Generalized random shapelet forests

Shapelets are discriminative subsequences of time series, usually embedded in shapelet-based decision trees. The enumeration of time series shapelets is, however, computationally costly, which in addition to the inherent difficulty of the decision tree learning algorithm to effectively handle high-d...

Full description

Saved in:
Bibliographic Details
Published inData mining and knowledge discovery Vol. 30; no. 5; pp. 1053 - 1085
Main Authors Karlsson, Isak, Papapetrou, Panagiotis, Boström, Henrik
Format Journal Article
LanguageEnglish
Published New York Springer US 01.09.2016
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Shapelets are discriminative subsequences of time series, usually embedded in shapelet-based decision trees. The enumeration of time series shapelets is, however, computationally costly, which in addition to the inherent difficulty of the decision tree learning algorithm to effectively handle high-dimensional data, severely limits the applicability of shapelet-based decision tree learning from large (multivariate) time series databases. This paper introduces a novel tree-based ensemble method for univariate and multivariate time series classification using shapelets, called the generalized random shapelet forest algorithm. The algorithm generates a set of shapelet-based decision trees, where both the choice of instances used for building a tree and the choice of shapelets are randomized. For univariate time series, it is demonstrated through an extensive empirical investigation that the proposed algorithm yields predictive performance comparable to the current state-of-the-art and significantly outperforms several alternative algorithms, while being at least an order of magnitude faster. Similarly for multivariate time series, it is shown that the algorithm is significantly less computationally costly and more accurate than the current state-of-the-art.
AbstractList Shapelets are discriminative subsequences of time series, usually embedded in shapelet-based decision trees. The enumeration of time series shapelets is, however, computationally costly, which in addition to the inherent difficulty of the decision tree learning algorithm to effectively handle high-dimensional data, severely limits the applicability of shapelet-based decision tree learning from large (multivariate) time series databases. This paper introduces a novel tree-based ensemble method for univariate and multivariate time series classification using shapelets, called the generalized random shapelet forest algorithm. The algorithm generates a set of shapelet-based decision trees, where both the choice of instances used for building a tree and the choice of shapelets are randomized. For univariate time series, it is demonstrated through an extensive empirical investigation that the proposed algorithm yields predictive performance comparable to the current state-of-the-art and significantly outperforms several alternative algorithms, while being at least an order of magnitude faster. Similarly for multivariate time series, it is shown that the algorithm is significantly less computationally costly and more accurate than the current state-of-the-art.
Issue Title: ECML PKDD 2016 Journal Track Special Issue Shapelets are discriminative subsequences of time series, usually embedded in shapelet-based decision trees. The enumeration of time series shapelets is, however, computationally costly, which in addition to the inherent difficulty of the decision tree learning algorithm to effectively handle high-dimensional data, severely limits the applicability of shapelet-based decision tree learning from large (multivariate) time series databases. This paper introduces a novel tree-based ensemble method for univariate and multivariate time series classification using shapelets, called the generalized random shapelet forest algorithm. The algorithm generates a set of shapelet-based decision trees, where both the choice of instances used for building a tree and the choice of shapelets are randomized. For univariate time series, it is demonstrated through an extensive empirical investigation that the proposed algorithm yields predictive performance comparable to the current state-of-the-art and significantly outperforms several alternative algorithms, while being at least an order of magnitude faster. Similarly for multivariate time series, it is shown that the algorithm is significantly less computationally costly and more accurate than the current state-of-the-art.
Author Boström, Henrik
Karlsson, Isak
Papapetrou, Panagiotis
Author_xml – sequence: 1
  givenname: Isak
  orcidid: 0000-0002-3056-6801
  surname: Karlsson
  fullname: Karlsson, Isak
  email: isak-kar@dsv.su.se
  organization: Stockholm University
– sequence: 2
  givenname: Panagiotis
  surname: Papapetrou
  fullname: Papapetrou, Panagiotis
  organization: Stockholm University
– sequence: 3
  givenname: Henrik
  surname: Boström
  fullname: Boström, Henrik
  organization: Stockholm University
