Deep learning based multi-temporal crop classification
This study aims to develop a deep learning based classification framework for remotely sensed time series. The experiment was carried out in Yolo County, California, which has a very diverse irrigated agricultural system dominated by economic crops. For the challenging task of classifying summer cro...
Saved in:
Published in | Remote sensing of environment Vol. 221; pp. 430 - 443 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Elsevier Inc
01.02.2019
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This study aims to develop a deep learning based classification framework for remotely sensed time series. The experiment was carried out in Yolo County, California, which has a very diverse irrigated agricultural system dominated by economic crops. For the challenging task of classifying summer crops using Landsat Enhanced Vegetation Index (EVI) time series, two types of deep learning models were designed: one is based on Long Short-Term Memory (LSTM), and the other is based on one-dimensional convolutional (Conv1D) layers. Three widely-used classifiers were also tested for comparison, including a gradient boosting machine called XGBoost, Random Forest, and Support Vector Machine. Although LSTM is widely used for sequential data representation, in this study its accuracy (82.41%) and F1 score (0.67) were the lowest among all the classifiers. Among non-deep-learning classifiers, XGBoost achieved the best result with 84.17% accuracy and an F1 score of 0.69. The highest accuracy (85.54%) and F1 score (0.73) were achieved by the Conv1D-based model, which mainly consists of a stack of Conv1D layers and an inception module. The behavior of the Conv1D-based model was inspected by visualizing the activation on different layers. The model employs EVI time series by examining shapes at various scales in a hierarchical manner. Lower Conv1D layers of the optimized model capture small scale temporal variations, while upper layers focus on overall seasonal patterns. Conv1D layers were used as an embedded multi-level feature extractor in the classification model which automatically extracts features from input time series during training. The automated feature extraction reduces the dependency on manual feature engineering and pre-defined equations of crop growing cycles. This study shows that the Conv1D-based deep learning framework provides an effective and efficient method of time series representation in multi-temporal classification tasks.
•Deep neural networks were developed for crop classification.•Deep neural network achieved 85.54% accuracy and an F1 score of 0.73.•The best non-deep-learning classifier achieved 84.17% accuracy and an F1 score of 0.69.•One-dimensional convolutional neural network was used as automated temporal feature extractor.•One-dimensional convolutional neural network identifies complex seasonal dynamics of economic crops. |
---|---|
AbstractList | This study aims to develop a deep learning based classification framework for remotely sensed time series. The experiment was carried out in Yolo County, California, which has a very diverse irrigated agricultural system dominated by economic crops. For the challenging task of classifying summer crops using Landsat Enhanced Vegetation Index (EVI) time series, two types of deep learning models were designed: one is based on Long Short-Term Memory (LSTM), and the other is based on one-dimensional convolutional (Conv1D) layers. Three widely-used classifiers were also tested for comparison, including a gradient boosting machine called XGBoost, Random Forest, and Support Vector Machine. Although LSTM is widely used for sequential data representation, in this study its accuracy (82.41%) and F1 score (0.67) were the lowest among all the classifiers. Among non-deep-learning classifiers, XGBoost achieved the best result with 84.17% accuracy and an F1 score of 0.69. The highest accuracy (85.54%) and F1 score (0.73) were achieved by the Conv1D-based model, which mainly consists of a stack of Conv1D layers and an inception module. The behavior of the Conv1D-based model was inspected by visualizing the activation on different layers. The model employs EVI time series by examining shapes at various scales in a hierarchical manner. Lower Conv1D layers of the optimized model capture small scale temporal variations, while upper layers focus on overall seasonal patterns. Conv1D layers were used as an embedded multi-level feature extractor in the classification model which automatically extracts features from input time series during training. The automated feature extraction reduces the dependency on manual feature engineering and pre-defined equations of crop growing cycles. This study shows that the Conv1D-based deep learning framework provides an effective and efficient method of time series representation in multi-temporal classification tasks. This study aims to develop a deep learning based classification framework for remotely sensed time series. The experiment was carried out in Yolo County, California, which has a very diverse irrigated agricultural system dominated by economic crops. For the challenging task of classifying summer crops using Landsat Enhanced Vegetation Index (EVI) time series, two types of deep learning models were designed: one is based on Long Short-Term Memory (LSTM), and the other is based on one-dimensional convolutional (Conv1D) layers. Three widely-used classifiers were also tested for comparison, including a gradient boosting machine called XGBoost, Random Forest, and Support Vector Machine. Although LSTM is widely used for sequential data representation, in this study its accuracy (82.41%) and F1 score (0.67) were the lowest among all the classifiers. Among non-deep-learning classifiers, XGBoost achieved the best result with 84.17% accuracy and an F1 score of 0.69. The highest accuracy (85.54%) and F1 score (0.73) were achieved by the Conv1D-based model, which mainly consists of a stack of Conv1D layers and an inception module. The behavior of the Conv1D-based model was inspected by visualizing the activation on different layers. The model employs EVI time series by examining shapes at various scales in a hierarchical manner. Lower Conv1D layers of the optimized model capture small scale temporal variations, while upper layers focus on overall seasonal patterns. Conv1D layers were used as an embedded multi-level feature extractor in the classification model which automatically extracts features from input time series during training. The automated feature extraction reduces the dependency on manual feature engineering and pre-defined equations of crop growing cycles. This study shows that the Conv1D-based deep learning framework provides an effective and efficient method of time series representation in multi-temporal classification tasks. •Deep neural networks were developed for crop classification.•Deep neural network achieved 85.54% accuracy and an F1 score of 0.73.•The best non-deep-learning classifier achieved 84.17% accuracy and an F1 score of 0.69.•One-dimensional convolutional neural network was used as automated temporal feature extractor.•One-dimensional convolutional neural network identifies complex seasonal dynamics of economic crops. |
