Exercise-induced improvement in endothelial dysfunction is not mediated by changes in CV risk factors: pooled analysis of diverse patient populations
1 School of Human Movement and Exercise Science, The University of Western Australia; and 2 Department of Cardiology and 3 Cardiac Transplant Unit, Royal Perth Hospital, Western Australia, West Australian Institute for Medical Research, Crawley, Western Australia 6009 Submitted 16 June 2003 ; accept...
Saved in:
Published in | American journal of physiology. Heart and circulatory physiology Vol. 285; no. 6; pp. H2679 - H2687 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.12.2003
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | 1 School of Human Movement and Exercise Science, The University of Western Australia; and 2 Department of Cardiology and 3 Cardiac Transplant Unit, Royal Perth Hospital, Western Australia, West Australian Institute for Medical Research, Crawley, Western Australia 6009
Submitted 16 June 2003
; accepted in final form 18 August 2003
We have pooled data from a series of our exercise training studies undertaken in groups with a broad range of vascular (dys) function to the examine the hypothesis that exercise-induced improvements in the conduit and/or resistance vessel function are related to improvements in risk factors for cardiovascular (CV) disease. Endothelium-dependent and -independent conduit vessel function were assessed by using wall tracking of high-resolution ultrasound images of the brachial artery response to flow-mediated dilation (FMD) and glyceryl trinitrate. Resistance vessel function was assessed using intrabrachial administration of acetylcholine (ACh), sodium nitroprusside, and N G -monomethyl- L -arginine. Randomized cross-over studies of 8-wk exercise training were undertaken in untreated hypercholesterolemic ( n = 11), treated hypercholesterolemic ( n = 11), coronary artery disease ( n = 10), chronic heart failure ( n = 12), Type 2 diabetic ( n = 15), and healthy control subjects ( n = 16). Exercise training did not significantly alter plasma lipids, blood pressure, blood glucose, waist-to-hip ratio, or body mass index values, despite significant improvement in both FMD and ACh responses. There were no correlations between changes in any risk factor variables and indexes of either resistance or conduit vessel function. We conclude that, in these subjects with antecedent vascular dysfunction, the beneficial effects of relatively short-term exercise training on vascular function are not solely mediated by the effects of exercise on CV risk factors.
acetylcholine; flow-mediated dilation; resistance vessel; conduit artery; cardiovascular
Address for reprint requests and other correspondence: D. Green, School of Human Movement and Exercise Science, The Univ. of Western Australia, Crawley, Western Australia 6009. |
---|---|
AbstractList | We have pooled data from a series of our exercise training studies undertaken in groups with a broad range of vascular (dys) function to the examine the hypothesis that exercise-induced improvements in the conduit and/or resistance vessel function are related to improvements in risk factors for cardiovascular (CV) disease. Endothelium-dependent and - independent conduit vessel function were assessed by using wall tracking of high-resolution ultrasound images of the brachial artery response to flow-mediated dilation (FMD) and glyceryl trinitrate. Resistance vessel function was assessed using intrabrachial administration of acetylcholine (ACh), sodium nitroprusside, and