Generalized random shapelet forests
Shapelets are discriminative subsequences of time series, usually embedded in shapelet-based decision trees. The enumeration of time series shapelets is, however, computationally costly, which in addition to the inherent difficulty of the decision tree learning algorithm to effectively handle high-d...
Saved in:
Published in | Data mining and knowledge discovery Vol. 30; no. 5; pp. 1053 - 1085 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.09.2016
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Shapelets are discriminative subsequences of time series, usually embedded in shapelet-based decision trees. The enumeration of time series shapelets is, however, computationally costly, which in addition to the inherent difficulty of the decision tree learning algorithm to effectively handle high-dimensional data, severely limits the applicability of shapelet-based decision tree learning from large (multivariate) time series databases. This paper introduces a novel tree-based ensemble method for univariate and multivariate time series classification using shapelets, called the generalized random shapelet forest algorithm. The algorithm generates a set of shapelet-based decision trees, where both the choice of instances used for building a tree and the choice of shapelets are randomized. For univariate time series, it is demonstrated through an extensive empirical investigation that the proposed algorithm yields predictive performance comparable to the current state-of-the-art and significantly outperforms several alternative algorithms, while being at least an order of magnitude faster. Similarly for multivariate time series, it is shown that the algorithm is significantly less computationally costly and more accurate than the current state-of-the-art. |
---|---|
AbstractList | Shapelets are discriminative subsequences of time series, usually embedded in shapelet-based decision trees. The enumeration of time series shapelets is, however, computationally costly, which in addition to the inherent difficulty of the decision tree learning algorithm to effectively handle high-dimensional data, severely limits the applicability of shapelet-based decision tree learning from large (multivariate) time series databases. This paper introduces a novel tree-based ensemble method for univariate and multivariate time series classification using shapelets, called the generalized random shapelet forest algorithm. The algorithm generates a set of shapelet-based decision trees, where both the choice of instances used for building a tree and the choice of shapelets are randomized. For univariate time series, it is demonstrated through an extensive empirical investigation that the proposed algorithm yields predictive performance comparable to the current state-of-the-art and significantly outperforms several alternative algorithms, while being at least an order of magnitude faster. Similarly for multivariate time series, it is shown that the algorithm is significantly less computationally costly and more accurate than the current state-of-the-art. Issue Title: ECML PKDD 2016 Journal Track Special Issue Shapelets are discriminative subsequences of time series, usually embedded in shapelet-based decision trees. The enumeration of time series shapelets is, however, computationally costly, which in addition to the inherent difficulty of the decision tree learning algorithm to effectively handle high-dimensional data, severely limits the applicability of shapelet-based decision tree learning from large (multivariate) time series databases. This paper introduces a novel tree-based ensemble method for univariate and multivariate time series classification using shapelets, called the generalized random shapelet forest algorithm. The algorithm generates a set of shapelet-based decision trees, where both the choice of instances used for building a tree and the choice of shapelets are randomized. For univariate time series, it is demonstrated through an extensive empirical investigation that the proposed algorithm yields predictive performance comparable to the current state-of-the-art and significantly outperforms several alternative algorithms, while being at least an order of magnitude faster. Similarly for multivariate time series, it is shown that the algorithm is significantly less computationally costly and more accurate than the current state-of-the-art. |
Author | Boström, Henrik Karlsson, Isak Papapetrou, Panagiotis |
Author_xml | – sequence: 1 givenname: Isak orcidid: 0000-0002-3056-6801 surname: Karlsson fullname: Karlsson, Isak email: isak-kar@dsv.su.se organization: Stockholm University – sequence: 2 givenname: Panagiotis surname: Papapetrou fullname: Papapetrou, Panagiotis organization: Stockholm University – sequence: 3 givenname: Henrik surname: Boström fullname: Boström, Henrik organization: Stockholm University |
BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-221556$$DView record from Swedish Publication Index https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-135052$$DView record from Swedish Publication Index |
BookMark | eNqFkUtLAzEUhYNUsK3-AHeFblw4mptMHl2W-gTBjYq7kM7c6NTppCYzSP31plRBBHV17-I7h3M4A9JrfIOEHAI9AUrVaQQqQWcUZEZzxbP1DumDSI8S8rGXfq7zTGige2QQ44JSKhinfTK-xAaDrat3LEfBNqVfjuKzXWGN7cj5gLGN-2TX2TriwecdkvuL87vZVXZze3k9m95kRc7yNtNWWF3OnZIIyJxGOaFSWOVsKZhmtlAWnZoDdcxxIQB4yR3kHLWclzIHPiTHW9_4hqtublahWtqwNt5W5qx6mBofnkzsDHCxST8k2f_4S_tsGAMhZOKPtvwq-NcuFTPLKhZY17ZB30UDOqXSLJkndPwDXfguNKl8ooAzKmCiEqW2VBF8jAGdKarWtpVv2mCr2gA1m23MdhuTtjGbbcw6KeGH8iv8Xxr2WTexzROGb5l-FX0AT_2iUg |
CitedBy_id | crossref_primary_10_1162_neco_a_01297 crossref_primary_10_1016_j_asoc_2021_108117 crossref_primary_10_1016_j_ins_2023_119009 crossref_primary_10_1093_bioinformatics_bty246 crossref_primary_10_1007_s12539_021_00460_5 crossref_primary_10_1016_j_comnet_2018_11_031 crossref_primary_10_1016_j_is_2025_102536 crossref_primary_10_1007_s00521_023_08988_x crossref_primary_10_1016_j_procs_2018_03_025 crossref_primary_10_1016_j_procs_2019_01_179 crossref_primary_10_1155_2020_1978310 crossref_primary_10_1016_j_patcog_2021_108097 crossref_primary_10_1007_s44196_024_00461_4 crossref_primary_10_1016_j_eswa_2019_04_062 crossref_primary_10_1007_s10618_024_01006_1 crossref_primary_10_1007_s10618_023_00969_x crossref_primary_10_1109_TPAMI_2022_3198411 crossref_primary_10_1186_s12911_018_0717_4 crossref_primary_10_1007_s00500_024_09928_0 crossref_primary_10_1016_j_jksuci_2023_101783 crossref_primary_10_1109_ACCESS_2022_3203523 crossref_primary_10_1007_s10489_024_05672_y crossref_primary_10_1109_ACCESS_2022_3207765 crossref_primary_10_1016_j_neunet_2024_106896 crossref_primary_10_1109_TCDS_2024_3370219 crossref_primary_10_1016_j_patcog_2023_110121 crossref_primary_10_1007_s10618_022_00822_7 crossref_primary_10_1007_s10115_019_01389_4 crossref_primary_10_1007_s10618_020_00679_8 crossref_primary_10_1016_j_patcog_2023_109334 crossref_primary_10_1016_j_patcog_2022_109036 crossref_primary_10_1007_s11063_024_11531_1 crossref_primary_10_1007_s10618_023_00978_w crossref_primary_10_1007_s10115_021_01630_z crossref_primary_10_1016_j_ins_2021_04_053 crossref_primary_10_1016_j_ins_2022_07_178 crossref_primary_10_1155_2021_4214784 crossref_primary_10_1007_s11634_021_00437_8 crossref_primary_10_1016_j_ins_2022_09_009 crossref_primary_10_1016_j_knosys_2024_112015 crossref_primary_10_1016_j_patcog_2017_08_016 crossref_primary_10_1007_s10618_020_00701_z crossref_primary_10_1093_bioinformatics_btaa815 crossref_primary_10_1007_s00521_020_05179_w crossref_primary_10_1109_TETCI_2023_3304948 crossref_primary_10_12677_CSA_2020_101001 crossref_primary_10_1016_j_knosys_2022_109366 crossref_primary_10_3390_app12178685 crossref_primary_10_1007_s10115_023_01835_4 crossref_primary_10_1016_j_jbi_2016_11_006 crossref_primary_10_1109_MSP_2022_3155955 crossref_primary_10_1016_j_ejco_2024_100091 crossref_primary_10_1016_j_ins_2023_01_093 crossref_primary_10_1016_j_oceaneng_2022_113539 crossref_primary_10_1007_s10618_024_01022_1 crossref_primary_10_1007_s10618_020_00727_3 crossref_primary_10_1111_coin_70008 crossref_primary_10_1016_j_eswa_2023_122584 crossref_primary_10_3390_computers8010021 crossref_primary_10_1016_j_engappai_2024_108171 crossref_primary_10_1007_s10618_022_00823_6 crossref_primary_10_1109_ACCESS_2022_3222310 crossref_primary_10_3390_math9233137 crossref_primary_10_1007_s10618_020_00719_3 crossref_primary_10_1016_j_asoc_2024_112431 crossref_primary_10_1109_ACCESS_2024_3464743 crossref_primary_10_1007_s10618_019_00617_3 crossref_primary_10_1016_j_rcim_2024_102839 crossref_primary_10_1007_s00170_023_11768_5 crossref_primary_10_1007_s10115_017_1098_1 crossref_primary_10_1109_TKDE_2023_3335049 crossref_primary_10_1007_s10489_022_03852_2 crossref_primary_10_1016_j_ins_2021_05_024 crossref_primary_10_1080_17477778_2024_2449033 crossref_primary_10_1145_3624480 crossref_primary_10_1007_s10994_023_06502_x crossref_primary_10_1016_j_ins_2024_120478 crossref_primary_10_1016_j_eswa_2024_124155 |
Cites_doi | 10.1145/2623330.2623613 10.1016/j.eswa.2012.05.012 10.1145/2339530.2339579 10.1007/s10618-014-0349-y 10.1145/1557019.1557122 10.1023/A:1010933404324 10.1007/s10618-012-0250-5 10.14778/1454159.1454226 10.1016/j.knosys.2004.10.007 10.1145/967900.968015 10.1023/A:1009778005914 10.1137/1.9781611974010.33 10.1137/1.9781611972832.74 10.1002/j.1538-7305.1948.tb01338.x 10.1109/TASSP.1978.1163055 10.1109/TITB.2008.2003323 10.1145/2020408.2020587 10.1023/A:1022899518027 10.1007/978-3-319-17091-6_8 10.1007/s10618-013-0322-1 10.1016/S0031-3203(96)00142-2 10.1007/s10618-014-0361-2 10.1145/1066157.1066213 10.1145/1143844.1143974 10.1137/1.9781611974010.35 10.1109/TPAMI.2013.72 10.1109/BigData.2014.7004344 10.1145/322063.322075 10.1145/1031171.1031238 10.1109/TKDE.2014.2316504 10.1016/j.ins.2013.02.030 10.1007/s10618-010-0179-5 10.1142/S0218001412510019 10.1007/s10994-008-5093-3 10.1137/1.9781611972818.60 10.1137/1.9781611972832.64 10.1109/34.709601 |
