Ergeneci, Bayram, Binningsley, Carter, Kosmas (b0035) 2024; 24
Khan, Khan, Farooq (b0060) 2021; 7
Mukhopadhyay, Samui (b0085) 2020; 55
Zhu, Guan, Li, Gao, Zou, Gao, Wang, Li, Cai (b0185) 2022; 19
Yang, Jiang, Sun, Tao, Tong, Jiang, Xu, Yun, Liu, Chen, Kong (b0165) 2021; 9
Zhang, Yang, Qian, Zhang (b0180) 2019; 19
Hu, Wong, Wei, Du, Kankanhalli, Geng (b0045) 2018; 13
Shen, Wang, Mao, Sun, Gu (b0110) 2022; 22
Song, Yan, Guo, Li, Li, Xi (b0115) 2023; 13
Zou, Cheng, Han (b0190) 2023; 86
Sun, Xu, Li, Xu, Kong, Jiang, Tao, Chen (b0120) 2020; 59
MacLellan, Ellis (b0080) 2019; 51
Gritsenko, Hardesty, Boots, Yakovenko (b0040) 2016; 11
Wang, Wan, Meng, Zeng, Akay, Chen, Chen (b0135) 2024; 92
Woo, Park, Lee, Kweon (b0155) 2018
Lu, Wang, Zhou, Wei, Xu (b0075) 2022; 203
Niu, Shi, Niu, Jia, Fan, Gui, Wang (b0090) 2024; 10
Tuncer, Dogan, Subasi (b0130) 2020; 58
Atzori, Gijsberts, Castellini, Caputo, Hager, Elsig, Giatsidis, Bassetto, Müller (b0005) 2014; 1
Zhang, Yu, Guo, Huo, Han (b0170) 2023; 31
Wei, Wang, Zhou, Feng, Hu, Lu, Jiang, Wang (b0140) 2023; 44
Hu (10.1016/j.jelekin.2025.103006_b0050) 2019; 7
Atzori (10.1016/j.jelekin.2025.103006_b0005) 2014; 1
Shen (10.1016/j.jelekin.2025.103006_b0110) 2022; 22
Sun (10.1016/j.jelekin.2025.103006_b0120) 2020; 59
Wei (10.1016/j.jelekin.2025.103006_b0145) 2022; 74
Xu (10.1016/j.jelekin.2025.103006_b0160) 2021; 21
Niu (10.1016/j.jelekin.2025.103006_b0090) 2024; 10
Song (10.1016/j.jelekin.2025.103006_b0115) 2023; 13
Tuncer (10.1016/j.jelekin.2025.103006_b0130) 2020; 58
Wei (10.1016/j.jelekin.2025.103006_b0150) 2019; 66
Ergeneci (10.1016/j.jelekin.2025.103006_b0035) 2024; 24
Li (10.1016/j.jelekin.2025.103006_b0065) 2020; 32
Mukhopadhyay (10.1016/j.jelekin.2025.103006_b0085) 2020; 55
Qi (10.1016/j.jelekin.2025.103006_b0095) 2020; 32
Zou (10.1016/j.jelekin.2025.103006_b0190) 2023; 86
Wei (10.1016/j.jelekin.2025.103006_b0140) 2023; 44
Zhang (10.1016/j.jelekin.2025.103006_b0180) 2019; 19
Lu (10.1016/j.jelekin.2025.103006_b0075) 2022; 203
Qi (10.1016/j.jelekin.2025.103006_b0100) 2019; 7
Khan (10.1016/j.jelekin.2025.103006_b0060) 2021; 7
Li (10.1016/j.jelekin.2025.103006_b0070) 2020; 62
Zhu (10.1016/j.jelekin.2025.103006_b0185) 2022; 19
Tam (10.1016/j.jelekin.2025.103006_b0125) 2020; 14
Hu (10.1016/j.jelekin.2025.103006_b0045) 2018; 13
Chen (10.1016/j.jelekin.2025.103006_b0020) 2023; 53
Huang (10.1016/j.jelekin.2025.103006_b0055) 2023; 45
Woo (10.1016/j.jelekin.2025.103006_b0155) 2018
Yang (10.1016/j.jelekin.2025.103006_b0165) 2021; 9
Wang (10.1016/j.jelekin.2025.103006_b0135) 2024; 92
Dogan (10.1016/j.jelekin.2025.103006_b0025) 2021; 25
Zhang (10.1016/j.jelekin.2025.103006_b0175) 2022; 10
Gritsenko (10.1016/j.jelekin.2025.103006_b0040) 2016; 11
Bao (10.1016/j.jelekin.2025.103006_b0010) 2021; 70
Zhang (10.1016/j.jelekin.2025.103006_b0170) 2023; 31
Chen (10.1016/j.jelekin.2025.103006_b0015) 2020; 20
Dragomiretskiy (10.1016/j.jelekin.2025.103006_b0030) 2014; 62
MacLellan (10.1016/j.jelekin.2025.103006_b0080) 2019; 51
Rehman (10.1016/j.jelekin.2025.103006_b0105) 2019; 67
References_xml – volume: 14
  start-page: 232
  year: 2020
  end-page: 243
  ident: b0125
  article-title: A fully embedded adaptive real-time hand gesture classifier leveraging HD-sEMG and deep learning
  publication-title: IEEE Trans. Biomed. Circuits Syst.
