Deep learning based multi-temporal crop classification

This study aims to develop a deep learning based classification framework for remotely sensed time series. The experiment was carried out in Yolo County, California, which has a very diverse irrigated agricultural system dominated by economic crops. For the challenging task of classifying summer cro...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing of environment Vol. 221; pp. 430 - 443
Main Authors Zhong, Liheng, Hu, Lina, Zhou, Hang
Format Journal Article
LanguageEnglish
Published New York Elsevier Inc 01.02.2019
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study aims to develop a deep learning based classification framework for remotely sensed time series. The experiment was carried out in Yolo County, California, which has a very diverse irrigated agricultural system dominated by economic crops. For the challenging task of classifying summer crops using Landsat Enhanced Vegetation Index (EVI) time series, two types of deep learning models were designed: one is based on Long Short-Term Memory (LSTM), and the other is based on one-dimensional convolutional (Conv1D) layers. Three widely-used classifiers were also tested for comparison, including a gradient boosting machine called XGBoost, Random Forest, and Support Vector Machine. Although LSTM is widely used for sequential data representation, in this study its accuracy (82.41%) and F1 score (0.67) were the lowest among all the classifiers. Among non-deep-learning classifiers, XGBoost achieved the best result with 84.17% accuracy and an F1 score of 0.69. The highest accuracy (85.54%) and F1 score (0.73) were achieved by the Conv1D-based model, which mainly consists of a stack of Conv1D layers and an inception module. The behavior of the Conv1D-based model was inspected by visualizing the activation on different layers. The model employs EVI time series by examining shapes at various scales in a hierarchical manner. Lower Conv1D layers of the optimized model capture small scale temporal variations, while upper layers focus on overall seasonal patterns. Conv1D layers were used as an embedded multi-level feature extractor in the classification model which automatically extracts features from input time series during training. The automated feature extraction reduces the dependency on manual feature engineering and pre-defined equations of crop growing cycles. This study shows that the Conv1D-based deep learning framework provides an effective and efficient method of time series representation in multi-temporal classification tasks. •Deep neural networks were developed for crop classification.•Deep neural network achieved 85.54% accuracy and an F1 score of 0.73.•The best non-deep-learning classifier achieved 84.17% accuracy and an F1 score of 0.69.•One-dimensional convolutional neural network was used as automated temporal feature extractor.•One-dimensional convolutional neural network identifies complex seasonal dynamics of economic crops.
AbstractList This study aims to develop a deep learning based classification framework for remotely sensed time series. The experiment was carried out in Yolo County, California, which has a very diverse irrigated agricultural system dominated by economic crops. For the challenging task of classifying summer crops using Landsat Enhanced Vegetation Index (EVI) time series, two types of deep learning models were designed: one is based on Long Short-Term Memory (LSTM), and the other is based on one-dimensional convolutional (Conv1D) layers. Three widely-used classifiers were also tested for comparison, including a gradient boosting machine called XGBoost, Random Forest, and Support Vector Machine. Although LSTM is widely used for sequential data representation, in this study its accuracy (82.41%) and F1 score (0.67) were the lowest among all the classifiers. Among non-deep-learning classifiers, XGBoost achieved the best result with 84.17% accuracy and an F1 score of 0.69. The highest accuracy (85.54%) and F1 score (0.73) were achieved by the Conv1D-based model, which mainly consists of a stack of Conv1D layers and an inception module. The behavior of the Conv1D-based model was inspected by visualizing the activation on different layers. The model employs EVI time series by examining shapes at various scales in a hierarchical manner. Lower Conv1D layers of the optimized model capture small scale temporal variations, while upper layers focus on overall seasonal patterns. Conv1D layers were used as an embedded multi-level feature extractor in the classification model which automatically extracts features from input time series during training. The automated feature extraction reduces the dependency on manual feature engineering and pre-defined equations of crop growing cycles. This study shows that the Conv1D-based deep learning framework provides an effective and efficient method of time series representation in multi-temporal classification tasks.
This study aims to develop a deep learning based classification framework for remotely sensed time series. The experiment was carried out in Yolo County, California, which has a very diverse irrigated agricultural system dominated by economic crops. For the challenging task of classifying summer crops using Landsat Enhanced Vegetation Index (EVI) time series, two types of deep learning models were designed: one is based on Long Short-Term Memory (LSTM), and the other is based on one-dimensional convolutional (Conv1D) layers. Three widely-used classifiers were also tested for comparison, including a gradient boosting machine called XGBoost, Random Forest, and Support Vector Machine. Although LSTM is widely used for sequential data representation, in this study its accuracy (82.41%) and F1 score (0.67) were the lowest among all the classifiers. Among non-deep-learning classifiers, XGBoost achieved the best result with 84.17% accuracy and an F1 score of 0.69. The highest accuracy (85.54%) and F1 score (0.73) were achieved by the Conv1D-based model, which mainly consists of a stack of Conv1D layers and an inception module. The behavior of the Conv1D-based model was inspected by visualizing the activation on different layers. The model employs EVI time series by examining shapes at various scales in a hierarchical manner. Lower Conv1D layers of the optimized model capture small scale temporal variations, while upper layers focus on overall seasonal patterns. Conv1D layers were used as an embedded multi-level feature extractor in the classification model which automatically extracts features from input time series during training. The automated feature extraction reduces the dependency on manual feature engineering and pre-defined equations of crop growing cycles. This study shows that the Conv1D-based deep learning framework provides an effective and efficient method of time series representation in multi-temporal classification tasks. •Deep neural networks were developed for crop classification.•Deep neural network achieved 85.54% accuracy and an F1 score of 0.73.•The best non-deep-learning classifier achieved 84.17% accuracy and an F1 score of 0.69.•One-dimensional convolutional neural network was used as automated temporal feature extractor.•One-dimensional convolutional neural network identifies complex seasonal dynamics of economic crops.
Author Zhong, Liheng
Zhou, Hang
Hu, Lina
Author_xml – sequence: 1
  givenname: Liheng
  orcidid: 0000-0002-8161-9168
  surname: Zhong
  fullname: Zhong, Liheng
  email: lihengzhong@berkeley.edu
  organization: Department of Water Resources, State of California, Sacramento, CA 95814, United States
– sequence: 2
  givenname: Lina
  surname: Hu
  fullname: Hu, Lina
  organization: Department of Sociology, Tsinghua University, Beijing 100084, China
– sequence: 3
  givenname: Hang
  surname: Zhou
  fullname: Zhou, Hang
  organization: Descartes Labs, Inc., Santa Fe, NM 87501, United States
BookMark eNp9kD1PwzAQQC1UJNrCD2CLxMKS4LOdOBETKp9SJRaYratzQa7SJNgpEv8et2Xq0OmW9053b8YmXd8RY9fAM-BQ3K0zHygTHMoMIONSnLEplLpKueZqwqacS5UqkesLNgthzTnkpYYpKx6JhqQl9J3rvpIVBqqTzbYdXTrSZug9ton1_ZDYFkNwjbM4ur67ZOcNtoGu_uecfT4_fSxe0-X7y9viYZlaJdSYlpVCLAXailDLxmJd1KWtNQqUhWjK3IqmhgYFqJW1coV6FfkSJKGUlVJyzm4Pewfff28pjGbjgqW2xY76bTACdCFVXuk8ojdH6Lrf-i5et6eKyGiIlD5Q8akQPDXGunH_0ujRtQa42fU0axN7ml1PA2Biz2jCkTl4t0H_e9K5PzgUG_048iZYR52l2nmyo6l7d8L-A0bsj9Y
CitedBy_id crossref_primary_10_3390_agronomy14081800
crossref_primary_10_1088_2515_7620_acabb7
crossref_primary_10_1016_j_asr_2024_11_038
crossref_primary_10_1016_j_rse_2022_113348
crossref_primary_10_3390_rs15102515
crossref_primary_10_3390_su141912563
crossref_primary_10_61186_jgit_12_1_17
crossref_primary_10_1016_j_jag_2021_102437
crossref_primary_10_3390_agriculture12071033
crossref_primary_10_1016_j_jag_2021_102436
crossref_primary_10_3390_rs11232881
crossref_primary_10_1016_j_ecoinf_2022_101678
crossref_primary_10_1016_j_jag_2020_102278
crossref_primary_10_1016_j_compag_2024_109370
crossref_primary_10_3390_rs14122833
crossref_primary_10_1016_j_isprsjprs_2023_11_016
crossref_primary_10_1016_j_nucengdes_2021_111328
crossref_primary_10_1016_j_cej_2025_160780
crossref_primary_10_3390_f14091881
crossref_primary_10_3390_rs12244162
crossref_primary_10_3390_rs11172029
crossref_primary_10_3390_agronomy13122915
crossref_primary_10_4236_ars_2024_132003
crossref_primary_10_3390_agronomy11040654
crossref_primary_10_3390_rs14205096
crossref_primary_10_1109_JSTARS_2023_3263755
crossref_primary_10_1016_j_eswa_2021_114842
crossref_primary_10_3389_frsen_2024_1459000
crossref_primary_10_3389_fpls_2023_1241921
crossref_primary_10_1016_j_compenvurbsys_2024_102072
crossref_primary_10_30897_ijegeo_858456
crossref_primary_10_3390_s21165556
crossref_primary_10_1016_j_jag_2023_103193
crossref_primary_10_1177_13694332241289163
crossref_primary_10_3390_rs15194657
crossref_primary_10_1111_2041_210X_13564
crossref_primary_10_3390_rs12244052
crossref_primary_10_1016_j_jag_2020_102294
crossref_primary_10_1016_j_cj_2022_07_005
crossref_primary_10_1016_j_eja_2020_126153
crossref_primary_10_3390_s21030877
crossref_primary_10_1007_s11277_023_10599_7
crossref_primary_10_1109_TGRS_2023_3321156
crossref_primary_10_1016_j_jag_2021_102651
crossref_primary_10_1029_2024EF004468
crossref_primary_10_1108_IJPPM_11_2023_0620
crossref_primary_10_3390_rs11050523
crossref_primary_10_1109_TGRS_2021_3100637
crossref_primary_10_1109_JSTARS_2021_3098817
crossref_primary_10_3390_rs16244755
crossref_primary_10_3390_rs11151780
crossref_primary_10_3390_rs14225732
crossref_primary_10_1038_s41598_020_74215_5
crossref_primary_10_3390_rs14030634
crossref_primary_10_3390_rs14225739
crossref_primary_10_3390_rs17030415
crossref_primary_10_1016_j_rse_2023_113886
crossref_primary_10_3390_f14112224
crossref_primary_10_1002_spe_3324
crossref_primary_10_3390_rs16173115
crossref_primary_10_3389_fpls_2023_1250844
crossref_primary_10_3390_s19204363
crossref_primary_10_3390_rs11222716
crossref_primary_10_3390_rs16071227
crossref_primary_10_1088_1748_9326_ab7df9
crossref_primary_10_1109_TGRS_2021_3099522
crossref_primary_10_3390_rs16244620
crossref_primary_10_3390_rs11141639
crossref_primary_10_3389_fenvs_2022_1089007
crossref_primary_10_3390_app11052238
crossref_primary_10_1109_JSTARS_2023_3342994
crossref_primary_10_14358_PERS_21_00061R2
crossref_primary_10_1109_ACCESS_2019_2961399
crossref_primary_10_1007_s00521_022_07104_9
crossref_primary_10_1080_15481603_2023_2196117
crossref_primary_10_1109_ACCESS_2020_2999865
crossref_primary_10_1007_s13280_024_02023_6
crossref_primary_10_3390_agriculture14040513
crossref_primary_10_1007_s11042_024_18617_x
crossref_primary_10_1016_j_compag_2021_106188
crossref_primary_10_3390_rs13204160
crossref_primary_10_1016_j_aiia_2021_11_004
crossref_primary_10_1109_TGRS_2023_3348653
crossref_primary_10_1007_s12517_022_09677_0
crossref_primary_10_3390_rs14122758
crossref_primary_10_1080_10106049_2022_2095446
crossref_primary_10_1007_s00521_020_05325_4
crossref_primary_10_1080_01431161_2020_1771790
crossref_primary_10_3390_electronics12020348
crossref_primary_10_1007_s11042_020_10096_0
crossref_primary_10_1016_j_cj_2021_12_011
crossref_primary_10_1016_j_jag_2025_104404
crossref_primary_10_1109_TGRS_2023_3343071
crossref_primary_10_1016_j_aiig_2021_08_001