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-221556$$DView record from Swedish Publication Index
https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-135052$$DView record from Swedish Publication Index
BookMark eNqFkUtLAzEUhYNUsK3-AHeFblw4mptMHl2W-gTBjYq7kM7c6NTppCYzSP31plRBBHV17-I7h3M4A9JrfIOEHAI9AUrVaQQqQWcUZEZzxbP1DumDSI8S8rGXfq7zTGige2QQ44JSKhinfTK-xAaDrat3LEfBNqVfjuKzXWGN7cj5gLGN-2TX2TriwecdkvuL87vZVXZze3k9m95kRc7yNtNWWF3OnZIIyJxGOaFSWOVsKZhmtlAWnZoDdcxxIQB4yR3kHLWclzIHPiTHW9_4hqtublahWtqwNt5W5qx6mBofnkzsDHCxST8k2f_4S_tsGAMhZOKPtvwq-NcuFTPLKhZY17ZB30UDOqXSLJkndPwDXfguNKl8ooAzKmCiEqW2VBF8jAGdKarWtpVv2mCr2gA1m23MdhuTtjGbbcw6KeGH8iv8Xxr2WTexzROGb5l-FX0AT_2iUg
CitedBy_id crossref_primary_10_1162_neco_a_01297
crossref_primary_10_1016_j_asoc_2021_108117
crossref_primary_10_1016_j_ins_2023_119009
crossref_primary_10_1093_bioinformatics_bty246
crossref_primary_10_1007_s12539_021_00460_5
crossref_primary_10_1016_j_comnet_2018_11_031
crossref_primary_10_1016_j_is_2025_102536
crossref_primary_10_1007_s00521_023_08988_x
crossref_primary_10_1016_j_procs_2018_03_025
crossref_primary_10_1016_j_procs_2019_01_179
crossref_primary_10_1155_2020_1978310
crossref_primary_10_1016_j_patcog_2021_108097
crossref_primary_10_1007_s44196_024_00461_4
crossref_primary_10_1016_j_eswa_2019_04_062
crossref_primary_10_1007_s10618_024_01006_1
crossref_primary_10_1007_s10618_023_00969_x
crossref_primary_10_1109_TPAMI_2022_3198411
crossref_primary_10_1186_s12911_018_0717_4
crossref_primary_10_1007_s00500_024_09928_0
crossref_primary_10_1016_j_jksuci_2023_101783
crossref_primary_10_1109_ACCESS_2022_3203523
crossref_primary_10_1007_s10489_024_05672_y
crossref_primary_10_1109_ACCESS_2022_3207765
crossref_primary_10_1016_j_neunet_2024_106896
crossref_primary_10_1109_TCDS_2024_3370219
crossref_primary_10_1016_j_patcog_2023_110121
crossref_primary_10_1007_s10618_022_00822_7
crossref_primary_10_1007_s10115_019_01389_4
crossref_primary_10_1007_s10618_020_00679_8
crossref_primary_10_1016_j_patcog_2023_109334
crossref_primary_10_1016_j_patcog_2022_109036
crossref_primary_10_1007_s11063_024_11531_1
crossref_primary_10_1007_s10618_023_00978_w
crossref_primary_10_1007_s10115_021_01630_z
crossref_primary_10_1016_j_ins_2021_04_053
crossref_primary_10_1016_j_ins_2022_07_178
crossref_primary_10_1155_2021_4214784
crossref_primary_10_1007_s11634_021_00437_8
crossref_primary_10_1016_j_ins_2022_09_009
crossref_primary_10_1016_j_knosys_2024_112015
crossref_primary_10_1016_j_patcog_2017_08_016
crossref_primary_10_1007_s10618_020_00701_z
crossref_primary_10_1093_bioinformatics_btaa815
crossref_primary_10_1007_s00521_020_05179_w
crossref_primary_10_1109_TETCI_2023_3304948
crossref_primary_10_12677_CSA_2020_101001
crossref_primary_10_1016_j_knosys_2022_109366
crossref_primary_10_3390_app12178685
crossref_primary_10_1007_s10115_023_01835_4
crossref_primary_10_1016_j_jbi_2016_11_006
crossref_primary_10_1109_MSP_2022_3155955
crossref_primary_10_1016_j_ejco_2024_100091
crossref_primary_10_1016_j_ins_2023_01_093
crossref_primary_10_1016_j_oceaneng_2022_113539
crossref_primary_10_1007_s10618_024_01022_1
crossref_primary_10_1007_s10618_020_00727_3
crossref_primary_10_1111_coin_70008
crossref_primary_10_1016_j_eswa_2023_122584
crossref_primary_10_3390_computers8010021
crossref_primary_10_1016_j_engappai_2024_108171
crossref_primary_10_1007_s10618_022_00823_6
crossref_primary_10_1109_ACCESS_2022_3222310
crossref_primary_10_3390_math9233137
crossref_primary_10_1007_s10618_020_00719_3
crossref_primary_10_1016_j_asoc_2024_112431
crossref_primary_10_1109_ACCESS_2024_3464743
crossref_primary_10_1007_s10618_019_00617_3
crossref_primary_10_1016_j_rcim_2024_102839
crossref_primary_10_1007_s00170_023_11768_5
crossref_primary_10_1007_s10115_017_1098_1
crossref_primary_10_1109_TKDE_2023_3335049
crossref_primary_10_1007_s10489_022_03852_2
crossref_primary_10_1016_j_ins_2021_05_024
crossref_primary_10_1080_17477778_2024_2449033
crossref_primary_10_1145_3624480
crossref_primary_10_1007_s10994_023_06502_x
crossref_primary_10_1016_j_ins_2024_120478
crossref_primary_10_1016_j_eswa_2024_124155
Cites_doi 10.1145/2623330.2623613
10.1016/j.eswa.2012.05.012
10.1145/2339530.2339579
10.1007/s10618-014-0349-y
10.1145/1557019.1557122
10.1023/A:1010933404324
10.1007/s10618-012-0250-5
10.14778/1454159.1454226
10.1016/j.knosys.2004.10.007
10.1145/967900.968015
10.1023/A:1009778005914
10.1137/1.9781611974010.33
10.1137/1.9781611972832.74
10.1002/j.1538-7305.1948.tb01338.x
10.1109/TASSP.1978.1163055
10.1109/TITB.2008.2003323
10.1145/2020408.2020587
10.1023/A:1022899518027
10.1007/978-3-319-17091-6_8
10.1007/s10618-013-0322-1
10.1016/S0031-3203(96)00142-2
10.1007/s10618-014-0361-2
10.1145/1066157.1066213
10.1145/1143844.1143974
10.1137/1.9781611974010.35
10.1109/TPAMI.2013.72
10.1109/BigData.2014.7004344
10.1145/322063.322075
10.1145/1031171.1031238
10.1109/TKDE.2014.2316504
10.1016/j.ins.2013.02.030
10.1007/s10618-010-0179-5
10.1142/S0218001412510019
10.1007/s10994-008-5093-3
10.1137/1.9781611972818.60
10.1137/1.9781611972832.64
10.1109/34.709601
ContentType Journal Article
