Exercise-induced improvement in endothelial dysfunction is not mediated by changes in CV risk factors: pooled analysis of diverse patient populations

1 School of Human Movement and Exercise Science, The University of Western Australia; and 2 Department of Cardiology and 3 Cardiac Transplant Unit, Royal Perth Hospital, Western Australia, West Australian Institute for Medical Research, Crawley, Western Australia 6009 Submitted 16 June 2003 ; accept...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of physiology. Heart and circulatory physiology Vol. 285; no. 6; pp. H2679 - H2687
Main Authors Green, Daniel J, Walsh, Jennifer H, Maiorana, Andrew, Best, Matthew J, Taylor, Roger R, O'Driscoll, J. Gerard
Format Journal Article
LanguageEnglish
Published United States 01.12.2003
Subjects
Online AccessGet full text

Cover

Loading…
Abstract 1 School of Human Movement and Exercise Science, The University of Western Australia; and 2 Department of Cardiology and 3 Cardiac Transplant Unit, Royal Perth Hospital, Western Australia, West Australian Institute for Medical Research, Crawley, Western Australia 6009 Submitted 16 June 2003 ; accepted in final form 18 August 2003 We have pooled data from a series of our exercise training studies undertaken in groups with a broad range of vascular (dys) function to the examine the hypothesis that exercise-induced improvements in the conduit and/or resistance vessel function are related to improvements in risk factors for cardiovascular (CV) disease. Endothelium-dependent and -independent conduit vessel function were assessed by using wall tracking of high-resolution ultrasound images of the brachial artery response to flow-mediated dilation (FMD) and glyceryl trinitrate. Resistance vessel function was assessed using intrabrachial administration of acetylcholine (ACh), sodium nitroprusside, and N G -monomethyl- L -arginine. Randomized cross-over studies of 8-wk exercise training were undertaken in untreated hypercholesterolemic ( n = 11), treated hypercholesterolemic ( n = 11), coronary artery disease ( n = 10), chronic heart failure ( n = 12), Type 2 diabetic ( n = 15), and healthy control subjects ( n = 16). Exercise training did not significantly alter plasma lipids, blood pressure, blood glucose, waist-to-hip ratio, or body mass index values, despite significant improvement in both FMD and ACh responses. There were no correlations between changes in any risk factor variables and indexes of either resistance or conduit vessel function. We conclude that, in these subjects with antecedent vascular dysfunction, the beneficial effects of relatively short-term exercise training on vascular function are not solely mediated by the effects of exercise on CV risk factors. acetylcholine; flow-mediated dilation; resistance vessel; conduit artery; cardiovascular Address for reprint requests and other correspondence: D. Green, School of Human Movement and Exercise Science, The Univ. of Western Australia, Crawley, Western Australia 6009.
AbstractList We have pooled data from a series of our exercise training studies undertaken in groups with a broad range of vascular (dys) function to the examine the hypothesis that exercise-induced improvements in the conduit and/or resistance vessel function are related to improvements in risk factors for cardiovascular (CV) disease. Endothelium-dependent and - independent conduit vessel function were assessed by using wall tracking of high-resolution ultrasound images of the brachial artery response to flow-mediated dilation (FMD) and glyceryl trinitrate. Resistance vessel function was assessed using intrabrachial administration of acetylcholine (ACh), sodium nitroprusside, and N super(G)-monomethyl-L-arginine. Randomized cross-over studies of 8-wk exercise training were undertaken in untreated hypercholesterolemic (n = 11), treated hypercholesterolemic (n = 11), coronary artery disease (n = 10), chronic heart failure (n = 12), Type 2 diabetic (n = 15), and healthy control subjects (n = 16). Exercise training did not significantly alter plasma lipids, blood pressure, blood glucose, waist-to-hip ratio, or body mass index values, despite significant improvement in both FMD and ACh responses. There were no correlations between changes in any risk factor variables and indexes of either resistance or conduit vessel function. We conclude that, in these subjects with antecedent vascular dysfunction, the beneficial effects of relatively short-term exercise training on vascular function are not solely mediated by the effects of exercise on CV risk factors.