ContentType | Journal Article |
Copyright | The Author(s) 2016 |
Copyright_xml | – notice: The Author(s) 2016 |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U ADTPV AOWAS D8V DG7 |
DOI | 10.1007/s10618-016-0473-y |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic SwePub SwePub Articles SWEPUB Kungliga Tekniska Högskolan SWEPUB Stockholms universitet |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | Computer and Information Systems Abstracts ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics Computer Science |
EISSN | 1573-756X |
EndPage | 1085 |
ExternalDocumentID | oai_DiVA_org_su_135052 oai_DiVA_org_kth_221556 4155813611 10_1007_s10618_016_0473_y |
GroupedDBID | -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 203 29F 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 7WY 8AO 8FE 8FG 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X J-C J0Z J9A JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV LAK LLZTM M0C M0N M2O M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z88 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI Q9U ADTPV AOWAS D8V DG7 |
ID | FETCH-LOGICAL-c424t-8a5a8dbf76e1e2f8e69065a7fad5282ac7aef7b10f2f355113d3f143e86bd6413 |
IEDL.DBID | BENPR |
ISSN | 1384-5810 1573-756X |
IngestDate | Thu Aug 21 07:00:13 EDT 2025 Thu Aug 21 06:56:07 EDT 2025 Mon Jul 21 11:35:39 EDT 2025 Sat Aug 16 04:51:28 EDT 2025 Tue Jul 01 00:40:30 EDT 2025 Thu Apr 24 22:58:25 EDT 2025 Fri Feb 21 02:33:29 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Multivariate time series Ensemble methods Decision trees Time series classification Time series shapelets |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c424t-8a5a8dbf76e1e2f8e69065a7fad5282ac7aef7b10f2f355113d3f143e86bd6413 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3056-6801 |
PQID | 1813205197 |
PQPubID | 43030 |
PageCount | 33 |
ParticipantIDs | swepub_primary_oai_DiVA_org_su_135052 swepub_primary_oai_DiVA_org_kth_221556 proquest_miscellaneous_1835582350 proquest_journals_1813205197 crossref_citationtrail_10_1007_s10618_016_0473_y crossref_primary_10_1007_s10618_016_0473_y springer_journals_10_1007_s10618_016_0473_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-09-01 |
PublicationDateYYYYMMDD | 2016-09-01 |
PublicationDate_xml | – month: 09 year: 2016 text: 2016-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Data mining and knowledge discovery |
PublicationTitleAbbrev | Data Min Knowl Disc |
PublicationYear | 2016 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | DengHRungerGTuvEVladimirMA time series forest for classification and feature extractionInf Sci2013239142153304843010.1016/j.ins.2013.02.0301321.62068 Bagnall A, Lines J (2014) An experimental evaluation of nearest neighbour time series classification. CoRR arXiv:1406.4757 BreimanLFriedmanJStoneCJOlshenRAClassification and regression trees1984Boca RatonCRC Press0541.62042 Mueen A, Keogh E, Young N (2011) Logical-shapelets: an expressive primitive for time series classification. In: Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data mining, ACM, pp 1154–1162 Rakthanmanon T, Keogh E (2013) Fast shapelets: a scalable algorithm for discovering time series shapelets. In: Proceedings of SIAM international conference on data mining, SIAM Sakoe H, Chiba S (1978) Dynamic programming algorithm optimization for spoken word recognition. In: Transactions on ASSP, IEEE, pp 43–49 Rodríguez JJ, Alonso CJ (2004) Interval and dynamic time warping-based decision trees. In: Proceedings of the 2004 ACM Symposium on applied computing, ACM, pp 548–552 RebbapragadaUProtopapasPBrodleyCEAlcockCFinding anomalous periodic time seriesMach Learn200974328131310.1007/s10994-008-5093-3 Patri OP, Sharma AB, Chen H, Jiang G, Panangadan AV, Prasanna VK (2014) Extracting discriminative shapelets from heterogeneous sensor data. In: Proceedings of IEEE international conference on big data, IEEE, pp 1095–1104 QuinlanJRC4.5: programs for machine learning1993AmsterdamElsevier Ye L, Keogh E (2009) Time series shapelets: a new primitive for data mining. In: Proceedings of the 15th ACM SIGKDD international conference on knowledge discovery and data mining, ACM, pp 947–956 Karlsson I, Papapetrou P, Boström H (2015) Forests of randomized shapelet trees. In: Proceedings of statistical learning and data sciences, Springer, pp 126–136 RodríguezJJAlonsoCJMaestroJASupport vector machines of interval-based features for time series classificationKnowl Based Syst200518417117810.1016/j.knosys.2004.10.007 BankóZCorrelation based dynamic time warping of multivariate time seriesExpert Syst Appl20123917128141282310.1016/j.eswa.2012.05.012 Schmidhuber J (2014) Deep learning in neural networks: an overview. arXiv:1404.7828 Batista GE, Wang X, Keogh EJ (2011) A complexity-invariant distance measure for time series. In: Proceedings of SIAM, SIAM international conference on data mining, pp 699–710 