Author | Zhong, Liheng Zhou, Hang Hu, Lina |
Author_xml | – sequence: 1 givenname: Liheng orcidid: 0000-0002-8161-9168 surname: Zhong fullname: Zhong, Liheng email: lihengzhong@berkeley.edu organization: Department of Water Resources, State of California, Sacramento, CA 95814, United States – sequence: 2 givenname: Lina surname: Hu fullname: Hu, Lina organization: Department of Sociology, Tsinghua University, Beijing 100084, China – sequence: 3 givenname: Hang surname: Zhou fullname: Zhou, Hang organization: Descartes Labs, Inc., Santa Fe, NM 87501, United States |
BookMark | eNp9kD1PwzAQQC1UJNrCD2CLxMKS4LOdOBETKp9SJRaYratzQa7SJNgpEv8et2Xq0OmW9053b8YmXd8RY9fAM-BQ3K0zHygTHMoMIONSnLEplLpKueZqwqacS5UqkesLNgthzTnkpYYpKx6JhqQl9J3rvpIVBqqTzbYdXTrSZug9ton1_ZDYFkNwjbM4ur67ZOcNtoGu_uecfT4_fSxe0-X7y9viYZlaJdSYlpVCLAXailDLxmJd1KWtNQqUhWjK3IqmhgYFqJW1coV6FfkSJKGUlVJyzm4Pewfff28pjGbjgqW2xY76bTACdCFVXuk8ojdH6Lrf-i5et6eKyGiIlD5Q8akQPDXGunH_0ujRtQa42fU0axN7ml1PA2Biz2jCkTl4t0H_e9K5PzgUG_048iZYR52l2nmyo6l7d8L-A0bsj9Y |
CitedBy_id | crossref_primary_10_3390_agronomy14081800 crossref_primary_10_1088_2515_7620_acabb7 crossref_primary_10_1016_j_asr_2024_11_038 crossref_primary_10_1016_j_rse_2022_113348 crossref_primary_10_3390_rs15102515 crossref_primary_10_3390_su141912563 crossref_primary_10_61186_jgit_12_1_17 crossref_primary_10_1016_j_jag_2021_102437 crossref_primary_10_3390_agriculture12071033 crossref_primary_10_1016_j_jag_2021_102436 crossref_primary_10_3390_rs11232881 crossref_primary_10_1016_j_ecoinf_2022_101678 crossref_primary_10_1016_j_jag_2020_102278 crossref_primary_10_1016_j_compag_2024_109370 crossref_primary_10_3390_rs14122833 crossref_primary_10_1016_j_isprsjprs_2023_11_016 crossref_primary_10_1016_j_nucengdes_2021_111328 crossref_primary_10_1016_j_cej_2025_160780 crossref_primary_10_3390_f14091881 crossref_primary_10_3390_rs12244162 crossref_primary_10_3390_rs11172029 crossref_primary_10_3390_agronomy13122915 crossref_primary_10_4236_ars_2024_132003 crossref_primary_10_3390_agronomy11040654 crossref_primary_10_3390_rs14205096 crossref_primary_10_1109_JSTARS_2023_3263755 crossref_primary_10_1016_j_eswa_2021_114842 crossref_primary_10_3389_frsen_2024_1459000 crossref_primary_10_3389_fpls_2023_1241921 crossref_primary_10_1016_j_compenvurbsys_2024_102072 crossref_primary_10_30897_ijegeo_858456 crossref_primary_10_3390_s21165556 crossref_primary_10_1016_j_jag_2023_103193 crossref_primary_10_1177_13694332241289163 crossref_primary_10_3390_rs15194657 crossref_primary_10_1111_2041_210X_13564 crossref_primary_10_3390_rs12244052 crossref_primary_10_1016_j_jag_2020_102294 crossref_primary_10_1016_j_cj_2022_07_005 crossref_primary_10_1016_j_eja_2020_126153 crossref_primary_10_3390_s21030877 crossref_primary_10_1007_s11277_023_10599_7 crossref_primary_10_1109_TGRS_2023_3321156 crossref_primary_10_1016_j_jag_2021_102651 crossref_primary_10_1029_2024EF004468 crossref_primary_10_1108_IJPPM_11_2023_0620 crossref_primary_10_3390_rs11050523 crossref_primary_10_1109_TGRS_2021_3100637 crossref_primary_10_1109_JSTARS_2021_3098817 crossref_primary_10_3390_rs16244755 crossref_primary_10_3390_rs11151780 crossref_primary_10_3390_rs14225732 crossref_primary_10_1038_s41598_020_74215_5 crossref_primary_10_3390_rs14030634 crossref_primary_10_3390_rs14225739 crossref_primary_10_3390_rs17030415 crossref_primary_10_1016_j_rse_2023_113886 crossref_primary_10_3390_f14112224 crossref_primary_10_1002_spe_3324 crossref_primary_10_3390_rs16173115 crossref_primary_10_3389_fpls_2023_1250844 crossref_primary_10_3390_s19204363 crossref_primary_10_3390_rs11222716 crossref_primary_10_3390_rs16071227 crossref_primary_10_1088_1748_9326_ab7df9 crossref_primary_10_1109_TGRS_2021_3099522 crossref_primary_10_3390_rs16244620 crossref_primary_10_3390_rs11141639 crossref_primary_10_3389_fenvs_2022_1089007 crossref_primary_10_3390_app11052238 crossref_primary_10_1109_JSTARS_2023_3342994 crossref_primary_10_14358_PERS_21_00061R2 crossref_primary_10_1109_ACCESS_2019_2961399 crossref_primary_10_1007_s00521_022_07104_9 crossref_primary_10_1080_15481603_2023_2196117 crossref_primary_10_1109_ACCESS_2020_2999865 crossref_primary_10_1007_s13280_024_02023_6 crossref_primary_10_3390_agriculture14040513 crossref_primary_10_1007_s11042_024_18617_x crossref_primary_10_1016_j_compag_2021_106188 crossref_primary_10_3390_rs13204160 crossref_primary_10_1016_j_aiia_2021_11_004 crossref_primary_10_1109_TGRS_2023_3348653 crossref_primary_10_1007_s12517_022_09677_0 crossref_primary_10_3390_rs14122758 crossref_primary_10_1080_10106049_2022_2095446 crossref_primary_10_1007_s00521_020_05325_4 crossref_primary_10_1080_01431161_2020_1771790 crossref_primary_10_3390_electronics12020348 crossref_primary_10_1007_s11042_020_10096_0 crossref_primary_10_1016_j_cj_2021_12_011 crossref_primary_10_1016_j_jag_2025_104404 crossref_primary_10_1109_TGRS_2023_3343071 crossref_primary_10_1016_j_aiig_2021_08_001 crossref_primary_10_1109_ACCESS_2020_2969812 crossref_primary_10_3390_rs17030378 crossref_primary_10_1016_j_isprsjprs_2024_12_015 crossref_primary_10_1007_s00190_023_01768_4 crossref_primary_10_3390_rs16142653 crossref_primary_10_1016_j_isprsjprs_2024_06_021 crossref_primary_10_1109_TGRS_2022_3160617 crossref_primary_10_5194_tc_15_835_2021 crossref_primary_10_3390_rs12101620 crossref_primary_10_3390_f15081467 crossref_primary_10_1109_TGRS_2024_3361895 crossref_primary_10_1175_JHM_D_22_0011_1 crossref_primary_10_1016_j_compag_2023_108097 crossref_primary_10_1109_ACCESS_2024_3458929 crossref_primary_10_1109_TGRS_2023_3335214 crossref_primary_10_1016_j_rse_2023_113653 crossref_primary_10_1109_TETCI_2023_3290027 crossref_primary_10_3390_rs12152493 crossref_primary_10_3390_rs16081447 crossref_primary_10_1007_s11042_022_13055_z crossref_primary_10_3390_rs14205280 crossref_primary_10_1002_agj2_21382 