We have pooled data from a series of our exercise training studies undertaken in groups with a broad range of vascular (dys) function to the examine the hypothesis that exercise-induced improvements in the conduit and/or resistance vessel function are related to improvements in risk factors for cardiovascular (CV) disease. Endothelium-dependent and -independent conduit vessel function were assessed by using wall tracking of high-resolution ultrasound images of the brachial artery response to flow-mediated dilation (FMD) and glyceryl trinitrate. Resistance vessel function was assessed using intrabrachial administration of acetylcholine (ACh), sodium nitroprusside, and NG-monomethyl-l-arginine. Randomized cross-over studies of 8-wk exercise training were undertaken in untreated hypercholesterolemic (n = 11), treated hypercholesterolemic (n = 11), coronary artery disease (n = 10), chronic heart failure (n = 12), Type 2 diabetic (n = 15), and healthy control subjects (n = 16). Exercise training did not significantly alter plasma lipids, blood pressure, blood glucose, waist-to-hip ratio, or body mass index values, despite significant improvement in both FMD and ACh responses. There were no correlations between changes in any risk factor variables and indexes of either resistance or conduit vessel function. We conclude that, in these subjects with antecedent vascular dysfunction, the beneficial effects of relatively short-term exercise training on vascular function are not solely mediated by the effects of exercise on CV risk factors.
We have pooled data from a series of our exercise training studies undertaken in groups with a broad range of vascular (dys) function to the examine the hypothesis that exercise-induced improvements in the conduit and/or resistance vessel function are related to improvements in risk factors for cardiovascular (CV) disease. Endothelium-dependent and -independent conduit vessel function were assessed by using wall tracking of high-resolution ultrasound images of the brachial artery response to flow-mediated dilation (FMD) and glyceryl trinitrate. Resistance vessel function was assessed using intrabrachial administration of acetylcholine (ACh), sodium nitroprusside, and N G -monomethyl-l-arginine. Randomized cross-over studies of 8-wk exercise training were undertaken in untreated hypercholesterolemic ( n = 11), treated hypercholesterolemic ( n = 11), coronary artery disease ( n = 10), chronic heart failure ( n = 12), Type 2 diabetic ( n = 15), and healthy control subjects ( n = 16). Exercise training did not significantly alter plasma lipids, blood pressure, blood glucose, waist-to-hip ratio, or body mass index values, despite significant improvement in both FMD and ACh responses. There were no correlations between changes in any risk factor variables and indexes of either resistance or conduit vessel function. We conclude that, in these subjects with antecedent vascular dysfunction, the beneficial effects of relatively short-term exercise training on vascular function are not solely mediated by the effects of exercise on CV risk factors.
1 School of Human Movement and Exercise Science, The University of Western Australia; and 2 Department of Cardiology and 3 Cardiac Transplant Unit, Royal Perth Hospital, Western Australia, West Australian Institute for Medical Research, Crawley, Western Australia 6009 Submitted 16 June 2003 ; accepted in final form 18 August 2003 We have pooled data from a series of our exercise training studies undertaken in groups with a broad range of vascular (dys) function to the examine the hypothesis that exercise-induced improvements in the conduit and/or resistance vessel function are related to improvements in risk factors for cardiovascular (CV) disease. Endothelium-dependent and -independent conduit vessel function were assessed by using wall tracking of high-resolution ultrasound images of the brachial artery response to flow-mediated dilation (FMD) and glyceryl trinitrate. Resistance vessel function was assessed using intrabrachial administration of acetylcholine (ACh), sodium nitroprusside, and N G -monomethyl- L -arginine. Randomized cross-over studies of 8-wk exercise training were undertaken in untreated hypercholesterolemic ( n = 11), treated hypercholesterolemic ( n = 11), coronary artery disease ( n = 10), chronic heart failure ( n = 12), Type 2 diabetic ( n = 15), and healthy control subjects ( n = 16). Exercise training did not significantly alter plasma lipids, blood pressure, blood glucose, waist-to-hip ratio, or body mass index values, despite significant improvement in both FMD and ACh responses. There were no correlations between changes in any risk factor variables and indexes of either resistance or conduit vessel function. We conclude that, in these subjects with antecedent vascular dysfunction, the beneficial effects of relatively short-term exercise training on vascular function are not solely mediated by the effects of exercise on CV risk factors. acetylcholine; flow-mediated dilation; resistance vessel; conduit artery; cardiovascular Address for reprint requests and other correspondence: D. Green, School of Human Movement and Exercise Science, The Univ. of Western Australia, Crawley, Western Australia 6009.