FulcherBDJonesNSHighly comparative feature-based time-series classificationIEEE Trans Knowl Data Eng201426123026303710.1109/TKDE.2014.2316504 BoströmHForests of probability estimation treesInt J Pattern Recognit Artif Intell20122602125147297152010.1142/S0218001412510019 HillsJLinesJBaranauskasEMappJBagnallAClassification of time series by shapelet transformationData Min Knowl Discov2014284851881317692610.1007/s10618-013-0322-11298.62098 DemšarJStatistical comparisons of classifiers over multiple data setsJ Mach Learn Res2006713022743601222.68184 Xi X, Keogh E, Shelton C, Wei L, Ratanamahatana CA (2006) Fast time series classification using numerosity reduction. In: Proceedings of the 23rd international conference on machine learning, ACM, pp 1033–1040 YeLKeoghETime series shapelets: a novel technique that allows accurate, interpretable and fast classificationData Min Knowl Discov2011221–2149182276455510.1007/s10618-010-0179-51235.68213 FriedmanJHOn bias, variance, 0/1–loss, and the curse-of-dimensionalityData Min Knowl Discov199711557710.1023/A:1009778005914 Boström H (2011) Concurrent learning of large-scale random forests. In: Proceedings of the Scandinavian conference on artificial intelligence, pp 20–29 Wu Y, Chang EY (2004) Distance-function design and fusion for sequence data. In: Proceedings of ACM international conference on information and knowledge management, ACM, pp 324–333 BreimanLRandom forestsMach Learn2001451532332423610.1023/A:10109334043241007.68152 Cetin MS, Mueen A, Calhoun VD (2015) Shapelet ensemble for multi-dimensional time series. In: Proceedings of SIAM international conference on data mining, SIAM, pp 307–315 HoTKThe random subspace method for constructing decision forestsIEEE Trans Pattern Anal Mach Intell199820883284410.1109/34.709601 ShannonCEA mathematical theory of communicationBell Syst Tech J19482733794232628610.1002/j.1538-7305.1948.tb01338.x1154.94303 Shokoohi-Yekta M, Wang J, Keogh E (2015) On the non-trivial generalization of dynamic time warping to the multi-dimensional case. In: Proceedings of SIAM international conference on data mining, SIAM, pp 289–297 BaydoganMGRungerGLearning a symbolic representation for multivariate time series classificationData Min Knowl Discov2014292400422331246610.1007/s10618-014-0349-y Gordon D, Hendler D, Rokach L (2012) Fast randomized model generation for shapelet-based time series classification. arXiv:1209.5038 JamesGMVariance and bias for general loss functionsMach Learn200351211513510.1023/A:10228995180271027.68067 BreimanLBagging predictorsMach Learn199624212314014259570858.68080 Berndt DJ, Clifford J (1994) Using dynamic time warping to find patterns in time series. In: KDD workshop, knowledge discovery and data mining, pp 359–370 Wistuba M, Grabocka J, Schmidt-Thieme L (2015) Ultra-fast shapelets for time series classification. CoRR arXiv:1503.05018 ValentiniGDietterichTGBias-variance analysis of support vector machines for the development of svm-based ensemble methodsJ Mach Learn Res2004572577522479981222.68323 LinesJBagnallATime series classification with ensembles of elastic distance measuresData Min Knowl Discov2014293565592333431510.1007/s10618-014-0361-2 NanopoulosAAlcockRManolopoulosYFeature-based classification of time-series dataInt J Comput Res2001104961 Grabocka J, Schilling N, Wistuba M, Schmidt-Thieme L (2014) Learning time-series shapelets. In: Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining, ACM, pp 392–401 WangXMueenADingHTrajcevskiGScheuermannPKeoghEExperimental comparison of representation methods and distance measures for time series dataData Min Knowl Discov2013262275309301773910.1007/s10618-012-0250-5 Lines J, Davis LM, Hills J, Bagnall A (2012) A shapelet transform for time series classification. In: Proceedings of the 18th ACM SIGKDD international conference on knowledge discovery and data mining, ACM, pp 289–297 DingHTrajcevskiGScheuermannPWangXKeoghEQuerying and mining of time series data: experimental comparison of representations and distance measuresProc VLDB Endow2008121542155210.14778/1454159.1454226 Keogh E, Zhu Q, Hu B, Y H, Xi X, Wei L, Ratanamahatana CA (2015) The ucr time series classification/clustering homepage. www.cs.ucr.edu/~eamonn/time_series_data Ratanamahatana CA, Keogh E (2004) Everything you know about dynamic time warping is wrong. In: 3rd workshop on mining temporal and sequential data, pp 22–25 CortesCVapnikVSupport-vector networksMach Learn19952032732970831.68098 Chen L, Özsu MT (2005) Robust and fast similarity search for moving object trajectories. In: Proceedings of the ACM SIGMOD international conference on management of data, ACM, pp 491–502 Hu B, Chen Y, Keogh EJ (2013) Time series classification under more realistic assumptions. In: Proceedings of SIAM international conference on data mining, SIAM, pp 578–586 BaydoganMGRungerGTime series representation and similarity based on local autopatternsData Min Knowl Discov20153021343458202 BaydoganMGRungerGTuvEA