crossref_primary_10_1109_ACCESS_2020_2969812
crossref_primary_10_3390_rs17030378
crossref_primary_10_1016_j_isprsjprs_2024_12_015
crossref_primary_10_1007_s00190_023_01768_4
crossref_primary_10_3390_rs16142653
crossref_primary_10_1016_j_isprsjprs_2024_06_021
crossref_primary_10_1109_TGRS_2022_3160617
crossref_primary_10_5194_tc_15_835_2021
crossref_primary_10_3390_rs12101620
crossref_primary_10_3390_f15081467
crossref_primary_10_1109_TGRS_2024_3361895
crossref_primary_10_1175_JHM_D_22_0011_1
crossref_primary_10_1016_j_compag_2023_108097
crossref_primary_10_1109_ACCESS_2024_3458929
crossref_primary_10_1109_TGRS_2023_3335214
crossref_primary_10_1016_j_rse_2023_113653
crossref_primary_10_1109_TETCI_2023_3290027
crossref_primary_10_3390_rs12152493
crossref_primary_10_3390_rs16081447
crossref_primary_10_1007_s11042_022_13055_z
crossref_primary_10_3390_rs14205280
crossref_primary_10_1002_agj2_21382
crossref_primary_10_30910_turkjans_1586291
crossref_primary_10_1088_1742_6596_1767_1_012026
crossref_primary_10_3390_rs14040873
crossref_primary_10_52547_jgst_12_3_1
crossref_primary_10_1109_JSTARS_2022_3220698
crossref_primary_10_3390_agriculture14081285
crossref_primary_10_3390_rs12203314
crossref_primary_10_3390_rs13173504
crossref_primary_10_3390_rs15163923
crossref_primary_10_3390_app14093545
crossref_primary_10_1007_s10586_024_04795_8
crossref_primary_10_3390_hydrology12030059
crossref_primary_10_1016_j_rse_2020_111946
crossref_primary_10_1080_10106049_2020_1861662
crossref_primary_10_1109_JSTARS_2022_3211994
crossref_primary_10_3390_agriengineering7030054
crossref_primary_10_1016_j_jag_2024_104204
crossref_primary_10_1016_j_rse_2023_113799
crossref_primary_10_3390_rs14195062
crossref_primary_10_3389_fpls_2022_901042
crossref_primary_10_1109_JSTARS_2025_3531886
crossref_primary_10_1016_j_compag_2021_106090
crossref_primary_10_1016_j_isprsjprs_2023_03_007
crossref_primary_10_1109_JSTARS_2022_3142395
crossref_primary_10_3390_land12030545
crossref_primary_10_3390_rs16111946
crossref_primary_10_3390_rs16214071
crossref_primary_10_1080_17538947_2021_1950853
crossref_primary_10_3390_rs13020249
crossref_primary_10_1016_j_compag_2024_109340
crossref_primary_10_1007_s11442_023_2150_6
crossref_primary_10_1007_s11119_024_10203_3
crossref_primary_10_1007_s12524_023_01760_7
crossref_primary_10_3390_rs16142547
crossref_primary_10_3390_rs16081464
crossref_primary_10_1016_j_rse_2020_111952
crossref_primary_10_1016_j_rse_2020_111951
crossref_primary_10_1109_JSTARS_2020_2973602
crossref_primary_10_1016_j_compag_2022_107478
crossref_primary_10_3390_s23041779
crossref_primary_10_1109_JSTARS_2021_3103754
crossref_primary_10_1109_TGRS_2024_3394653
crossref_primary_10_1016_j_jag_2022_102799
crossref_primary_10_1016_j_landusepol_2024_107260
crossref_primary_10_1080_01431161_2020_1766150
crossref_primary_10_3390_agronomy13123037
crossref_primary_10_3390_app11094292
crossref_primary_10_3390_rs15051361
crossref_primary_10_3390_rs15194807
crossref_primary_10_1109_JBHI_2024_3439568
crossref_primary_10_3390_ijerph192215108
crossref_primary_10_3390_rs12020226
crossref_primary_10_3390_rs13245183
crossref_primary_10_1016_j_rsase_2020_100340
crossref_primary_10_1080_01431161_2024_2425118
crossref_primary_10_1016_j_compag_2019_104989
crossref_primary_10_1080_10106049_2023_2240283
crossref_primary_10_1016_j_ecolind_2024_112027
crossref_primary_10_1155_2022_4268982
crossref_primary_10_7780_kjrs_2024_40_6_3_3
crossref_primary_10_1109_ACCESS_2022_3143524
crossref_primary_10_1016_j_rsase_2021_100627
crossref_primary_10_1109_TGRS_2024_3483110
crossref_primary_10_3390_rs14030559
crossref_primary_10_1016_j_heliyon_2023_e21253
crossref_primary_10_1080_01431161_2020_1823041
crossref_primary_10_1016_j_eswa_2021_115530
crossref_primary_10_1080_10095020_2021_2017237
crossref_primary_10_1016_j_agsy_2022_103462
crossref_primary_10_1016_j_isprsjprs_2022_11_020
crossref_primary_10_1038_s41598_023_43317_1
crossref_primary_10_1016_j_jag_2024_104181
crossref_primary_10_1016_j_agsy_2021_103167
crossref_primary_10_1016_j_procs_2024_06_390
crossref_primary_10_2478_amns_2024_3442
crossref_primary_10_3390_rs12081298
crossref_primary_10_3390_rs14030566
crossref_primary_10_3390_su14031615
crossref_primary_10_1016_j_indcrop_2024_118635
crossref_primary_10_1016_j_rse_2019_111411
crossref_primary_10_5194_gmd_15_6637_2022
crossref_primary_10_1016_j_earscirev_2019_103076
crossref_primary_10_1080_01431161_2020_1783713
crossref_primary_10_1109_TGRS_2023_3299617
crossref_primary_10_1016_j_jenvman_2023_117693
crossref_primary_10_1016_j_jag_2022_102890
crossref_primary_10_1016_j_ecoser_2024_101614
crossref_primary_10_1080_15481603_2023_2211881
crossref_primary_10_1016_j_isprsjprs_2023_04_002
crossref_primary_10_1109_JSTARS_2023_3316304
crossref_primary_10_1109_JSTARS_2025_3527017
crossref_primary_10_2174_2210298102666220616114622
crossref_primary_10_3390_rs12172726
crossref_primary_10_1016_j_jag_2022_102776
crossref_primary_10_1016_j_jhydrol_2024_131994
crossref_primary_10_1109_JSTARS_2021_3112209
crossref_primary_10_1080_15481603_2024_2395700
crossref_primary_10_3390_agriculture10100483
crossref_primary_10_1016_j_isprsjprs_2021_01_024
crossref_primary_10_1016_j_acags_2025_100223
crossref_primary_10_3390_rs14194858
crossref_primary_10_1109_JSTARS_2021_3062411
crossref_primary_10_3390_rs12020321
crossref_primary_10_3390_rs15164021
crossref_primary_10_3390_rs16061026
crossref_primary_10_2174_1389202923666220927105311
crossref_primary_10_1016_j_jag_2025_104426
crossref_primary_10_1109_JSTARS_2024_3503756
crossref_primary_10_3390_rs14205232
crossref_primary_10_1021_acs_est_3c01269
crossref_primary_10_3390_agronomy14051084
crossref_primary_10_3390_rs13132477
crossref_primary_10_1080_15481603_2022_2104999
crossref_primary_10_3390_rs16132431
crossref_primary_10_1016_j_jastp_2025_106483
crossref_primary_10_3390_rs13122317
crossref_primary_10_3390_app14051749
crossref_primary_10_3390_su14106079
crossref_primary_10_1007_s11042_024_18849_x
crossref_primary_10_1016_j_heliyon_2024_e30470
crossref_primary_10_1109_JSTARS_2021_3104726
crossref_primary_10_3390_machines11121049
crossref_primary_10_1016_j_jag_2021_102351
crossref_primary_10_1080_10106049_2023_2184500
crossref_primary_10_3390_rs14174193
crossref_primary_10_3390_drones6120399
crossref_primary_10_1016_j_jag_2021_102477
crossref_primary_10_1016_j_jag_2021_102598
crossref_primary_10_3389_fpls_2023_1130659
crossref_primary_10_1007_s12524_020_01303_4
crossref_primary_10_1590_1983_21252024v3711701rc
crossref_primary_10_3390_rs16193607
crossref_primary_10_1017_wsc_2022_53
crossref_primary_10_1080_10106049_2023_2207550
crossref_primary_10_3390_s24216915
crossref_primary_10_3390_rs13214372
crossref_primary_10_1016_j_rse_2021_112600
crossref_primary_10_1016_j_rse_2021_112603
crossref_primary_10_3389_fpls_2022_1017803
crossref_primary_10_1080_07038992_2021_1926952
crossref_primary_10_3390_app11219816
crossref_primary_10_1016_j_jag_2022_102762
crossref_primary_10_3390_agronomy9030142
crossref_primary_10_3390_rs16193717
crossref_primary_10_3390_s22228600
crossref_primary_10_3390_rs13193994
crossref_primary_10_3390_su15086632
crossref_primary_10_1186_s43170_023_00193_z
crossref_primary_10_3390_rs14215373
crossref_primary_10_3390_rs14205216
crossref_primary_10_3390_rs17040680
crossref_primary_10_1016_j_jag_2021_102451
crossref_primary_10_1080_01431161_2023_2218972
crossref_primary_10_1080_15481603_2022_2156123
crossref_primary_10_3390_rs12071074
crossref_primary_10_1016_j_rsase_2021_100639
crossref_primary_10_3390_rs12071073
crossref_primary_10_3390_geomatics3010004
crossref_primary_10_1016_j_jag_2025_104474
crossref_primary_10_1016_j_rsase_2023_101090
crossref_primary_10_3390_rs13193953
crossref_primary_10_1016_j_isprsjprs_2020_01_028
crossref_primary_10_1109_TGRS_2021_3062751
crossref_primary_10_3390_agronomy13071723
crossref_primary_10_3390_rs14061379
crossref_primary_10_1016_j_isprsjprs_2023_12_005
crossref_primary_10_1016_j_rse_2022_113088
crossref_primary_10_1080_19479832_2021_2019133
crossref_primary_10_1016_j_iswa_2022_200102
crossref_primary_10_3390_s21030958
crossref_primary_10_1016_j_isprsjprs_2024_07_007
crossref_primary_10_1016_j_jag_2021_102440
crossref_primary_10_3390_rs14215478
crossref_primary_10_3390_s22030719
crossref_primary_10_1016_j_compag_2022_106794
crossref_primary_10_1016_j_rse_2021_112822
crossref_primary_10_1016_j_cropro_2023_106389
crossref_primary_10_1016_j_ecoinf_2024_102563
crossref_primary_10_1016_j_isprsjprs_2022_10_005
crossref_primary_10_1016_j_atech_2024_100641
crossref_primary_10_3390_rs12172814
crossref_primary_10_1016_j_isprsjprs_2023_12_012
crossref_primary_10_3390_rs15051448
crossref_primary_10_1016_j_future_2024_107691
crossref_primary_10_1016_j_jag_2024_104047
crossref_primary_10_1016_j_compag_2024_109185
crossref_primary_10_1007_s10668_024_05144_w
crossref_primary_10_1007_s12524_024_01977_0
crossref_primary_10_1016_j_jag_2024_104040
crossref_primary_10_1007_s11356_021_13503_7
crossref_primary_10_1016_j_rse_2019_111350
crossref_primary_10_1016_j_rse_2024_114302
crossref_primary_10_3390_agronomy14010137
crossref_primary_10_1016_j_isprsjprs_2022_04_018
crossref_primary_10_3390_rs15133212
crossref_primary_10_1016_j_rse_2019_111598
crossref_primary_10_3390_rs16091505
crossref_primary_10_1109_TGRS_2021_3113014
crossref_primary_10_3390_rs14184639
crossref_primary_10_3390_rs13224522
crossref_primary_10_3390_rs12050832
crossref_primary_10_1080_10106049_2021_1878292
crossref_primary_10_1016_j_isprsjprs_2024_01_016
crossref_primary_10_1088_2515_7620_adb9c0
crossref_primary_10_3390_s22155853
crossref_primary_10_1109_JSTARS_2020_3046053
crossref_primary_10_1186_s13595_023_01184_w
crossref_primary_10_1080_01431161_2022_2093622
crossref_primary_10_1080_10106049_2024_2380372
crossref_primary_10_1109_JSTARS_2024_3510468
crossref_primary_10_1186_s40537_023_00735_2
crossref_primary_10_1016_j_rse_2025_114711
crossref_primary_10_3390_rs15040974
crossref_primary_10_1016_j_rse_2024_114430
crossref_primary_10_1016_j_scitotenv_2020_138869
crossref_primary_10_3390_rs15010091
crossref_primary_10_1002_int_22560
crossref_primary_10_1016_j_rsase_2022_100843
crossref_primary_10_1080_15481603_2024_2387393
crossref_primary_10_3390_rs12162534
crossref_primary_10_3390_rs12162655
crossref_primary_10_1109_JSTARS_2021_3085397
crossref_primary_10_3390_s21206894
crossref_primary_10_26833_ijeg_1252298
crossref_primary_10_3390_rs12050814
crossref_primary_10_1016_j_isprsjprs_2024_08_018
crossref_primary_10_1016_j_indcrop_2024_118358
crossref_primary_10_1016_j_foreco_2024_122154
crossref_primary_10_1109_MGRS_2024_3393010
crossref_primary_10_1080_10106049_2021_1983034
crossref_primary_10_3390_rs13224668
crossref_primary_10_1109_ACCESS_2020_2993538
crossref_primary_10_3390_rs16224225
crossref_primary_10_1016_j_jhydrol_2024_131598
crossref_primary_10_3390_app12125919
crossref_primary_10_3390_rs13245000
crossref_primary_10_1016_j_rsase_2024_101371
crossref_primary_10_1080_24694452_2022_2077168
crossref_primary_10_3390_rs14051095
crossref_primary_10_1016_j_matpr_2021_04_326
crossref_primary_10_3390_rs14112697
crossref_primary_10_1080_07038992_2024_2448169
crossref_primary_10_15832_ankutbd_1339516
crossref_primary_10_1080_01431161_2023_2232552
crossref_primary_10_1016_j_rsase_2024_101259
crossref_primary_10_1080_10106049_2021_1892213
crossref_primary_10_3390_rs15040875
crossref_primary_10_1016_j_jenvman_2024_122251
crossref_primary_10_1016_j_rse_2021_112751
crossref_primary_10_1016_j_jenvman_2023_118817
crossref_primary_10_1051_epjconf_202125103029
crossref_primary_10_1080_13658816_2021_2004602
crossref_primary_10_1016_j_rse_2020_112048
crossref_primary_10_1016_j_isprsjprs_2020_02_022
crossref_primary_10_1016_j_compag_2020_105583
crossref_primary_10_1109_LGRS_2022_3230421
crossref_primary_10_1615_JPorMedia_2024052865
crossref_primary_10_1016_j_isprsjprs_2020_08_004
crossref_primary_10_3390_rs15082014
crossref_primary_10_3390_rs14081840
crossref_primary_10_1109_TGRS_2021_3120914
crossref_primary_10_1016_j_cosust_2019_05_003
crossref_primary_10_1016_j_srs_2024_100123
crossref_primary_10_1080_22797254_2020_1727777
crossref_primary_10_3389_ffgc_2022_1032066
crossref_primary_10_1016_j_rse_2024_114107
crossref_primary_10_3390_rs12081232
crossref_primary_10_1109_JSTARS_2022_3217665
crossref_primary_10_3390_drones8010013
crossref_primary_10_3390_rs11080990