Author Green, Daniel J
Maiorana, Andrew
Taylor, Roger R
O'Driscoll, J. Gerard
Walsh, Jennifer H
Best, Matthew J
Author_xml – sequence: 1
  fullname: Green, Daniel J
– sequence: 2
  fullname: Walsh, Jennifer H
– sequence: 3
  fullname: Maiorana, Andrew
– sequence: 4
  fullname: Best, Matthew J
– sequence: 5
  fullname: Taylor, Roger R
– sequence: 6
  fullname: O'Driscoll, J. Gerard
BackLink https://www.ncbi.nlm.nih.gov/pubmed/12933344$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAURi1URKeFJ0BCXrHL1D9JPIEVGrUUqRKbwtZy4puJi2MH22k7D8L74jADZYNYeXHP-a58vzN04rwDhF5Tsqa0YhfqbhpAhbQmpKLNmhHCn6FVnrCCVrw5QSvCa17UlFen6CzGO5JBUfMX6JSyhnNeliv04_IRQmciFMbpuQONzTgFfw8juISNw-C0TwNYoyzW-9jPrkvGO2widj7hEbRRKWvtHneDcjuIi7X9ioOJ33CvuuRDfIcn722mlFN2H7Pre6zNPYQIeFLJLMsmP81WLeHxJXreKxvh1fE9R1-uLm-318XN54-fth9uiq5kZSo2um1JRwkBTUARAS3XWvfdpippDWXf9lALXVcgBFV5ppjOfNtXUKmSCc7P0dtDbv7y9xlikqOJHVirHPg5SkF5LZgQ_wVpwzhnG5JBfgC74GMM0MspmFGFvaRELrXJ37XJX7XJpbZsvTnGz22-6JNz7CkDFwdgMLvhwQSQ05Dv6K3f7Z8S2aaStbxmtWiy8f7fxtVs7S08pj_qX6acdM9_AqH7wus
CitedBy_id crossref_primary_10_1152_physrev_00014_2016
crossref_primary_10_1249_01_mss_0000227540_58916_0e
crossref_primary_10_1007_s00421_013_2626_7
crossref_primary_10_1016_j_diabres_2007_09_020
crossref_primary_10_1042_CS20050207
crossref_primary_10_1016_j_ecl_2006_06_006
crossref_primary_10_1155_2014_230791
crossref_primary_10_1113_jphysiol_2007_145722
crossref_primary_10_1007_s40279_013_0085_2
crossref_primary_10_1016_j_jacc_2004_09_035
crossref_primary_10_1152_japplphysiol_00292_2020
crossref_primary_10_1542_peds_2015_0616
crossref_primary_10_1016_j_mvr_2009_07_003
crossref_primary_10_1093_bja_aev332
crossref_primary_10_1249_MSS_0b013e31829ba9a1
crossref_primary_10_1253_circj_CJ_10_0813
crossref_primary_10_3132_dvdr_2007_026
crossref_primary_10_1002_pbc_24565
crossref_primary_10_1139_apnm_2015_0637
crossref_primary_10_3132_dvdr_2007_025
crossref_primary_10_1016_j_jstrokecerebrovasdis_2018_05_041
crossref_primary_10_1007_s42978_023_00270_9
crossref_primary_10_1161_CIR_0000000000000559
crossref_primary_10_1152_ajpheart_00719_2020
crossref_primary_10_1371_journal_pone_0287685
crossref_primary_10_7570_kjo_2011_20_3_129
crossref_primary_10_1089_jwh_2009_1708
crossref_primary_10_1097_00008483_200405000_00001
crossref_primary_10_1152_japplphysiol_00109_2004
crossref_primary_10_1152_japplphysiol_00260_2020
crossref_primary_10_1097_HJR_0b013e3283002733
crossref_primary_10_1113_expphysiol_2013_073353
crossref_primary_10_1152_ajpheart_00915_2005
crossref_primary_10_3390_ijerph16050751
crossref_primary_10_1042_CS20130186
crossref_primary_10_1152_japplphysiol_00354_2014
crossref_primary_10_1152_japplphysiol_01047_2004
crossref_primary_10_2165_00007256_200434120_00001
crossref_primary_10_1097_JCN_0b013e318239f419
crossref_primary_10_1016_j_ijcard_2005_05_052
crossref_primary_10_1016_j_pcad_2018_12_011
crossref_primary_10_1016_j_amepre_2004_09_006
crossref_primary_10_1113_EP085406
crossref_primary_10_1161_JAHA_113_000702
crossref_primary_10_1016_j_metabol_2009_06_035
crossref_primary_10_1111_j_1751_7133_2011_00274_x