Copyright The Author(s) 2016
Copyright_xml – notice: The Author(s) 2016
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
ADTPV
AOWAS
D8V
DG7
DOI 10.1007/s10618-016-0473-y
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
SwePub
SwePub Articles
SWEPUB Kungliga Tekniska Högskolan
SWEPUB Stockholms universitet
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList

Computer and Information Systems Abstracts

ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
Computer Science
EISSN 1573-756X
EndPage 1085
ExternalDocumentID oai_DiVA_org_su_135052
oai_DiVA_org_kth_221556
4155813611
10_1007_s10618_016_0473_y
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
203
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
7WY
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ADTPV
AOWAS
D8V
DG7
ID FETCH-LOGICAL-c424t-8a5a8dbf76e1e2f8e69065a7fad5282ac7aef7b10f2f355113d3f143e86bd6413
IEDL.DBID BENPR
ISSN 1384-5810
1573-756X
IngestDate Thu Aug 21 07:00:13 EDT 2025
Thu Aug 21 06:56:07 EDT 2025
Mon Jul 21 11:35:39 EDT 2025
Sat Aug 16 04:51:28 EDT 2025
Tue Jul 01 00:40:30 EDT 2025
Thu Apr 24 22:58:25 EDT 2025
Fri Feb 21 02:33:29 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Multivariate time series
Ensemble methods
Decision trees
Time series classification
Time series shapelets
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c424t-8a5a8dbf76e1e2f8e69065a7fad5282ac7aef7b10f2f355113d3f143e86bd6413
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3056-6801
PQID 1813205197
PQPubID 43030
PageCount 33
ParticipantIDs swepub_primary_oai_DiVA_org_su_135052
swepub_primary_oai_DiVA_org_kth_221556
proquest_miscellaneous_1835582350
proquest_journals_1813205197
crossref_citationtrail_10_1007_s10618_016_0473_y
crossref_primary_10_1007_s10618_016_0473_y
springer_journals_10_1007_s10618_016_0473_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-09-01
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 09
  year: 2016
  text: 2016-09-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Data mining and knowledge discovery
PublicationTitleAbbrev Data Min Knowl Disc
PublicationYear 2016
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References DengHRungerGTuvEVladimirMA time series forest for classification and feature extractionInf Sci2013239142153304843010.1016/j.ins.2013.02.0301321.62068
Bagnall A, Lines J (2014) An experimental evaluation of nearest neighbour time series classification. CoRR arXiv:1406.4757
BreimanLFriedmanJStoneCJOlshenRAClassification and regression trees1984Boca RatonCRC Press0541.62042
Mueen A, Keogh E, Young N (2011) Logical-shapelets: an expressive primitive for time series classification. In: Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data mining, ACM, pp 1154–1162
Rakthanmanon T, Keogh E (2013) Fast shapelets: a scalable algorithm for discovering time series shapelets. In: Proceedings of SIAM international conference on data mining, SIAM
Sakoe H, Chiba S (1978) Dynamic programming algorithm optimization for spoken word recognition. In: Transactions on ASSP, IEEE, pp 43–49
Rodríguez JJ, Alonso CJ (2004) Interval and dynamic time warping-based decision trees. In: Proceedings of the 2004 ACM Symposium on applied computing, ACM, pp 548–552
RebbapragadaUProtopapasPBrodleyCEAlcockCFinding anomalous periodic time seriesMach Learn200974328131310.1007/s10994-008-5093-3
Patri OP, Sharma AB, Chen H, Jiang G, Panangadan AV, Prasanna VK (2014) Extracting discriminative shapelets from heterogeneous sensor data. In: Proceedings of IEEE international conference on big data, IEEE, pp 1095–1104
QuinlanJRC4.5: programs for machine learning1993AmsterdamElsevier
Ye L, Keogh E (2009) Time series shapelets: a new primitive for data mining. In: Proceedings of the 15th ACM SIGKDD international conference on knowledge discovery and data mining, ACM, pp 947–956
Karlsson I, Papapetrou P, Boström H (2015) Forests of randomized shapelet trees. In: Proceedings of statistical learning and data sciences, Springer, pp 126–136
RodríguezJJAlonsoCJMaestroJASupport vector machines of interval-based features for time series classificationKnowl Based Syst200518417117810.1016/j.knosys.2004.10.007
BankóZCorrelation based dynamic time warping of multivariate time seriesExpert Syst Appl20123917128141282310.1016/j.eswa.2012.05.012
Schmidhuber J (2014) Deep learning in neural networks: an overview. arXiv:1404.7828
Batista GE, Wang X, Keogh EJ (2011) A complexity-invariant distance measure for time series. In: Proceedings of SIAM, SIAM international conference on data mining, pp 699–710
FulcherBDJonesNSHighly comparative feature-based time-series classificationIEEE Trans Knowl Data Eng201426123026303710.1109/TKDE.2014.2316504
BoströmHForests of probability estimation treesInt J Pattern Recognit Artif Intell20122602125147297152010.1142/S0218001412510019
HillsJLinesJBaranauskasEMappJBagnallAClassification of time series by shapelet transformationData Min Knowl Discov2014284851881317692610.1007/s10618-013-0322-11298.62098
DemšarJStatistical comparisons of classifiers over multiple data setsJ Mach Learn Res2006713022743601222.68184