crossref_primary_10_30910_turkjans_1586291 crossref_primary_10_1088_1742_6596_1767_1_012026 crossref_primary_10_3390_rs14040873 crossref_primary_10_52547_jgst_12_3_1 crossref_primary_10_1109_JSTARS_2022_3220698 crossref_primary_10_3390_agriculture14081285 crossref_primary_10_3390_rs12203314 crossref_primary_10_3390_rs13173504 crossref_primary_10_3390_rs15163923 crossref_primary_10_3390_app14093545 crossref_primary_10_1007_s10586_024_04795_8 crossref_primary_10_3390_hydrology12030059 crossref_primary_10_1016_j_rse_2020_111946 crossref_primary_10_1080_10106049_2020_1861662 crossref_primary_10_1109_JSTARS_2022_3211994 crossref_primary_10_3390_agriengineering7030054 crossref_primary_10_1016_j_jag_2024_104204 crossref_primary_10_1016_j_rse_2023_113799 crossref_primary_10_3390_rs14195062 crossref_primary_10_3389_fpls_2022_901042 crossref_primary_10_1109_JSTARS_2025_3531886 crossref_primary_10_1016_j_compag_2021_106090 crossref_primary_10_1016_j_isprsjprs_2023_03_007 crossref_primary_10_1109_JSTARS_2022_3142395 crossref_primary_10_3390_land12030545 crossref_primary_10_3390_rs16111946 crossref_primary_10_3390_rs16214071 crossref_primary_10_1080_17538947_2021_1950853 crossref_primary_10_3390_rs13020249 crossref_primary_10_1016_j_compag_2024_109340 crossref_primary_10_1007_s11442_023_2150_6 crossref_primary_10_1007_s11119_024_10203_3 crossref_primary_10_1007_s12524_023_01760_7 crossref_primary_10_3390_rs16142547 crossref_primary_10_3390_rs16081464 crossref_primary_10_1016_j_rse_2020_111952 crossref_primary_10_1016_j_rse_2020_111951 crossref_primary_10_1109_JSTARS_2020_2973602 crossref_primary_10_1016_j_compag_2022_107478 crossref_primary_10_3390_s23041779 crossref_primary_10_1109_JSTARS_2021_3103754 crossref_primary_10_1109_TGRS_2024_3394653 crossref_primary_10_1016_j_jag_2022_102799 crossref_primary_10_1016_j_landusepol_2024_107260 crossref_primary_10_1080_01431161_2020_1766150 crossref_primary_10_3390_agronomy13123037 crossref_primary_10_3390_app11094292 crossref_primary_10_3390_rs15051361 crossref_primary_10_3390_rs15194807 crossref_primary_10_1109_JBHI_2024_3439568 crossref_primary_10_3390_ijerph192215108 crossref_primary_10_3390_rs12020226 crossref_primary_10_3390_rs13245183 crossref_primary_10_1016_j_rsase_2020_100340 crossref_primary_10_1080_01431161_2024_2425118 crossref_primary_10_1016_j_compag_2019_104989 crossref_primary_10_1080_10106049_2023_2240283 crossref_primary_10_1016_j_ecolind_2024_112027 crossref_primary_10_1155_2022_4268982 crossref_primary_10_7780_kjrs_2024_40_6_3_3 crossref_primary_10_1109_ACCESS_2022_3143524 crossref_primary_10_1016_j_rsase_2021_100627 crossref_primary_10_1109_TGRS_2024_3483110 crossref_primary_10_3390_rs14030559 crossref_primary_10_1016_j_heliyon_2023_e21253 crossref_primary_10_1080_01431161_2020_1823041 crossref_primary_10_1016_j_eswa_2021_115530 crossref_primary_10_1080_10095020_2021_2017237 crossref_primary_10_1016_j_agsy_2022_103462 crossref_primary_10_1016_j_isprsjprs_2022_11_020 crossref_primary_10_1038_s41598_023_43317_1 crossref_primary_10_1016_j_jag_2024_104181 crossref_primary_10_1016_j_agsy_2021_103167 crossref_primary_10_1016_j_procs_2024_06_390 crossref_primary_10_2478_amns_2024_3442 crossref_primary_10_3390_rs12081298 crossref_primary_10_3390_rs14030566 crossref_primary_10_3390_su14031615 crossref_primary_10_1016_j_indcrop_2024_118635 crossref_primary_10_1016_j_rse_2019_111411 crossref_primary_10_5194_gmd_15_6637_2022 crossref_primary_10_1016_j_earscirev_2019_103076 crossref_primary_10_1080_01431161_2020_1783713 crossref_primary_10_1109_TGRS_2023_3299617 crossref_primary_10_1016_j_jenvman_2023_117693 crossref_primary_10_1016_j_jag_2022_102890 crossref_primary_10_1016_j_ecoser_2024_101614 crossref_primary_10_1080_15481603_2023_2211881 crossref_primary_10_1016_j_isprsjprs_2023_04_002 crossref_primary_10_1109_JSTARS_2023_3316304 crossref_primary_10_1109_JSTARS_2025_3527017 crossref_primary_10_2174_2210298102666220616114622 crossref_primary_10_3390_rs12172726 crossref_primary_10_1016_j_jag_2022_102776 crossref_primary_10_1016_j_jhydrol_2024_131994 crossref_primary_10_1109_JSTARS_2021_3112209 crossref_primary_10_1080_15481603_2024_2395700 crossref_primary_10_3390_agriculture10100483 crossref_primary_10_1016_j_isprsjprs_2021_01_024 crossref_primary_10_1016_j_acags_2025_100223 crossref_primary_10_3390_rs14194858 crossref_primary_10_1109_JSTARS_2021_3062411 crossref_primary_10_3390_rs12020321 crossref_primary_10_3390_rs15164021 crossref_primary_10_3390_rs16061026 crossref_primary_10_2174_1389202923666220927105311 crossref_primary_10_1016_j_jag_2025_104426 crossref_primary_10_1109_JSTARS_2024_3503756 crossref_primary_10_3390_rs14205232 crossref_primary_10_1021_acs_est_3c01269 crossref_primary_10_3390_agronomy14051084 crossref_primary_10_3390_rs13132477 crossref_primary_10_1080_15481603_2022_2104999 crossref_primary_10_3390_rs16132431 crossref_primary_10_1016_j_jastp_2025_106483 crossref_primary_10_3390_rs13122317 crossref_primary_10_3390_app14051749 crossref_primary_10_3390_su14106079 crossref_primary_10_1007_s11042_024_18849_x crossref_primary_10_1016_j_heliyon_2024_e30470 crossref_primary_10_1109_JSTARS_2021_3104726 crossref_primary_10_3390_machines11121049 crossref_primary_10_1016_j_jag_2021_102351 crossref_primary_10_1080_10106049_2023_2184500 crossref_primary_10_3390_rs14174193 crossref_primary_10_3390_drones6120399 crossref_primary_10_1016_j_jag_2021_102477 crossref_primary_10_1016_j_jag_2021_102598 crossref_primary_10_3389_fpls_2023_1130659 crossref_primary_10_1007_s12524_020_01303_4 crossref_primary_10_1590_1983_21252024v3711701rc crossref_primary_10_3390_rs16193607 crossref_primary_10_1017_wsc_2022_53 crossref_primary_10_1080_10106049_2023_2207550 crossref_primary_10_3390_s24216915 crossref_primary_10_3390_rs13214372 crossref_primary_10_1016_j_rse_2021_112600 crossref_primary_10_1016_j_rse_2021_112603 crossref_primary_10_3389_fpls_2022_1017803 crossref_primary_10_1080_07038992_2021_1926952 crossref_primary_10_3390_app11219816 crossref_primary_10_1016_j_jag_2022_102762 crossref_primary_10_3390_agronomy9030142 crossref_primary_10_3390_rs16193717 crossref_primary_10_3390_s22228600 crossref_primary_10_3390_rs13193994 crossref_primary_10_3390_su15086632 crossref_primary_10_1186_s43170_023_00193_z crossref_primary_10_3390_rs14215373 crossref_primary_10_3390_rs14205216 crossref_primary_10_3390_rs17040680 crossref_primary_10_1016_j_jag_2021_102451 crossref_primary_10_1080_01431161_2023_2218972 crossref_primary_10_1080_15481603_2022_2156123 crossref_primary_10_3390_rs12071074 crossref_primary_10_1016_j_rsase_2021_100639 