N super(G)-monomethyl-L-arginine. Randomized cross-over studies of 8-wk exercise training were undertaken in untreated hypercholesterolemic (n = 11), treated hypercholesterolemic (n = 11), coronary artery disease (n = 10), chronic heart failure (n = 12), Type 2 diabetic (n = 15), and healthy control subjects (n = 16). Exercise training did not significantly alter plasma lipids, blood pressure, blood glucose, waist-to-hip ratio, or body mass index values, despite significant improvement in both FMD and ACh responses. There were no correlations between changes in any risk factor variables and indexes of either resistance or conduit vessel function. We conclude that, in these subjects with antecedent vascular dysfunction, the beneficial effects of relatively short-term exercise training on vascular function are not solely mediated by the effects of exercise on CV risk factors. We have pooled data from a series of our exercise training studies undertaken in groups with a broad range of vascular (dys) function to the examine the hypothesis that exercise-induced improvements in the conduit and/or resistance vessel function are related to improvements in risk factors for cardiovascular (CV) disease. Endothelium-dependent and -independent conduit vessel function were assessed by using wall tracking of high-resolution ultrasound images of the brachial artery response to flow-mediated dilation (FMD) and glyceryl trinitrate. Resistance vessel function was assessed using intrabrachial administration of acetylcholine (ACh), sodium nitroprusside, and NG-monomethyl-l-arginine. Randomized cross-over studies of 8-wk exercise training were undertaken in untreated hypercholesterolemic (n = 11), treated hypercholesterolemic (n = 11), coronary artery disease (n = 10), chronic heart failure (n = 12), Type 2 diabetic (n = 15), and healthy control subjects (n = 16). Exercise training did not significantly alter plasma lipids, blood pressure, blood glucose, waist-to-hip ratio, or body mass index values, despite significant improvement in both FMD and ACh responses. There were no correlations between changes in any risk factor variables and indexes of either resistance or conduit vessel function. We conclude that, in these subjects with antecedent vascular dysfunction, the beneficial effects of relatively short-term exercise training on vascular function are not solely mediated by the effects of exercise on CV risk factors. We have pooled data from a series of our exercise training studies undertaken in groups with a broad range of vascular (dys) function to the examine the hypothesis that exercise-induced improvements in the conduit and/or resistance vessel function are related to improvements in risk factors for cardiovascular (CV) disease. Endothelium-dependent and -independent conduit vessel function were assessed by using wall tracking of high-resolution ultrasound images of the brachial artery response to flow-mediated dilation (FMD) and glyceryl trinitrate. Resistance vessel function was assessed using intrabrachial administration of acetylcholine (ACh), sodium nitroprusside, and N G -monomethyl-l-arginine. Randomized cross-over studies of 8-wk exercise training were undertaken in untreated hypercholesterolemic ( n = 11), treated hypercholesterolemic ( n = 11), coronary artery disease ( n = 10), chronic heart failure ( n = 12), Type 2 diabetic ( n = 15), and healthy control subjects ( n = 16). Exercise training did not significantly alter plasma lipids, blood pressure, blood glucose, waist-to-hip ratio, or body mass index values, despite significant improvement in both FMD and ACh responses. There were no correlations between changes in any risk factor variables and indexes of either resistance or conduit vessel function. We conclude that, in these subjects with antecedent vascular dysfunction, the beneficial effects of relatively short-term exercise training on vascular function are not solely mediated by the effects of exercise on CV risk factors. 