– volume: 20
  start-page: 15
  year: 2020
  ident: b0015
  article-title: Hand gesture recognition using compact CNN via surface electromyography signals
  publication-title: Sensors.
– volume: 55
  start-page: 8
  year: 2020
  ident: b0085
  article-title: An experimental study on upper limb position invariant EMG signal classification based on deep neural network
  publication-title: Biomed. Signal Process. Control.
– volume: 1
  start-page: 13
  year: 2014
  ident: b0005
  article-title: Electromyography data for non-invasive naturally-controlled robotic hand prostheses
  publication-title: Sci. Data.
– volume: 58
  start-page: 12
  year: 2020
  ident: b0130
  article-title: Surface EMG signal classification using ternary pattern and discrete wavelet transform based feature extraction for hand movement recognition
  publication-title: Biomed. Signal Process. Control.
– volume: 62
  start-page: 531
  year: 2014
  end-page: 544
  ident: b0030
  article-title: Variational mode decomposition
  publication-title: IEEE Trans. Signal Process.
– volume: 59
  start-page: 1149
  year: 2020
  end-page: 1157
  ident: b0120
  article-title: Intelligent human computer interaction based on non redundant EMG signal
  publication-title: Alex. Eng. J.
– volume: 53
  start-page: 935
  year: 2023
  end-page: 944
  ident: b0020
  article-title: A layered sEMG-FMG hybrid sensor for hand motion recognition from forearm muscle activities
  publication-title: IEEE t. Hum.-Mach. Syst.
– volume: 25
  start-page: 1085
  year: 2021
  end-page: 1098
  ident: b0025
  article-title: A novel statistical decimal pattern-based surface electromyogram signal classification method using tunable q-factor wavelet transform
  publication-title: Soft Comput
– volume: 22
  start-page: 13318
  year: 2022
  end-page: 13325
  ident: b0110
  article-title: Movements classification through sEMG with convolutional vision transformer and stacking ensemble learning
  publication-title: IEEE Sens. J.
– volume: 62
  start-page: 17
  year: 2020
  ident: b0070
  article-title: A review of the key technologies for sEMG-based human-robot interaction systems
  publication-title: Biomed. Signal Process. Control.
– volume: 92
  start-page: 12
  year: 2024
  ident: b0135
  article-title: Optimization of inter-subject sEMG-based hand gesture recognition tasks using unsupervised domain adaptation techniques
  publication-title: Biomed. Signal Process. Control.
– volume: 70
  start-page: 9
  year: 2021
  ident: b0010
  article-title: A CNN-LSTM hybrid model for wrist kinematics estimation using surface electromyography
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 9
  start-page: 13
  year: 2021
  ident: b0165
  article-title: Dynamic gesture recognition using surface EMG signals based on multi-stream residual network
  publication-title: Front. Bioeng. Biotechnol.
– volume: 203
  start-page: 20
  year: 2022
  ident: b0075
  article-title: Continuous and simultaneous estimation of lower limb multi-joint angles from sEMG signals based on stacked convolutional and LSTM models
  publication-title: Expert Syst. Appl.