crossref_primary_10_3390_rs12071073 crossref_primary_10_3390_geomatics3010004 crossref_primary_10_1016_j_jag_2025_104474 crossref_primary_10_1016_j_rsase_2023_101090 crossref_primary_10_3390_rs13193953 crossref_primary_10_1016_j_isprsjprs_2020_01_028 crossref_primary_10_1109_TGRS_2021_3062751 crossref_primary_10_3390_agronomy13071723 crossref_primary_10_3390_rs14061379 crossref_primary_10_1016_j_isprsjprs_2023_12_005 crossref_primary_10_1016_j_rse_2022_113088 crossref_primary_10_1080_19479832_2021_2019133 crossref_primary_10_1016_j_iswa_2022_200102 crossref_primary_10_3390_s21030958 crossref_primary_10_1016_j_isprsjprs_2024_07_007 crossref_primary_10_1016_j_jag_2021_102440 crossref_primary_10_3390_rs14215478 crossref_primary_10_3390_s22030719 crossref_primary_10_1016_j_compag_2022_106794 crossref_primary_10_1016_j_rse_2021_112822 crossref_primary_10_1016_j_cropro_2023_106389 crossref_primary_10_1016_j_ecoinf_2024_102563 crossref_primary_10_1016_j_isprsjprs_2022_10_005 crossref_primary_10_1016_j_atech_2024_100641 crossref_primary_10_3390_rs12172814 crossref_primary_10_1016_j_isprsjprs_2023_12_012 crossref_primary_10_3390_rs15051448 crossref_primary_10_1016_j_future_2024_107691 crossref_primary_10_1016_j_jag_2024_104047 crossref_primary_10_1016_j_compag_2024_109185 crossref_primary_10_1007_s10668_024_05144_w crossref_primary_10_1007_s12524_024_01977_0 crossref_primary_10_1016_j_jag_2024_104040 crossref_primary_10_1007_s11356_021_13503_7 crossref_primary_10_1016_j_rse_2019_111350 crossref_primary_10_1016_j_rse_2024_114302 crossref_primary_10_3390_agronomy14010137 crossref_primary_10_1016_j_isprsjprs_2022_04_018 crossref_primary_10_3390_rs15133212 crossref_primary_10_1016_j_rse_2019_111598 crossref_primary_10_3390_rs16091505 crossref_primary_10_1109_TGRS_2021_3113014 crossref_primary_10_3390_rs14184639 crossref_primary_10_3390_rs13224522 crossref_primary_10_3390_rs12050832 crossref_primary_10_1080_10106049_2021_1878292 crossref_primary_10_1016_j_isprsjprs_2024_01_016 crossref_primary_10_1088_2515_7620_adb9c0 crossref_primary_10_3390_s22155853 crossref_primary_10_1109_JSTARS_2020_3046053 crossref_primary_10_1186_s13595_023_01184_w crossref_primary_10_1080_01431161_2022_2093622 crossref_primary_10_1080_10106049_2024_2380372 crossref_primary_10_1109_JSTARS_2024_3510468 crossref_primary_10_1186_s40537_023_00735_2 crossref_primary_10_1016_j_rse_2025_114711 crossref_primary_10_3390_rs15040974 crossref_primary_10_1016_j_rse_2024_114430 crossref_primary_10_1016_j_scitotenv_2020_138869 crossref_primary_10_3390_rs15010091 crossref_primary_10_1002_int_22560 crossref_primary_10_1016_j_rsase_2022_100843 crossref_primary_10_1080_15481603_2024_2387393 crossref_primary_10_3390_rs12162534 crossref_primary_10_3390_rs12162655 crossref_primary_10_1109_JSTARS_2021_3085397 crossref_primary_10_3390_s21206894 crossref_primary_10_26833_ijeg_1252298 crossref_primary_10_3390_rs12050814 crossref_primary_10_1016_j_isprsjprs_2024_08_018 crossref_primary_10_1016_j_indcrop_2024_118358 crossref_primary_10_1016_j_foreco_2024_122154 crossref_primary_10_1109_MGRS_2024_3393010 crossref_primary_10_1080_10106049_2021_1983034 crossref_primary_10_3390_rs13224668 crossref_primary_10_1109_ACCESS_2020_2993538 crossref_primary_10_3390_rs16224225 crossref_primary_10_1016_j_jhydrol_2024_131598 crossref_primary_10_3390_app12125919 crossref_primary_10_3390_rs13245000 crossref_primary_10_1016_j_rsase_2024_101371 crossref_primary_10_1080_24694452_2022_2077168 crossref_primary_10_3390_rs14051095 crossref_primary_10_1016_j_matpr_2021_04_326 crossref_primary_10_3390_rs14112697 crossref_primary_10_1080_07038992_2024_2448169 crossref_primary_10_15832_ankutbd_1339516 crossref_primary_10_1080_01431161_2023_2232552 crossref_primary_10_1016_j_rsase_2024_101259 crossref_primary_10_1080_10106049_2021_1892213 crossref_primary_10_3390_rs15040875 crossref_primary_10_1016_j_jenvman_2024_122251 crossref_primary_10_1016_j_rse_2021_112751 crossref_primary_10_1016_j_jenvman_2023_118817 crossref_primary_10_1051_epjconf_202125103029 crossref_primary_10_1080_13658816_2021_2004602 crossref_primary_10_1016_j_rse_2020_112048 crossref_primary_10_1016_j_isprsjprs_2020_02_022 crossref_primary_10_1016_j_compag_2020_105583 crossref_primary_10_1109_LGRS_2022_3230421 crossref_primary_10_1615_JPorMedia_2024052865 crossref_primary_10_1016_j_isprsjprs_2020_08_004 crossref_primary_10_3390_rs15082014 crossref_primary_10_3390_rs14081840 crossref_primary_10_1109_TGRS_2021_3120914 crossref_primary_10_1016_j_cosust_2019_05_003 crossref_primary_10_1016_j_srs_2024_100123 crossref_primary_10_1080_22797254_2020_1727777 crossref_primary_10_3389_ffgc_2022_1032066 crossref_primary_10_1016_j_rse_2024_114107 crossref_primary_10_3390_rs12081232 crossref_primary_10_1109_JSTARS_2022_3217665 crossref_primary_10_3390_drones8010013 crossref_primary_10_3390_rs11080990 crossref_primary_10_3390_rs14102341 crossref_primary_10_3389_fpls_2022_1030595 crossref_primary_10_3390_rs15082102 crossref_primary_10_1016_j_nucengdes_2021_111097 crossref_primary_10_3390_rs15122963 crossref_primary_10_1016_j_rse_2024_114110 crossref_primary_10_1016_j_srs_2024_100152 crossref_primary_10_3390_rs13142790 crossref_primary_10_3390_rs13214405 crossref_primary_10_3390_rs16020235 crossref_primary_10_1016_j_rse_2019_111624 crossref_primary_10_1109_JSTARS_2022_3219816 crossref_primary_10_3390_rs14030498 crossref_primary_10_3390_rs16193568 crossref_primary_10_1016_j_rse_2024_114476 crossref_primary_10_3390_rs15205043 crossref_primary_10_1016_j_rse_2020_112103 crossref_primary_10_3390_rs15174156 crossref_primary_10_3390_s21113758 crossref_primary_10_1590_1807_1929_agriambi_v26n6p466_476 crossref_primary_10_1007_s11056_023_09974_w crossref_primary_10_3390_rs12193119 crossref_primary_10_3390_s24196313 crossref_primary_10_1016_j_isprsjprs_2020_08_025 crossref_primary_10_3390_rs15164108 crossref_primary_10_1186_s12302_020_00397_4 crossref_primary_10_4995_raet_2020_13337 crossref_primary_10_3390_rs12122065 crossref_primary_10_1080_17538947_2024_2310728 crossref_primary_10_3390_rs11242925 crossref_primary_10_1016_j_compeleceng_2019_04_011 crossref_primary_10_1016_j_ecoinf_2023_102333 crossref_primary_10_1016_j_rsase_2025_101525 crossref_primary_10_3390_agronomy9090556 crossref_primary_10_3390_rs12081256 crossref_primary_10_1016_j_isprsjprs_2020_02_008 crossref_primary_10_1109_TGRS_2024_3415773 crossref_primary_10_1016_j_compag_2022_107497 crossref_primary_10_1109_JSTARS_2025_3525552 crossref_primary_10_3390_w12112992 crossref_primary_10_3390_rs16122150 crossref_primary_10_1109_TGRS_2024_3386171 