1 School of Human Movement and Exercise Science, The University of Western Australia; and 2 Department of Cardiology and 3 Cardiac Transplant Unit, Royal Perth Hospital, Western Australia, West Australian Institute for Medical Research, Crawley, Western Australia 6009 Submitted 16 June 2003 ; accepted in final form 18 August 2003 We have pooled data from a series of our exercise training studies undertaken in groups with a broad range of vascular (dys) function to the examine the hypothesis that exercise-induced improvements in the conduit and/or resistance vessel function are related to improvements in risk factors for cardiovascular (CV) disease. Endothelium-dependent and -independent conduit vessel function were assessed by using wall tracking of high-resolution ultrasound images of the brachial artery response to flow-mediated dilation (FMD) and glyceryl trinitrate. Resistance vessel function was assessed using intrabrachial administration of acetylcholine (ACh), sodium nitroprusside, and N G -monomethyl- L -arginine. Randomized cross-over studies of 8-wk exercise training were undertaken in untreated hypercholesterolemic ( n = 11), treated hypercholesterolemic ( n = 11), coronary artery disease ( n = 10), chronic heart failure ( n = 12), Type 2 diabetic ( n = 15), and healthy control subjects ( n = 16). Exercise training did not significantly alter plasma lipids, blood pressure, blood glucose, waist-to-hip ratio, or body mass index values, despite significant improvement in both FMD and ACh responses. There were no correlations between changes in any risk factor variables and indexes of either resistance or conduit vessel function. We conclude that, in these subjects with antecedent vascular dysfunction, the beneficial effects of relatively short-term exercise training on vascular function are not solely mediated by the effects of exercise on CV risk factors. acetylcholine; flow-mediated dilation; resistance vessel; conduit artery; cardiovascular Address for reprint requests and other correspondence: D. Green, School of Human Movement and Exercise Science, The Univ. of Western Australia, Crawley, Western Australia 6009. |
Author | Green, Daniel J Maiorana, Andrew Taylor, Roger R O'Driscoll, J. Gerard Walsh, Jennifer H Best, Matthew J |
Author_xml | – sequence: 1 fullname: Green, Daniel J – sequence: 2 fullname: Walsh, Jennifer H – sequence: 3 fullname: Maiorana, Andrew – sequence: 4 fullname: Best, Matthew J – sequence: 5 fullname: Taylor, Roger R – sequence: 6 fullname: O'Driscoll, J. Gerard |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/12933344$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1u1DAURi1URKeFJ0BCXrHL1D9JPIEVGrUUqRKbwtZy4puJi2MH22k7D8L74jADZYNYeXHP-a58vzN04rwDhF5Tsqa0YhfqbhpAhbQmpKLNmhHCn6FVnrCCVrw5QSvCa17UlFen6CzGO5JBUfMX6JSyhnNeliv04_IRQmciFMbpuQONzTgFfw8juISNw-C0TwNYoyzW-9jPrkvGO2widj7hEbRRKWvtHneDcjuIi7X9ioOJ33CvuuRDfIcn722mlFN2H7Pre6zNPYQIeFLJLMsmP81WLeHxJXreKxvh1fE9R1-uLm-318XN54-fth9uiq5kZSo2um1JRwkBTUARAS3XWvfdpippDWXf9lALXVcgBFV5ppjOfNtXUKmSCc7P0dtDbv7y9xlikqOJHVirHPg5SkF5LZgQ_wVpwzhnG5JBfgC74GMM0MspmFGFvaRELrXJ37XJX7XJpbZsvTnGz22-6JNz7CkDFwdgMLvhwQSQ05Dv6K3f7Z8S2aaStbxmtWiy8f7fxtVs7S08pj_qX6acdM9_AqH7wus |