crossref_primary_10_1016_j_jpeds_2004_12_046
crossref_primary_10_1002_jcu_20229
crossref_primary_10_1177_00033197211050446
crossref_primary_10_1152_physiol_00019_2013
crossref_primary_10_3345_cep_2020_00997
crossref_primary_10_1007_s11357_012_9402_1
crossref_primary_10_1161_HYPERTENSIONAHA_114_04926
crossref_primary_10_1186_s13098_018_0316_7
crossref_primary_10_1007_s00125_008_0996_x
crossref_primary_10_1186_s13063_022_06100_7
crossref_primary_10_1152_ajpheart_00128_2014
crossref_primary_10_1080_10641963_2018_1506468
crossref_primary_10_1093_rheumatology_ket283
crossref_primary_10_1253_circj_69_1105
crossref_primary_10_1007_s00421_014_3006_7
crossref_primary_10_1519_JSC_0b013e3181d32ffc
crossref_primary_10_1152_japplphysiol_01028_2007
crossref_primary_10_1161_CIRCULATIONAHA_108_791988
crossref_primary_10_1007_s00392_006_1106_z
crossref_primary_10_1152_japplphysiol_00004_2021
crossref_primary_10_1007_s12170_012_0241_5
crossref_primary_10_1038_sj_sc_3101940
crossref_primary_10_1113_jphysiol_2009_179432
crossref_primary_10_3390_ijerph192315537
crossref_primary_10_1016_j_biopha_2022_114198
crossref_primary_10_1113_jphysiol_2004_068197
crossref_primary_10_1152_japplphysiol_00251_2005
crossref_primary_10_3390_nu13010270
crossref_primary_10_1007_s00421_009_1260_x
crossref_primary_10_1177_1741826711415679
crossref_primary_10_1007_s00125_006_0361_x
crossref_primary_10_1111_j_1742_1241_2005_00536_x
crossref_primary_10_1016_j_atherosclerosis_2005_01_006
crossref_primary_10_1097_01_mco_0000247473_49284_e3
crossref_primary_10_1111_j_1463_1326_2008_00863_x
crossref_primary_10_1186_s12872_015_0151_9
crossref_primary_10_15857_ksep_2010_19_2_165
crossref_primary_10_47102_annals_acadmedsg_V37N4p286
crossref_primary_10_1007_s41969_021_00142_z
crossref_primary_10_20945_2359_4292_2023_0040
crossref_primary_10_1007_s11936_016_0465_7
crossref_primary_10_54393_pjhs_v1i2_58
crossref_primary_10_1016_j_amjcard_2008_05_020
crossref_primary_10_1016_j_scispo_2008_10_003
crossref_primary_10_1161_CIRCULATIONAHA_120_050281
crossref_primary_10_1007_s40279_014_0173_y
crossref_primary_10_1161_HYPERTENSIONAHA_109_146282
crossref_primary_10_3390_ijerph17145194
crossref_primary_10_1123_japa_2019_0103
crossref_primary_10_1038_bjc_2015_479
crossref_primary_10_1042_CS20100520
crossref_primary_10_1253_circj_72_897
crossref_primary_10_1007_s40279_019_01055_3
crossref_primary_10_1007_s40140_021_00501_1
crossref_primary_10_1016_j_ejvs_2007_08_022
crossref_primary_10_1152_ajpheart_00306_2014
crossref_primary_10_1152_japplphysiol_00450_2013
crossref_primary_10_1016_j_jpeds_2004_08_004
crossref_primary_10_1007_s00210_023_02775_0
crossref_primary_10_1152_ajpheart_00360_2015
crossref_primary_10_1016_j_atherosclerosis_2012_07_035
Cites_doi 10.1172/JCI119751
10.1161/01.CIR.98.4.369
10.1152/ajpheart.2000.279.4.H1999
10.1161/01.HYP.25.5.918
10.1172/JCI114688
10.1016/S0735-1097(96)00526-8
10.1152/jappl.1990.69.5.1804
10.1161/01.CIR.101.16.1895
10.1161/01.CIR.95.5.1126
10.1016/S0735-1097(01)01439-5
10.1161/01.RES.74.2.349
10.1161/01.CIR.97.12.1129
10.1016/S0735-1097(96)00393-2