crossref_primary_10_3390_rs14102341
crossref_primary_10_3389_fpls_2022_1030595
crossref_primary_10_3390_rs15082102
crossref_primary_10_1016_j_nucengdes_2021_111097
crossref_primary_10_3390_rs15122963
crossref_primary_10_1016_j_rse_2024_114110
crossref_primary_10_1016_j_srs_2024_100152
crossref_primary_10_3390_rs13142790
crossref_primary_10_3390_rs13214405
crossref_primary_10_3390_rs16020235
crossref_primary_10_1016_j_rse_2019_111624
crossref_primary_10_1109_JSTARS_2022_3219816
crossref_primary_10_3390_rs14030498
crossref_primary_10_3390_rs16193568
crossref_primary_10_1016_j_rse_2024_114476
crossref_primary_10_3390_rs15205043
crossref_primary_10_1016_j_rse_2020_112103
crossref_primary_10_3390_rs15174156
crossref_primary_10_3390_s21113758
crossref_primary_10_1590_1807_1929_agriambi_v26n6p466_476
crossref_primary_10_1007_s11056_023_09974_w
crossref_primary_10_3390_rs12193119
crossref_primary_10_3390_s24196313
crossref_primary_10_1016_j_isprsjprs_2020_08_025
crossref_primary_10_3390_rs15164108
crossref_primary_10_1186_s12302_020_00397_4
crossref_primary_10_4995_raet_2020_13337
crossref_primary_10_3390_rs12122065
crossref_primary_10_1080_17538947_2024_2310728
crossref_primary_10_3390_rs11242925
crossref_primary_10_1016_j_compeleceng_2019_04_011
crossref_primary_10_1016_j_ecoinf_2023_102333
crossref_primary_10_1016_j_rsase_2025_101525
crossref_primary_10_3390_agronomy9090556
crossref_primary_10_3390_rs12081256
crossref_primary_10_1016_j_isprsjprs_2020_02_008
crossref_primary_10_1109_TGRS_2024_3415773
crossref_primary_10_1016_j_compag_2022_107497
crossref_primary_10_1109_JSTARS_2025_3525552
crossref_primary_10_3390_w12112992
crossref_primary_10_3390_rs16122150
crossref_primary_10_1109_TGRS_2024_3386171
crossref_primary_10_1016_j_compag_2022_107491
crossref_primary_10_1016_j_isprsjprs_2022_06_012
crossref_primary_10_3390_rs16234581
crossref_primary_10_1016_j_isprsjprs_2022_12_005
crossref_primary_10_3390_rs11242912
crossref_primary_10_1016_j_engappai_2024_109460
crossref_primary_10_1016_j_rse_2024_114252
crossref_primary_10_1007_s11042_024_19737_0
crossref_primary_10_1186_s13007_023_01096_w
crossref_primary_10_3390_app12105067
crossref_primary_10_1109_TGRS_2022_3174009
crossref_primary_10_3390_rs13214304
crossref_primary_10_1016_j_srs_2023_100094
crossref_primary_10_3390_rs12193237
crossref_primary_10_1016_j_asr_2022_11_046
crossref_primary_10_3390_rs14081809
crossref_primary_10_1016_j_compag_2022_107249
crossref_primary_10_3390_rs14081929
crossref_primary_10_3389_fpls_2023_1196634
crossref_primary_10_1109_JSTARS_2021_3062073
crossref_primary_10_1016_j_rsase_2023_100964
crossref_primary_10_1109_JSTARS_2022_3150430
crossref_primary_10_3390_rs13071355
crossref_primary_10_1109_LGRS_2024_3399774
crossref_primary_10_3390_rs13091740
crossref_primary_10_1016_j_isprsjprs_2024_01_025
crossref_primary_10_1109_JSTARS_2021_3055784
crossref_primary_10_3390_rs16112007
crossref_primary_10_3390_agronomy12071583
crossref_primary_10_1016_j_rse_2024_114385
crossref_primary_10_1016_j_conbuildmat_2024_137684
crossref_primary_10_1016_j_rse_2024_114381
crossref_primary_10_1109_JSTARS_2024_3373489
crossref_primary_10_3390_s22176609
crossref_primary_10_1080_01431161_2023_2197130
crossref_primary_10_1016_j_rse_2024_114387
crossref_primary_10_1109_TGRS_2022_3154406
crossref_primary_10_3390_rs14215624
crossref_primary_10_1002_esp_6009
crossref_primary_10_3390_rs13142749
crossref_primary_10_1109_JSTARS_2022_3218919
crossref_primary_10_3390_rs11121505
crossref_primary_10_1016_j_jenvman_2022_114560
crossref_primary_10_1142_S0218001421520157
crossref_primary_10_3390_rs14215625
crossref_primary_10_1007_s12517_022_10246_8
crossref_primary_10_3390_rs16020270
crossref_primary_10_1016_j_isprsjprs_2023_01_005
crossref_primary_10_3390_rs13173378
crossref_primary_10_1109_TGRS_2022_3175635
crossref_primary_10_21923_jesd_559887
crossref_primary_10_1145_3627707
crossref_primary_10_1109_LGRS_2019_2946951
crossref_primary_10_3390_plants12030440
crossref_primary_10_1590_1809_4430_eng_agric_v42n2e20210177_2022
crossref_primary_10_3390_rs14153607
crossref_primary_10_3390_rs13091629
crossref_primary_10_3390_agriculture13040906
crossref_primary_10_1109_JSTARS_2023_3237500
crossref_primary_10_3389_fenvs_2023_1207882
crossref_primary_10_3390_rs13163319
crossref_primary_10_1016_j_patcog_2023_109773
crossref_primary_10_1080_01431161_2024_2318773
crossref_primary_10_3390_rs16234579
crossref_primary_10_3390_s19102398
crossref_primary_10_1038_s41598_024_80327_z
crossref_primary_10_1117_1_JRS_17_038503
crossref_primary_10_3390_rs14092120
crossref_primary_10_1016_j_srs_2022_100059
crossref_primary_10_1016_S2095_3119_19_62812_1
crossref_primary_10_1016_j_ecoinf_2021_101325
crossref_primary_10_1016_j_jag_2023_103595
crossref_primary_10_3390_rs11070861
crossref_primary_10_3389_frsen_2024_1483295
crossref_primary_10_3390_agriculture14020271
crossref_primary_10_3390_rs13173488
crossref_primary_10_3390_rs16091481
crossref_primary_10_1186_s40537_021_00530_x
crossref_primary_10_3390_rs13234846
crossref_primary_10_1038_s41597_021_00827_9
crossref_primary_10_1016_j_isprsjprs_2020_11_022
crossref_primary_10_3390_agriculture13010010
crossref_primary_10_3390_rs15092343
crossref_primary_10_1016_j_jechem_2023_03_030
crossref_primary_10_1016_j_rse_2021_112599
crossref_primary_10_3390_agriculture14010002
crossref_primary_10_3390_rs16234548
crossref_primary_10_3390_rs12183062
crossref_primary_10_1007_s00382_023_06874_9
crossref_primary_10_3390_rs14215605
crossref_primary_10_1007_s11694_024_03032_5
crossref_primary_10_1016_j_jag_2022_103069
crossref_primary_10_3390_f10090818
crossref_primary_10_3390_jimaging6070068
crossref_primary_10_1016_j_chemosphere_2023_140989
crossref_primary_10_1016_j_ecoinf_2021_101214
crossref_primary_10_3390_f14091823
crossref_primary_10_1080_15481603_2023_2177448
crossref_primary_10_1016_j_rse_2022_112994
crossref_primary_10_1016_j_jag_2024_103798
crossref_primary_10_3390_rs11222673
crossref_primary_10_1016_j_rse_2021_112468
crossref_primary_10_3390_w12082088
crossref_primary_10_1109_LGRS_2021_3095505
crossref_primary_10_3390_rs13091661
crossref_primary_10_1016_j_cose_2020_102168
crossref_primary_10_3390_app13053148
crossref_primary_10_3390_f14061193
crossref_primary_10_3390_rs16050823
crossref_primary_10_3390_agriengineering6020106
crossref_primary_10_1007_s11227_023_05533_4
crossref_primary_10_1371_journal_pone_0239746
crossref_primary_10_1016_j_catena_2022_106130
crossref_primary_10_1016_j_isprsjprs_2020_06_006
crossref_primary_10_1109_TGRS_2023_3234527
crossref_primary_10_3390_agriculture15010092
crossref_primary_10_1016_j_compag_2024_109421
crossref_primary_10_3390_ijgi9110648
crossref_primary_10_1109_JSTARS_2024_3366883
crossref_primary_10_3390_rs16081421
crossref_primary_10_1093_insilicoplants_diab017
crossref_primary_10_3390_rs13142785
crossref_primary_10_1080_10095020_2024_2336604
crossref_primary_10_3390_electronics13173466
crossref_primary_10_1016_j_isprsjprs_2024_10_013
crossref_primary_10_1016_j_isprsjprs_2024_04_021
crossref_primary_10_3390_rs14235951
crossref_primary_10_3390_rs14153776
crossref_primary_10_3390_rs15010175
crossref_primary_10_34133_remotesensing_0285
crossref_primary_10_3390_rs13020197
crossref_primary_10_3390_rs15010056
crossref_primary_10_1016_j_isprsjprs_2023_09_009
crossref_primary_10_1016_j_isprsjprs_2020_12_010
crossref_primary_10_1016_j_rse_2021_112292
crossref_primary_10_3390_rs13091666
crossref_primary_10_1016_j_compag_2023_108487
crossref_primary_10_1109_JSTARS_2024_3428627
crossref_primary_10_3390_rs11070790
crossref_primary_10_3390_rs14071746
crossref_primary_10_1080_15481603_2019_1650447
crossref_primary_10_3390_rs13010157
crossref_primary_10_3390_rs15153859
crossref_primary_10_3390_rs13234891
crossref_primary_10_3390_rs14163982
crossref_primary_10_1007_s12517_023_11688_4
crossref_primary_10_1109_JSTARS_2024_3402114
crossref_primary_10_3390_rs13010039
crossref_primary_10_3390_rs13050835
crossref_primary_10_3390_rs12183053
crossref_primary_10_3390_rs15235515
crossref_primary_10_1002_rse2_337
crossref_primary_10_1155_2022_9717843
crossref_primary_10_3390_rs11131619
crossref_primary_10_1109_JSTARS_2021_3107982
crossref_primary_10_3390_rs15010047
crossref_primary_10_1080_15481603_2024_2385170
crossref_primary_10_1016_j_aquaculture_2023_739474
crossref_primary_10_3390_rs11141665
crossref_primary_10_1109_JSTARS_2020_3036602
crossref_primary_10_1016_j_compag_2023_108012
crossref_primary_10_1109_TGRS_2024_3442171
crossref_primary_10_1016_j_compag_2024_108631
crossref_primary_10_1051_e3sconf_202460003007
crossref_primary_10_1016_j_rse_2021_112285
crossref_primary_10_1016_j_asoc_2020_107065
crossref_primary_10_34133_plantphenomics_0123
crossref_primary_10_1016_j_isprsjprs_2022_09_010
crossref_primary_10_1080_14498596_2023_2174196
crossref_primary_10_1016_j_jag_2024_103984
crossref_primary_10_1016_j_jag_2024_103867
crossref_primary_10_3390_rs15081990
crossref_primary_10_1016_j_asoc_2025_112876
crossref_primary_10_1117_1_JRS_18_024519
crossref_primary_10_3390_rs16020293
crossref_primary_10_4018_IJACI_309408
crossref_primary_10_1109_ACCESS_2020_3000175
crossref_primary_10_32604_csse_2023_024475
crossref_primary_10_1016_j_ufug_2022_127670
crossref_primary_10_1080_17538947_2024_2308728
crossref_primary_10_1016_j_compag_2023_108227
crossref_primary_10_1016_j_heliyon_2023_e17203
crossref_primary_10_1109_TGRS_2020_3018109
crossref_primary_10_1016_j_isprsjprs_2020_11_007
crossref_primary_10_3390_app112311520
crossref_primary_10_1016_j_jag_2024_103755
crossref_primary_10_48130_tia_0024_0009
crossref_primary_10_1007_s11540_024_09769_2
crossref_primary_10_3390_rs14163889
crossref_primary_10_3390_electronics13010004
crossref_primary_10_1016_j_measen_2023_100722
crossref_primary_10_1109_TGRS_2022_3210438
crossref_primary_10_3390_rs12121952
crossref_primary_10_3390_rs14184573
crossref_primary_10_1007_s11042_021_11036_2
Cites_doi 10.2134/agronj2004.1139
10.1016/j.isprsjprs.2014.04.023
10.1016/j.rse.2012.12.017
10.1016/j.cageo.2004.05.006
10.1109/72.279188
10.1080/01431161.2016.1246775
10.3390/rs10030471
10.1016/j.rse.2014.11.026
10.1016/j.rse.2015.12.023
10.1155/2015/258619
10.1016/0004-3702(83)90008-5
10.3390/rs71114680
10.1109/LGRS.2017.2681128
10.1080/014311600209814
10.1016/j.rse.2010.05.005
10.1109/LGRS.2014.2309695
10.1016/j.rse.2005.10.004
10.1016/j.rse.2006.05.017
10.1109/TGRS.2017.2748160
10.1162/neco.1997.9.8.1735
10.1038/srep36240
10.1016/j.rse.2015.02.003
10.1016/j.rse.2013.08.023
10.1109/36.752215
10.1016/j.isprsjprs.2015.05.011
10.1080/01431161.2010.527397
10.1016/S0034-4257(02)00096-2
10.1016/j.rse.2005.09.007
10.1080/2150704X.2015.1047045
10.3390/ijgi7040129
10.1016/j.rse.2004.03.014
10.3390/rs70403633
10.1016/S0034-4257(01)00296-6
10.1016/j.isprsjprs.2017.11.011
10.1109/LGRS.2013.2286214
10.3390/rs9060629
10.1109/JSTARS.2014.2329330
10.14358/PERS.76.7.833
10.1016/S0034-4257(02)00135-9
10.1016/j.isprsjprs.2018.01.021
10.1016/j.rse.2007.12.004
10.1016/j.rse.2015.04.019
10.1016/j.rse.2016.04.022
10.2307/3235884
10.1109/TGRS.2010.2095462
10.1016/j.rse.2014.03.008
10.3390/rs8060506
10.1016/j.rse.2006.08.002
10.1111/j.1365-2486.2007.01479.x
10.1016/j.isprsjprs.2017.11.009
10.1080/01431169408954355
10.1016/j.isprsjprs.2016.05.014
10.1016/j.rse.2007.07.019
10.1080/01431169608949001
10.1016/0034-4257(84)90005-1
10.1080/01431160701250390
10.1016/j.rse.2015.01.004
10.1093/jpe/rtm005
10.14358/PERS.78.8.799
10.1016/j.rse.2005.03.008
10.3390/rs9010067
10.1109/LGRS.2015.2475299
10.1016/j.rse.2007.05.017
10.14358/PERS.82.6.407
10.1016/j.rse.2004.12.009
10.1109/MGRS.2017.2762307
10.1016/j.rse.2005.10.021
10.1080/01431161.2011.603378
10.1016/j.rse.2010.04.019
10.1109/TGRS.2017.2740362
10.5194/bg-10-4055-2013
10.1016/j.rse.2008.08.015
10.1016/j.infrared.2017.08.021
10.1007/BF00994018
10.1016/j.rse.2014.01.007
10.1016/j.rse.2007.07.002
10.1109/TGRS.2016.2616585
10.1016/j.jag.2007.11.002
10.1016/j.isprsjprs.2009.03.001
10.1080/01431169008955174
10.1016/j.rse.2005.10.014
10.1016/j.rse.2007.01.004
10.1109/TGRS.2016.2543748
10.1109/72.788646
10.1016/j.rse.2005.10.022
ContentType Journal Article
Copyright 2018
Copyright Elsevier BV Feb 2019
Copyright_xml – notice: 2018
– notice: Copyright Elsevier BV Feb 2019
DBID AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7TG
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KL.