CitedBy_id | crossref_primary_10_1152_physrev_00014_2016 crossref_primary_10_1249_01_mss_0000227540_58916_0e crossref_primary_10_1007_s00421_013_2626_7 crossref_primary_10_1016_j_diabres_2007_09_020 crossref_primary_10_1042_CS20050207 crossref_primary_10_1016_j_ecl_2006_06_006 crossref_primary_10_1155_2014_230791 crossref_primary_10_1113_jphysiol_2007_145722 crossref_primary_10_1007_s40279_013_0085_2 crossref_primary_10_1016_j_jacc_2004_09_035 crossref_primary_10_1152_japplphysiol_00292_2020 crossref_primary_10_1542_peds_2015_0616 crossref_primary_10_1016_j_mvr_2009_07_003 crossref_primary_10_1093_bja_aev332 crossref_primary_10_1249_MSS_0b013e31829ba9a1 crossref_primary_10_1253_circj_CJ_10_0813 crossref_primary_10_3132_dvdr_2007_026 crossref_primary_10_1002_pbc_24565 crossref_primary_10_1139_apnm_2015_0637 crossref_primary_10_3132_dvdr_2007_025 crossref_primary_10_1016_j_jstrokecerebrovasdis_2018_05_041 crossref_primary_10_1007_s42978_023_00270_9 crossref_primary_10_1161_CIR_0000000000000559 crossref_primary_10_1152_ajpheart_00719_2020 crossref_primary_10_1371_journal_pone_0287685 crossref_primary_10_7570_kjo_2011_20_3_129 crossref_primary_10_1089_jwh_2009_1708 crossref_primary_10_1097_00008483_200405000_00001 crossref_primary_10_1152_japplphysiol_00109_2004 crossref_primary_10_1152_japplphysiol_00260_2020 crossref_primary_10_1097_HJR_0b013e3283002733 crossref_primary_10_1113_expphysiol_2013_073353 crossref_primary_10_1152_ajpheart_00915_2005 crossref_primary_10_3390_ijerph16050751 crossref_primary_10_1042_CS20130186 crossref_primary_10_1152_japplphysiol_00354_2014 crossref_primary_10_1152_japplphysiol_01047_2004 crossref_primary_10_2165_00007256_200434120_00001 crossref_primary_10_1097_JCN_0b013e318239f419 crossref_primary_10_1016_j_ijcard_2005_05_052 crossref_primary_10_1016_j_pcad_2018_12_011 crossref_primary_10_1016_j_amepre_2004_09_006 crossref_primary_10_1113_EP085406 crossref_primary_10_1161_JAHA_113_000702 crossref_primary_10_1016_j_metabol_2009_06_035 crossref_primary_10_1111_j_1751_7133_2011_00274_x crossref_primary_10_1016_j_jpeds_2004_12_046 crossref_primary_10_1002_jcu_20229 crossref_primary_10_1177_00033197211050446 crossref_primary_10_1152_physiol_00019_2013 crossref_primary_10_3345_cep_2020_00997 crossref_primary_10_1007_s11357_012_9402_1 crossref_primary_10_1161_HYPERTENSIONAHA_114_04926 crossref_primary_10_1186_s13098_018_0316_7 crossref_primary_10_1007_s00125_008_0996_x crossref_primary_10_1186_s13063_022_06100_7 crossref_primary_10_1152_ajpheart_00128_2014 crossref_primary_10_1080_10641963_2018_1506468 crossref_primary_10_1093_rheumatology_ket283 crossref_primary_10_1253_circj_69_1105 crossref_primary_10_1007_s00421_014_3006_7 crossref_primary_10_1519_JSC_0b013e3181d32ffc crossref_primary_10_1152_japplphysiol_01028_2007 crossref_primary_10_1161_CIRCULATIONAHA_108_791988 crossref_primary_10_1007_s00392_006_1106_z crossref_primary_10_1152_japplphysiol_00004_2021 crossref_primary_10_1007_s12170_012_0241_5 crossref_primary_10_1038_sj_sc_3101940 crossref_primary_10_1113_jphysiol_2009_179432 crossref_primary_10_3390_ijerph192315537 crossref_primary_10_1016_j_biopha_2022_114198 crossref_primary_10_1113_jphysiol_2004_068197 crossref_primary_10_1152_japplphysiol_00251_2005 crossref_primary_10_3390_nu13010270 crossref_primary_10_1007_s00421_009_1260_x crossref_primary_10_1177_1741826711415679 crossref_primary_10_1007_s00125_006_0361_x crossref_primary_10_1111_j_1742_1241_2005_00536_x