Xi X, Keogh E, Shelton C, Wei L, Ratanamahatana CA (2006) Fast time series classification using numerosity reduction. In: Proceedings of the 23rd international conference on machine learning, ACM, pp 1033–1040
YeLKeoghETime series shapelets: a novel technique that allows accurate, interpretable and fast classificationData Min Knowl Discov2011221–2149182276455510.1007/s10618-010-0179-51235.68213
FriedmanJHOn bias, variance, 0/1–loss, and the curse-of-dimensionalityData Min Knowl Discov199711557710.1023/A:1009778005914
Boström H (2011) Concurrent learning of large-scale random forests. In: Proceedings of the Scandinavian conference on artificial intelligence, pp 20–29
Wu Y, Chang EY (2004) Distance-function design and fusion for sequence data. In: Proceedings of ACM international conference on information and knowledge management, ACM, pp 324–333
BreimanLRandom forestsMach Learn2001451532332423610.1023/A:10109334043241007.68152
Cetin MS, Mueen A, Calhoun VD (2015) Shapelet ensemble for multi-dimensional time series. In: Proceedings of SIAM international conference on data mining, SIAM, pp 307–315
HoTKThe random subspace method for constructing decision forestsIEEE Trans Pattern Anal Mach Intell199820883284410.1109/34.709601
ShannonCEA mathematical theory of communicationBell Syst Tech J19482733794232628610.1002/j.1538-7305.1948.tb01338.x1154.94303
Shokoohi-Yekta M, Wang J, Keogh E (2015) On the non-trivial generalization of dynamic time warping to the multi-dimensional case. In: Proceedings of SIAM international conference on data mining, SIAM, pp 289–297
BaydoganMGRungerGLearning a symbolic representation for multivariate time series classificationData Min Knowl Discov2014292400422331246610.1007/s10618-014-0349-y
Gordon D, Hendler D, Rokach L (2012) Fast randomized model generation for shapelet-based time series classification. arXiv:1209.5038
JamesGMVariance and bias for general loss functionsMach Learn200351211513510.1023/A:10228995180271027.68067
BreimanLBagging predictorsMach Learn199624212314014259570858.68080
Berndt DJ, Clifford J (1994) Using dynamic time warping to find patterns in time series. In: KDD workshop, knowledge discovery and data mining, pp 359–370
Wistuba M, Grabocka J, Schmidt-Thieme L (2015) Ultra-fast shapelets for time series classification. CoRR arXiv:1503.05018
ValentiniGDietterichTGBias-variance analysis of support vector machines for the development of svm-based ensemble methodsJ Mach Learn Res2004572577522479981222.68323
LinesJBagnallATime series classification with ensembles of elastic distance measuresData Min Knowl Discov2014293565592333431510.1007/s10618-014-0361-2
NanopoulosAAlcockRManolopoulosYFeature-based classification of time-series dataInt J Comput Res2001104961
Grabocka J, Schilling N, Wistuba M, Schmidt-Thieme L (2014) Learning time-series shapelets. In: Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining, ACM, pp 392–401
WangXMueenADingHTrajcevskiGScheuermannPKeoghEExperimental comparison of representation methods and distance measures for time series dataData Min Knowl Discov2013262275309301773910.1007/s10618-012-0250-5
Lines J, Davis LM, Hills J, Bagnall A (2012) A shapelet transform for time series classification. In: Proceedings of the 18th ACM SIGKDD international conference on knowledge discovery and data mining, ACM, pp 289–297
DingHTrajcevskiGScheuermannPWangXKeoghEQuerying and mining of time series data: experimental comparison of representations and distance measuresProc VLDB Endow2008121542155210.14778/1454159.1454226
Keogh E, Zhu Q, Hu B, Y H, Xi X, Wei L, Ratanamahatana CA (2015) The ucr time series classification/clustering homepage. www.cs.ucr.edu/~eamonn/time_series_data
Ratanamahatana CA, Keogh E (2004) Everything you know about dynamic time warping is wrong. In: 3rd workshop on mining temporal and sequential data, pp 22–25
CortesCVapnikVSupport-vector networksMach Learn19952032732970831.68098
Chen L, Özsu MT (2005) Robust and fast similarity search for moving object trajectories. In: Proceedings of the ACM SIGMOD international conference on management of data, ACM, pp 491–502
Hu B, Chen Y, Keogh EJ (2013) Time series classification under more realistic assumptions. In: Proceedings of SIAM international conference on data mining, SIAM, pp 578–586
BaydoganMGRungerGTime series representation and similarity based on local autopatternsData Min Knowl Discov20153021343458202
BaydoganMGRungerGTuvEA bag-of-features framework to classify time seriesIEEE Trans Pattern Anal Mach Intell201335112796280210.1109/TPAMI.2013.72
KampourakiAManisGNikouCHeartbeat time series classification with support vector machinesInf Technol Biomed200913451251810.1109/TITB.2008.2003323
MaierDThe complexity of some problems on subsequences and supersequencesJ ACM197825232233648370010.1145/322063.3220750371.68018
BradleyAPThe use of the area under the roc curve in the evaluation of machine learning algorithmsPattern Recognit19973071145115910.1016/S0031-3203(96)00142-2