KR7
L7M
L~C
L~D
P64
7S9
L.6
DOI 10.1016/j.rse.2018.11.032
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Meteorological & Geoastrophysical Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Meteorological & Geoastrophysical Abstracts
Biotechnology Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Materials Research Database

AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
Environmental Sciences
EISSN 1879-0704
EndPage 443
ExternalDocumentID 10_1016_j_rse_2018_11_032
S0034425718305418
GeographicLocations California
GeographicLocations_xml – name: California
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29P
4.4
41~
457
4G.
53G
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
ABDPE
ABEFU
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABPPZ
ABQEM
ABQYD
ABWVN
ABXDB
ACDAQ
ACGFS
ACIWK
ACLVX
ACPRK
ACRLP
ACRPL
ACSBN
ADBBV
ADEZE
ADMUD
ADNMO
ADVLN
AEBSH
AEGFY
AEIPS
AEKER
AENEX
AFFNX
AFJKZ
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HMC
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SEN
SEP
SES
SEW
SPC
SPCBC
SSE
SSH
SSJ
SSZ
T5K
TN5
TWZ
VOH
WH7
WUQ
XOL
ZCA
ZMT
~02
~G-
~KM
AAYWO
AAYXX
ACVFH
ADCNI
ADXHL
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
7QF
7QO
7QQ
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7TG
7U5
8BQ
8FD
C1K
EFKBS
F28
FR3
H8D
H8G
JG9
JQ2
KL.
KR7
L7M
L~C
L~D
P64
7S9
L.6
ID FETCH-LOGICAL-c424t-894aa82ac9ea73fcad6d8cd7a2a362f85c2fd1fa214bcc3ba7baa8813ea339443
IEDL.DBID .~1
ISSN 0034-4257
IngestDate Fri Jul 11 10:23:23 EDT 2025
Wed Aug 13 05:53:53 EDT 2025
Thu Apr 24 22:53:40 EDT 2025
Tue Jul 01 03:51:17 EDT 2025
Sun Apr 06 06:53:11 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Crop classification
Multi-temporal classification
Artificial neural network
Convolutional neural network
Landsat
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c424t-894aa82ac9ea73fcad6d8cd7a2a362f85c2fd1fa214bcc3ba7baa8813ea339443
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8161-9168
PQID 2176697571
PQPubID 2045405
PageCount 14
ParticipantIDs proquest_miscellaneous_2176345975
proquest_journals_2176697571
crossref_citationtrail_10_1016_j_rse_2018_11_032
crossref_primary_10_1016_j_rse_2018_11_032
elsevier_sciencedirect_doi_10_1016_j_rse_2018_11_032
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2019
2019-02-00
20190201
PublicationDateYYYYMMDD 2019-02-01
PublicationDate_xml – month: 02
  year: 2019
  text: February 2019
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Remote sensing of environment
PublicationYear 2019
Publisher Elsevier Inc
Elsevier BV
Publisher_xml – name: Elsevier Inc
– name: Elsevier BV
References Zhang, Feng, Yao (bb0530) 2014; 94
Zhong, Hawkins, Biging, Gong (bb0545) 2011; 32
Zhong, Yu, Li, Hu, Gong (bb0565) 2016; 6
Zhang, Friedl, Schaaf, Strahler, Hodges, Gao (bb0520) 2003; 84
Sakamoto, Gitelson, Arkebauer (bb0355) 2014; 147
Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (bb0395) 2014; 15
Szegedy, Liu, Jia, Sermanet, Reed, Anguelov (bb0400) 2015
Dong, Xiao, Kou, Qin, Zhang, Li (bb0100) 2015; 160
Rußwurm, Körner (bb0320) 2017
Sakamoto, Wardlow, Gitelson (bb0345) 2011; 49
Gonsamo, Chen (bb0145) 2016; 182
Jia, Khandelwal, Nayak, Gerber, Carlson, West (bb0175) 2017
Guidici, Clark (bb0150) 2017; 9
Mou, Zhu (bb0270) 2018
Sakamoto, Wardlow, Gitelson, Verma, Suyker, Arkebauer (bb0340) 2010; 114
Fisher, Mustard, Vadeboncoeur (bb0120) 2006; 100
Xin, Broich, Zhu, Gong (bb0495) 2015; 161
Vina, Gitelson, Rundquist, Keydan, Leavitt, Schepers (bb0420) 2004; 96
Sakamoto, Yokozawa, Toritani, Shibayama, Ishitsuka, Ohno (bb0330) 2005; 96
Simonneaux, Francois (bb0380) 2003; vol. 1
Badhwar (bb0010) 1984; 14
Na, Zhang, Li, Yu, Liu (bb0285) 2010; 76
Sherrah (bb0365) 2016
Li, Zhang, Shen (bb0225) 2017; 9
Maggiori, Tarabalka, Charpiat, Alliez (bb0255) 2017; 55
Hu, Huang, Wei, Zhang, Li (bb0160) 2015; 2015
Olsson, Eklundh (bb0290) 1994; 15
Fisher, Mustard (bb0115) 2007; 109
Li, Fu, Yu, Cracknell (bb0230) 2017; 9
Lyu, Lu, Mou, Li, Wright, Li (bb0250) 2018; 10
Marmanis, Schindler, Wegner, Galliani, Datcu, Stilla (bb0265) 2018; 135
Mou, Bruzzone, Zhu (bb0280) 2018
Ripley (bb0305) 2007
Zhong, Gong, Biging (bb0550) 2012; 78
Shi, Yang (bb0370) 2016; 82
Marcos, Volpi, Kellenberger, Tuia (bb0260) 2018; 145
WWW2 (bb0460)
Xie, Sha, Yu (bb0490) 2008; 1
Zhang, Zhou, Chen, Liu, Zhou, Cai (bb0525) 2008; 10
Simonneaux, Duchemin, Helson, Er-Raki, Olioso, Chehbouni (bb0385) 2008; 29
Soudani, le Maire, Dufrene, Francois, Delpierre, Ulrich (bb0390) 2008; 112
Zou, Ni, Zhang, Wang (bb0575) 2015; 12
Shao, Lunetta, Wheeler, Iiames, Campbell (bb0360) 2016; 174
Zeiler, Fergus (bb0515) 2014
WWW3 (bb0465)
Fernandez-Delgado, Cernadas, Barro, Amorim (bb0110) 2014; 15
Xiao, Boles, Frolking, Li, Babu, Salas (bb0485) 2006; 100
Chen, Lin, Zhao, Wang, Gu (bb0075) 2014; 7
Verhoef (bb0405) 1996; 108
Wan, Zhao, Wang, Liu (bb0440) 2017; 86
Zhang, Xiao, Dong, Kou, Jin, Qin (bb0535) 2015; 106
Rogan, Franklin, Roberts (bb0315) 2002; 80
Walker, de Beurs, Wynne (bb0430) 2014; 144
Mou, Ghamisi, Zhu (bb0275) 2018
Carrão, Gonçalves, Caetano (bb0045) 2008; 112
Kandasamy, Baret, Verger, Neveux, Weiss (bb0190) 2013; 10
Breiman, Friedman, Stone, Olshen (bb0035) 1984
Jönsson, Eklundh (bb0180) 2004; 30
Brown, de Beurs, Vrieling (bb0040) 2010; 114
Yue, Zhao, Mao, Liu (bb0505) 2015; 6
Geerken (bb0140) 2009; 64
Chapelle, Haffner, Vapnik (bb0055) 1999; 10
LeCun, Bengio (bb0215) 1995
Wardlow, Egbert (bb0450) 2008; 112
Sakamoto, Gitelson, Arkebauer (bb0350) 2013; 131
Wang, Chen, Wu, Lin (bb0445) 2012; 33
Lyu, Lu, Mou (bb0245) 2016; 8
Clancey (bb0080) 1983; 20
Bradley, Jacob, Hermance, Mustard (bb0030) 2007; 106
Siachalou, Mallinis, Tsakiri-Strati (bb0375) 2015; 7
Funk, Budde (bb0130) 2009; 113
Bergstra, Bengio (bb0020) 2012; 13
Lloyd (bb0240) 1990; 11
Kingma, Ba (bb0195) 2014
Zhong, Hu, Yu, Gong, Biging (bb0560) 2016; 119
Chen, Xiang, Liu, Pan (bb0070) 2014; 11
Krizhevsky, Sutskever, Hinton (bb0200) 2012; 2
Rußwurm, Körner (bb0325) 2018; 7
Yosinski, Clune, Nguyen, Fuchs, Lipson (bb0500) 2015
Evans, Geerken (bb0105) 2006; 105
Lawrence, Wood, Sheley (bb0210) 2006; 100
Roerink, Menenti, Verhoef (bb0310) 2000; 21
Kampffmeyer, Salberg, Jenssen (bb0185) 2016
Zaremba, Sutskever, Vinyals (bb0510) 2014
WWW4 (bb0470)
Dannenberg, Song, Hwang, Wise (bb0095) 2015; 159
WWW5 (bb0475)
Friedl, Brodley, Strahler (bb0125) 1999; 37
Verhoef, Menenti, Azzali (bb0410) 1996; 17
Zhao, Du (bb0540) 2016; 54
Chen, Guestrin (bb0060) 2016
Bradley, Mustard (bb0025) 2008; 14
Chen, Jonsson, Tamura, Gu, Matsushita, Eklundh (bb0065) 2004; 91
Liaw, Wiener (bb0235) 2002; 2
Walker, de Beurs, Henebry (bb0435) 2015; 165
Zhong, Gong, Biging (bb0555) 2014; 140
Hochreiter, Schmidhuber (bb0155) 1997; 9
Volpi, Tuia (bb0425) 2017; 55
Connor, Martin, Atlas (bb0085) 1994; 5
Reed, Brown, Vanderzee, Loveland, Merchant, Ohlen (bb0300) 1994; 5
Audebert, Le Saux, Lefèvre (bb0005) 2018; 140
CDWR (bb0050) 2009
Xiao, Boles, Liu, Zhuang, Frolking, Li (bb0480) 2005; 95
Cortes, Vapnik (bb0090) 1995; 20
WWW1 (bb0455)
Beck, Atzberger, Høgda, Johansen, Skidmore (bb0015) 2006; 100
Galford, Mustard, Melillo, Gendrin, Cerri, Cerri (bb0135) 2008; 112
Hu, Xia, Hu, Zhang (bb0165) 2015; 7
Kussul, Lavreniuk, Skakun, Shelestov (bb0205) 2017; 14
Zhu, Tuia, Mou, Xia, Zhang, Xu (bb0570) 2017; 5
Huete, Didan, Miura, Rodriguez, Gao, Ferreira (bb0170) 2002; 83
Vicente-Guijalba, Martinez-Marin, Lopez-Sanchez (bb0415) 2014; 11
Penatti, Nogueira, Dos Santos (bb0295) 2015
Li, Fu, Yu, Gong, Feng, Li (bb0220) 2016; 37
Sakamoto, Van Nguyen, Ohno, Ishitsuka, Yokozawa (bb0335) 2006; 100
Rogan (10.1016/j.rse.2018.11.032_bb0315) 2002; 80
Zhang (10.1016/j.rse.2018.11.032_bb0535) 2015; 106
Bradley (10.1016/j.rse.2018.11.032_bb0030) 2007; 106
Chen (10.1016/j.rse.2018.11.032_bb0075) 2014; 7
Sakamoto (10.1016/j.rse.2018.11.032_bb0345) 2011; 49
Lyu (10.1016/j.rse.2018.11.032_bb0250) 2018; 10
Zeiler (10.1016/j.rse.2018.11.032_bb0515) 2014
Walker (10.1016/j.rse.2018.11.032_bb0435) 2015; 165
Guidici (10.1016/j.rse.2018.11.032_bb0150) 2017; 9
Zhang (10.1016/j.rse.2018.11.032_bb0525) 2008; 10
Mou (10.1016/j.rse.2018.11.032_bb0280)
Carrão (10.1016/j.rse.2018.11.032_bb0045) 2008; 112
Zhong (10.1016/j.rse.2018.11.032_bb0565) 2016; 6
Chen (10.1016/j.rse.2018.11.032_bb0065) 2004; 91
Xie (10.1016/j.rse.2018.11.032_bb0490) 2008; 1
Krizhevsky (10.1016/j.rse.2018.11.032_bb0200) 2012; 2
Penatti (10.1016/j.rse.2018.11.032_bb0295) 2015
Li (10.1016/j.rse.2018.11.032_bb0220) 2016; 37
Hu (10.1016/j.rse.2018.11.032_bb0165) 2015; 7
Kingma (10.1016/j.rse.2018.11.032_bb0195)
Mou (10.1016/j.rse.2018.11.032_bb0275) 2018
Brown (10.1016/j.rse.2018.11.032_bb0040) 2010; 114
Xiao (10.1016/j.rse.2018.11.032_bb0480) 2005; 95
CDWR (10.1016/j.rse.2018.11.032_bb0050) 2009
Galford (10.1016/j.rse.2018.11.032_bb0135) 2008; 112
Wardlow (10.1016/j.rse.2018.11.032_bb0450) 2008; 112
LeCun (10.1016/j.rse.2018.11.032_bb0215) 1995
Kussul (10.1016/j.rse.2018.11.032_bb0205) 2017; 14
Zhang (10.1016/j.rse.2018.11.032_bb0520) 2003; 84
Walker (10.1016/j.rse.2018.11.032_bb0430) 2014; 144
Soudani (10.1016/j.rse.2018.11.032_bb0390) 2008; 112
Simonneaux (10.1016/j.rse.2018.11.032_bb0385) 2008; 29
Na (10.1016/j.rse.2018.11.032_bb0285) 2010; 76
Vicente-Guijalba (10.1016/j.rse.2018.11.032_bb0415) 2014; 11
WWW1 (10.1016/j.rse.2018.11.032_bb0455)
WWW3 (10.1016/j.rse.2018.11.032_bb0465)
WWW5 (10.1016/j.rse.2018.11.032_bb0475)
Jia (10.1016/j.rse.2018.11.032_bb0175) 2017
Friedl (10.1016/j.rse.2018.11.032_bb0125) 1999; 37
Hochreiter (10.1016/j.rse.2018.11.032_bb0155) 1997; 9
Mou (10.1016/j.rse.2018.11.032_bb0270)
Li (10.1016/j.rse.2018.11.032_bb0230) 2017; 9
Huete (10.1016/j.rse.2018.11.032_bb0170) 2002; 83
Kampffmeyer (10.1016/j.rse.2018.11.032_bb0185) 2016
Xiao (10.1016/j.rse.2018.11.032_bb0485) 2006; 100
Zhao (10.1016/j.rse.2018.11.032_bb0540) 2016; 54
Fernandez-Delgado (10.1016/j.rse.2018.11.032_bb0110) 2014; 15
Bradley (10.1016/j.rse.2018.11.032_bb0025) 2008; 14
Reed (10.1016/j.rse.2018.11.032_bb0300) 1994; 5
Roerink (10.1016/j.rse.2018.11.032_bb0310) 2000; 21
Zhu (10.1016/j.rse.2018.11.032_bb0570) 2017; 5
Olsson (10.1016/j.rse.2018.11.032_bb0290) 1994; 15
Shao (10.1016/j.rse.2018.11.032_bb0360) 2016; 174
Dannenberg (10.1016/j.rse.2018.11.032_bb0095) 2015; 159
Lloyd (10.1016/j.rse.2018.11.032_bb0240) 1990; 11
Audebert (10.1016/j.rse.2018.11.032_bb0005) 2018; 140
Breiman (10.1016/j.rse.2018.11.032_bb0035) 1984
Fisher (10.1016/j.rse.2018.11.032_bb0115) 2007; 109
Lawrence (10.1016/j.rse.2018.11.032_bb0210) 2006; 100
Marcos (10.1016/j.rse.2018.11.032_bb0260) 2018; 145
Shi (10.1016/j.rse.2018.11.032_bb0370) 2016; 82
Sakamoto (10.1016/j.rse.2018.11.032_bb0330) 2005; 96
Dong (10.1016/j.rse.2018.11.032_bb0100) 2015; 160