crossref_primary_10_1016_j_compag_2022_107491 crossref_primary_10_1016_j_isprsjprs_2022_06_012 crossref_primary_10_3390_rs16234581 crossref_primary_10_1016_j_isprsjprs_2022_12_005 crossref_primary_10_3390_rs11242912 crossref_primary_10_1016_j_engappai_2024_109460 crossref_primary_10_1016_j_rse_2024_114252 crossref_primary_10_1007_s11042_024_19737_0 crossref_primary_10_1186_s13007_023_01096_w crossref_primary_10_3390_app12105067 crossref_primary_10_1109_TGRS_2022_3174009 crossref_primary_10_3390_rs13214304 crossref_primary_10_1016_j_srs_2023_100094 crossref_primary_10_3390_rs12193237 crossref_primary_10_1016_j_asr_2022_11_046 crossref_primary_10_3390_rs14081809 crossref_primary_10_1016_j_compag_2022_107249 crossref_primary_10_3390_rs14081929 crossref_primary_10_3389_fpls_2023_1196634 crossref_primary_10_1109_JSTARS_2021_3062073 crossref_primary_10_1016_j_rsase_2023_100964 crossref_primary_10_1109_JSTARS_2022_3150430 crossref_primary_10_3390_rs13071355 crossref_primary_10_1109_LGRS_2024_3399774 crossref_primary_10_3390_rs13091740 crossref_primary_10_1016_j_isprsjprs_2024_01_025 crossref_primary_10_1109_JSTARS_2021_3055784 crossref_primary_10_3390_rs16112007 crossref_primary_10_3390_agronomy12071583 crossref_primary_10_1016_j_rse_2024_114385 crossref_primary_10_1016_j_conbuildmat_2024_137684 crossref_primary_10_1016_j_rse_2024_114381 crossref_primary_10_1109_JSTARS_2024_3373489 crossref_primary_10_3390_s22176609 crossref_primary_10_1080_01431161_2023_2197130 crossref_primary_10_1016_j_rse_2024_114387 crossref_primary_10_1109_TGRS_2022_3154406 crossref_primary_10_3390_rs14215624 crossref_primary_10_1002_esp_6009 crossref_primary_10_3390_rs13142749 crossref_primary_10_1109_JSTARS_2022_3218919 crossref_primary_10_3390_rs11121505 crossref_primary_10_1016_j_jenvman_2022_114560 crossref_primary_10_1142_S0218001421520157 crossref_primary_10_3390_rs14215625 crossref_primary_10_1007_s12517_022_10246_8 crossref_primary_10_3390_rs16020270 crossref_primary_10_1016_j_isprsjprs_2023_01_005 crossref_primary_10_3390_rs13173378 crossref_primary_10_1109_TGRS_2022_3175635 crossref_primary_10_21923_jesd_559887 crossref_primary_10_1145_3627707 crossref_primary_10_1109_LGRS_2019_2946951 crossref_primary_10_3390_plants12030440 crossref_primary_10_1590_1809_4430_eng_agric_v42n2e20210177_2022 crossref_primary_10_3390_rs14153607 crossref_primary_10_3390_rs13091629 crossref_primary_10_3390_agriculture13040906 crossref_primary_10_1109_JSTARS_2023_3237500 crossref_primary_10_3389_fenvs_2023_1207882 crossref_primary_10_3390_rs13163319 crossref_primary_10_1016_j_patcog_2023_109773 crossref_primary_10_1080_01431161_2024_2318773 crossref_primary_10_3390_rs16234579 crossref_primary_10_3390_s19102398 crossref_primary_10_1038_s41598_024_80327_z crossref_primary_10_1117_1_JRS_17_038503 crossref_primary_10_3390_rs14092120 crossref_primary_10_1016_j_srs_2022_100059 crossref_primary_10_1016_S2095_3119_19_62812_1 crossref_primary_10_1016_j_ecoinf_2021_101325 crossref_primary_10_1016_j_jag_2023_103595 crossref_primary_10_3390_rs11070861 crossref_primary_10_3389_frsen_2024_1483295 crossref_primary_10_3390_agriculture14020271 crossref_primary_10_3390_rs13173488 crossref_primary_10_3390_rs16091481 crossref_primary_10_1186_s40537_021_00530_x crossref_primary_10_3390_rs13234846 crossref_primary_10_1038_s41597_021_00827_9 crossref_primary_10_1016_j_isprsjprs_2020_11_022 crossref_primary_10_3390_agriculture13010010 crossref_primary_10_3390_rs15092343 crossref_primary_10_1016_j_jechem_2023_03_030 crossref_primary_10_1016_j_rse_2021_112599 crossref_primary_10_3390_agriculture14010002 crossref_primary_10_3390_rs16234548 crossref_primary_10_3390_rs12183062 crossref_primary_10_1007_s00382_023_06874_9 crossref_primary_10_3390_rs14215605 crossref_primary_10_1007_s11694_024_03032_5 crossref_primary_10_1016_j_jag_2022_103069 crossref_primary_10_3390_f10090818 crossref_primary_10_3390_jimaging6070068 crossref_primary_10_1016_j_chemosphere_2023_140989 crossref_primary_10_1016_j_ecoinf_2021_101214 crossref_primary_10_3390_f14091823 crossref_primary_10_1080_15481603_2023_2177448 crossref_primary_10_1016_j_rse_2022_112994 crossref_primary_10_1016_j_jag_2024_103798 crossref_primary_10_3390_rs11222673 crossref_primary_10_1016_j_rse_2021_112468 crossref_primary_10_3390_w12082088 crossref_primary_10_1109_LGRS_2021_3095505 crossref_primary_10_3390_rs13091661 crossref_primary_10_1016_j_cose_2020_102168 crossref_primary_10_3390_app13053148 crossref_primary_10_3390_f14061193 crossref_primary_10_3390_rs16050823 crossref_primary_10_3390_agriengineering6020106 crossref_primary_10_1007_s11227_023_05533_4 crossref_primary_10_1371_journal_pone_0239746 crossref_primary_10_1016_j_catena_2022_106130 crossref_primary_10_1016_j_isprsjprs_2020_06_006 crossref_primary_10_1109_TGRS_2023_3234527 crossref_primary_10_3390_agriculture15010092 crossref_primary_10_1016_j_compag_2024_109421 crossref_primary_10_3390_ijgi9110648 crossref_primary_10_1109_JSTARS_2024_3366883 crossref_primary_10_3390_rs16081421 crossref_primary_10_1093_insilicoplants_diab017 crossref_primary_10_3390_rs13142785 crossref_primary_10_1080_10095020_2024_2336604 crossref_primary_10_3390_electronics13173466 crossref_primary_10_1016_j_isprsjprs_2024_10_013 crossref_primary_10_1016_j_isprsjprs_2024_04_021 crossref_primary_10_3390_rs14235951 crossref_primary_10_3390_rs14153776 crossref_primary_10_3390_rs15010175 crossref_primary_10_34133_remotesensing_0285 crossref_primary_10_3390_rs13020197 crossref_primary_10_3390_rs15010056 crossref_primary_10_1016_j_isprsjprs_2023_09_009 crossref_primary_10_1016_j_isprsjprs_2020_12_010 crossref_primary_10_1016_j_rse_2021_112292 crossref_primary_10_3390_rs13091666 crossref_primary_10_1016_j_compag_2023_108487 crossref_primary_10_1109_JSTARS_2024_3428627 crossref_primary_10_3390_rs11070790 crossref_primary_10_3390_rs14071746 crossref_primary_10_1080_15481603_2019_1650447 crossref_primary_10_3390_rs13010157 crossref_primary_10_3390_rs15153859 crossref_primary_10_3390_rs13234891 crossref_primary_10_3390_rs14163982 crossref_primary_10_1007_s12517_023_11688_4 crossref_primary_10_1109_JSTARS_2024_3402114 crossref_primary_10_3390_rs13010039 crossref_primary_10_3390_rs13050835 crossref_primary_10_3390_rs12183053 crossref_primary_10_3390_rs15235515 crossref_primary_10_1002_rse2_337 crossref_primary_10_1155_2022_9717843 crossref_primary_10_3390_rs11131619 crossref_primary_10_1109_JSTARS_2021_3107982 crossref_primary_10_3390_rs15010047 crossref_primary_10_1080_15481603_2024_2385170 crossref_primary_10_1016_j_aquaculture_2023_739474 