Chen L, Ng R (2004) On the marriage of lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_p$$\end{document}-norms and edit distance. In: Proceedings of the international conference on very large data bases, ACM, pp 792–803
J Lines (473_CR32) 2014; 29
J Demšar (473_CR18) 2006; 7
L Ye (473_CR54) 2011; 22
GM James (473_CR28) 2003; 51
473_CR53
H Boström (473_CR9) 2012; 26
473_CR50
473_CR52
473_CR51
AP Bradley (473_CR10) 1997; 30
A Kampouraki (473_CR29) 2009; 13
473_CR47
BD Fulcher (473_CR22) 2014; 26
L Breiman (473_CR13) 1984
JJ Rodríguez (473_CR43) 2005; 18
C Cortes (473_CR17) 1995; 20
A Nanopoulos (473_CR36) 2001; 10
TK Ho (473_CR26) 1998; 20
473_CR23
MG Baydogan (473_CR6) 2013; 35
473_CR14
473_CR16
473_CR15
L Breiman (473_CR11) 1996; 24
Z Bankó (473_CR2) 2012; 39
MG Baydogan (473_CR5) 2015; 30
L Breiman (473_CR12) 2001; 45
H Deng (473_CR19) 2013; 239
MG Baydogan (473_CR4) 2014; 29
D Maier (473_CR34) 1978; 25
473_CR31
473_CR33
473_CR30
CE Shannon (473_CR46) 1948; 27
473_CR24
473_CR27
J Hills (473_CR25) 2014; 28
JR Quinlan (473_CR38) 1993
473_CR7
473_CR8
G Valentini (473_CR48) 2004; 5
H Ding (473_CR20) 2008; 1
473_CR42
473_CR1
473_CR45
473_CR44
473_CR3
473_CR40
473_CR39
473_CR35
JH Friedman (473_CR21) 1997; 1
473_CR37
U Rebbapragada (473_CR41) 2009; 74
X Wang (473_CR49) 2013; 26
References_xml – reference: BradleyAPThe use of the area under the roc curve in the evaluation of machine learning algorithmsPattern Recognit19973071145115910.1016/S0031-3203(96)00142-2
– reference: DingHTrajcevskiGScheuermannPWangXKeoghEQuerying and mining of time series data: experimental comparison of representations and distance measuresProc VLDB Endow2008121542155210.14778/1454159.1454226
– reference: QuinlanJRC4.5: programs for machine learning1993AmsterdamElsevier
– reference: Chen L, Özsu MT (2005) Robust and fast similarity search for moving object trajectories. In: Proceedings of the ACM SIGMOD international conference on management of data, ACM, pp 491–502
– reference: FriedmanJHOn bias, variance, 0/1–loss, and the curse-of-dimensionalityData Min Knowl Discov199711557710.1023/A:1009778005914
– reference: Rodríguez JJ, Alonso CJ (2004) Interval and dynamic time warping-based decision trees. In: Proceedings of the 2004 ACM Symposium on applied computing, ACM, pp 548–552
– reference: MaierDThe complexity of some problems on subsequences and supersequencesJ ACM197825232233648370010.1145/322063.3220750371.68018
– reference: Schmidhuber J (2014) Deep learning in neural networks: an overview. arXiv:1404.7828
– reference: RebbapragadaUProtopapasPBrodleyCEAlcockCFinding anomalous periodic time seriesMach Learn200974328131310.1007/s10994-008-5093-3
– reference: Xi X, Keogh E, Shelton C, Wei L, Ratanamahatana CA (2006) Fast time series classification using numerosity reduction. In: Proceedings of the 23rd international conference on machine learning, ACM, pp 1033–1040
– reference: DemšarJStatistical comparisons of classifiers over multiple data setsJ Mach Learn Res2006713022743601222.68184
– reference: Wistuba M, Grabocka J, Schmidt-Thieme L (2015) Ultra-fast shapelets for time series classification. CoRR arXiv:1503.05018
– reference: JamesGMVariance and bias for general loss functionsMach Learn200351211513510.1023/A:10228995180271027.68067
– reference: Ye L, Keogh E (2009) Time series shapelets: a new primitive for data mining. In: Proceedings of the 15th ACM SIGKDD international conference on knowledge discovery and data mining, ACM, pp 947–956
– reference: CortesCVapnikVSupport-vector networksMach Learn19952032732970831.68098
– reference: Keogh E, Zhu Q, Hu B, Y H, Xi X, Wei L, Ratanamahatana CA (2015) The ucr time series classification/clustering homepage. www.cs.ucr.edu/~eamonn/time_series_data/
– reference: WangXMueenADingHTrajcevskiGScheuermannPKeoghEExperimental comparison of representation methods and distance measures for time series dataData Min Knowl Discov2013262275309301773910.1007/s10618-012-0250-5
– reference: Ratanamahatana CA, Keogh E (2004) Everything you know about dynamic time warping is wrong. In: 3rd workshop on mining temporal and sequential data, pp 22–25
– reference: RodríguezJJAlonsoCJMaestroJASupport vector machines of interval-based features for time series classificationKnowl Based Syst200518417117810.1016/j.knosys.2004.10.007
– reference: BaydoganMGRungerGTuvEA bag-of-features framework to classify time seriesIEEE Trans Pattern Anal Mach Intell201335112796280210.1109/TPAMI.2013.72
– reference: Hu B, Chen Y, Keogh EJ (2013) Time series classification under more realistic assumptions. In: Proceedings of SIAM international conference on data mining, SIAM, pp 578–586
– reference: Boström H (2011) Concurrent learning of large-scale random forests. In: Proceedings of the Scandinavian conference on artificial intelligence, pp 20–29
– reference: BaydoganMGRungerGLearning a symbolic representation for multivariate time series classificationData Min Knowl Discov2014292400422331246610.1007/s10618-014-0349-y
– reference: Karlsson I, Papapetrou P, Boström H (2015) Forests of randomized shapelet trees. In: Proceedings of statistical learning and data sciences, Springer, pp 126–136