Rußwurm (10.1016/j.rse.2018.11.032_bb0325) 2018; 7
Evans (10.1016/j.rse.2018.11.032_bb0105) 2006; 105
WWW2 (10.1016/j.rse.2018.11.032_bb0460)
WWW4 (10.1016/j.rse.2018.11.032_bb0470)
Wang (10.1016/j.rse.2018.11.032_bb0445) 2012; 33
Sakamoto (10.1016/j.rse.2018.11.032_bb0350) 2013; 131
Wan (10.1016/j.rse.2018.11.032_bb0440) 2017; 86
Hu (10.1016/j.rse.2018.11.032_bb0160) 2015; 2015
Chen (10.1016/j.rse.2018.11.032_bb0060) 2016
Rußwurm (10.1016/j.rse.2018.11.032_bb0320) 2017
Zhong (10.1016/j.rse.2018.11.032_bb0550) 2012; 78
Zhang (10.1016/j.rse.2018.11.032_bb0530) 2014; 94
Srivastava (10.1016/j.rse.2018.11.032_bb0395) 2014; 15
Vina (10.1016/j.rse.2018.11.032_bb0420) 2004; 96
Cortes (10.1016/j.rse.2018.11.032_bb0090) 1995; 20
Gonsamo (10.1016/j.rse.2018.11.032_bb0145) 2016; 182
Lyu (10.1016/j.rse.2018.11.032_bb0245) 2016; 8
Siachalou (10.1016/j.rse.2018.11.032_bb0375) 2015; 7
Connor (10.1016/j.rse.2018.11.032_bb0085) 1994; 5
Kandasamy (10.1016/j.rse.2018.11.032_bb0190) 2013; 10
Yue (10.1016/j.rse.2018.11.032_bb0505) 2015; 6
Zhong (10.1016/j.rse.2018.11.032_bb0560) 2016; 119
Zhong (10.1016/j.rse.2018.11.032_bb0555) 2014; 140
Geerken (10.1016/j.rse.2018.11.032_bb0140) 2009; 64
Fisher (10.1016/j.rse.2018.11.032_bb0120) 2006; 100
Zaremba (10.1016/j.rse.2018.11.032_bb0510)
Maggiori (10.1016/j.rse.2018.11.032_bb0255) 2017; 55
Clancey (10.1016/j.rse.2018.11.032_bb0080) 1983; 20
Chapelle (10.1016/j.rse.2018.11.032_bb0055) 1999; 10
Liaw (10.1016/j.rse.2018.11.032_bb0235) 2002; 2
Zhong (10.1016/j.rse.2018.11.032_bb0545) 2011; 32
Yosinski (10.1016/j.rse.2018.11.032_bb0500)
Funk (10.1016/j.rse.2018.11.032_bb0130) 2009; 113
Sherrah (10.1016/j.rse.2018.11.032_bb0365)
Ripley (10.1016/j.rse.2018.11.032_bb0305) 2007
Verhoef (10.1016/j.rse.2018.11.032_bb0405) 1996; 108
Chen (10.1016/j.rse.2018.11.032_bb0070) 2014; 11
Simonneaux (10.1016/j.rse.2018.11.032_bb0380) 2003; vol. 1
Sakamoto (10.1016/j.rse.2018.11.032_bb0335) 2006; 100
Szegedy (10.1016/j.rse.2018.11.032_bb0400) 2015
Volpi (10.1016/j.rse.2018.11.032_bb0425) 2017; 55
Badhwar (10.1016/j.rse.2018.11.032_bb0010) 1984; 14
Marmanis (10.1016/j.rse.2018.11.032_bb0265) 2018; 135
Xin (10.1016/j.rse.2018.11.032_bb0495) 2015; 161
Jönsson (10.1016/j.rse.2018.11.032_bb0180) 2004; 30
Verhoef (10.1016/j.rse.2018.11.032_bb0410) 1996; 17
Sakamoto (10.1016/j.rse.2018.11.032_bb0340) 2010; 114
Li (10.1016/j.rse.2018.11.032_bb0225) 2017; 9
Sakamoto (10.1016/j.rse.2018.11.032_bb0355) 2014; 147
Bergstra (10.1016/j.rse.2018.11.032_bb0020) 2012; 13
Beck (10.1016/j.rse.2018.11.032_bb0015) 2006; 100
Zou (10.1016/j.rse.2018.11.032_bb0575) 2015; 12
References_xml – volume: 5
  start-page: 240
  year: 1994
  end-page: 254
  ident: bb0085
  article-title: Recurrent neural networks and robust time series prediction
  publication-title: IEEE Trans. Neural Netw.
– volume: 84
  start-page: 471
  year: 2003
  end-page: 475
  ident: bb0520
  article-title: Monitoring vegetation phenology using MODIS
  publication-title: Remote Sens. Environ.
– year: 2016
  ident: bb0365
  article-title: Fully convolutional networks for dense semantic labelling of high-resolution aerial imagery
– volume: 10
  start-page: 1055
  year: 1999
  end-page: 1064
  ident: bb0055
  article-title: Support vector machines for histogram-based image classification
  publication-title: IEEE Trans. Neural Netw.
– volume: 108
  start-page: 19
  year: 1996
  end-page: 24
  ident: bb0405
  article-title: Application of harmonic analysis of NDVI time series (HANTS)
  publication-title: Fourier Analysis of Temporal NDVI in the Southern African and American Continents
– volume: 161
  start-page: 63
  year: 2015
  end-page: 77
  ident: bb0495
  article-title: Modeling grassland spring onset across the Western United States using climate variables and MODIS-derived phenology metrics
  publication-title: Remote Sens. Environ.
– volume: 94
  start-page: 102
  year: 2014
  end-page: 113
  ident: bb0530
  article-title: Improved maize cultivated area estimation over a large scale combining MODIS–EVI time series data and crop phenological information
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 17
  start-page: 231
  year: 1996
  end-page: 235
  ident: bb0410
  article-title: A colour composite of NOAA-AVHRR-NDVI based on time series analysis (1981–1992)
  publication-title: Int. J. Remote Sens.
– year: 2014
  ident: bb0510
  article-title: Recurrent neural network regularization
– volume: 13
  start-page: 281
  year: 2012
  end-page: 305
  ident: bb0020
  article-title: Random search for hyper-parameter optimization
  publication-title: J. Mach. Learn. Res.
– volume: 182
  start-page: 13
  year: 2016
  end-page: 26
  ident: bb0145
  article-title: Circumpolar vegetation dynamics product for global change study
  publication-title: Remote Sens. Environ.
– start-page: 867
  year: 2017
  end-page: 876
  ident: bb0175
  article-title: Incremental dual-memory LSTM in land cover prediction
  publication-title: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– volume: 9
  year: 2017
  ident: bb0230
  article-title: Deep learning based oil palm tree detection and counting for high-resolution remote sensing images
  publication-title: Remote Sens.
– volume: 95
  start-page: 480
  year: 2005
  end-page: 492
  ident: bb0480
  article-title: Mapping paddy rice agriculture in southern China using multi-temporal MODIS images
  publication-title: Remote Sens. Environ.
– volume: 15
  start-page: 3133
  year: 2014
  end-page: 3181
  ident: bb0110
  article-title: Do we need hundreds of classifiers to solve real world classification problems?
  publication-title: J. Mach. Learn. Res.
– ident: bb0475
  article-title: XGBoost documentation, Python API reference
– volume: 37
  start-page: 5632
  year: 2016
  end-page: 5646
  ident: bb0220
  article-title: Stacked autoencoder-based deep learning for remote-sensing image classification: a case study of African land-cover mapping
  publication-title: Int. J. Remote Sens.
– volume: 135
  start-page: 158
  year: 2018
  end-page: 172
  ident: bb0265
  article-title: Classification with an edge: improving semantic image segmentation with boundary detection
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 100
  start-page: 95
  year: 2006
  end-page: 113
  ident: bb0485
  article-title: Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images
  publication-title: Remote Sens. Environ.
– volume: 14
  start-page: 334
  year: 2008
  end-page: 346
  ident: bb0025
  article-title: Comparison of phenology trends by land cover class: a case study in the Great Basin, USA
  publication-title: Glob. Chang. Biol.
– year: 2018
  ident: bb0270
  article-title: RiFCN: recurrent network in fully convolutional network for semantic segmentation of high resolution remote sensing images
– volume: 105
  start-page: 1
  year: 2006
  end-page: 8
  ident: bb0105
  article-title: Classifying rangeland vegetation type and coverage using a Fourier component based similarity measure
  publication-title: Remote Sens. Environ.
– volume: 106
  start-page: 137
  year: 2007
  end-page: 145
  ident: bb0030
  article-title: A curve fitting procedure to derive inter-annual phenologies from time series of noisy satellite NDVI data
  publication-title: Remote Sens. Environ.
– volume: 8
  start-page: 506
  year: 2016
  ident: bb0245
  article-title: Learning a transferable change rule from a recurrent neural network for land cover change detection
  publication-title: Remote Sens.
– year: 1984
  ident: bb0035
  article-title: Classification and Regression Trees
– volume: 7
  start-page: 2094
  year: 2014
  end-page: 2107
  ident: bb0075
  article-title: Deep learning-based classification of hyperspectral data
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
– volume: 119
  start-page: 151
  year: 2016
  end-page: 164
  ident: bb0560
  article-title: Automated mapping of soybean and corn using phenology
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 78
  start-page: 799
  year: 2012
  end-page: 813
  ident: bb0550
  article-title: Phenology-based crop classification algorithm and its implications on agricultural water use assessments in California's central valley
  publication-title: Photogramm. Eng. Remote. Sens.
– volume: 54
  start-page: 4544
  year: 2016
  end-page: 4554
  ident: bb0540
  article-title: Spectral–spatial feature extraction for hyperspectral image classification: a dimension reduction and deep learning approach
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 165
  start-page: 42
  year: 2015
  end-page: 52
  ident: bb0435
  article-title: Land surface phenology along urban to rural gradients in the U.S. Great Plains
  publication-title: Remote Sens. Environ.
– volume: 33
  start-page: 1905
  year: 2012
  end-page: 1916
  ident: bb0445
  article-title: Rice heading date retrieval based on multi-temporal MODIS data and polynomial fitting
  publication-title: Int. J. Remote Sens.
– volume: 100
  start-page: 265
  year: 2006
  end-page: 279
  ident: bb0120
  article-title: Green leaf phenology at Landsat resolution: scaling from the field to the satellite
  publication-title: Remote Sens. Environ.
– volume: 11
  start-page: 1797
  year: 2014
  end-page: 1801
  ident: bb0070
  article-title: Vehicle detection in satellite images by hybrid deep convolutional neural networks
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 96
  start-page: 1139
  year: 2004
  end-page: 1147
  ident: bb0420
  article-title: Remote sensing - monitoring maize (
  publication-title: Agron. J.
– volume: 15
  start-page: 3735
  year: 1994
  end-page: 3741
  ident: bb0290
  article-title: Fourier-series for analysis of temporal sequences of satellite sensor imagery
  publication-title: Int. J. Remote Sens.
– volume: 100
  start-page: 321
  year: 2006
  end-page: 334
  ident: bb0015
  article-title: Improved monitoring of vegetation dynamics at very high latitudes: a new method using MODIS NDVI
  publication-title: Remote Sens. Environ.
– volume: 91
  start-page: 332
  year: 2004
  end-page: 344
  ident: bb0065
  article-title: A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter
  publication-title: Remote Sens. Environ.
– volume: 9
  start-page: 629
  year: 2017
  ident: bb0150
  article-title: One-dimensional convolutional neural network land-cover classification of multi-seasonal hyperspectral imagery in the San Francisco Bay Area, California
  publication-title: Remote Sens.
– volume: 30
  start-page: 833
  year: 2004
  end-page: 845
  ident: bb0180
  article-title: TIMESAT—a program for analyzing time-series of satellite sensor data
  publication-title: Comput. Geosci.