crossref_primary_10_1016_j_atherosclerosis_2005_01_006 crossref_primary_10_1097_01_mco_0000247473_49284_e3 crossref_primary_10_1111_j_1463_1326_2008_00863_x crossref_primary_10_1186_s12872_015_0151_9 crossref_primary_10_15857_ksep_2010_19_2_165 crossref_primary_10_47102_annals_acadmedsg_V37N4p286 crossref_primary_10_1007_s41969_021_00142_z crossref_primary_10_20945_2359_4292_2023_0040 crossref_primary_10_1007_s11936_016_0465_7 crossref_primary_10_54393_pjhs_v1i2_58 crossref_primary_10_1016_j_amjcard_2008_05_020 crossref_primary_10_1016_j_scispo_2008_10_003 crossref_primary_10_1161_CIRCULATIONAHA_120_050281 crossref_primary_10_1007_s40279_014_0173_y crossref_primary_10_1161_HYPERTENSIONAHA_109_146282 crossref_primary_10_3390_ijerph17145194 crossref_primary_10_1123_japa_2019_0103 crossref_primary_10_1038_bjc_2015_479 crossref_primary_10_1042_CS20100520 crossref_primary_10_1253_circj_72_897 crossref_primary_10_1007_s40279_019_01055_3 crossref_primary_10_1007_s40140_021_00501_1 crossref_primary_10_1016_j_ejvs_2007_08_022 crossref_primary_10_1152_ajpheart_00306_2014 crossref_primary_10_1152_japplphysiol_00450_2013 crossref_primary_10_1016_j_jpeds_2004_08_004 crossref_primary_10_1007_s00210_023_02775_0 crossref_primary_10_1152_ajpheart_00360_2015 crossref_primary_10_1016_j_atherosclerosis_2012_07_035 |
Cites_doi | 10.1172/JCI119751 10.1161/01.CIR.98.4.369 10.1152/ajpheart.2000.279.4.H1999 10.1161/01.HYP.25.5.918 10.1172/JCI114688 10.1016/S0735-1097(96)00526-8 10.1152/jappl.1990.69.5.1804 10.1161/01.CIR.101.16.1895 10.1161/01.CIR.95.5.1126 10.1016/S0735-1097(01)01439-5 10.1161/01.RES.74.2.349 10.1161/01.CIR.97.12.1129 10.1016/S0735-1097(96)00393-2 10.1152/ajpheart.1996.270.6.H2008 10.1016/S0021-9150(99)00189-6 10.1056/NEJMoa011858 10.1161/01.CIR.0000074244.82874.A0 10.1007/BF00429099 10.1152/ajpheart.1999.276.4.H1346 10.1056/NEJM200002173420702 10.1152/japplphysiol.00012.2003 10.1016/0140-6736(92)93147-F 10.1016/S0735-1097(99)00036-4 10.1152/ajpheart.1988.255.3.H446 10.1161/01.CIR.0000025404.78001.D8 10.1161/01.CIR.78.3.506 10.1161/01.CIR.81.3.772 10.1172/JCI116183 10.1161/01.HYP.33.1.591 10.1161/01.CIR.0000075928.54461.33 10.1016/S0735-1097(00)01108-6 10.1161/01.CIR.102.9.975 10.1161/01.CIR.98.24.2709 10.1152/jappl.2001.91.2.929 10.1016/S0168-8227(01)00368-0 10.1113/jphysiol.1995.sp020964 10.1152/ajpheart.00049.2002 10.1172/JCI119580 10.1097/00005768-200112000-00008 10.1152/jappl.1997.82.5.1488 10.1161/01.CIR.0000028581.07992.56 10.1016/0735-1097(94)90141-4 10.1152/ajpheart.1997.272.3.H1070 10.1152/jappl.1997.83.6.1785 10.1016/S0195-668X(03)00384-1 10.1152/jappl.1994.76.5.2241 10.1161/01.CIR.101.9.948 10.1016/S0735-1097(01)01746-6 10.1161/01.CIR.0000080893.55729.28 10.1056/NEJM198603063141003 |
ContentType | Journal Article |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7TS 7X8 |
DOI | 10.1152/ajpheart.00519.2003 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Physical Education Index MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Physical Education Index MEDLINE - Academic |
DatabaseTitleList | Physical Education Index MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1522-1539 |
EndPage | H2687 |
ExternalDocumentID | 10_1152_ajpheart_00519_2003 12933344 ajpheart_285_6_H2679 |
Genre | Clinical Trial Randomized Controlled Trial Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - 02 23M 2WC 39C 53G 5GY 5VS 8M5 ABFLS ABPTK ACIWK ACPRK ADACO ADBBV AENEX AFFNX AFRAH ALMA_UNASSIGNED_HOLDINGS BAWUL BKOMP C1A DIK DL E3Z EBS EJD F5P GX1 H13 KQ8 O0- OK1 P2P PQEST PQQKQ RAP RHF RHI RPL WH7 WOQ --- 3O- 4.4 6J9 AAFWJ ABJNI ACBEA BKKCC BTFSW CGR CUY CVF ECM EIF EMOBN ITBOX NPM RPRKH TR2 UKR W8F XSW YSK YYP ~02 AAYXX CITATION 7TS 7X8 |