– reference: Gordon D, Hendler D, Rokach L (2012) Fast randomized model generation for shapelet-based time series classification. arXiv:1209.5038
– reference: ValentiniGDietterichTGBias-variance analysis of support vector machines for the development of svm-based ensemble methodsJ Mach Learn Res2004572577522479981222.68323
– reference: BreimanLBagging predictorsMach Learn199624212314014259570858.68080
– reference: Lines J, Davis LM, Hills J, Bagnall A (2012) A shapelet transform for time series classification. In: Proceedings of the 18th ACM SIGKDD international conference on knowledge discovery and data mining, ACM, pp 289–297
– reference: BankóZCorrelation based dynamic time warping of multivariate time seriesExpert Syst Appl20123917128141282310.1016/j.eswa.2012.05.012
– reference: Rakthanmanon T, Keogh E (2013) Fast shapelets: a scalable algorithm for discovering time series shapelets. In: Proceedings of SIAM international conference on data mining, SIAM
– reference: BoströmHForests of probability estimation treesInt J Pattern Recognit Artif Intell20122602125147297152010.1142/S0218001412510019
– reference: BaydoganMGRungerGTime series representation and similarity based on local autopatternsData Min Knowl Discov20153021343458202
– reference: Chen L, Ng R (2004) On the marriage of lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_p$$\end{document}-norms and edit distance. In: Proceedings of the international conference on very large data bases, ACM, pp 792–803
– reference: HillsJLinesJBaranauskasEMappJBagnallAClassification of time series by shapelet transformationData Min Knowl Discov2014284851881317692610.1007/s10618-013-0322-11298.62098
– reference: Grabocka J, Schilling N, Wistuba M, Schmidt-Thieme L (2014) Learning time-series shapelets. In: Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining, ACM, pp 392–401
– reference: KampourakiAManisGNikouCHeartbeat time series classification with support vector machinesInf Technol Biomed200913451251810.1109/TITB.2008.2003323
– reference: Bagnall A, Lines J (2014) An experimental evaluation of nearest neighbour time series classification. CoRR arXiv:1406.4757
– reference: Mueen A, Keogh E, Young N (2011) Logical-shapelets: an expressive primitive for time series classification. In: Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data mining, ACM, pp 1154–1162
– reference: HoTKThe random subspace method for constructing decision forestsIEEE Trans Pattern Anal Mach Intell199820883284410.1109/34.709601
– reference: ShannonCEA mathematical theory of communicationBell Syst Tech J19482733794232628610.1002/j.1538-7305.1948.tb01338.x1154.94303
– reference: BreimanLFriedmanJStoneCJOlshenRAClassification and regression trees1984Boca RatonCRC Press0541.62042
– reference: Cetin MS, Mueen A, Calhoun VD (2015) Shapelet ensemble for multi-dimensional time series. In: Proceedings of SIAM international conference on data mining, SIAM, pp 307–315
– reference: NanopoulosAAlcockRManolopoulosYFeature-based classification of time-series dataInt J Comput Res2001104961
– reference: Wu Y, Chang EY (2004) Distance-function design and fusion for sequence data. In: Proceedings of ACM international conference on information and knowledge management, ACM, pp 324–333
– reference: Shokoohi-Yekta M, Wang J, Keogh E (2015) On the non-trivial generalization of dynamic time warping to the multi-dimensional case. In: Proceedings of SIAM international conference on data mining, SIAM, pp 289–297
– reference: Batista GE, Wang X, Keogh EJ (2011) A complexity-invariant distance measure for time series. In: Proceedings of SIAM, SIAM international conference on data mining, pp 699–710
– reference: FulcherBDJonesNSHighly comparative feature-based time-series classificationIEEE Trans Knowl Data Eng201426123026303710.1109/TKDE.2014.2316504
– reference: BreimanLRandom forestsMach Learn2001451532332423610.1023/A:10109334043241007.68152
– reference: Sakoe H, Chiba S (1978) Dynamic programming algorithm optimization for spoken word recognition. In: Transactions on ASSP, IEEE, pp 43–49
– reference: YeLKeoghETime series shapelets: a novel technique that allows accurate, interpretable and fast classificationData Min Knowl Discov2011221–2149182276455510.1007/s10618-010-0179-51235.68213
– reference: Patri OP, Sharma AB, Chen H, Jiang G, Panangadan AV, Prasanna VK (2014) Extracting discriminative shapelets from heterogeneous sensor data. In: Proceedings of IEEE international conference on big data, IEEE, pp 1095–1104
– reference: LinesJBagnallATime series classification with ensembles of elastic distance measuresData Min Knowl Discov2014293565592333431510.1007/s10618-014-0361-2
– reference: DengHRungerGTuvEVladimirMA time series forest for classification and feature extractionInf Sci2013239142153304843010.1016/j.ins.2013.02.0301321.62068
– reference: Berndt DJ, Clifford J (1994) Using dynamic time warping to find patterns in time series. In: KDD workshop, knowledge discovery and data mining, pp 359–370