10.1152/ajpheart.1996.270.6.H2008
10.1016/S0021-9150(99)00189-6
10.1056/NEJMoa011858
10.1161/01.CIR.0000074244.82874.A0
10.1007/BF00429099
10.1152/ajpheart.1999.276.4.H1346
10.1056/NEJM200002173420702
10.1152/japplphysiol.00012.2003
10.1016/0140-6736(92)93147-F
10.1016/S0735-1097(99)00036-4
10.1152/ajpheart.1988.255.3.H446
10.1161/01.CIR.0000025404.78001.D8
10.1161/01.CIR.78.3.506
10.1161/01.CIR.81.3.772
10.1172/JCI116183
10.1161/01.HYP.33.1.591
10.1161/01.CIR.0000075928.54461.33
10.1016/S0735-1097(00)01108-6
10.1161/01.CIR.102.9.975
10.1161/01.CIR.98.24.2709
10.1152/jappl.2001.91.2.929
10.1016/S0168-8227(01)00368-0
10.1113/jphysiol.1995.sp020964
10.1152/ajpheart.00049.2002
10.1172/JCI119580
10.1097/00005768-200112000-00008
10.1152/jappl.1997.82.5.1488
10.1161/01.CIR.0000028581.07992.56
10.1016/0735-1097(94)90141-4
10.1152/ajpheart.1997.272.3.H1070
10.1152/jappl.1997.83.6.1785
10.1016/S0195-668X(03)00384-1
10.1152/jappl.1994.76.5.2241
10.1161/01.CIR.101.9.948
10.1016/S0735-1097(01)01746-6
10.1161/01.CIR.0000080893.55729.28
10.1056/NEJM198603063141003
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7TS
7X8
DOI 10.1152/ajpheart.00519.2003
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Physical Education Index
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Physical Education Index
MEDLINE - Academic
DatabaseTitleList Physical Education Index
MEDLINE
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1522-1539
EndPage H2687
ExternalDocumentID 10_1152_ajpheart_00519_2003
12933344
ajpheart_285_6_H2679
Genre Clinical Trial
Randomized Controlled Trial
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
02
23M
2WC
39C
53G
5GY
5VS
8M5
ABFLS
ABPTK
ACIWK
ACPRK
ADACO
ADBBV
AENEX
AFFNX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BKOMP
C1A
DIK
DL
E3Z
EBS
EJD
F5P
GX1
H13
KQ8
O0-
OK1
P2P
PQEST
PQQKQ
RAP
RHF
RHI
RPL
WH7
WOQ
---
3O-
4.4
6J9
AAFWJ
ABJNI
ACBEA
BKKCC
BTFSW
CGR
CUY
CVF
ECM
EIF
EMOBN
ITBOX
NPM
RPRKH
TR2
UKR
W8F
XSW
YSK
YYP
~02
AAYXX
CITATION
7TS
7X8
ID FETCH-LOGICAL-c424t-8dbb0c100ed0ea07eb3dddfc85416e4fbfe67d65e771ab3da2db0cbf5e5a42733
ISSN 0363-6135
IngestDate Fri Oct 25 01:36:10 EDT 2024
Fri Oct 25 05:06:53 EDT 2024
Fri Aug 23 00:23:31 EDT 2024
Sat Sep 28 07:36:46 EDT 2024
Tue Jan 05 17:57:04 EST 2021
Mon May 06 11:44:23 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c424t-8dbb0c100ed0ea07eb3dddfc85416e4fbfe67d65e771ab3da2db0cbf5e5a42733
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-News-3
PMID 12933344
PQID 19233280
PQPubID 23462
ParticipantIDs proquest_miscellaneous_19233280
highwire_physiology_ajpheart_285_6_H2679
proquest_miscellaneous_71367277
pubmed_primary_12933344
crossref_primary_10_1152_ajpheart_00519_2003
PublicationCentury 2000
PublicationDate 2003-12-01
PublicationDateYYYYMMDD 2003-12-01
PublicationDate_xml – month: 12
  year: 2003
  text: 2003-12-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle American journal of physiology. Heart and circulatory physiology
PublicationTitleAlternate Am J Physiol Heart Circ Physiol
PublicationYear 2003
References REF9
REF7
REF8