bag-of-features framework to classify time seriesIEEE Trans Pattern Anal Mach Intell201335112796280210.1109/TPAMI.2013.72 KampourakiAManisGNikouCHeartbeat time series classification with support vector machinesInf Technol Biomed200913451251810.1109/TITB.2008.2003323 MaierDThe complexity of some problems on subsequences and supersequencesJ ACM197825232233648370010.1145/322063.3220750371.68018 BradleyAPThe use of the area under the roc curve in the evaluation of machine learning algorithmsPattern Recognit19973071145115910.1016/S0031-3203(96)00142-2 Chen L, Ng R (2004) On the marriage of lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_p$$\end{document}-norms and edit distance. In: Proceedings of the international conference on very large data bases, ACM, pp 792–803 J Lines (473_CR32) 2014; 29 J Demšar (473_CR18) 2006; 7 L Ye (473_CR54) 2011; 22 GM James (473_CR28) 2003; 51 473_CR53 H Boström (473_CR9) 2012; 26 473_CR50 473_CR52 473_CR51 AP Bradley (473_CR10) 1997; 30 A Kampouraki (473_CR29) 2009; 13 473_CR47 BD Fulcher (473_CR22) 2014; 26 L Breiman (473_CR13) 1984 JJ Rodríguez (473_CR43) 2005; 18 C Cortes (473_CR17) 1995; 20 A Nanopoulos (473_CR36) 2001; 10 TK Ho (473_CR26) 1998; 20 473_CR23 MG Baydogan (473_CR6) 2013; 35 473_CR14 473_CR16 473_CR15 L Breiman (473_CR11) 1996; 24 Z Bankó (473_CR2) 2012; 39 MG Baydogan (473_CR5) 2015; 30 L Breiman (473_CR12) 2001; 45 H Deng (473_CR19) 2013; 239 MG Baydogan (473_CR4) 2014; 29 D Maier (473_CR34) 1978; 25 473_CR31 473_CR33 473_CR30 CE Shannon (473_CR46) 1948; 27 473_CR24 473_CR27 J Hills (473_CR25) 2014; 28 JR Quinlan (473_CR38) 1993 473_CR7 473_CR8 G Valentini (473_CR48) 2004; 5 H Ding (473_CR20) 2008; 1 473_CR42 473_CR1 473_CR45 473_CR44 473_CR3 473_CR40 473_CR39 473_CR35 JH Friedman (473_CR21) 1997; 1 473_CR37 U Rebbapragada (473_CR41) 2009; 74 X Wang (473_CR49) 2013; 26 |
References_xml | – reference: BradleyAPThe use of the area under the roc curve in the evaluation of machine learning algorithmsPattern Recognit19973071145115910.1016/S0031-3203(96)00142-2 – reference: DingHTrajcevskiGScheuermannPWangXKeoghEQuerying and mining of time series data: experimental comparison of representations and distance measuresProc VLDB Endow2008121542155210.14778/1454159.1454226 – reference: QuinlanJRC4.5: programs for machine learning1993AmsterdamElsevier – reference: Chen L, Özsu MT (2005) Robust and fast similarity search for moving object trajectories. In: Proceedings of the ACM SIGMOD international conference on management of data, ACM, pp 491–502 – reference: FriedmanJHOn bias, variance, 0/1–loss, and the curse-of-dimensionalityData Min Knowl Discov199711557710.1023/A:1009778005914 – reference: Rodríguez JJ, Alonso CJ (2004) Interval and dynamic time warping-based decision trees. In: Proceedings of the 2004 ACM Symposium on applied computing, ACM, pp 548–552 – reference: MaierDThe complexity of some problems on subsequences and supersequencesJ ACM197825232233648370010.1145/322063.3220750371.68018 – reference: Schmidhuber J (2014) Deep learning in neural networks: an overview. arXiv:1404.7828 – reference: RebbapragadaUProtopapasPBrodleyCEAlcockCFinding anomalous periodic time seriesMach Learn200974328131310.1007/s10994-008-5093-3 – reference: Xi X, Keogh E, Shelton C, Wei L, Ratanamahatana CA (2006) Fast time series classification using numerosity reduction. In: Proceedings of the 23rd international conference on machine learning, ACM, pp 1033–1040 – reference: DemšarJStatistical comparisons of classifiers over multiple data setsJ Mach Learn Res2006713022743601222.68184 – reference: Wistuba M, Grabocka J, Schmidt-Thieme L (2015) Ultra-fast shapelets for time series classification. CoRR arXiv:1503.05018 – reference: JamesGMVariance and bias for general loss functionsMach Learn200351211513510.1023/A:10228995180271027.68067 – reference: Ye L, Keogh E (2009) Time series shapelets: a new primitive for data mining. In: Proceedings of the 15th ACM SIGKDD international conference on knowledge discovery and data mining, ACM, pp 947–956 – reference: CortesCVapnikVSupport-vector networksMach Learn19952032732970831.68098 – reference: Keogh E, Zhu Q, Hu B, Y H, Xi X, Wei L, Ratanamahatana CA (2015) The ucr time series classification/clustering homepage. www.cs.ucr.edu/~eamonn/time_series_data/ – reference: WangXMueenADingHTrajcevskiGScheuermannPKeoghEExperimental comparison of representation methods and distance measures for time series dataData Min Knowl Discov2013262275309301773910.1007/s10618-012-0250-5 – reference: Ratanamahatana CA, Keogh E (2004) Everything you know about dynamic time warping is wrong. In: 3rd workshop on mining temporal and sequential data, pp 22–25 – reference: RodríguezJJAlonsoCJMaestroJASupport vector machines of interval-based features for time series classificationKnowl Based Syst200518417117810.1016/j.knosys.2004.10.007 – reference: BaydoganMGRungerGTuvEA bag-of-features framework to classify time seriesIEEE Trans