– volume: 10
  start-page: 49
  year: 2001
  ident: 473_CR36
  publication-title: Int J Comput Res
– ident: 473_CR24
  doi: 10.1145/2623330.2623613
– volume: 39
  start-page: 12814
  issue: 17
  year: 2012
  ident: 473_CR2
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2012.05.012
– ident: 473_CR33
  doi: 10.1145/2339530.2339579
– volume: 29
  start-page: 400
  issue: 2
  year: 2014
  ident: 473_CR4
  publication-title: Data Min Knowl Discov
  doi: 10.1007/s10618-014-0349-y
– ident: 473_CR53
  doi: 10.1145/1557019.1557122
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 473_CR12
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– volume: 26
  start-page: 275
  issue: 2
  year: 2013
  ident: 473_CR49
  publication-title: Data Min Knowl Discov
  doi: 10.1007/s10618-012-0250-5
– volume: 1
  start-page: 1542
  issue: 2
  year: 2008
  ident: 473_CR20
  publication-title: Proc VLDB Endow
  doi: 10.14778/1454159.1454226
– volume: 18
  start-page: 171
  issue: 4
  year: 2005
  ident: 473_CR43
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2004.10.007
– ident: 473_CR45
– ident: 473_CR50
– ident: 473_CR42
  doi: 10.1145/967900.968015
– ident: 473_CR1
– ident: 473_CR7
– ident: 473_CR31
– volume: 1
  start-page: 55
  issue: 1
  year: 1997
  ident: 473_CR21
  publication-title: Data Min Knowl Discov
  doi: 10.1023/A:1009778005914
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 473_CR17
  publication-title: Mach Learn
– ident: 473_CR47
  doi: 10.1137/1.9781611974010.33
– ident: 473_CR39
  doi: 10.1137/1.9781611972832.74
– volume: 27
  start-page: 379
  issue: 3
  year: 1948
  ident: 473_CR46
  publication-title: Bell Syst Tech J
  doi: 10.1002/j.1538-7305.1948.tb01338.x
– ident: 473_CR40
– ident: 473_CR44
  doi: 10.1109/TASSP.1978.1163055
– volume: 13
  start-page: 512
  issue: 4
  year: 2009
  ident: 473_CR29
  publication-title: Inf Technol Biomed
  doi: 10.1109/TITB.2008.2003323
– ident: 473_CR23
– ident: 473_CR35
  doi: 10.1145/2020408.2020587
– volume: 51
  start-page: 115
  issue: 2
  year: 2003
  ident: 473_CR28
  publication-title: Mach Learn
  doi: 10.1023/A:1022899518027
– ident: 473_CR30
  doi: 10.1007/978-3-319-17091-6_8
– volume: 28
  start-page: 851
  issue: 4
  year: 2014
  ident: 473_CR25
  publication-title: Data Min Knowl Discov
  doi: 10.1007/s10618-013-0322-1
– volume-title: C4.5: programs for machine learning
  year: 1993
  ident: 473_CR38
– volume: 24
  start-page: 123
  issue: 2
  year: 1996
  ident: 473_CR11
  publication-title: Mach Learn
– volume: 30
  start-page: 1145
  issue: 7
  year: 1997
  ident: 473_CR10
  publication-title: Pattern Recognit
  doi: 10.1016/S0031-3203(96)00142-2
– volume: 29
  start-page: 565
  issue: 3
  year: 2014
  ident: 473_CR32
  publication-title: Data Min Knowl Discov
  doi: 10.1007/s10618-014-0361-2
– ident: 473_CR16
  doi: 10.1145/1066157.1066213
– volume: 7
  start-page: 1
  year: 2006
  ident: 473_CR18
  publication-title: J Mach Learn Res
– volume: 30
  start-page: 1
  issue: 2
  year: 2015
  ident: 473_CR5
  publication-title: Data Min Knowl Discov
– ident: 473_CR52
  doi: 10.1145/1143844.1143974
– volume-title: Classification and regression trees
  year: 1984
  ident: 473_CR13
– ident: 473_CR14
  doi: 10.1137/1.9781611974010.35
– volume: 35
  start-page: 2796
  issue: 11
  year: 2013
  ident: 473_CR6
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2013.72
– ident: 473_CR37
  doi: 10.1109/BigData.2014.7004344
– volume: 25
  start-page: 322
  issue: 2
  year: 1978
  ident: 473_CR34
  publication-title: J ACM
  doi: 10.1145/322063.322075
– ident: 473_CR51
  doi: 10.1145/1031171.1031238
– volume: 26
  start-page: 3026
  issue: 12
  year: 2014
  ident: 473_CR22
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2014.2316504
– volume: 239
  start-page: 142
  year: 2013
  ident: 473_CR19
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2013.02.030
– volume: 22
  start-page: 149
  issue: 1–2
  year: 2011
  ident: 473_CR54
  publication-title: Data Min Knowl Discov
  doi: 10.1007/s10618-010-0179-5
– volume: 26
  start-page: 125
  issue: 02
  year: 2012
  ident: 473_CR9
  publication-title: Int J Pattern Recognit Artif Intell
  doi: 10.1142/S0218001412510019
– ident: 473_CR8
– volume: 74
  start-page: 281
  issue: 3
  year: 2009
  ident: 473_CR41
  publication-title: Mach Learn
  doi: 10.1007/s10994-008-5093-3
– ident: 473_CR3
  doi: 10.1137/1.9781611972818.60
– ident: 473_CR15
– ident: 473_CR27
  doi: 10.1137/1.9781611972832.64
– volume: 5
  start-page: 725
  year: 2004
  ident: 473_CR48
  publication-title: J Mach Learn Res
– volume: 20
  start-page: 832
  issue: 8
  year: 1998
  ident: 473_CR26
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.709601
SSID ssj0005230
Score 2.4923189
Snippet Shapelets are discriminative subsequences of time series, usually embedded in shapelet-based decision trees. The enumeration of time series shapelets is,...
Issue Title: ECML PKDD 2016 Journal Track Special Issue Shapelets are discriminative subsequences of time series, usually embedded in shapelet-based decision...