ID | FETCH-LOGICAL-c424t-8dbb0c100ed0ea07eb3dddfc85416e4fbfe67d65e771ab3da2db0cbf5e5a42733 |
ISSN | 0363-6135 |
IngestDate | Fri Oct 25 01:36:10 EDT 2024 Fri Oct 25 05:06:53 EDT 2024 Fri Aug 23 00:23:31 EDT 2024 Sat Sep 28 07:36:46 EDT 2024 Tue Jan 05 17:57:04 EST 2021 Mon May 06 11:44:23 EDT 2019 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c424t-8dbb0c100ed0ea07eb3dddfc85416e4fbfe67d65e771ab3da2db0cbf5e5a42733 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-News-3 |
PMID | 12933344 |
PQID | 19233280 |
PQPubID | 23462 |
ParticipantIDs | proquest_miscellaneous_19233280 highwire_physiology_ajpheart_285_6_H2679 proquest_miscellaneous_71367277 pubmed_primary_12933344 crossref_primary_10_1152_ajpheart_00519_2003 |
PublicationCentury | 2000 |
PublicationDate | 2003-12-01 |
PublicationDateYYYYMMDD | 2003-12-01 |
PublicationDate_xml | – month: 12 year: 2003 text: 2003-12-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | American journal of physiology. Heart and circulatory physiology |
PublicationTitleAlternate | Am J Physiol Heart Circ Physiol |
PublicationYear | 2003 |
References | REF9 REF7 REF8 REF5 REF6 REF3 REF4 REF40 REF44 REF43 REF42 REF41 REF48 REF47 REF46 REF45 REF49 REF33 REF32 REF31 REF30 REF37 REF36 REF35 REF34 REF1 REF2 REF39 REF38 REF22 REF21 REF20 REF26 REF25 REF24 REF23 REF29 REF28 REF27 REF51 REF50 REF11 REF10 REF54 REF53 REF52 REF15 REF14 REF13 REF12 REF19 REF18 REF17 REF16 |
References_xml | – ident: REF21 – ident: REF18 doi: 10.1172/JCI119751 – ident: REF35 doi: 10.1161/01.CIR.98.4.369 – ident: REF31 doi: 10.1152/ajpheart.2000.279.4.H1999 – ident: REF2 doi: 10.1161/01.HYP.25.5.918 – ident: REF7 doi: 10.1172/JCI114688 – ident: REF8 doi: 10.1016/S0735-1097(96)00526-8 – ident: REF12 – ident: REF34 doi: 10.1152/jappl.1990.69.5.1804 – ident: REF44 doi: 10.1161/01.CIR.101.16.1895 – ident: REF42 doi: 10.1161/01.CIR.95.5.1126 – ident: REF30 doi: 10.1016/S0735-1097(01)01439-5 – ident: REF45 doi: 10.1161/01.RES.74.2.349 – ident: REF28 doi: 10.1161/01.CIR.97.12.1129 – ident: REF39 doi: 10.1016/S0735-1097(96)00393-2 – ident: REF25 doi: 10.1152/ajpheart.1996.270.6.H2008 – ident: REF20 doi: 10.1016/S0021-9150(99)00189-6 – ident: REF38 doi: 10.1056/NEJMoa011858 – ident: REF9 doi: 10.1161/01.CIR.0000074244.82874.A0 – ident: REF36 doi: 10.1007/BF00429099 – ident: REF40 doi: 10.1152/ajpheart.1999.276.4.H1346 – ident: REF17 doi: 10.1056/NEJM200002173420702 – ident: REF52 doi: 10.1152/japplphysiol.00012.2003 – ident: REF4 doi: 10.1016/0140-6736(92)93147-F – ident: REF5 doi: 10.1016/S0735-1097(99)00036-4 – ident: REF37 doi: 10.1152/ajpheart.1988.255.3.H446 – ident: REF15 doi: 10.1161/01.CIR.0000025404.78001.D8 – ident: REF47 doi: 10.1161/01.CIR.78.3.506 – ident: REF50 doi: 10.1161/01.CIR.81.3.772 – ident: REF11 doi: 10.1172/JCI116183 – ident: REF19 doi: 10.1161/01.HYP.33.1.591 – ident: REF27 doi: 10.1161/01.CIR.0000075928.54461.33 – ident: REF29 doi: 10.1016/S0735-1097(00)01108-6 – ident: REF46 doi: 10.1161/01.CIR.102.9.975 – ident: REF26 – ident: REF49 – ident: REF16 doi: 10.1161/01.CIR.98.24.2709 – ident: REF54 doi: 10.1152/jappl.2001.91.2.929 – ident: REF33 doi: 10.1016/S0168-8227(01)00368-0 – ident: REF10 doi: 10.1113/jphysiol.1995.sp020964 – ident: REF14 doi: 10.1152/ajpheart.00049.2002 – ident: REF41 doi: 10.1172/JCI119580 – ident: REF32 doi: 10.1097/00005768-200112000-00008 – ident: REF23 doi: 10.1152/jappl.1997.82.5.1488 – ident: REF51 doi: 10.1161/01.CIR.0000028581.07992.56 – ident: REF3 doi: 10.1016/0735-1097(94)90141-4 – ident: REF24 doi: 10.1152/ajpheart.1997.272.3.H1070 – ident: REF22 doi: 10.1152/jappl.1997.83.6.1785 – ident: REF53 doi: 10.1016/S0195-668X(03)00384-1 – ident: REF48 doi: 10.1152/jappl.1994.76.5.2241 – ident: REF1 doi: 10.1161/01.CIR.101.9.948 – ident: REF6 doi: 10.1016/S0735-1097(01)01746-6 – ident: REF13 doi: 10.1161/01.CIR.0000080893.55729.28 – ident: REF43 doi: 10.1056/NEJM198603063141003 |