Pattern Anal Mach Intell201335112796280210.1109/TPAMI.2013.72 – reference: Hu B, Chen Y, Keogh EJ (2013) Time series classification under more realistic assumptions. In: Proceedings of SIAM international conference on data mining, SIAM, pp 578–586 – reference: Boström H (2011) Concurrent learning of large-scale random forests. In: Proceedings of the Scandinavian conference on artificial intelligence, pp 20–29 – reference: BaydoganMGRungerGLearning a symbolic representation for multivariate time series classificationData Min Knowl Discov2014292400422331246610.1007/s10618-014-0349-y – reference: Karlsson I, Papapetrou P, Boström H (2015) Forests of randomized shapelet trees. In: Proceedings of statistical learning and data sciences, Springer, pp 126–136 – reference: Gordon D, Hendler D, Rokach L (2012) Fast randomized model generation for shapelet-based time series classification. arXiv:1209.5038 – reference: ValentiniGDietterichTGBias-variance analysis of support vector machines for the development of svm-based ensemble methodsJ Mach Learn Res2004572577522479981222.68323 – reference: BreimanLBagging predictorsMach Learn199624212314014259570858.68080 – reference: Lines J, Davis LM, Hills J, Bagnall A (2012) A shapelet transform for time series classification. In: Proceedings of the 18th ACM SIGKDD international conference on knowledge discovery and data mining, ACM, pp 289–297 – reference: BankóZCorrelation based dynamic time warping of multivariate time seriesExpert Syst Appl20123917128141282310.1016/j.eswa.2012.05.012 – reference: Rakthanmanon T, Keogh E (2013) Fast shapelets: a scalable algorithm for discovering time series shapelets. In: Proceedings of SIAM international conference on data mining, SIAM – reference: BoströmHForests of probability estimation treesInt J Pattern Recognit Artif Intell20122602125147297152010.1142/S0218001412510019 – reference: BaydoganMGRungerGTime series representation and similarity based on local autopatternsData Min Knowl Discov20153021343458202 – reference: Chen L, Ng R (2004) On the marriage of lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_p$$\end{document}-norms and edit distance. In: Proceedings of the international conference on very large data bases, ACM, pp 792–803 – reference: HillsJLinesJBaranauskasEMappJBagnallAClassification of time series by shapelet transformationData Min Knowl Discov2014284851881317692610.1007/s10618-013-0322-11298.62098 – reference: Grabocka J, Schilling N, Wistuba M, Schmidt-Thieme L (2014) Learning time-series shapelets. In: Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining, ACM, pp 392–401 – reference: KampourakiAManisGNikouCHeartbeat time series classification with support vector machinesInf Technol Biomed200913451251810.1109/TITB.2008.2003323 – reference: Bagnall A, Lines J (2014) An experimental evaluation of nearest neighbour time series classification. CoRR arXiv:1406.4757 – reference: Mueen A, Keogh E, Young N (2011) Logical-shapelets: an expressive primitive for time series classification. In: Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data mining, ACM, pp 1154–1162 – reference: HoTKThe random subspace method for constructing decision forestsIEEE Trans Pattern Anal Mach Intell199820883284410.1109/34.709601 – reference: ShannonCEA mathematical theory of communicationBell Syst Tech J19482733794232628610.1002/j.1538-7305.1948.tb01338.x1154.94303 – reference: BreimanLFriedmanJStoneCJOlshenRAClassification and regression trees1984Boca RatonCRC Press0541.62042 – reference: Cetin MS, Mueen A, Calhoun VD (2015) Shapelet ensemble for multi-dimensional time series. In: Proceedings of SIAM international conference on data mining, SIAM, pp 307–315 – reference: NanopoulosAAlcockRManolopoulosYFeature-based classification of time-series dataInt J Comput Res2001104961 – reference: Wu Y, Chang EY (2004) Distance-function design and fusion for sequence data. In: Proceedings of ACM international conference on information and knowledge management, ACM, pp 324–333 – reference: Shokoohi-Yekta M, Wang J, Keogh E (2015) On the non-trivial generalization of dynamic time warping to the multi-dimensional case. In: Proceedings of SIAM international conference on data mining, SIAM, pp 289–297 – reference: Batista GE, Wang X, Keogh EJ (2011) A complexity-invariant distance measure for time series. In: Proceedings of SIAM, SIAM international conference on data mining, pp 699–710 – reference: FulcherBDJonesNSHighly comparative feature-based time-series classificationIEEE Trans Knowl Data Eng201426123026303710.1109/TKDE.2014.2316504 – reference: BreimanLRandom forestsMach Learn2001451532332423610.1023/A:10109334043241007.68152 – reference: Sakoe H, Chiba S (1978) Dynamic programming algorithm optimization for spoken word recognition. In: Transactions on ASSP, IEEE, pp 43–49 – reference: YeLKeoghETime series shapelets: a novel technique that allows accurate, interpretable and fast classificationData Min Knowl