SourceID swepub
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1053
SubjectTerms Algorithms
Artificial Intelligence
Chemistry and Earth Sciences
Computation
Computer and Systems Sciences
Computer Science
Data mining
Data Mining and Knowledge Discovery
data- och systemvetenskap
Datasets
Decision trees
Electrocardiography
Ensemble methods
Forests
Information Storage and Retrieval
Learning
Multivariate time series
Physics
State of the art
Statistics for Engineering
Time series
Time series classification
Time series shapelets
Variables
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7oRPDij6lYnVLxx0EJtGmTZsehjiHoycluIW0SN9RN1u4w_3qTru2m6MBz06S8l_R94X3vewDnzKNCaxwjSVWCQuYlKCaSomYeDoRiOifRPDzSTje875FeUcedlmz3MiWZ_6kXit2ob4lX5gYcRgGarsIaMVd3y-Pq4tYCryOYlQazEBHmV6nM36b4HozmCLNKiv4QEM2DTnsbNgu06LZm7t2BFTWsw1bZicEtDmYd1nMiZ5LuwlmhIz34VNI1cUiO3t20b0lOKnMNQDULp3vQbd893XRQ0QgBJSEOM8QEEUzGOqLKV1gzZdWFiYi0kMRcmUQSCaWj2Pc01gY_-H4gA22AkGI0ltSEqX2oDUdDdQCujKMASxKbY5yEVAomNJO6mRDjTMoi5YBXWoQnhUq4bVbxxuf6xtaI3DLDrBH51IGr6pWPmUTGssGN0sy8OC0pNygjwBZLRg6cVo_NPrfJCzFUo4kdY4XgcUA8B65L9yxM8feClzMPVt9mBbVvB88tPhq_8Nesz7GBPYQ6cLFsYDrhfmC7_h3-a_kj2MD5frOstAbUsvFEHRsYk8Un-bb9Aqoq6gc
  priority: 102
  providerName: Springer Nature
Title Generalized random shapelet forests
URI https://link.springer.com/article/10.1007/s10618-016-0473-y
https://www.proquest.com/docview/1813205197
https://www.proquest.com/docview/1835582350
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-221556
https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-135052
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9wwEB2V3UsvhdJWTYFVUD8OrawmTuyYU7XQXVCroqrqVvRkObFdELABkj3Ar8eTOFlaqXtNnDiZGXuePeM3AG9ExJW1NCeam4KkIipIzjQne407UEbYJonm2zE_mqVfTtiJ33CrfFplNyc2E7UuC9wj_-g8UUIRb2Sfrq4JVo3C6KovobEGQzcFCzGA4f7k-PuPB0keSXtOWKSEibiPa7aH53iMiVxuRZ1mCbn92zMt4WYfIf2HTbTxQNMNeOKhYzhudf0UHpn5Jqx3ZRlCP0qfwWtPJX12Z3ToXJEuL8PqFPOcTB06jOq6q57DbDr5eXBEfC0EUqQ0rYlQTAmd24yb2FArDBIMM5VZpZlbNakiU8ZmeRxZah2EiONEJ9ZhISN4rrnzVC9gMC_n5iWEOs8SqlnuRnKRcq2EskLbvYI5fXKRmQCiTg6y8EThWK_iQi4pjlF0EpPDUHTyNoD3_SNXLUvGqsbbnXClHzCVXKo3gN3-tjN1jF-ouSkX2Aa54GnCogA-dEp58Ir_d_iu1Vv_bcip_fns11iWN3_keX0qqUM-jAfwdlXDaiHjBAv_vVr9B1vwmDZmhZlo2zCobxZmx0GXOh_BmpgejmA4Pvz9dTLy1uquzuj4HnDa7r4
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoALb0SgQBCUA8gicWLHPVSooixb-ji1qDfXiW1aAZu2yapafhS_sTN5bUFibz3HcZLxeGac-eYbgDcqksZ7njMrXcFSFRUsF1aytcYdGKd8A6LZ3ZPjg_TroThcgj99LQzBKnub2BhqWxb0j_wDeqKEU7yRfTw9Y9Q1irKrfQuNVi223ewCj2zV-tYmru8q56PP-5_GrOsqwIqUpzVTRhhlc59JFzvulSOqXmEyb6zA84cpMuN8lseR5x6dcRwnNvEYVTglcyvR5uO8N-BmmqAnp8r00ZcrkJKkrUpWKRMqHrKobamejAk2huf3NEvY7G8_OA9uh3zsP9yljb8b3YM7XaAabrSadR-W3OQB3O2bQISdTXgIrzvi6pPfzobo-Gz5K6yOCVXl6hAjYnxc9QgOrkVGj2F5Uk7cEwhtniXcihztRpFKa5Txyvq1QqD2SJW5AKJeDrroaMmpO8ZPPSdUJtFpgqKR6PQsgHfDLactJ8eiwSu9cHW3PSs9V6YAXg2XcWNRtsRMXDmlMcQ8zxMRBfC-X5QrU_z_gW_bdRvejRi8N0--bejy_Lv-UR9rjnGWkAGsLhpYTXWcUJvBp4u_4CXcGu_v7uidrb3tZ3CbNypGGLgVWK7Pp-45Bk11_qLR1BCOrntrXAJIISdy
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYS4lLdIKRAE5QCymjjxoweECttVS2FVIYp6M05st1Vh0zZZVctP49fhyWsLEnvrOY6TjOflzOdvAF7KiGvnaEYMtzlJZZSTjBlONutwoK10NYjm85jvHKQfD9nhEvzuzsIgrLLzibWjNkWO_8g3fCRKKOYbYsO1sIj94ejd2TnBDlJYae3aaTQqsmdnl377Vr7dHfq1Xqd0tP31ww5pOwyQPKVpRaRmWprMCW5jS520SNvLtHDaML8X0bnQ1oksjhx1PjDHcWIS5zMMK3lmuPf_ft4bsCxwVzSA5ffb4_0vVwAmSXNGWaaEybivqTYH93iMIDK_m09FQmZ_R8V5qttXZ_9hMq2j3-gOrLRpa7jV6NldWLKTe3C7awkRth7iPrxoaaxPflkT-jBoip9heYwYK1uFPj_2jysfwMG1SOkhDCbFxD6C0GQioYZl3ovkKTdaaieN28yZ1yUuhQ0g6uSg8pakHHtl_FBzemUUnUJgGopOzQJ43d9y1jB0LBq81glXtcZaqrlqBfC8v-zNDGsnemKLKY5BHnqasCiAN92iXJni_w981axb_27I5z08-baliosjdVodK-qzLsYDWF80sJyqOMGmg6uLv-AZ3PRmoT7tjvcewy1aaxgC4tZgUF1M7ROfQVXZ01ZVQ_h-3dbxBwQELQQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generalized+random+shapelet+forests&rft.jtitle=Data+mining+and+knowledge+discovery&rft.au=Karlsson%2C+Isak&rft.au=Papapetrou%2C+Panagiotis&rft.au=Bostr%C3%B6m%2C+Henrik&rft.date=2016-09-01&rft.issn=1384-5810&rft.eissn=1573-756X&rft.volume=30&rft.issue=5&rft.spage=1053&rft.epage=1085&rft_id=info:doi/10.1007%2Fs10618-016-0473-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10618_016_0473_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1384-5810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1384-5810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1384-5810&client=summon