crossref_primary_10_3390_rs11141665 crossref_primary_10_1109_JSTARS_2020_3036602 crossref_primary_10_1016_j_compag_2023_108012 crossref_primary_10_1109_TGRS_2024_3442171 crossref_primary_10_1016_j_compag_2024_108631 crossref_primary_10_1051_e3sconf_202460003007 crossref_primary_10_1016_j_rse_2021_112285 crossref_primary_10_1016_j_asoc_2020_107065 crossref_primary_10_34133_plantphenomics_0123 crossref_primary_10_1016_j_isprsjprs_2022_09_010 crossref_primary_10_1080_14498596_2023_2174196 crossref_primary_10_1016_j_jag_2024_103984 crossref_primary_10_1016_j_jag_2024_103867 crossref_primary_10_3390_rs15081990 crossref_primary_10_1016_j_asoc_2025_112876 crossref_primary_10_1117_1_JRS_18_024519 crossref_primary_10_3390_rs16020293 crossref_primary_10_4018_IJACI_309408 crossref_primary_10_1109_ACCESS_2020_3000175 crossref_primary_10_32604_csse_2023_024475 crossref_primary_10_1016_j_ufug_2022_127670 crossref_primary_10_1080_17538947_2024_2308728 crossref_primary_10_1016_j_compag_2023_108227 crossref_primary_10_1016_j_heliyon_2023_e17203 crossref_primary_10_1109_TGRS_2020_3018109 crossref_primary_10_1016_j_isprsjprs_2020_11_007 crossref_primary_10_3390_app112311520 crossref_primary_10_1016_j_jag_2024_103755 crossref_primary_10_48130_tia_0024_0009 crossref_primary_10_1007_s11540_024_09769_2 crossref_primary_10_3390_rs14163889 crossref_primary_10_3390_electronics13010004 crossref_primary_10_1016_j_measen_2023_100722 crossref_primary_10_1109_TGRS_2022_3210438 crossref_primary_10_3390_rs12121952 crossref_primary_10_3390_rs14184573 crossref_primary_10_1007_s11042_021_11036_2 |
Cites_doi | 10.2134/agronj2004.1139 10.1016/j.isprsjprs.2014.04.023 10.1016/j.rse.2012.12.017 10.1016/j.cageo.2004.05.006 10.1109/72.279188 10.1080/01431161.2016.1246775 10.3390/rs10030471 10.1016/j.rse.2014.11.026 10.1016/j.rse.2015.12.023 10.1155/2015/258619 10.1016/0004-3702(83)90008-5 10.3390/rs71114680 10.1109/LGRS.2017.2681128 10.1080/014311600209814 10.1016/j.rse.2010.05.005 10.1109/LGRS.2014.2309695 10.1016/j.rse.2005.10.004 10.1016/j.rse.2006.05.017 10.1109/TGRS.2017.2748160 10.1162/neco.1997.9.8.1735 10.1038/srep36240 10.1016/j.rse.2015.02.003 10.1016/j.rse.2013.08.023 10.1109/36.752215 10.1016/j.isprsjprs.2015.05.011 10.1080/01431161.2010.527397 10.1016/S0034-4257(02)00096-2 10.1016/j.rse.2005.09.007 10.1080/2150704X.2015.1047045 10.3390/ijgi7040129 10.1016/j.rse.2004.03.014 10.3390/rs70403633 10.1016/S0034-4257(01)00296-6 10.1016/j.isprsjprs.2017.11.011 10.1109/LGRS.2013.2286214 10.3390/rs9060629 10.1109/JSTARS.2014.2329330 10.14358/PERS.76.7.833 10.1016/S0034-4257(02)00135-9 10.1016/j.isprsjprs.2018.01.021 10.1016/j.rse.2007.12.004 10.1016/j.rse.2015.04.019 10.1016/j.rse.2016.04.022 10.2307/3235884 10.1109/TGRS.2010.2095462 10.1016/j.rse.2014.03.008 10.3390/rs8060506 10.1016/j.rse.2006.08.002 10.1111/j.1365-2486.2007.01479.x 10.1016/j.isprsjprs.2017.11.009 10.1080/01431169408954355 10.1016/j.isprsjprs.2016.05.014 10.1016/j.rse.2007.07.019 10.1080/01431169608949001 10.1016/0034-4257(84)90005-1 10.1080/01431160701250390 10.1016/j.rse.2015.01.004 10.1093/jpe/rtm005 10.14358/PERS.78.8.799 10.1016/j.rse.2005.03.008 10.3390/rs9010067 10.1109/LGRS.2015.2475299 10.1016/j.rse.2007.05.017 10.14358/PERS.82.6.407 10.1016/j.rse.2004.12.009 10.1109/MGRS.2017.2762307 10.1016/j.rse.2005.10.021 10.1080/01431161.2011.603378 10.1016/j.rse.2010.04.019 10.1109/TGRS.2017.2740362 10.5194/bg-10-4055-2013 10.1016/j.rse.2008.08.015 10.1016/j.infrared.2017.08.021 10.1007/BF00994018 10.1016/j.rse.2014.01.007 10.1016/j.rse.2007.07.002 10.1109/TGRS.2016.2616585 10.1016/j.jag.2007.11.002 10.1016/j.isprsjprs.2009.03.001 10.1080/01431169008955174 10.1016/j.rse.2005.10.014 10.1016/j.rse.2007.01.004 10.1109/TGRS.2016.2543748 10.1109/72.788646 10.1016/j.rse.2005.10.022 |
ContentType | Journal Article |
Copyright | 2018 Copyright Elsevier BV Feb 2019 |
Copyright_xml | – notice: 2018 – notice: Copyright Elsevier BV Feb 2019 |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7TG 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KL. KR7 L7M L~C L~D P64 7S9 L.6 |
DOI | 10.1016/j.rse.2018.11.032 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Meteorological & Geoastrophysical Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Meteorological & Geoastrophysical Abstracts Biotechnology Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Meteorological & Geoastrophysical Abstracts - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Materials Research Database AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Geology Environmental Sciences |
EISSN | 1879-0704 |
EndPage | 443 |
ExternalDocumentID | 10_1016_j_rse_2018_11_032 S0034425718305418 |
GeographicLocations | California |
GeographicLocations_xml | – name: California |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29P 4.4 41~ 457 4G. 53G 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO ABDPE ABEFU ABFNM ABFYP ABJNI ABLST ABMAC ABPPZ ABQEM ABQYD ABWVN ABXDB ACDAQ ACGFS ACIWK ACLVX ACPRK ACRLP ACRPL ACSBN ADBBV ADEZE ADMUD ADNMO ADVLN AEBSH AEGFY AEIPS AEKER AENEX AFFNX AFJKZ AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLECG BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HMC HVGLF HZ~ H~9 IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SEN SEP SES SEW SPC SPCBC SSE SSH SSJ SSZ T5K TN5 TWZ VOH WH7 WUQ XOL ZCA ZMT ~02 ~G- ~KM AAYWO AAYXX ACVFH ADCNI ADXHL AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP CITATION 7QF 7QO 7QQ 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7TG 7U5 8BQ 8FD C1K EFKBS F28 FR3 H8D H8G JG9 JQ2 KL. KR7 L7M L~C L~D P64 7S9 L.6 |
ID | FETCH-LOGICAL-c424t-894aa82ac9ea73fcad6d8cd7a2a362f85c2fd1fa214bcc3ba7baa8813ea339443 |
IEDL.DBID | .~1 |
ISSN | 0034-4257 |
IngestDate | Fri Jul 11 10:23:23 EDT 2025 Wed Aug 13 05:53:53 EDT 2025 Thu Apr 24 22:53:40 EDT 2025 Tue Jul 01 03:51:17 EDT 2025 Sun Apr 06 06:53:11 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Crop classification Multi-temporal classification Artificial neural network Convolutional neural network Landsat |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c424t-894aa82ac9ea73fcad6d8cd7a2a362f85c2fd1fa214bcc3ba7baa8813ea339443 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8161-9168 |
PQID | 2176697571 |
PQPubID | 2045405 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2176345975 proquest_journals_2176697571 crossref_citationtrail_10_1016_j_rse_2018_11_032 crossref_primary_10_1016_j_rse_2018_11_032 elsevier_sciencedirect_doi_10_1016_j_rse_2018_11_032 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2019 2019-02-00 20190201 |