REF5
REF6
REF3
REF4
REF40
REF44
REF43
REF42
REF41
REF48
REF47
REF46
REF45
REF49
REF33
REF32
REF31
REF30
REF37
REF36
REF35
REF34
REF1
REF2
REF39
REF38
REF22
REF21
REF20
REF26
REF25
REF24
REF23
REF29
REF28
REF27
REF51
REF50
REF11
REF10
REF54
REF53
REF52
REF15
REF14
REF13
REF12
REF19
REF18
REF17
REF16
References_xml – ident: REF21
– ident: REF18
  doi: 10.1172/JCI119751
– ident: REF35
  doi: 10.1161/01.CIR.98.4.369
– ident: REF31
  doi: 10.1152/ajpheart.2000.279.4.H1999
– ident: REF2
  doi: 10.1161/01.HYP.25.5.918
– ident: REF7
  doi: 10.1172/JCI114688
– ident: REF8
  doi: 10.1016/S0735-1097(96)00526-8
– ident: REF12
– ident: REF34
  doi: 10.1152/jappl.1990.69.5.1804
– ident: REF44
  doi: 10.1161/01.CIR.101.16.1895
– ident: REF42
  doi: 10.1161/01.CIR.95.5.1126
– ident: REF30
  doi: 10.1016/S0735-1097(01)01439-5
– ident: REF45
  doi: 10.1161/01.RES.74.2.349
– ident: REF28
  doi: 10.1161/01.CIR.97.12.1129
– ident: REF39
  doi: 10.1016/S0735-1097(96)00393-2
– ident: REF25
  doi: 10.1152/ajpheart.1996.270.6.H2008
– ident: REF20
  doi: 10.1016/S0021-9150(99)00189-6
– ident: REF38
  doi: 10.1056/NEJMoa011858
– ident: REF9
  doi: 10.1161/01.CIR.0000074244.82874.A0
– ident: REF36
  doi: 10.1007/BF00429099
– ident: REF40
  doi: 10.1152/ajpheart.1999.276.4.H1346
– ident: REF17
  doi: 10.1056/NEJM200002173420702
– ident: REF52
  doi: 10.1152/japplphysiol.00012.2003
– ident: REF4
  doi: 10.1016/0140-6736(92)93147-F
– ident: REF5
  doi: 10.1016/S0735-1097(99)00036-4
– ident: REF37
  doi: 10.1152/ajpheart.1988.255.3.H446
– ident: REF15
  doi: 10.1161/01.CIR.0000025404.78001.D8
– ident: REF47
  doi: 10.1161/01.CIR.78.3.506
– ident: REF50
  doi: 10.1161/01.CIR.81.3.772
– ident: REF11
  doi: 10.1172/JCI116183
– ident: REF19
  doi: 10.1161/01.HYP.33.1.591
– ident: REF27
  doi: 10.1161/01.CIR.0000075928.54461.33
– ident: REF29
  doi: 10.1016/S0735-1097(00)01108-6
– ident: REF46
  doi: 10.1161/01.CIR.102.9.975
– ident: REF26
– ident: REF49
– ident: REF16
  doi: 10.1161/01.CIR.98.24.2709
– ident: REF54
  doi: 10.1152/jappl.2001.91.2.929
– ident: REF33
  doi: 10.1016/S0168-8227(01)00368-0
– ident: REF10
  doi: 10.1113/jphysiol.1995.sp020964
– ident: REF14
  doi: 10.1152/ajpheart.00049.2002
– ident: REF41
  doi: 10.1172/JCI119580
– ident: REF32
  doi: 10.1097/00005768-200112000-00008
– ident: REF23
  doi: 10.1152/jappl.1997.82.5.1488
– ident: REF51
  doi: 10.1161/01.CIR.0000028581.07992.56
– ident: REF3
  doi: 10.1016/0735-1097(94)90141-4
– ident: REF24
  doi: 10.1152/ajpheart.1997.272.3.H1070
– ident: REF22
  doi: 10.1152/jappl.1997.83.6.1785
– ident: REF53
  doi: 10.1016/S0195-668X(03)00384-1
– ident: REF48
  doi: 10.1152/jappl.1994.76.5.2241
– ident: REF1
  doi: 10.1161/01.CIR.101.9.948
– ident: REF6
  doi: 10.1016/S0735-1097(01)01746-6
– ident: REF13
  doi: 10.1161/01.CIR.0000080893.55729.28
– ident: REF43
  doi: 10.1056/NEJM198603063141003
SSID ssj0005763
Score 2.176799
Snippet 1 School of Human Movement and Exercise Science, The University of Western Australia; and 2 Department of Cardiology and 3 Cardiac Transplant Unit, Royal Perth...