SSID | ssj0005763 |
Score | 2.176799 |
Snippet | 1 School of Human Movement and Exercise Science, The University of Western Australia; and 2 Department of Cardiology and 3 Cardiac Transplant Unit, Royal Perth... We have pooled data from a series of our exercise training studies undertaken in groups with a broad range of vascular (dys) function to the examine the... |
SourceID | proquest crossref pubmed highwire |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | H2679 |
SubjectTerms | Acetylcholine Coronary Artery Disease - epidemiology Coronary Artery Disease - physiopathology Cross-Over Studies Diabetes Mellitus, Type 2 - epidemiology Diabetes Mellitus, Type 2 - physiopathology Endothelium, Vascular - physiopathology Exercise Heart Failure - epidemiology Heart Failure - physiopathology Humans Hypercholesterolemia - epidemiology Hypercholesterolemia - physiopathology Middle Aged Risk Factors Vascular Resistance Vasodilator Agents |
Title | Exercise-induced improvement in endothelial dysfunction is not mediated by changes in CV risk factors: pooled analysis of diverse patient populations |
URI | http://ajpheart.physiology.org/cgi/content/abstract/285/6/H2679 https://www.ncbi.nlm.nih.gov/pubmed/12933344 https://search.proquest.com/docview/19233280 https://search.proquest.com/docview/71367277 |
Volume | 285 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKIiEuCHZ5lKcPCCFBummcNBG3VdVVBdsFpHbpzXJiRxRBWjXpofwP_i8zfjRe6IrHJWpTO2k7XzwPz3xDyHMGSj8pchlEIgcHBXygIOuXIiiESMJSMjZgWCg8OR-MZ_HbeTLvdHyG4E2T94rve-tK_keqcA7kilWy_yDZ3UXhBLwG-cIRJAzHv5LxyPZLCsCx3uBG_kKHCHTET3OBVBILrL5iVFxua9RhJrexflUtG1M10hgT1BQA6-TY4YVJOLeteDBmgI24FJK6tgwmUid0KEfMCkNcJ7DaN3h3O0IeRYWOpuhwfg_LoNYmyb1YrDEnVm_6tyMu5Qe1NfHtbtYn-Jc_-3k6bbnFRCD_gCl68xI3dVVSbSuVdLdzezUX_GBeIokr-mLg_RrGE7egR6YJkEWuvzyPo4FpXWN1Pbw36v53RZIgMa34ssK-4k1PW7qaPbbVmy5X4Pw9P52dnfHpaD69Rq5HsOJhbuG7jy1tPTh1zG2a47e19Fdwk-M9t7hsIjna6qtdIG0KTW-TW9aHoScGkHdIR1WH5OikAtl929IX9MNOeofkxsQmbxyRH7_ClXpwpYuKenClHlzpoqYAV-rgSvMttXDFWcMLinClFq5vqAErdWCly5JasFILVuqB9S6ZnY6mw3Fgu4IERRzFTZDJPA-LfhgqGSoRpipnUsqyyBLwLVRc5qUapHKQqDTtC_hMRBLG52WiEhGDsc7ukYNqWakHhBYZXCQV_VDGeQz-WxZJXcueJhL0bpZ1yWsnCL4y5C9cO81JxJ3cuJYbdnNlXRI7YfH2OeEYS5oCYnZTAJ98wDUW-UqWXfJy37TdDbzhXfLMYYCDGsC9PVGp5abm6KixKAuvHpEiOWOUpl1y34Cn_Ulg8jMWxw__OPcRudk-hY_JQbPeqCdglDf5Uw34nw2K8YU |
link.rule.ids | 315,783,787,27938,27939 |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exercise-induced+improvement+in+endothelial+dysfunction+is+not+mediated+by+changes+in+CV+risk+factors%3A+pooled+analysis+of+diverse+patient+populations&rft.jtitle=American+journal+of+physiology.+Heart+and+circulatory+physiology&rft.au=Green%2C+Daniel+J&rft.au=Walsh%2C+Jennifer+H&rft.au=Maiorana%2C+Andrew&rft.au=Best%2C+Matthew+J&rft.date=2003-12-01&rft.issn=0363-6135&rft.volume=285&rft.issue=6&rft.spage=H2679&rft.epage=H2687&rft_id=info:doi/10.1152%2Fajpheart.00519.2003&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0363-6135&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0363-6135&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0363-6135&client=summon |