PublicationDateYYYYMMDD | 2019-02-01 |
PublicationDate_xml | – month: 02 year: 2019 text: February 2019 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Remote sensing of environment |
PublicationYear | 2019 |
Publisher | Elsevier Inc Elsevier BV |
Publisher_xml | – name: Elsevier Inc – name: Elsevier BV |
References | Zhang, Feng, Yao (bb0530) 2014; 94 Zhong, Hawkins, Biging, Gong (bb0545) 2011; 32 Zhong, Yu, Li, Hu, Gong (bb0565) 2016; 6 Zhang, Friedl, Schaaf, Strahler, Hodges, Gao (bb0520) 2003; 84 Sakamoto, Gitelson, Arkebauer (bb0355) 2014; 147 Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (bb0395) 2014; 15 Szegedy, Liu, Jia, Sermanet, Reed, Anguelov (bb0400) 2015 Dong, Xiao, Kou, Qin, Zhang, Li (bb0100) 2015; 160 Rußwurm, Körner (bb0320) 2017 Sakamoto, Wardlow, Gitelson (bb0345) 2011; 49 Gonsamo, Chen (bb0145) 2016; 182 Jia, Khandelwal, Nayak, Gerber, Carlson, West (bb0175) 2017 Guidici, Clark (bb0150) 2017; 9 Mou, Zhu (bb0270) 2018 Sakamoto, Wardlow, Gitelson, Verma, Suyker, Arkebauer (bb0340) 2010; 114 Fisher, Mustard, Vadeboncoeur (bb0120) 2006; 100 Xin, Broich, Zhu, Gong (bb0495) 2015; 161 Vina, Gitelson, Rundquist, Keydan, Leavitt, Schepers (bb0420) 2004; 96 Sakamoto, Yokozawa, Toritani, Shibayama, Ishitsuka, Ohno (bb0330) 2005; 96 Simonneaux, Francois (bb0380) 2003; vol. 1 Badhwar (bb0010) 1984; 14 Na, Zhang, Li, Yu, Liu (bb0285) 2010; 76 Sherrah (bb0365) 2016 Li, Zhang, Shen (bb0225) 2017; 9 Maggiori, Tarabalka, Charpiat, Alliez (bb0255) 2017; 55 Hu, Huang, Wei, Zhang, Li (bb0160) 2015; 2015 Olsson, Eklundh (bb0290) 1994; 15 Fisher, Mustard (bb0115) 2007; 109 Li, Fu, Yu, Cracknell (bb0230) 2017; 9 Lyu, Lu, Mou, Li, Wright, Li (bb0250) 2018; 10 Marmanis, Schindler, Wegner, Galliani, Datcu, Stilla (bb0265) 2018; 135 Mou, Bruzzone, Zhu (bb0280) 2018 Ripley (bb0305) 2007 Zhong, Gong, Biging (bb0550) 2012; 78 Shi, Yang (bb0370) 2016; 82 Marcos, Volpi, Kellenberger, Tuia (bb0260) 2018; 145 WWW2 (bb0460) Xie, Sha, Yu (bb0490) 2008; 1 Zhang, Zhou, Chen, Liu, Zhou, Cai (bb0525) 2008; 10 Simonneaux, Duchemin, Helson, Er-Raki, Olioso, Chehbouni (bb0385) 2008; 29 Soudani, le Maire, Dufrene, Francois, Delpierre, Ulrich (bb0390) 2008; 112 Zou, Ni, Zhang, Wang (bb0575) 2015; 12 Shao, Lunetta, Wheeler, Iiames, Campbell (bb0360) 2016; 174 Zeiler, Fergus (bb0515) 2014 WWW3 (bb0465) Fernandez-Delgado, Cernadas, Barro, Amorim (bb0110) 2014; 15 Xiao, Boles, Frolking, Li, Babu, Salas (bb0485) 2006; 100 Chen, Lin, Zhao, Wang, Gu (bb0075) 2014; 7 Verhoef (bb0405) 1996; 108 Wan, Zhao, Wang, Liu (bb0440) 2017; 86 Zhang, Xiao, Dong, Kou, Jin, Qin (bb0535) 2015; 106 Rogan, Franklin, Roberts (bb0315) 2002; 80 Walker, de Beurs, Wynne (bb0430) 2014; 144 Mou, Ghamisi, Zhu (bb0275) 2018 Carrão, Gonçalves, Caetano (bb0045) 2008; 112 Kandasamy, Baret, Verger, Neveux, Weiss (bb0190) 2013; 10 Breiman, Friedman, Stone, Olshen (bb0035) 1984 Jönsson, Eklundh (bb0180) 2004; 30 Brown, de Beurs, Vrieling (bb0040) 2010; 114 Yue, Zhao, Mao, Liu (bb0505) 2015; 6 Geerken (bb0140) 2009; 64 Chapelle, Haffner, Vapnik (bb0055) 1999; 10 LeCun, Bengio (bb0215) 1995 Wardlow, Egbert (bb0450) 2008; 112 Sakamoto, Gitelson, Arkebauer (bb0350) 2013; 131 Wang, Chen, Wu, Lin (bb0445) 2012; 33 Lyu, Lu, Mou (bb0245) 2016; 8 Clancey (bb0080) 1983; 20 Bradley, Jacob, Hermance, Mustard (bb0030) 2007; 106 Siachalou, Mallinis, Tsakiri-Strati (bb0375) 2015; 7 Funk, Budde (bb0130) 2009; 113 Bergstra, Bengio (bb0020) 2012; 13 Lloyd (bb0240) 1990; 11 Kingma, Ba (bb0195) 2014 Zhong, Hu, Yu, Gong, Biging (bb0560) 2016; 119 Chen, Xiang, Liu, Pan (bb0070) 2014; 11 Krizhevsky, Sutskever, Hinton (bb0200) 2012; 2 Rußwurm, Körner (bb0325) 2018; 7 Yosinski, Clune, Nguyen, Fuchs, Lipson (bb0500) 2015 Evans, Geerken (bb0105) 2006; 105 Lawrence, Wood, Sheley (bb0210) 2006; 100 Roerink, Menenti, Verhoef (bb0310) 2000; 21 Kampffmeyer, Salberg, Jenssen (bb0185) 2016 Zaremba, Sutskever, Vinyals (bb0510) 2014 WWW4 (bb0470) Dannenberg, Song, Hwang, Wise (bb0095) 2015; 159 WWW5 (bb0475) Friedl, Brodley, Strahler (bb0125) 1999; 37 Verhoef, Menenti, Azzali (bb0410) 1996; 17 Zhao, Du (bb0540) 2016; 54 Chen, Guestrin (bb0060) 2016 Bradley, Mustard (bb0025) 2008; 14 Chen, Jonsson, Tamura, Gu, Matsushita, Eklundh (bb0065) 2004; 91 Liaw, Wiener (bb0235) 2002; 2 Walker, de Beurs, Henebry (bb0435) 2015; 165 Zhong, Gong, Biging (bb0555) 2014; 140 Hochreiter, Schmidhuber (bb0155) 1997; 9 Volpi, Tuia (bb0425) 2017; 55 Connor, Martin, Atlas (bb0085) 1994; 5 Reed, Brown, Vanderzee, Loveland, Merchant, Ohlen (bb0300) 1994; 5 Audebert, Le Saux, Lefèvre (bb0005) 2018; 140 CDWR (bb0050) 2009 Xiao, Boles, Liu, Zhuang, Frolking, Li (bb0480) 2005; 95 Cortes, Vapnik (bb0090) 1995; 20 WWW1 (bb0455) Beck, Atzberger, Høgda, Johansen, Skidmore (bb0015) 2006; 100 Galford, Mustard, Melillo, Gendrin, Cerri, Cerri (bb0135) 2008; 112 Hu, Xia, Hu, Zhang (bb0165) 2015; 7 Kussul, Lavreniuk, Skakun, Shelestov (bb0205) 2017; 14 Zhu, Tuia, Mou, Xia, Zhang, Xu (bb0570) 2017; 5 Huete, Didan, Miura, Rodriguez, Gao, Ferreira (bb0170) 2002; 83 Vicente-Guijalba, Martinez-Marin, Lopez-Sanchez (bb0415) 2014; 11 Penatti, Nogueira, Dos Santos (bb0295) 2015 Li, Fu, Yu, Gong, Feng, Li (bb0220) 2016; 37 Sakamoto, Van Nguyen, Ohno, Ishitsuka, Yokozawa (bb0335) 2006; 100 Rogan (10.1016/j.rse.2018.11.032_bb0315) 2002; 80 Zhang (10.1016/j.rse.2018.11.032_bb0535) 2015; 106 Bradley (10.1016/j.rse.2018.11.032_bb0030) 2007; 106 Chen (10.1016/j.rse.2018.11.032_bb0075) 2014; 7 Sakamoto (10.1016/j.rse.2018.11.032_bb0345) 2011; 49 Lyu (10.1016/j.rse.2018.11.032_bb0250) 2018; 10 Zeiler (10.1016/j.rse.2018.11.032_bb0515) 2014 Walker (10.1016/j.rse.2018.11.032_bb0435) 2015; 165 Guidici (10.1016/j.rse.2018.11.032_bb0150) 2017; 9 Zhang (10.1016/j.rse.2018.11.032_bb0525) 2008; 10 Mou (10.1016/j.rse.2018.11.032_bb0280) Carrão (10.1016/j.rse.2018.11.032_bb0045) 2008; 112 Zhong (10.1016/j.rse.2018.11.032_bb0565) 2016; 6 Chen (10.1016/j.rse.2018.11.032_bb0065) 2004; 91 Xie (10.1016/j.rse.2018.11.032_bb0490) 2008; 1 Krizhevsky (10.1016/j.rse.2018.11.032_bb0200) 2012; 2 Penatti (10.1016/j.rse.2018.11.032_bb0295) 2015 Li (10.1016/j.rse.2018.11.032_bb0220) 2016; 37 Hu (10.1016/j.rse.2018.11.032_bb0165) 2015; 7 Kingma (10.1016/j.rse.2018.11.032_bb0195) Mou (10.1016/j.rse.2018.11.032_bb0275) 2018 Brown (10.1016/j.rse.2018.11.032_bb0040) 2010; 114 Xiao (10.1016/j.rse.2018.11.032_bb0480) 2005; 95 CDWR (10.1016/j.rse.2018.11.032_bb0050) 2009 Galford (10.1016/j.rse.2018.11.032_bb0135) 2008; 112 Wardlow (10.1016/j.rse.2018.11.032_bb0450) 2008; 112 LeCun (10.1016/j.rse.2018.11.032_bb0215) 