We have pooled data from a series of our exercise training studies undertaken in groups with a broad range of vascular (dys) function to the examine the...
SourceID proquest
crossref
pubmed
highwire
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage H2679
SubjectTerms Acetylcholine
Coronary Artery Disease - epidemiology
Coronary Artery Disease - physiopathology
Cross-Over Studies
Diabetes Mellitus, Type 2 - epidemiology
Diabetes Mellitus, Type 2 - physiopathology
Endothelium, Vascular - physiopathology
Exercise
Heart Failure - epidemiology
Heart Failure - physiopathology
Humans
Hypercholesterolemia - epidemiology
Hypercholesterolemia - physiopathology
Middle Aged
Risk Factors
Vascular Resistance
Vasodilator Agents
Title Exercise-induced improvement in endothelial dysfunction is not mediated by changes in CV risk factors: pooled analysis of diverse patient populations
URI http://ajpheart.physiology.org/cgi/content/abstract/285/6/H2679
https://www.ncbi.nlm.nih.gov/pubmed/12933344
https://search.proquest.com/docview/19233280
https://search.proquest.com/docview/71367277
Volume 285
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKIiEuCHZ5lKcPCCFBummcNBG3VdVVBdsFpHbpzXJiRxRBWjXpofwP_i8zfjRe6IrHJWpTO2k7XzwPz3xDyHMGSj8pchlEIgcHBXygIOuXIiiESMJSMjZgWCg8OR-MZ_HbeTLvdHyG4E2T94rve-tK_keqcA7kilWy_yDZ3UXhBLwG-cIRJAzHv5LxyPZLCsCx3uBG_kKHCHTET3OBVBILrL5iVFxua9RhJrexflUtG1M10hgT1BQA6-TY4YVJOLeteDBmgI24FJK6tgwmUid0KEfMCkNcJ7DaN3h3O0IeRYWOpuhwfg_LoNYmyb1YrDEnVm_6tyMu5Qe1NfHtbtYn-Jc_-3k6bbnFRCD_gCl68xI3dVVSbSuVdLdzezUX_GBeIokr-mLg_RrGE7egR6YJkEWuvzyPo4FpXWN1Pbw36v53RZIgMa34ssK-4k1PW7qaPbbVmy5X4Pw9P52dnfHpaD69Rq5HsOJhbuG7jy1tPTh1zG2a47e19Fdwk-M9t7hsIjna6qtdIG0KTW-TW9aHoScGkHdIR1WH5OikAtl929IX9MNOeofkxsQmbxyRH7_ClXpwpYuKenClHlzpoqYAV-rgSvMttXDFWcMLinClFq5vqAErdWCly5JasFILVuqB9S6ZnY6mw3Fgu4IERRzFTZDJPA-LfhgqGSoRpipnUsqyyBLwLVRc5qUapHKQqDTtC_hMRBLG52WiEhGDsc7ukYNqWakHhBYZXCQV_VDGeQz-WxZJXcueJhL0bpZ1yWsnCL4y5C9cO81JxJ3cuJYbdnNlXRI7YfH2OeEYS5oCYnZTAJ98wDUW-UqWXfJy37TdDbzhXfLMYYCDGsC9PVGp5abm6KixKAuvHpEiOWOUpl1y34Cn_Ulg8jMWxw__OPcRudk-hY_JQbPeqCdglDf5Uw34nw2K8YU
link.rule.ids 315,783,787,27938,27939
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exercise-induced+improvement+in+endothelial+dysfunction+is+not+mediated+by+changes+in+CV+risk+factors%3A+pooled+analysis+of+diverse+patient+populations&rft.jtitle=American+journal+of+physiology.+Heart+and+circulatory+physiology&rft.au=Green%2C+Daniel+J&rft.au=Walsh%2C+Jennifer+H&rft.au=Maiorana%2C+Andrew&rft.au=Best%2C+Matthew+J&rft.date=2003-12-01&rft.issn=0363-6135&rft.volume=285&rft.issue=6&rft.spage=H2679&rft.epage=H2687&rft_id=info:doi/10.1152%2Fajpheart.00519.2003&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0363-6135&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0363-6135&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0363-6135&client=summon