– volume: 45
  start-page: 6896
  year: 2023
  end-page: 6908
  ident: b0055
  article-title: CCNet: Criss-Cross attention for semantic segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 51
  start-page: 428
  year: 2019
  end-page: 437
  ident: b0080
  article-title: Shoulder muscle activity dampens arm swing motion when altering upper limb mass characteristics during locomotion
  publication-title: J. Mot. Behav.
– volume: 67
  start-page: 6039
  year: 2019
  end-page: 6052
  ident: b0105
  article-title: Multivariate variational mode decomposition
  publication-title: IEEE Trans. Signal Process.
– volume: 13
  start-page: 21
  year: 2023
  ident: b0115
  article-title: Review of sEMG for robot control: Techniques and applications
  publication-title: Appl. Sci.-Basel.
– volume: 44
  start-page: 15
  year: 2023
  ident: b0140
  article-title: sEMG Signal-Based lower limb movements recognition using tunable Q-factor wavelet transform and kraskov entropy
  publication-title: Irbm.
– volume: 86
  start-page: 11
  year: 2023
  ident: b0190
  article-title: Reconstruction of incomplete surface electromyography based on an adversarial autoencoder network
  publication-title: Biomed. Signal Process. Control.
– volume: 7
  start-page: 104108
  year: 2019
  end-page: 104120
  ident: b0050
  article-title: sEMG-Based gesture recognition with embedded virtual hand poses adversarial learning
  publication-title: IEEE Access.
– volume: 74
  start-page: 14
  year: 2022
  ident: b0145
  article-title: Single-channel surface electromyography signal classification with variational mode decomposition and entropy feature for lower limb movements recognition
  publication-title: Biomed. Signal Process. Control.
– volume: 13
  start-page: 18
  year: 2018
  ident: b0045
  article-title: A novel attention-based hybrid CNN-RN N architecture for sEMG-based gesture recognition
  publication-title: PLoS One.
– volume: 7
  start-page: 61378
  year: 2019
  end-page: 61387
  ident: b0100
  article-title: Intelligent human-computer interaction based on surface EMG gesture recognition
  publication-title: IEEE Access.
– volume: 10
  start-page: 19
  year: 2024
  ident: b0090
  article-title: Motion intention recognition of the affected hand based on the sEMG and improved DenseNet network
  publication-title: Heliyon.
– volume: 19
  start-page: 15
  year: 2019
  ident: b0180
  article-title: Real-time surface EMG pattern recognition for hand gestures based on an artificial neural network
  publication-title: Sensors.
– volume: 32
  start-page: 6343
  year: 2020
  end-page: 6351
  ident: b0095
  article-title: Surface EMG hand gesture recognition system based on PCA and GRNN
  publication-title: Neural Comp. Appl.
– volume: 11
  start-page: 18
  year: 2016
  ident: b0040
  article-title: Biomechanical constraints underlying motor primitives derived from the musculoskeletal anatomy of the human arm
  publication-title: PLoS One.
– volume: 32
  start-page: 16795
  year: 2020
  end-page: 16806
  ident: b0065
  article-title: Surface EMG data aggregation processing for intelligent prosthetic action recognition
  publication-title: Neural Comp. Appl.
– volume: 66
  start-page: 2964
  year: 2019
  end-page: 2973
  ident: b0150
  article-title: Surface-electromyography-based gesture recognition by multi-view deep learning
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 10
  start-page: 32928
  year: 2022
  end-page: 32937
  ident: b0175
  article-title: Research on sEMG-based gesture recognition by dual-view deep learning
  publication-title: IEEE Access.
– volume: 7
  year: 2021
  ident: b0060
  article-title: Pattern recognition of EMG signals for low level grip force classification
  publication-title: Biomedical Physics & Engineering Express.
– volume: 21
  start-page: 13019
  year: 2021
  end-page: 13028
  ident: b0160
  article-title: Advances and disturbances in sEMG-based intentions and movements recognition: A review
  publication-title: IEEE Sens. J.