Discov2011221–2149182276455510.1007/s10618-010-0179-51235.68213 – reference: Patri OP, Sharma AB, Chen H, Jiang G, Panangadan AV, Prasanna VK (2014) Extracting discriminative shapelets from heterogeneous sensor data. In: Proceedings of IEEE international conference on big data, IEEE, pp 1095–1104 – reference: LinesJBagnallATime series classification with ensembles of elastic distance measuresData Min Knowl Discov2014293565592333431510.1007/s10618-014-0361-2 – reference: DengHRungerGTuvEVladimirMA time series forest for classification and feature extractionInf Sci2013239142153304843010.1016/j.ins.2013.02.0301321.62068 – reference: Berndt DJ, Clifford J (1994) Using dynamic time warping to find patterns in time series. In: KDD workshop, knowledge discovery and data mining, pp 359–370 – volume: 10 start-page: 49 year: 2001 ident: 473_CR36 publication-title: Int J Comput Res – ident: 473_CR24 doi: 10.1145/2623330.2623613 – volume: 39 start-page: 12814 issue: 17 year: 2012 ident: 473_CR2 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2012.05.012 – ident: 473_CR33 doi: 10.1145/2339530.2339579 – volume: 29 start-page: 400 issue: 2 year: 2014 ident: 473_CR4 publication-title: Data Min Knowl Discov doi: 10.1007/s10618-014-0349-y – ident: 473_CR53 doi: 10.1145/1557019.1557122 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 473_CR12 publication-title: Mach Learn doi: 10.1023/A:1010933404324 – volume: 26 start-page: 275 issue: 2 year: 2013 ident: 473_CR49 publication-title: Data Min Knowl Discov doi: 10.1007/s10618-012-0250-5 – volume: 1 start-page: 1542 issue: 2 year: 2008 ident: 473_CR20 publication-title: Proc VLDB Endow doi: 10.14778/1454159.1454226 – volume: 18 start-page: 171 issue: 4 year: 2005 ident: 473_CR43 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2004.10.007 – ident: 473_CR45 – ident: 473_CR50 – ident: 473_CR42 doi: 10.1145/967900.968015 – ident: 473_CR1 – ident: 473_CR7 – ident: 473_CR31 – volume: 1 start-page: 55 issue: 1 year: 1997 ident: 473_CR21 publication-title: Data Min Knowl Discov doi: 10.1023/A:1009778005914 – volume: 20 start-page: 273 issue: 3 year: 1995 ident: 473_CR17 publication-title: Mach Learn – ident: 473_CR47 doi: 10.1137/1.9781611974010.33 – ident: 473_CR39 doi: 10.1137/1.9781611972832.74 – volume: 27 start-page: 379 issue: 3 year: 1948 ident: 473_CR46 publication-title: Bell Syst Tech J doi: 10.1002/j.1538-7305.1948.tb01338.x – ident: 473_CR40 – ident: 473_CR44 doi: 10.1109/TASSP.1978.1163055 – volume: 13 start-page: 512 issue: 4 year: 2009 ident: 473_CR29 publication-title: Inf Technol Biomed doi: 10.1109/TITB.2008.2003323 – ident: 473_CR23 – ident: 473_CR35 doi: 10.1145/2020408.2020587 – volume: 51 start-page: 115 issue: 2 year: 2003 ident: 473_CR28 publication-title: Mach Learn doi: 10.1023/A:1022899518027 – ident: 473_CR30 doi: 10.1007/978-3-319-17091-6_8 – volume: 28 start-page: 851 issue: 4 year: 2014 ident: 473_CR25 publication-title: Data Min Knowl Discov doi: 10.1007/s10618-013-0322-1 – volume-title: C4.5: programs for machine learning year: 1993 ident: 473_CR38 – volume: 24 start-page: 123 issue: 2 year: 1996 ident: 473_CR11 publication-title: Mach Learn – volume: 30 start-page: 1145 issue: 7 year: 1997 ident: 473_CR10 publication-title: Pattern Recognit doi: 10.1016/S0031-3203(96)00142-2 – volume: 29 start-page: 565 issue: 3 year: 2014 ident: 473_CR32 publication-title: Data Min Knowl Discov doi: 10.1007/s10618-014-0361-2 – ident: 473_CR16 doi: 10.1145/1066157.1066213 – volume: 7 start-page: 1 year: 2006 ident: 473_CR18 publication-title: J Mach Learn Res – volume: 30 start-page: 1 issue: 2 year: 2015 ident: 473_CR5 publication-title: Data Min Knowl Discov – ident: 473_CR52 doi: 10.1145/1143844.1143974 – volume-title: Classification and regression trees year: 1984 ident: 473_CR13 – ident: 473_CR14 doi: 10.1137/1.9781611974010.35 – volume: 35 start-page: 2796 issue: 11 year: 2013 ident: 473_CR6 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2013.72 – ident: 473_CR37 doi: 10.1109/BigData.2014.7004344 – volume: 25 start-page: 322 issue: 2 year: 1978 ident: 473_CR34 publication-title: J ACM doi: 10.1145/322063.322075 – ident: 473_CR51 doi: 10.1145/1031171.1031238 – volume: 26 start-page: 3026 issue: 12 year: 2014 ident: 473_CR22 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2014.2316504 – volume: 239 start-page: 142 year: 2013 ident: 473_CR19 publication-title: Inf Sci doi: 10.1016/j.ins.2013.02.030 – volume: 22 start-page: 149 issue: 1–2 year: 2011 ident: 473_CR54 publication-title: Data Min Knowl Discov doi: 10.1007/s10618-010-0179-5 – volume: 26 start-page: 125 issue: 02 year: 2012 ident: 473_CR9 publication-title: Int J Pattern Recognit Artif Intell doi: 10.1142/S0218001412510019 – ident: 473_CR8 – volume: 74 start-page: 281 issue: 3 year: 2009 ident: 473_CR41 publication-title: Mach Learn doi: 10.1007/s10994-008-5093-3 – ident: 473_CR3 doi: 10.1137/1.9781611972818.60 – ident: 473_CR15 – ident: 473_CR27 doi: 10.1137/1.9781611972832.64 – volume: 5 start-page: 725 year: 2004 ident: 473_CR48 publication-title: J Mach Learn Res – volume: 20 start-page: 832 issue: 8 year: 1998 ident: 473_CR26 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.709601 |