– volume: 114
  start-page: 2146
  year: 2010
  end-page: 2159
  ident: bb0340
  article-title: A two-step filtering approach for detecting maize and soybean phenology with time-series MODIS data
  publication-title: Remote Sens. Environ.
– volume: 144
  start-page: 85
  year: 2014
  end-page: 97
  ident: bb0430
  article-title: Dryland vegetation phenology across an elevation gradient in Arizona, USA, investigated with fused MODIS and Landsat data
  publication-title: Remote Sens. Environ.
– volume: 2
  start-page: 18
  year: 2002
  end-page: 22
  ident: bb0235
  article-title: Classification and regression by randomForest
  publication-title: R News
– volume: 64
  start-page: 422
  year: 2009
  end-page: 431
  ident: bb0140
  article-title: An algorithm to classify and monitor seasonal variations in vegetation phenologies and their inter-annual change
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 112
  start-page: 2643
  year: 2008
  end-page: 2655
  ident: bb0390
  article-title: Evaluation of the onset of green-up in temperate deciduous broadleaf forests derived from Moderate Resolution Imaging Spectroradiometer (MODIS) data
  publication-title: Remote Sens. Environ.
– volume: 6
  year: 2016
  ident: bb0565
  article-title: Rapid corn and soybean mapping in US Corn Belt and neighboring areas
  publication-title: Sci. Rep.
– volume: 9
  start-page: 67
  year: 2017
  ident: bb0225
  article-title: Spectral–spatial classification of hyperspectral imagery with 3D convolutional neural network
  publication-title: Remote Sens.
– volume: 140
  start-page: 1
  year: 2014
  end-page: 13
  ident: bb0555
  article-title: Efficient corn and soybean mapping with temporal extendability: a multi-year experiment using Landsat imagery
  publication-title: Remote Sens. Environ.
– volume: 21
  start-page: 1911
  year: 2000
  end-page: 1917
  ident: bb0310
  article-title: Reconstructing cloudfree NDVI composites using Fourier analysis of time series
  publication-title: Int. J. Remote Sens.
– volume: 96
  start-page: 366
  year: 2005
  end-page: 374
  ident: bb0330
  article-title: A crop phenology detection method using time-series MODIS data
  publication-title: Remote Sens. Environ.
– volume: 11
  start-page: 2269
  year: 1990
  end-page: 2279
  ident: bb0240
  article-title: A phenological classification of terrestrial vegetation cover using shortwave vegetation index imagery
  publication-title: Int. J. Remote Sens.
– volume: 7
  year: 2015
  ident: bb0375
  article-title: A hidden Markov models approach for crop classification: linking crop phenology to time series of multi-sensor remote sensing data
  publication-title: Remote Sens.
– volume: 2
  start-page: 1097
  year: 2012
  end-page: 1105
  ident: bb0200
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Proces. Syst.
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: bb0155
  article-title: Long short-term memory
  publication-title: Neural Comput.
– volume: 160
  start-page: 99
  year: 2015
  end-page: 113
  ident: bb0100
  article-title: Tracking the dynamics of paddy rice planting area in 1986–2010 through time series Landsat images and phenology-based algorithms
  publication-title: Remote Sens. Environ.
– volume: 55
  start-page: 881
  year: 2017
  end-page: 893
  ident: bb0425
  article-title: Dense semantic labeling of subdecimeter resolution images with convolutional neural networks
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 80
  start-page: 143
  year: 2002
  end-page: 156
  ident: bb0315
  article-title: A comparison of methods for monitoring multitemporal vegetation change using Thematic Mapper imagery
  publication-title: Remote Sens. Environ.
– volume: 112
  start-page: 986
  year: 2008
  end-page: 997
  ident: bb0045
  article-title: Contribution of multispectral and multitemporal information from MODIS images to land cover classification
  publication-title: Remote Sens. Environ.
– volume: 37
  start-page: 969
  year: 1999
  end-page: 977
  ident: bb0125
  article-title: Maximizing land cover classification accuracies produced by decision trees at continental to global scales
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 83
  start-page: 195
  year: 2002
  end-page: 213
  ident: bb0170
  article-title: Overview of the radiometric and biophysical performance of the MODIS vegetation indices
  publication-title: Remote Sens. Environ.
– volume: 112
  start-page: 1096
  year: 2008
  end-page: 1116
  ident: bb0450
  article-title: Large-area crop mapping using time-series MODIS 250 m NDVI data: an assessment for the US Central Great Plains
  publication-title: Remote Sens. Environ.
– start-page: 785
  year: 2016
  end-page: 794
  ident: bb0060
  article-title: XGBoost: a scalable tree boosting system
  publication-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– volume: 86
  start-page: 77
  year: 2017
  end-page: 89
  ident: bb0440
  article-title: Stacked sparse autoencoder in hyperspectral data classification using spectral-spatial, higher order statistics and multifractal spectrum features
  publication-title: Infrared Phys. Technol.
– volume: 100
  start-page: 356
  year: 2006
  end-page: 362
  ident: bb0210
  article-title: Mapping invasive plants using hyperspectral imagery and Breiman Cutler classifications (RandomForest)
  publication-title: Remote Sens. Environ.
– volume: 14
  start-page: 31
  year: 1984
  end-page: 37
  ident: bb0010
  article-title: Automatic corn-soybean classification using Landsat MSS data. II. Early season crop proportion estimation
  publication-title: Remote Sens. Environ.
– start-page: 818
  year: 2014
  end-page: 833
  ident: bb0515
  article-title: Visualizing and understanding convolutional networks
  publication-title: European Conference on Computer Vision
– volume: 10
  start-page: 471
  year: 2018
  ident: bb0250
  article-title: Long-term annual mapping of four cities on different continents by applying a deep information learning method to Landsat data
  publication-title: Remote Sens.
– ident: bb0460
  article-title: Keras: the Python deep learning library
– volume: 2015
  year: 2015
  ident: bb0160
  article-title: Deep convolutional neural networks for hyperspectral image classification
  publication-title: J. Sens.
– volume: 7
  start-page: 14680
  year: 2015
  end-page: 14707
  ident: bb0165
  article-title: Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery
  publication-title: Remote Sens.
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  ident: bb0395
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– volume: 20
  start-page: 215
  year: 1983
  end-page: 251
  ident: bb0080
  article-title: The epistemology of a rule-based expert system—a framework for explanation
  publication-title: Artif. Intell.
– volume: 109
  start-page: 261
  year: 2007
  end-page: 273
  ident: bb0115
  article-title: Cross-scalar satellite phenology from ground, Landsat, and MODIS data
  publication-title: Remote Sens. Environ.
– volume: 76
  start-page: 833
  year: 2010
  end-page: 840
  ident: bb0285
  article-title: Improved land cover mapping using random forests combined with Landsat thematic mapper imagery and ancillary geographic data
  publication-title: Photogramm. Eng. Remote. Sens.
– volume: 14
  start-page: 778
  year: 2017
  end-page: 782
  ident: bb0205
  article-title: Deep learning classification of land cover and crop types using remote sensing data
  publication-title: IEEE Geosci. Remote Sens. Lett.
– start-page: 44
  year: 2015
  end-page: 51
  ident: bb0295
  article-title: Do deep features generalize from everyday objects to remote sensing and aerial scenes domains?
  publication-title: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2015-October
– ident: bb0455
  article-title: U.S. Geological Survey Science (USGS) Land Satellites Data System (LSDS) research and development
– volume: 82
  start-page: 407
  year: 2016
  end-page: 417
  ident: bb0370
  article-title: An assessment of algorithmic parameters affecting image classification accuracy by random forests
  publication-title: Photogramm. Eng. Remote. Sens.
– volume: 12
  start-page: 2321
  year: 2015
  end-page: 2325
  ident: bb0575
  article-title: Deep learning based feature selection for remote sensing scene classification
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 145
  start-page: 96
  year: 2018
  end-page: 107
  ident: bb0260
  article-title: Land cover mapping at very high resolution with rotation equivariant CNNs: towards small yet accurate models
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 113
  start-page: 115
  year: 2009
  end-page: 125
  ident: bb0130
  article-title: Phenologically-tuned MODIS NDVI-based production anomaly estimates for Zimbabwe
  publication-title: Remote Sens. Environ.
– volume: 140
  start-page: 20
  year: 2018
  end-page: 32
  ident: bb0005
  article-title: Beyond RGB: very high resolution urban remote sensing with multimodal deep networks
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 55
  start-page: 7092
  year: 2017
  end-page: 7103
  ident: bb0255
  article-title: High-resolution aerial image labeling with convolutional neural networks
  publication-title: IEEE Trans. Geosci. Remote Sens.
– year: 2018
  ident: bb0275
  article-title: Unsupervised spectral-spatial feature learning via deep residual conv-deconv network for hyperspectral image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 174
  start-page: 258
  year: 2016
  end-page: 265
  ident: bb0360
  article-title: An evaluation of time-series smoothing algorithms for land-cover classifications using MODIS-NDVI multi-temporal data
  publication-title: Remote Sens. Environ.
– year: 2018
  ident: bb0280
  article-title: Learning spectral-spatial-temporal features via a recurrent convolutional neural network for change detection in multispectral imagery
– volume: 147
  start-page: 219
  year: 2014
  end-page: 231
  ident: bb0355
  article-title: Near real-time prediction of U.S. corn yields based on time-series MODIS data
  publication-title: Remote Sens. Environ.
– volume: 159
  start-page: 167
  year: 2015
  end-page: 180
  ident: bb0095
  article-title: Empirical evidence of El Niño–Southern Oscillation influence on land surface phenology and productivity in the western United States
  publication-title: Remote Sens. Environ.
– year: 1995
  ident: bb0215
  article-title: Convolutional networks for images, speech, and time-series
  publication-title: The Handbook of Brain Theory and Neural Networks
– year: 2014
  ident: bb0195
  article-title: Adam: a method for stochastic optimization
– volume: 10
  start-page: 4055
  year: 2013
  end-page: 4071
  ident: bb0190
  article-title: A comparison of methods for smoothing and gap filling time series of remote sensing observations–application to MODIS LAI products
  publication-title: Biogeosciences
– volume: 10
  start-page: 476
  year: 2008
  end-page: 485
  ident: bb0525
  article-title: Crop discrimination in Northern China with double cropping systems using Fourier analysis of time-series MODIS data
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 100
  start-page: 1
  year: 2006
  end-page: 16
  ident: bb0335
  article-title: Spatio–temporal distribution of rice phenology and cropping systems in the Mekong Delta with special reference to the seasonal water flow of the Mekong and Bassac rivers
  publication-title: Remote Sens. Environ.
– volume: 1
  start-page: 9
  year: 2008
  end-page: 23
  ident: bb0490
  article-title: Remote sensing imagery in vegetation mapping: a review
  publication-title: J. Plant Ecol.
– volume: 11
  start-page: 1081
  year: 2014
  end-page: 1085
  ident: bb0415
  article-title: Crop phenology estimation using a multitemporal model and a Kalman filtering strategy
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 112
  start-page: 576
  year: 2008
  end-page: 587
  ident: bb0135
  article-title: Wavelet analysis of MODIS time series to detect expansion and intensification of row-crop agriculture in Brazil
  publication-title: Remote Sens. Environ.
– ident: bb0465
  article-title: Tensorflow: an open source software library for high performance numerical computation
– volume: 32
  start-page: 7777
  year: 2011
  end-page: 7804
  ident: bb0545
  article-title: A phenology-based approach to map crop types in the San Joaquin Valley, California
  publication-title: Int. J. Remote Sens.
– start-page: 1
  year: 2015
  end-page: 9
  ident: bb0400
  article-title: Going deeper with convolutions
  publication-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
– volume: 131
  start-page: 215
  year: 2013
  end-page: 231
  ident: bb0350
  article-title: MODIS-based corn grain yield estimation model incorporating crop phenology information
  publication-title: Remote Sens. Environ.
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: bb0090
  article-title: Support-vector networks
  publication-title: Mach. Learn.
– ident: bb0470
  article-title: Scikit-learn: machine learning in Python
– volume: 106
  start-page: 157
  year: 2015
  end-page: 171
  ident: bb0535
  article-title: Mapping paddy rice planting areas through time series analysis of MODIS land surface temperature and vegetation index data
  publication-title: ISPRS J. Photogramm. Remote Sens.
– year: 2015
  ident: bb0500
  article-title: Understanding neural networks through deep visualization
– year: 2007
  ident: bb0305
  article-title: Pattern Recognition and Neural Networks
– volume: 114
  start-page: 2286
  year: 2010
  end-page: 2296
  ident: bb0040
  article-title: The response of African land surface phenology to large scale climate oscillations
  publication-title: Remote Sens. Environ.
– start-page: 1
  year: 2016
  end-page: 9
  ident: bb0185
  article-title: Semantic segmentation of small objects and modeling of uncertainty in urban remote sensing images using deep convolutional
  publication-title: Neural Netw.
– year: 2017
  ident: bb0320
  article-title: Temporal vegetation modelling using long short-term memory networks for crop identification from medium-resolution multi-spectral satellite images
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops
– volume: 6
  start-page: 468
  year: 2015
  end-page: 477
  ident: bb0505
  article-title: Spectral-spatial classification of hyperspectral images using deep convolutional neural networks
  publication-title: Remote Sens. Lett.
– volume: vol. 1
  start-page: 252
  year: 2003
  end-page: 254
  ident: bb0380
  article-title: Identifying main crop classes in an irrigated area using high resolution image time series
  publication-title: Geoscience and Remote Sensing Symposium, 2003. IGARSS '03. Proceedings. 2003 IEEE International
– start-page: 160
  year: 2009
  end-page: 169
  ident: bb0050
  article-title: California water plan, update 2009
  publication-title: California Department of Water Resources, Bulletin
– volume: 29
  start-page: 95
  year: 2008
  end-page: 116
  ident: bb0385
  article-title: The use of high-resolution image time series for crop classification and evapotranspiration estimate over an irrigated area in central Morocco
  publication-title: Int. J. Remote Sens.
– volume: 49
  start-page: 1926
  year: 2011
  end-page: 1936
  ident: bb0345
  article-title: Detecting spatiotemporal changes of corn developmental stages in the U.S. Corn Belt using MODIS WDRVI data
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 5
  start-page: 8
  year: 2017
  end-page: 36
  ident: bb0570
  article-title: Deep learning in remote sensing: a comprehensive review and list of resources
  publication-title: IEEE Geosci. Remote Sens. Mag.