– volume: 31
  start-page: 4703
  year: 2023
  end-page: 4712
  ident: b0170
  article-title: Single-channel sEMG-based estimation of knee joint angle using a decomposition algorithm with a state-space model
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– start-page: 3
  year: 2018
  end-page: 19
  ident: b0155
  article-title: CBAM: Convolutional block attention module
  publication-title: Proceedings of the European conference on computer vision (ECCV)
– volume: 24
  start-page: 4821
  year: 2024
  end-page: 4830
  ident: b0035
  article-title: Attention-enhanced frequency-split convolution block for sEMG motion classification: Experiments on premier league and ninapro datasets
  publication-title: IEEE Sens. J.
– volume: 19
  start-page: 13
  year: 2022
  ident: b0185
  article-title: Prediction of knee trajectory based on surface electromyogram with independent component analysis combined with support vector regression
  publication-title: Int. J. Adv. Robot. Syst.
– volume: 74
  start-page: 14
  year: 2022
  ident: 10.1016/j.jelekin.2025.103006_b0145
  article-title: Single-channel surface electromyography signal classification with variational mode decomposition and entropy feature for lower limb movements recognition
  publication-title: Biomed. Signal Process. Control.
  doi: 10.1016/j.bspc.2022.103487
– volume: 58
  start-page: 12
  year: 2020
  ident: 10.1016/j.jelekin.2025.103006_b0130
  article-title: Surface EMG signal classification using ternary pattern and discrete wavelet transform based feature extraction for hand movement recognition
  publication-title: Biomed. Signal Process. Control.
  doi: 10.1016/j.bspc.2020.101872
– volume: 55
  start-page: 8
  year: 2020
  ident: 10.1016/j.jelekin.2025.103006_b0085
  article-title: An experimental study on upper limb position invariant EMG signal classification based on deep neural network
  publication-title: Biomed. Signal Process. Control.
  doi: 10.1016/j.bspc.2019.101669
– volume: 25
  start-page: 1085
  issue: 2
  year: 2021
  ident: 10.1016/j.jelekin.2025.103006_b0025
  article-title: A novel statistical decimal pattern-based surface electromyogram signal classification method using tunable q-factor wavelet transform
  publication-title: Soft Comput
  doi: 10.1007/s00500-020-05205-y
– volume: 32
  start-page: 16795
  issue: 22
  year: 2020
  ident: 10.1016/j.jelekin.2025.103006_b0065
  article-title: Surface EMG data aggregation processing for intelligent prosthetic action recognition
  publication-title: Neural Comp. Appl.
  doi: 10.1007/s00521-018-3909-z
– volume: 20
  start-page: 15
  issue: 3
  year: 2020
  ident: 10.1016/j.jelekin.2025.103006_b0015
  article-title: Hand gesture recognition using compact CNN via surface electromyography signals
  publication-title: Sensors.
  doi: 10.3390/s20030672
– volume: 70
  start-page: 9
  year: 2021
  ident: 10.1016/j.jelekin.2025.103006_b0010
  article-title: A CNN-LSTM hybrid model for wrist kinematics estimation using surface electromyography
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2020.3036654
– volume: 24
  start-page: 4821
  issue: 4
  year: 2024
  ident: 10.1016/j.jelekin.2025.103006_b0035
  article-title: Attention-enhanced frequency-split convolution block for sEMG motion classification: Experiments on premier league and ninapro datasets
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2023.3345731
– volume: 21
  start-page: 13019
  issue: 12
  year: 2021
  ident: 10.1016/j.jelekin.2025.103006_b0160
  article-title: Advances and disturbances in sEMG-based intentions and movements recognition: A review
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2021.3068521
– volume: 19
  start-page: 13
  issue: 4
  year: 2022
  ident: 10.1016/j.jelekin.2025.103006_b0185
  article-title: Prediction of knee trajectory based on surface electromyogram with independent component analysis combined with support vector regression
  publication-title: Int. J. Adv. Robot. Syst.