SSID | ssj0005230 |
Score | 2.4923189 |
Snippet | Shapelets are discriminative subsequences of time series, usually embedded in shapelet-based decision trees. The enumeration of time series shapelets is,... Issue Title: ECML PKDD 2016 Journal Track Special Issue Shapelets are discriminative subsequences of time series, usually embedded in shapelet-based decision... |
SourceID | swepub proquest crossref springer |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1053 |
SubjectTerms | Algorithms Artificial Intelligence Chemistry and Earth Sciences Computation Computer and Systems Sciences Computer Science Data mining Data Mining and Knowledge Discovery data- och systemvetenskap Datasets Decision trees Electrocardiography Ensemble methods Forests Information Storage and Retrieval Learning Multivariate time series Physics State of the art Statistics for Engineering Time series Time series classification Time series shapelets Variables |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7oRPDij6lYnVLxx0EJtGmTZsehjiHoycluIW0SN9RN1u4w_3qTru2m6MBz06S8l_R94X3vewDnzKNCaxwjSVWCQuYlKCaSomYeDoRiOifRPDzSTje875FeUcedlmz3MiWZ_6kXit2ob4lX5gYcRgGarsIaMVd3y-Pq4tYCryOYlQazEBHmV6nM36b4HozmCLNKiv4QEM2DTnsbNgu06LZm7t2BFTWsw1bZicEtDmYd1nMiZ5LuwlmhIz34VNI1cUiO3t20b0lOKnMNQDULp3vQbd893XRQ0QgBJSEOM8QEEUzGOqLKV1gzZdWFiYi0kMRcmUQSCaWj2Pc01gY_-H4gA22AkGI0ltSEqX2oDUdDdQCujKMASxKbY5yEVAomNJO6mRDjTMoi5YBXWoQnhUq4bVbxxuf6xtaI3DLDrBH51IGr6pWPmUTGssGN0sy8OC0pNygjwBZLRg6cVo_NPrfJCzFUo4kdY4XgcUA8B65L9yxM8feClzMPVt9mBbVvB88tPhq_8Nesz7GBPYQ6cLFsYDrhfmC7_h3-a_kj2MD5frOstAbUsvFEHRsYk8Un-bb9Aqoq6gc priority: 102 providerName: Springer Nature |
Title | Generalized random shapelet forests |
URI | https://link.springer.com/article/10.1007/s10618-016-0473-y https://www.proquest.com/docview/1813205197 https://www.proquest.com/docview/1835582350 https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-221556 https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-135052 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9wwEB2V3UsvhdJWTYFVUD8OrawmTuyYU7XQXVCroqrqVvRkObFdELABkj3Ar8eTOFlaqXtNnDiZGXuePeM3AG9ExJW1NCeam4KkIipIzjQne407UEbYJonm2zE_mqVfTtiJ33CrfFplNyc2E7UuC9wj_-g8UUIRb2Sfrq4JVo3C6KovobEGQzcFCzGA4f7k-PuPB0keSXtOWKSEibiPa7aH53iMiVxuRZ1mCbn92zMt4WYfIf2HTbTxQNMNeOKhYzhudf0UHpn5Jqx3ZRlCP0qfwWtPJX12Z3ToXJEuL8PqFPOcTB06jOq6q57DbDr5eXBEfC0EUqQ0rYlQTAmd24yb2FArDBIMM5VZpZlbNakiU8ZmeRxZah2EiONEJ9ZhISN4rrnzVC9gMC_n5iWEOs8SqlnuRnKRcq2EskLbvYI5fXKRmQCiTg6y8EThWK_iQi4pjlF0EpPDUHTyNoD3_SNXLUvGqsbbnXClHzCVXKo3gN3-tjN1jF-ouSkX2Aa54GnCogA-dEp58Ir_d_iu1Vv_bcip_fns11iWN3_keX0qqUM-jAfwdlXDaiHjBAv_vVr9B1vwmDZmhZlo2zCobxZmx0GXOh_BmpgejmA4Pvz9dTLy1uquzuj4HnDa7r4 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoALb0SgQBCUA8gicWLHPVSooixb-ji1qDfXiW1aAZu2yapafhS_sTN5bUFibz3HcZLxeGac-eYbgDcqksZ7njMrXcFSFRUsF1aytcYdGKd8A6LZ3ZPjg_TroThcgj99LQzBKnub2BhqWxb0j_wDeqKEU7yRfTw9Y9Q1irKrfQuNVi223ewCj2zV-tYmru8q56PP-5_GrOsqwIqUpzVTRhhlc59JFzvulSOqXmEyb6zA84cpMuN8lseR5x6dcRwnNvEYVTglcyvR5uO8N-BmmqAnp8r00ZcrkJKkrUpWKRMqHrKobamejAk2huf3NEvY7G8_OA9uh3zsP9yljb8b3YM7XaAabrSadR-W3OQB3O2bQISdTXgIrzvi6pPfzobo-Gz5K6yOCVXl6hAjYnxc9QgOrkVGj2F5Uk7cEwhtniXcihztRpFKa5Txyvq1QqD2SJW5AKJeDrroaMmpO8ZPPSdUJtFpgqKR6PQsgHfDLactJ8eiwSu9cHW3PSs9V6YAXg2XcWNRtsRMXDmlMcQ8zxMRBfC-X5QrU_z_gW_bdRvejRi8N0--bejy_Lv-UR9rjnGWkAGsLhpYTXWcUJvBp4u_4CXcGu_v7uidrb3tZ3CbNypGGLgVWK7Pp-45Bk11_qLR1BCOrntrXAJIISdy |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYS4lLdIKRAE5QCymjjxoweECttVS2FVIYp6M05st1Vh0zZZVctP49fhyWsLEnvrOY6TjOflzOdvAF7KiGvnaEYMtzlJZZSTjBlONutwoK10NYjm85jvHKQfD9nhEvzuzsIgrLLzibWjNkWO_8g3fCRKKOYbYsO1sIj94ejd2TnBDlJYae3aaTQqsmdnl377Vr7dHfq1Xqd0tP31ww5pOwyQPKVpRaRmWprMCW5jS520SNvLtHDaML8X0bnQ1oksjhx1PjDHcWIS5zMMK3lmuPf_ft4bsCxwVzSA5ffb4_0vVwAmSXNGWaaEybivqTYH93iMIDK_m09FQmZ_R8V5qttXZ_9hMq2j3-gOrLRpa7jV6NldWLKTe3C7awkRth7iPrxoaaxPflkT-jBoip9heYwYK1uFPj_2jysfwMG1SOkhDCbFxD6C0GQioYZl3ovkKTdaaieN28yZ1yUuhQ0g6uSg8pakHHtl_FBzemUUnUJgGopOzQJ43d9y1jB0LBq81glXtcZaqrlqBfC8v-zNDGsnemKLKY5BHnqasCiAN92iXJni_w981axb_27I5z08-baliosjdVodK-qzLsYDWF80sJyqOMGmg6uLv-AZ3PRmoT7tjvcewy1aaxgC4tZgUF1M7ROfQVXZ01ZVQ_h-3dbxBwQELQQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generalized+random+shapelet+forests&rft.jtitle=Data+mining+and+knowledge+discovery&rft.au=Karlsson%2C+Isak&rft.au=Papapetrou%2C+Panagiotis&rft.au=Bostr%C3%B6m%2C+Henrik&rft.date=2016-09-01&rft.issn=1384-5810&rft.eissn=1573-756X&rft.volume=30&rft.issue=5&rft.spage=1053&rft.epage=1085&rft_id=info:doi/10.1007%2Fs10618-016-0473-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10618_016_0473_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1384-5810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1384-5810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1384-5810&client=summon |