– volume: 7
  start-page: 129
  year: 2018
  ident: bb0325
  article-title: Multi-temporal land cover classification with sequential recurrent encoders
  publication-title: ISPRS Int. J. Geoinf.
– volume: 5
  start-page: 703
  year: 1994
  end-page: 714
  ident: bb0300
  article-title: Measuring phenological variability from satellite imagery
  publication-title: J. Veg. Sci.
– start-page: 160
  year: 2009
  ident: 10.1016/j.rse.2018.11.032_bb0050
  article-title: California water plan, update 2009
– volume: 96
  start-page: 1139
  year: 2004
  ident: 10.1016/j.rse.2018.11.032_bb0420
  article-title: Remote sensing - monitoring maize (Zea mays L.) phenology with remote sensing
  publication-title: Agron. J.
  doi: 10.2134/agronj2004.1139
– volume: 94
  start-page: 102
  year: 2014
  ident: 10.1016/j.rse.2018.11.032_bb0530
  article-title: Improved maize cultivated area estimation over a large scale combining MODIS–EVI time series data and crop phenological information
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2014.04.023
– volume: 131
  start-page: 215
  year: 2013
  ident: 10.1016/j.rse.2018.11.032_bb0350
  article-title: MODIS-based corn grain yield estimation model incorporating crop phenology information
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.12.017
– ident: 10.1016/j.rse.2018.11.032_bb0195
– volume: 30
  start-page: 833
  year: 2004
  ident: 10.1016/j.rse.2018.11.032_bb0180
  article-title: TIMESAT—a program for analyzing time-series of satellite sensor data
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2004.05.006
– volume: 5
  start-page: 240
  year: 1994
  ident: 10.1016/j.rse.2018.11.032_bb0085
  article-title: Recurrent neural networks and robust time series prediction
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.279188
– volume: 37
  start-page: 5632
  year: 2016
  ident: 10.1016/j.rse.2018.11.032_bb0220
  article-title: Stacked autoencoder-based deep learning for remote-sensing image classification: a case study of African land-cover mapping
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2016.1246775
– year: 2017
  ident: 10.1016/j.rse.2018.11.032_bb0320
  article-title: Temporal vegetation modelling using long short-term memory networks for crop identification from medium-resolution multi-spectral satellite images
– volume: 2
  start-page: 1097
  year: 2012
  ident: 10.1016/j.rse.2018.11.032_bb0200
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Proces. Syst.
– volume: 10
  start-page: 471
  year: 2018
  ident: 10.1016/j.rse.2018.11.032_bb0250
  article-title: Long-term annual mapping of four cities on different continents by applying a deep information learning method to Landsat data
  publication-title: Remote Sens.
  doi: 10.3390/rs10030471
– ident: 10.1016/j.rse.2018.11.032_bb0475
– volume: 159
  start-page: 167
  year: 2015
  ident: 10.1016/j.rse.2018.11.032_bb0095
  article-title: Empirical evidence of El Niño–Southern Oscillation influence on land surface phenology and productivity in the western United States
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.11.026
– start-page: 1
  year: 2016
  ident: 10.1016/j.rse.2018.11.032_bb0185
  article-title: Semantic segmentation of small objects and modeling of uncertainty in urban remote sensing images using deep convolutional
  publication-title: Neural Netw.
– volume: 174
  start-page: 258
  year: 2016
  ident: 10.1016/j.rse.2018.11.032_bb0360
  article-title: An evaluation of time-series smoothing algorithms for land-cover classifications using MODIS-NDVI multi-temporal data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.12.023
– start-page: 1
  year: 2015
  ident: 10.1016/j.rse.2018.11.032_bb0400
  article-title: Going deeper with convolutions
  publication-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
– volume: 2015
  year: 2015
  ident: 10.1016/j.rse.2018.11.032_bb0160
  article-title: Deep convolutional neural networks for hyperspectral image classification
  publication-title: J. Sens.
  doi: 10.1155/2015/258619
– volume: 20
  start-page: 215
  year: 1983
  ident: 10.1016/j.rse.2018.11.032_bb0080
  article-title: The epistemology of a rule-based expert system—a framework for explanation
  publication-title: Artif. Intell.
  doi: 10.1016/0004-3702(83)90008-5
– volume: 7
  start-page: 14680
  year: 2015
  ident: 10.1016/j.rse.2018.11.032_bb0165
  article-title: Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery
  publication-title: Remote Sens.
  doi: 10.3390/rs71114680
– volume: 14
  start-page: 778
  year: 2017
  ident: 10.1016/j.rse.2018.11.032_bb0205
  article-title: Deep learning classification of land cover and crop types using remote sensing data
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2017.2681128
– volume: 21
  start-page: 1911
  year: 2000
  ident: 10.1016/j.rse.2018.11.032_bb0310
  article-title: Reconstructing cloudfree NDVI composites using Fourier analysis of time series
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/014311600209814
– volume: 114
  start-page: 2286
  year: 2010
  ident: 10.1016/j.rse.2018.11.032_bb0040
  article-title: The response of African land surface phenology to large scale climate oscillations
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.05.005
– volume: 11
  start-page: 1797
  year: 2014
  ident: 10.1016/j.rse.2018.11.032_bb0070
  article-title: Vehicle detection in satellite images by hybrid deep convolutional neural networks
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2014.2309695
– start-page: 44
  year: 2015
  ident: 10.1016/j.rse.2018.11.032_bb0295
  article-title: Do deep features generalize from everyday objects to remote sensing and aerial scenes domains?
– volume: 100
  start-page: 95
  year: 2006
  ident: 10.1016/j.rse.2018.11.032_bb0485
  article-title: Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2005.10.004
– volume: 105
  start-page: 1
  year: 2006
  ident: 10.1016/j.rse.2018.11.032_bb0105
  article-title: Classifying rangeland vegetation type and coverage using a Fourier component based similarity measure
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2006.05.017
– year: 2018
  ident: 10.1016/j.rse.2018.11.032_bb0275
  article-title: Unsupervised spectral-spatial feature learning via deep residual conv-deconv network for hyperspectral image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2017.2748160
– volume: 9
  start-page: 1735
  year: 1997
  ident: 10.1016/j.rse.2018.11.032_bb0155
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– ident: 10.1016/j.rse.2018.11.032_bb0365
– volume: 6
  year: 2016
  ident: 10.1016/j.rse.2018.11.032_bb0565
  article-title: Rapid corn and soybean mapping in US Corn Belt and neighboring areas
  publication-title: Sci. Rep.
  doi: 10.1038/srep36240
– ident: 10.1016/j.rse.2018.11.032_bb0465
– volume: 161
  start-page: 63
  year: 2015
  ident: 10.1016/j.rse.2018.11.032_bb0495
  article-title: Modeling grassland spring onset across the Western United States using climate variables and MODIS-derived phenology metrics
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.02.003
– volume: 140
  start-page: 1
  year: 2014
  ident: 10.1016/j.rse.2018.11.032_bb0555
  article-title: Efficient corn and soybean mapping with temporal extendability: a multi-year experiment using Landsat imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.08.023
– volume: 37
  start-page: 969
  year: 1999
  ident: 10.1016/j.rse.2018.11.032_bb0125
  article-title: Maximizing land cover classification accuracies produced by decision trees at continental to global scales
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.752215
– year: 1984
  ident: 10.1016/j.rse.2018.11.032_bb0035
– volume: 106
  start-page: 157
  year: 2015
  ident: 10.1016/j.rse.2018.11.032_bb0535
  article-title: Mapping paddy rice planting areas through time series analysis of MODIS land surface temperature and vegetation index data
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2015.05.011
– volume: 32
  start-page: 7777
  year: 2011
  ident: 10.1016/j.rse.2018.11.032_bb0545
  article-title: A phenology-based approach to map crop types in the San Joaquin Valley, California
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2010.527397
– volume: 83
  start-page: 195
  year: 2002
  ident: 10.1016/j.rse.2018.11.032_bb0170
  article-title: Overview of the radiometric and biophysical performance of the MODIS vegetation indices
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(02)00096-2
– volume: 100
  start-page: 1
  year: 2006
  ident: 10.1016/j.rse.2018.11.032_bb0335
  article-title: Spatio–temporal distribution of rice phenology and cropping systems in the Mekong Delta with special reference to the seasonal water flow of the Mekong and Bassac rivers
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2005.09.007
– volume: 6
  start-page: 468
  year: 2015
  ident: 10.1016/j.rse.2018.11.032_bb0505
  article-title: Spectral-spatial classification of hyperspectral images using deep convolutional neural networks
  publication-title: Remote Sens. Lett.
  doi: 10.1080/2150704X.2015.1047045
– volume: 7
  start-page: 129
  year: 2018
  ident: 10.1016/j.rse.2018.11.032_bb0325
  article-title: Multi-temporal land cover classification with sequential recurrent encoders
  publication-title: ISPRS Int. J. Geoinf.
  doi: 10.3390/ijgi7040129
– volume: 91
  start-page: 332
  year: 2004
  ident: 10.1016/j.rse.2018.11.032_bb0065
  article-title: A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2004.03.014
– volume: 7
  year: 2015
  ident: 10.1016/j.rse.2018.11.032_bb0375
  article-title: A hidden Markov models approach for crop classification: linking crop phenology to time series of multi-sensor remote sensing data
  publication-title: Remote Sens.
  doi: 10.3390/rs70403633
– ident: 10.1016/j.rse.2018.11.032_bb0280
– volume: 80
  start-page: 143
  year: 2002
  ident: 10.1016/j.rse.2018.11.032_bb0315
  article-title: A comparison of methods for monitoring multitemporal vegetation change using Thematic Mapper imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(01)00296-6
– volume: 140
  start-page: 20
  year: 2018
  ident: 10.1016/j.rse.2018.11.032_bb0005
  article-title: Beyond RGB: very high resolution urban remote sensing with multimodal deep networks
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.11.011
– year: 1995
  ident: 10.1016/j.rse.2018.11.032_bb0215
  article-title: Convolutional networks for images, speech, and time-series
– volume: 15
  start-page: 1929
  year: 2014
  ident: 10.1016/j.rse.2018.11.032_bb0395
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– ident: 10.1016/j.rse.2018.11.032_bb0500
– volume: 11
  start-page: 1081
  year: 2014
  ident: 10.1016/j.rse.2018.11.032_bb0415
  article-title: Crop phenology estimation using a multitemporal model and a Kalman filtering strategy
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2013.2286214
– volume: 9
  start-page: 629
  year: 2017
  ident: 10.1016/j.rse.2018.11.032_bb0150
  article-title: One-dimensional convolutional neural network land-cover classification of multi-seasonal hyperspectral imagery in the San Francisco Bay Area, California
  publication-title: Remote Sens.
  doi: 10.3390/rs9060629
– volume: 7
  start-page: 2094
  year: 2014
  ident: 10.1016/j.rse.2018.11.032_bb0075
  article-title: Deep learning-based classification of hyperspectral data
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2014.2329330
– volume: 76
  start-page: 833
  year: 2010
  ident: 10.1016/j.rse.2018.11.032_bb0285
  article-title: Improved land cover mapping using random forests combined with Landsat thematic mapper imagery and ancillary geographic data
  publication-title: Photogramm. Eng. Remote. Sens.
  doi: 10.14358/PERS.76.7.833
– start-page: 818
  year: 2014
  ident: 10.1016/j.rse.2018.11.032_bb0515
  article-title: Visualizing and understanding convolutional networks
– volume: 84
  start-page: 471
  year: 2003
  ident: 10.1016/j.rse.2018.11.032_bb0520
  article-title: Monitoring vegetation phenology using MODIS
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(02)00135-9
– volume: 145
  start-page: 96
  year: 2018
  ident: 10.1016/j.rse.2018.11.032_bb0260
  article-title: Land cover mapping at very high resolution with rotation equivariant CNNs: towards small yet accurate models
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.01.021
– volume: 112
  start-page: 2643
  year: 2008
  ident: 10.1016/j.rse.2018.11.032_bb0390
  article-title: Evaluation of the onset of green-up in temperate deciduous broadleaf forests derived from Moderate Resolution Imaging Spectroradiometer (MODIS) data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2007.12.004
– volume: 165
  start-page: 42
  year: 2015
  ident: 10.1016/j.rse.2018.11.032_bb0435
  article-title: Land surface phenology along urban to rural gradients in the U.S. Great Plains
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.04.019
– volume: 182
  start-page: 13
  year: 2016
  ident: 10.1016/j.rse.2018.11.032_bb0145
  article-title: Circumpolar vegetation dynamics product for global change study
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.04.022
– volume: 5
  start-page: 703
  year: 1994
  ident: 10.1016/j.rse.2018.11.032_bb0300
  article-title: Measuring phenological variability from satellite imagery
  publication-title: J. Veg. Sci.
  doi: 10.2307/3235884
– volume: 13
  start-page: 281
  year: 2012
  ident: 10.1016/j.rse.2018.11.032_bb0020
  article-title: Random search for hyper-parameter optimization
  publication-title: J. Mach. Learn. Res.