  doi: 10.1177/17298806221119668
– volume: 203
  start-page: 20
  year: 2022
  ident: 10.1016/j.jelekin.2025.103006_b0075
  article-title: Continuous and simultaneous estimation of lower limb multi-joint angles from sEMG signals based on stacked convolutional and LSTM models
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.117340
– volume: 44
  start-page: 15
  issue: 4
  year: 2023
  ident: 10.1016/j.jelekin.2025.103006_b0140
  article-title: sEMG Signal-Based lower limb movements recognition using tunable Q-factor wavelet transform and kraskov entropy
  publication-title: Irbm.
  doi: 10.1016/j.irbm.2023.100773
– start-page: 3
  year: 2018
  ident: 10.1016/j.jelekin.2025.103006_b0155
  article-title: CBAM: Convolutional block attention module
– volume: 7
  start-page: 61378
  year: 2019
  ident: 10.1016/j.jelekin.2025.103006_b0100
  article-title: Intelligent human-computer interaction based on surface EMG gesture recognition
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2019.2914728
– volume: 22
  start-page: 13318
  issue: 13
  year: 2022
  ident: 10.1016/j.jelekin.2025.103006_b0110
  article-title: Movements classification through sEMG with convolutional vision transformer and stacking ensemble learning
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2022.3179535
– volume: 62
  start-page: 17
  year: 2020
  ident: 10.1016/j.jelekin.2025.103006_b0070
  article-title: A review of the key technologies for sEMG-based human-robot interaction systems
  publication-title: Biomed. Signal Process. Control.
  doi: 10.1016/j.bspc.2020.102074
– volume: 1
  start-page: 13
  year: 2014
  ident: 10.1016/j.jelekin.2025.103006_b0005
  article-title: Electromyography data for non-invasive naturally-controlled robotic hand prostheses
  publication-title: Sci. Data.
  doi: 10.1038/sdata.2014.53
– volume: 45
  start-page: 6896
  issue: 6
  year: 2023
  ident: 10.1016/j.jelekin.2025.103006_b0055
  article-title: CCNet: Criss-Cross attention for semantic segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2020.3007032
– volume: 67
  start-page: 6039
  issue: 23
  year: 2019
  ident: 10.1016/j.jelekin.2025.103006_b0105
  article-title: Multivariate variational mode decomposition
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2019.2951223
– volume: 9
  start-page: 13
  year: 2021
  ident: 10.1016/j.jelekin.2025.103006_b0165
  article-title: Dynamic gesture recognition using surface EMG signals based on multi-stream residual network
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2021.779353
– volume: 19
  start-page: 15
  issue: 14
  year: 2019
  ident: 10.1016/j.jelekin.2025.103006_b0180
  article-title: Real-time surface EMG pattern recognition for hand gestures based on an artificial neural network
  publication-title: Sensors.
  doi: 10.3390/s19143170
– volume: 11
  start-page: 18
  issue: 10
  year: 2016
  ident: 10.1016/j.jelekin.2025.103006_b0040
  article-title: Biomechanical constraints underlying motor primitives derived from the musculoskeletal anatomy of the human arm
  publication-title: PLoS One.
  doi: 10.1371/journal.pone.0164050
– volume: 13
  start-page: 18
  issue: 10
  year: 2018
  ident: 10.1016/j.jelekin.2025.103006_b0045
  article-title: A novel attention-based hybrid CNN-RN N architecture for sEMG-based gesture recognition
  publication-title: PLoS One.
  doi: 10.1371/journal.pone.0206049
– volume: 86
  start-page: 11
  year: 2023
  ident: 10.1016/j.jelekin.2025.103006_b0190
  article-title: Reconstruction of incomplete surface electromyography based on an adversarial autoencoder network
  publication-title: Biomed. Signal Process. Control.
  doi: 10.1016/j.bspc.2023.105084
– volume: 51
  start-page: 428
  issue: 4
  year: 2019
  ident: 10.1016/j.jelekin.2025.103006_b0080
  article-title: Shoulder muscle activity dampens arm swing motion when altering upper limb mass characteristics during locomotion
  publication-title: J. Mot. Behav.
  doi: 10.1080/00222895.2018.1502146
– volume: 13
  start-page: 21
  issue: 17
  year: 2023
  ident: 10.1016/j.jelekin.2025.103006_b0115
  article-title: Review of sEMG for robot control: Techniques and applications
  publication-title: Appl. Sci.-Basel.
– volume: 62
  start-page: 531
  issue: 3
  year: 2014
  ident: 10.1016/j.jelekin.2025.103006_b0030
  article-title: Variational mode decomposition
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2013.2288675
– volume: 10
  start-page: 32928
  year: 2022
  ident: 10.1016/j.jelekin.2025.103006_b0175
  article-title: Research on sEMG-based gesture recognition by dual-view deep learning
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2022.3158667
– volume: 7
  issue: 6
  year: 2021
  ident: 10.1016/j.jelekin.2025.103006_b0060
  article-title: Pattern recognition of EMG signals for low level grip force classification
  publication-title: Biomedical Physics & Engineering Express.
  doi: 10.1088/2057-1976/ac2354
– volume: 7
  start-page: 104108
  year: 2019
  ident: 10.1016/j.jelekin.2025.103006_b0050
  article-title: sEMG-Based gesture recognition with embedded virtual hand poses adversarial learning
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2019.2930005
– volume: 53
  start-page: 935
  issue: 5
  year: 2023
  ident: 10.1016/j.jelekin.2025.103006_b0020
  article-title: A layered sEMG-FMG hybrid sensor for hand motion recognition from forearm muscle activities
  publication-title: IEEE t. Hum.-Mach. Syst.
  doi: 10.1109/THMS.2023.3287594
– volume: 31
  start-page: 4703
  year: 2023
  ident: 10.1016/j.jelekin.2025.103006_b0170
  article-title: Single-channel sEMG-based estimation of knee joint angle using a decomposition algorithm with a state-space model
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2023.3336317
– volume: 59
  start-page: 1149
  issue: 3
  year: 2020
  ident: 10.1016/j.jelekin.2025.103006_b0120
  article-title: Intelligent human computer interaction based on non redundant EMG signal
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2020.01.015
– volume: 10
  start-page: 19
  issue: 5
  year: 2024
  ident: 10.1016/j.jelekin.2025.103006_b0090
  article-title: Motion intention recognition of the affected hand based on the sEMG and improved DenseNet network
  publication-title: Heliyon.
  doi: 10.1016/j.heliyon.2024.e26763
– volume: 66
  start-page: 2964
  issue: 10
  year: 2019
  ident: 10.1016/j.jelekin.2025.103006_b0150
  article-title: Surface-electromyography-based gesture recognition by multi-view deep learning
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2019.2899222
– volume: 32
  start-page: 6343
  issue: 10
  year: 2020
  ident: 10.1016/j.jelekin.2025.103006_b0095
  article-title: Surface EMG hand gesture recognition system based on PCA and GRNN
  publication-title: Neural Comp. Appl.
  doi: 10.1007/s00521-019-04142-8
– volume: 14
  start-page: 232
  issue: 2
  year: 2020
  ident: 10.1016/j.jelekin.2025.103006_b0125
  article-title: A fully embedded adaptive real-time hand gesture classifier leveraging HD-sEMG and deep learning
  publication-title: IEEE Trans. Biomed. Circuits Syst.
  doi: 10.1109/TBCAS.2019.2955641
– volume: 92
  start-page: 12
  year: 2024
  ident: 10.1016/j.jelekin.2025.103006_b0135
  article-title: Optimization of inter-subject sEMG-based hand gesture recognition tasks using unsupervised domain adaptation techniques
  publication-title: Biomed. Signal Process. Control.
  doi: 10.1016/j.bspc.2024.106086
SSID ssj0017080
Score 2.436628
Snippet Gesture recognition plays a fundamental role in enabling nonverbal communication and interaction, as well as assisting individuals with motor impairments in...