– volume: 49
  start-page: 1926
  year: 2011
  ident: 10.1016/j.rse.2018.11.032_bb0345
  article-title: Detecting spatiotemporal changes of corn developmental stages in the U.S. Corn Belt using MODIS WDRVI data
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2010.2095462
– volume: 147
  start-page: 219
  year: 2014
  ident: 10.1016/j.rse.2018.11.032_bb0355
  article-title: Near real-time prediction of U.S. corn yields based on time-series MODIS data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.03.008
– volume: 8
  start-page: 506
  year: 2016
  ident: 10.1016/j.rse.2018.11.032_bb0245
  article-title: Learning a transferable change rule from a recurrent neural network for land cover change detection
  publication-title: Remote Sens.
  doi: 10.3390/rs8060506
– ident: 10.1016/j.rse.2018.11.032_bb0470
– volume: 106
  start-page: 137
  year: 2007
  ident: 10.1016/j.rse.2018.11.032_bb0030
  article-title: A curve fitting procedure to derive inter-annual phenologies from time series of noisy satellite NDVI data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2006.08.002
– year: 2007
  ident: 10.1016/j.rse.2018.11.032_bb0305
– volume: 14
  start-page: 334
  year: 2008
  ident: 10.1016/j.rse.2018.11.032_bb0025
  article-title: Comparison of phenology trends by land cover class: a case study in the Great Basin, USA
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/j.1365-2486.2007.01479.x
– ident: 10.1016/j.rse.2018.11.032_bb0270
– volume: 135
  start-page: 158
  year: 2018
  ident: 10.1016/j.rse.2018.11.032_bb0265
  article-title: Classification with an edge: improving semantic image segmentation with boundary detection
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.11.009
– volume: 15
  start-page: 3735
  year: 1994
  ident: 10.1016/j.rse.2018.11.032_bb0290
  article-title: Fourier-series for analysis of temporal sequences of satellite sensor imagery
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431169408954355
– volume: 119
  start-page: 151
  year: 2016
  ident: 10.1016/j.rse.2018.11.032_bb0560
  article-title: Automated mapping of soybean and corn using phenology
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2016.05.014
– volume: 112
  start-page: 1096
  year: 2008
  ident: 10.1016/j.rse.2018.11.032_bb0450
  article-title: Large-area crop mapping using time-series MODIS 250 m NDVI data: an assessment for the US Central Great Plains
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2007.07.019
– volume: 17
  start-page: 231
  year: 1996
  ident: 10.1016/j.rse.2018.11.032_bb0410
  article-title: A colour composite of NOAA-AVHRR-NDVI based on time series analysis (1981–1992)
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431169608949001
– volume: 14
  start-page: 31
  year: 1984
  ident: 10.1016/j.rse.2018.11.032_bb0010
  article-title: Automatic corn-soybean classification using Landsat MSS data. II. Early season crop proportion estimation
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(84)90005-1
– ident: 10.1016/j.rse.2018.11.032_bb0510
– volume: 29
  start-page: 95
  year: 2008
  ident: 10.1016/j.rse.2018.11.032_bb0385
  article-title: The use of high-resolution image time series for crop classification and evapotranspiration estimate over an irrigated area in central Morocco
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160701250390
– volume: 160
  start-page: 99
  year: 2015
  ident: 10.1016/j.rse.2018.11.032_bb0100
  article-title: Tracking the dynamics of paddy rice planting area in 1986–2010 through time series Landsat images and phenology-based algorithms
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.01.004
– volume: 1
  start-page: 9
  year: 2008
  ident: 10.1016/j.rse.2018.11.032_bb0490
  article-title: Remote sensing imagery in vegetation mapping: a review
  publication-title: J. Plant Ecol.
  doi: 10.1093/jpe/rtm005
– volume: 78
  start-page: 799
  year: 2012
  ident: 10.1016/j.rse.2018.11.032_bb0550
  article-title: Phenology-based crop classification algorithm and its implications on agricultural water use assessments in California's central valley
  publication-title: Photogramm. Eng. Remote. Sens.
  doi: 10.14358/PERS.78.8.799
– volume: 96
  start-page: 366
  year: 2005
  ident: 10.1016/j.rse.2018.11.032_bb0330
  article-title: A crop phenology detection method using time-series MODIS data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2005.03.008
– volume: 15
  start-page: 3133
  year: 2014
  ident: 10.1016/j.rse.2018.11.032_bb0110
  article-title: Do we need hundreds of classifiers to solve real world classification problems?
  publication-title: J. Mach. Learn. Res.
– volume: 9
  start-page: 67
  year: 2017
  ident: 10.1016/j.rse.2018.11.032_bb0225
  article-title: Spectral–spatial classification of hyperspectral imagery with 3D convolutional neural network
  publication-title: Remote Sens.
  doi: 10.3390/rs9010067
– volume: 12
  start-page: 2321
  year: 2015
  ident: 10.1016/j.rse.2018.11.032_bb0575
  article-title: Deep learning based feature selection for remote sensing scene classification
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2015.2475299
– volume: 112
  start-page: 576
  year: 2008
  ident: 10.1016/j.rse.2018.11.032_bb0135
  article-title: Wavelet analysis of MODIS time series to detect expansion and intensification of row-crop agriculture in Brazil
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2007.05.017
– volume: vol. 1
  start-page: 252
  year: 2003
  ident: 10.1016/j.rse.2018.11.032_bb0380
  article-title: Identifying main crop classes in an irrigated area using high resolution image time series
– volume: 82
  start-page: 407
  year: 2016
  ident: 10.1016/j.rse.2018.11.032_bb0370
  article-title: An assessment of algorithmic parameters affecting image classification accuracy by random forests
  publication-title: Photogramm. Eng. Remote. Sens.
  doi: 10.14358/PERS.82.6.407
– volume: 95
  start-page: 480
  year: 2005
  ident: 10.1016/j.rse.2018.11.032_bb0480
  article-title: Mapping paddy rice agriculture in southern China using multi-temporal MODIS images
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2004.12.009
– volume: 108
  start-page: 19
  year: 1996
  ident: 10.1016/j.rse.2018.11.032_bb0405
  article-title: Application of harmonic analysis of NDVI time series (HANTS)
– volume: 5
  start-page: 8
  year: 2017
  ident: 10.1016/j.rse.2018.11.032_bb0570
  article-title: Deep learning in remote sensing: a comprehensive review and list of resources
  publication-title: IEEE Geosci. Remote Sens. Mag.
  doi: 10.1109/MGRS.2017.2762307
– volume: 100
  start-page: 321
  year: 2006
  ident: 10.1016/j.rse.2018.11.032_bb0015
  article-title: Improved monitoring of vegetation dynamics at very high latitudes: a new method using MODIS NDVI
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2005.10.021
– volume: 33
  start-page: 1905
  year: 2012
  ident: 10.1016/j.rse.2018.11.032_bb0445
  article-title: Rice heading date retrieval based on multi-temporal MODIS data and polynomial fitting
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2011.603378
– volume: 114
  start-page: 2146
  year: 2010
  ident: 10.1016/j.rse.2018.11.032_bb0340
  article-title: A two-step filtering approach for detecting maize and soybean phenology with time-series MODIS data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.04.019
– volume: 55
  start-page: 7092
  year: 2017
  ident: 10.1016/j.rse.2018.11.032_bb0255
  article-title: High-resolution aerial image labeling with convolutional neural networks
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2017.2740362
– volume: 10
  start-page: 4055
  year: 2013
  ident: 10.1016/j.rse.2018.11.032_bb0190
  article-title: A comparison of methods for smoothing and gap filling time series of remote sensing observations–application to MODIS LAI products
  publication-title: Biogeosciences
  doi: 10.5194/bg-10-4055-2013
– volume: 113
  start-page: 115
  year: 2009
  ident: 10.1016/j.rse.2018.11.032_bb0130
  article-title: Phenologically-tuned MODIS NDVI-based production anomaly estimates for Zimbabwe
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2008.08.015
– volume: 86
  start-page: 77
  year: 2017
  ident: 10.1016/j.rse.2018.11.032_bb0440
  article-title: Stacked sparse autoencoder in hyperspectral data classification using spectral-spatial, higher order statistics and multifractal spectrum features
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2017.08.021
– volume: 20
  start-page: 273
  year: 1995
  ident: 10.1016/j.rse.2018.11.032_bb0090
  article-title: Support-vector networks
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– volume: 144
  start-page: 85
  year: 2014
  ident: 10.1016/j.rse.2018.11.032_bb0430
  article-title: Dryland vegetation phenology across an elevation gradient in Arizona, USA, investigated with fused MODIS and Landsat data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.01.007
– volume: 112
  start-page: 986
  year: 2008
  ident: 10.1016/j.rse.2018.11.032_bb0045
  article-title: Contribution of multispectral and multitemporal information from MODIS images to land cover classification
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2007.07.002
– volume: 55
  start-page: 881
  year: 2017
  ident: 10.1016/j.rse.2018.11.032_bb0425
  article-title: Dense semantic labeling of subdecimeter resolution images with convolutional neural networks
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2016.2616585
– volume: 10
  start-page: 476
  year: 2008
  ident: 10.1016/j.rse.2018.11.032_bb0525
  article-title: Crop discrimination in Northern China with double cropping systems using Fourier analysis of time-series MODIS data
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  doi: 10.1016/j.jag.2007.11.002
– volume: 64
  start-page: 422
  year: 2009
  ident: 10.1016/j.rse.2018.11.032_bb0140
  article-title: An algorithm to classify and monitor seasonal variations in vegetation phenologies and their inter-annual change
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2009.03.001
– ident: 10.1016/j.rse.2018.11.032_bb0455
– volume: 9
  year: 2017
  ident: 10.1016/j.rse.2018.11.032_bb0230
  article-title: Deep learning based oil palm tree detection and counting for high-resolution remote sensing images
  publication-title: Remote Sens.
– start-page: 785
  year: 2016
  ident: 10.1016/j.rse.2018.11.032_bb0060
  article-title: XGBoost: a scalable tree boosting system
– volume: 11
  start-page: 2269
  year: 1990
  ident: 10.1016/j.rse.2018.11.032_bb0240
  article-title: A phenological classification of terrestrial vegetation cover using shortwave vegetation index imagery
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431169008955174
– ident: 10.1016/j.rse.2018.11.032_bb0460
– volume: 100
  start-page: 356
  year: 2006
  ident: 10.1016/j.rse.2018.11.032_bb0210
  article-title: Mapping invasive plants using hyperspectral imagery and Breiman Cutler classifications (RandomForest)
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2005.10.014
– volume: 109
  start-page: 261
  year: 2007
  ident: 10.1016/j.rse.2018.11.032_bb0115
  article-title: Cross-scalar satellite phenology from ground, Landsat, and MODIS data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2007.01.004
– volume: 2
  start-page: 18
  year: 2002
  ident: 10.1016/j.rse.2018.11.032_bb0235
  article-title: Classification and regression by randomForest
  publication-title: R News
– volume: 54
  start-page: 4544
  year: 2016
  ident: 10.1016/j.rse.2018.11.032_bb0540
  article-title: Spectral–spatial feature extraction for hyperspectral image classification: a dimension reduction and deep learning approach
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2016.2543748
– start-page: 867
  year: 2017
  ident: 10.1016/j.rse.2018.11.032_bb0175
  article-title: Incremental dual-memory LSTM in land cover prediction
– volume: 10
  start-page: 1055
  year: 1999
  ident: 10.1016/j.rse.2018.11.032_bb0055
  article-title: Support vector machines for histogram-based image classification
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.788646
– volume: 100
  start-page: 265
  year: 2006
  ident: 10.1016/j.rse.2018.11.032_bb0120
  article-title: Green leaf phenology at Landsat resolution: scaling from the field to the satellite
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2005.10.022
SSID ssj0015871
Score 2.7059577
Snippet This study aims to develop a deep learning based classification framework for remotely sensed time series. The experiment was carried out in Yolo County,...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 430
SubjectTerms Accuracy
Agronomy
Artificial neural network
automation
California
Classification
Classifiers
Convolutional neural network
Crop classification
Crops
Data processing
Deep learning
Dependence
equations
Farming systems
Feature extraction
irrigation
Irrigation systems
Landsat
Landsat satellites
Long short-term memory
Multi-temporal classification
Remote sensing
Representations
seasonal variation
summer
Support vector machines
Temporal variations
Time series
time series analysis
Vegetation index
Title Deep learning based multi-temporal crop classification
URI https://dx.doi.org/10.1016/j.rse.2018.11.032
https://www.proquest.com/docview/2176697571
https://www.proquest.com/docview/2176345975
Volume 221
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH-IInoRnYrTKRU8CdU1SZf0OHRzKnhy4C2kaaqTUYfbDrv4t_tem04U9OAx7Qst7zvkvfcDOItS1mGOt0OVZzEeUNCkjDIizGTCMpnnvJ2V1RYPncFQ3D3FTytwVffCUFml9_2VTy-9tX9y6bl5ORmNqMeXC9I4VErMOyJq-BVCkpZffCzLPKJYyQo1j4uQqOubzbLG631KkzIjdUGDPDn7LTb98NJl6Olvw5bPGYNu9Vs7sOKKBuz3vlrU8KW30WkDNjyu-cuiAes3JXDvYhc6185NAo8R8RxQ8MqCspow9NOpxgGheQWW0mmqHypFtgfDfu_xahB6zITQCiZmoUqEMYoZmzgjeW5N1iF8ImmYwVCVq9iyPItywyKRWstTI1OkVxF3hlOPLN-H1eKtcAcQOGFRfrmgI4UQCTMOcz1cqlgxyTLbhHbNLW39QHHCtRjrunLsVSODNTEYDxoaGdyE8-WWSTVN4y9iUYtAf1MJjd7-r22tWlza2-NUM5qDmUhUliacLl-jJdH1iCnc27yi4QIPWPHh_758BJu4Sqqa7haszt7n7hhTlll6UurkCax1b-8HD5_yHeo5
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFH9RjNGLUZSInzPxZDJlbce6o1EQFTlpwq3puk4xBInAgf_e97YOo4kcPG5ts-V9v_S99wM4DxLWZJY3fJmlISYoqFJaauGnUczSKMt4I82rLXrNzot46If9Fbgpe2GorNLZ_sKm59bavbly1LwaDwbU48sFSRwKJcYdgVyFNZpOFVZg7fr-sdNbXCaEMiqA87jw6UB5uZmXeX1OaFhmIC9plidnf7mnX4Y69z7tbdhyYaN3XfzZDqzYURVqre8uNVx0ajqpwoaDNn-bV2H9Lsfune9C89basedgIl498l-plxcU-m5A1dAjQC_PUERNJUQ51_bgpd16vun4DjbBN4KJqS9jobVk2sRWRzwzOm0SRFGkmUZvlcnQsCwNMs0CkRjDEx0luF8G3GpObbK8BpXRx8jug2eFQRZmgrIKIWKmLYZ7-ChDySKWmjo0Smop42aKE7TFUJXFY-8KCayIwJhrKCRwHS4WR8bFQI1lm0XJAvVDKhQa_GXHjkp2KaeSE8VoFGYcobzU4WyxjMpENyR6ZD9mxR4uMMcKD_735VPY6Dw_dVX3vvd4CJu4Ehcl3kdQmX7O7DFGMNPkxEnoF_867Oo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+based+multi-temporal+crop+classification&rft.jtitle=Remote+sensing+of+environment&rft.au=Zhong%2C+Liheng&rft.au=Hu%2C+Lina&rft.au=Zhou%2C+Hang&rft.date=2019-02-01&rft.pub=Elsevier+Inc&rft.issn=0034-4257&rft.volume=221&rft.spage=430&rft.epage=443&rft_id=info:doi/10.1016%2Fj.rse.2018.11.032&rft.externalDocID=S0034425718305418
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4257&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4257&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4257&client=summon