AbstractGesture recognition plays a fundamental role in enabling nonverbal communication and interaction, as well as assisting individuals with motor...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 103006
SubjectTerms Adult
Attention mechanisms
Electromyography - methods
Female
Gesture recognition
Gestures
Humans
Male
Multivariate variational modal decomposition
Neural Networks, Computer
Pattern Recognition, Automated - methods
Physical Medicine and Rehabilitation
Signal Processing, Computer-Assisted
Surface electromyographic signals
Title MVMD-TCCA: A method for gesture classification based on surface electromyographic signals
URI https://www.clinicalkey.com/#!/content/1-s2.0-S105064112500032X
https://www.clinicalkey.es/playcontent/1-s2.0-S105064112500032X
https://dx.doi.org/10.1016/j.jelekin.2025.103006
https://www.ncbi.nlm.nih.gov/pubmed/40174312
https://www.proquest.com/docview/3185784270
Volume 82
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFH_augsXxBgfBTYZCXFL69pO4nCLOqYC6i4UVE6W49hSi5ZNTXvYhb-d59gpQhsCcUusPDl6eX7v9_K-AN5YmhonC5OgdZWJ4M4lWmci4allFdVow52vd55fZrMv4uMyXR7AtK-F8WmVUfcHnd5p67gyjtwc36xW48-IDNCeIl7wPf05Wx7CEeNFlg7gqPzwaXa5DybkVIamBCl6Skjwq5BnvB6tUbt_X_lOqCz1FejUzz6630T9CYJ2pujiETyMGJKU4TWP4cA2j-GkbNB_vrolb0mX1dn9Lj-Bb_Ov8_NkMZ2W70hJwrxogkCV-LjSbmOJ8fDZ5wt1n4h4q1YTvGh3G6eNJXFOztVt6G29MsSnfKDQPoHFxfvFdJbEcQqJEUxsE-mkdZkpKiOz1BYZ6kFa-zkbdcoc47qy6F1QJ42j1tWiQtdQ2zp3-MBEOMefwqC5buxzILhQZczw3OZUaE6LWpham5rrAp3b1Axh1DNQ3YSmGarPJluryHHlOa4Cx4eQ9WxWfUUo6jCFav1vhPl9hLaNJ7FVE9UyRdUdaRmC3FP-JnD_sunrXhIUHkYfYdGNvd61ypei51KwnA7hWRCRPQPQkfVojb34_41fwgN_FzLVXsFgu9nZU8RE2-oMDkc_JmdR8n8CTWQKxQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwEB0tywEuCFhgy6eRELe0ru0kDreqsCqw3QsFlZPlOLbUos2umvawF347M3FShFgE4hY5thJNxjNv4jczAK88T13QhUvQu-pEyRASazOVyNSLklv04YHynedn2eyz-rBMlwcw7XNhiFbZ2f5o01tr3Y2MOmmOLler0SdEBuhPES9QTX8pljfgpkplTry-4fc9z2Occx1LEqQYJ-H0n2k8o_Vwjbb924rqoIqU8s85dT663kH9CYC2jujkLtzpECSbxJe8Bwe-vg9Hkxqj5_Mr9pq1nM72Z_kRfJ1_mb9NFtPp5A2bsNgtmiFMZXSqtNt45gg8E1uo_UCMfFrF8KLZbYJ1nnVdcs6vYmXrlWNE-ECVfQCLk3eL6SzpmikkTgm1TXTQPmSuKJ3OUl9kaAV5RV02qlQEIW3pMbbgQbvAfahUiYGh9VUecMJYhSAfwmF9UftjYDhQZsLJ3OdcWcmLSrnKukraAkPb1A1g2AvQXMaSGabnkq1NJ3FDEjdR4gPIejGbPh8ULZhBo_63hfl1C33T7cPGjE0jDDe_6coA9H7lL-r2Lw992WuCwa1I5yu29he7xlAieq6VyPkAHkUV2QsAw1jCauLx_z_4BdyaLean5vT92ccncJvuRM7aUzjcbnb-GaKjbfm81f4fkG8LkA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MVMD-TCCA%3A+A+method+for+gesture+classification+based+on+surface+electromyographic+signals&rft.jtitle=Journal+of+electromyography+and+kinesiology&rft.au=Chen%2C+Wenjie&rft.au=Zhang%2C+Shenke&rft.au=Sun%2C+Xiantao&rft.au=Zhang%2C+Cheng&rft.date=2025-06-01&rft.pub=Elsevier+Ltd&rft.issn=1050-6411&rft.volume=82&rft_id=info:doi/10.1016%2Fj.jelekin.2025.103006&rft.externalDocID=S105064112500032X
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F10506411%2FS1050641125X00031%2Fcov150h.gif