1995 Kussul (10.1016/j.rse.2018.11.032_bb0205) 2017; 14 Zhang (10.1016/j.rse.2018.11.032_bb0520) 2003; 84 Walker (10.1016/j.rse.2018.11.032_bb0430) 2014; 144 Soudani (10.1016/j.rse.2018.11.032_bb0390) 2008; 112 Simonneaux (10.1016/j.rse.2018.11.032_bb0385) 2008; 29 Na (10.1016/j.rse.2018.11.032_bb0285) 2010; 76 Vicente-Guijalba (10.1016/j.rse.2018.11.032_bb0415) 2014; 11 WWW1 (10.1016/j.rse.2018.11.032_bb0455) WWW3 (10.1016/j.rse.2018.11.032_bb0465) WWW5 (10.1016/j.rse.2018.11.032_bb0475) Jia (10.1016/j.rse.2018.11.032_bb0175) 2017 Friedl (10.1016/j.rse.2018.11.032_bb0125) 1999; 37 Hochreiter (10.1016/j.rse.2018.11.032_bb0155) 1997; 9 Mou (10.1016/j.rse.2018.11.032_bb0270) Li (10.1016/j.rse.2018.11.032_bb0230) 2017; 9 Huete (10.1016/j.rse.2018.11.032_bb0170) 2002; 83 Kampffmeyer (10.1016/j.rse.2018.11.032_bb0185) 2016 Xiao (10.1016/j.rse.2018.11.032_bb0485) 2006; 100 Zhao (10.1016/j.rse.2018.11.032_bb0540) 2016; 54 Fernandez-Delgado (10.1016/j.rse.2018.11.032_bb0110) 2014; 15 Bradley (10.1016/j.rse.2018.11.032_bb0025) 2008; 14 Reed (10.1016/j.rse.2018.11.032_bb0300) 1994; 5 Roerink (10.1016/j.rse.2018.11.032_bb0310) 2000; 21 Zhu (10.1016/j.rse.2018.11.032_bb0570) 2017; 5 Olsson (10.1016/j.rse.2018.11.032_bb0290) 1994; 15 Shao (10.1016/j.rse.2018.11.032_bb0360) 2016; 174 Dannenberg (10.1016/j.rse.2018.11.032_bb0095) 2015; 159 Lloyd (10.1016/j.rse.2018.11.032_bb0240) 1990; 11 Audebert (10.1016/j.rse.2018.11.032_bb0005) 2018; 140 Breiman (10.1016/j.rse.2018.11.032_bb0035) 1984 Fisher (10.1016/j.rse.2018.11.032_bb0115) 2007; 109 Lawrence (10.1016/j.rse.2018.11.032_bb0210) 2006; 100 Marcos (10.1016/j.rse.2018.11.032_bb0260) 2018; 145 Shi (10.1016/j.rse.2018.11.032_bb0370) 2016; 82 Sakamoto (10.1016/j.rse.2018.11.032_bb0330) 2005; 96 Dong (10.1016/j.rse.2018.11.032_bb0100) 2015; 160 Rußwurm (10.1016/j.rse.2018.11.032_bb0325) 2018; 7 Evans (10.1016/j.rse.2018.11.032_bb0105) 2006; 105 WWW2 (10.1016/j.rse.2018.11.032_bb0460) WWW4 (10.1016/j.rse.2018.11.032_bb0470) Wang (10.1016/j.rse.2018.11.032_bb0445) 2012; 33 Sakamoto (10.1016/j.rse.2018.11.032_bb0350) 2013; 131 Wan (10.1016/j.rse.2018.11.032_bb0440) 2017; 86 Hu (10.1016/j.rse.2018.11.032_bb0160) 2015; 2015 Chen (10.1016/j.rse.2018.11.032_bb0060) 2016 Rußwurm (10.1016/j.rse.2018.11.032_bb0320) 2017 Zhong (10.1016/j.rse.2018.11.032_bb0550) 2012; 78 Zhang (10.1016/j.rse.2018.11.032_bb0530) 2014; 94 Srivastava (10.1016/j.rse.2018.11.032_bb0395) 2014; 15 Vina (10.1016/j.rse.2018.11.032_bb0420) 2004; 96 Cortes (10.1016/j.rse.2018.11.032_bb0090) 1995; 20 Gonsamo (10.1016/j.rse.2018.11.032_bb0145) 2016; 182 Lyu (10.1016/j.rse.2018.11.032_bb0245) 2016; 8 Siachalou (10.1016/j.rse.2018.11.032_bb0375) 2015; 7 Connor (10.1016/j.rse.2018.11.032_bb0085) 1994; 5 Kandasamy (10.1016/j.rse.2018.11.032_bb0190) 2013; 10 Yue (10.1016/j.rse.2018.11.032_bb0505) 2015; 6 Zhong (10.1016/j.rse.2018.11.032_bb0560) 2016; 119 Zhong (10.1016/j.rse.2018.11.032_bb0555) 2014; 140 Geerken (10.1016/j.rse.2018.11.032_bb0140) 2009; 64 Fisher (10.1016/j.rse.2018.11.032_bb0120) 2006; 100 Zaremba (10.1016/j.rse.2018.11.032_bb0510) Maggiori (10.1016/j.rse.2018.11.032_bb0255) 2017; 55 Clancey (10.1016/j.rse.2018.11.032_bb0080) 1983; 20 Chapelle (10.1016/j.rse.2018.11.032_bb0055) 1999; 10 Liaw (10.1016/j.rse.2018.11.032_bb0235) 2002; 2 Zhong (10.1016/j.rse.2018.11.032_bb0545) 2011; 32 Yosinski (10.1016/j.rse.2018.11.032_bb0500) Funk (10.1016/j.rse.2018.11.032_bb0130) 2009; 113 Sherrah (10.1016/j.rse.2018.11.032_bb0365) Ripley (10.1016/j.rse.2018.11.032_bb0305) 2007 Verhoef (10.1016/j.rse.2018.11.032_bb0405) 1996; 108 Chen (10.1016/j.rse.2018.11.032_bb0070) 2014; 11 Simonneaux (10.1016/j.rse.2018.11.032_bb0380) 2003; vol. 1 Sakamoto (10.1016/j.rse.2018.11.032_bb0335) 2006; 100 Szegedy (10.1016/j.rse.2018.11.032_bb0400) 2015 Volpi (10.1016/j.rse.2018.11.032_bb0425) 2017; 55 Badhwar (10.1016/j.rse.2018.11.032_bb0010) 1984; 14 Marmanis (10.1016/j.rse.2018.11.032_bb0265) 2018; 135 Xin (10.1016/j.rse.2018.11.032_bb0495) 2015; 161 Jönsson (10.1016/j.rse.2018.11.032_bb0180) 2004; 30 Verhoef (10.1016/j.rse.2018.11.032_bb0410) 1996; 17 Sakamoto (10.1016/j.rse.2018.11.032_bb0340) 2010; 114 Li (10.1016/j.rse.2018.11.032_bb0225) 2017; 9 Sakamoto (10.1016/j.rse.2018.11.032_bb0355) 2014; 147 Bergstra (10.1016/j.rse.2018.11.032_bb0020) 2012; 13 Beck (10.1016/j.rse.2018.11.032_bb0015) 2006; 100 Zou (10.1016/j.rse.2018.11.032_bb0575) 2015; 12 |
References_xml | – volume: 5 start-page: 240 year: 1994 end-page: 254 ident: bb0085 article-title: Recurrent neural networks and robust time series prediction publication-title: IEEE Trans. Neural Netw. – volume: 84 start-page: 471 year: 2003 end-page: 475 ident: bb0520 article-title: Monitoring vegetation phenology using MODIS publication-title: Remote Sens. Environ. – year: 2016 ident: bb0365 article-title: Fully convolutional networks for dense semantic labelling of high-resolution aerial imagery – volume: 10 start-page: 1055 year: 1999 end-page: 1064 ident: bb0055 article-title: Support vector machines for histogram-based image classification publication-title: IEEE Trans. Neural Netw. – volume: 108 start-page: 19 year: 1996 end-page: 24 ident: bb0405 article-title: Application of harmonic analysis of NDVI time series (HANTS) publication-title: Fourier Analysis of Temporal NDVI in the Southern African and American Continents – volume: 161 start-page: 63 year: 2015 end-page: 77 ident: bb0495 article-title: Modeling grassland spring onset across the Western United States using climate variables and MODIS-derived phenology metrics publication-title: Remote Sens. Environ. – volume: 94 start-page: 102 year: 2014 end-page: 113 ident: bb0530 article-title: Improved maize cultivated area estimation over a large scale combining MODIS–EVI time series data and crop phenological information publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 17 start-page: 231 year: 1996 end-page: 235 ident: bb0410 article-title: A colour composite of NOAA-AVHRR-NDVI based on time series analysis (1981–1992) publication-title: Int. J. Remote Sens. – year: 2014 ident: bb0510 article-title: Recurrent neural network regularization – volume: 13 start-page: 281 year: 2012 end-page: 305 ident: bb0020 article-title: Random search for hyper-parameter optimization publication-title: J. Mach. Learn. Res. – volume: 182 start-page: 13 year: 2016 end-page: 26 ident: bb0145 article-title: Circumpolar vegetation dynamics product for global change study publication-title: Remote Sens. Environ. – start-page: 867 year: 2017 end-page: 876 ident: bb0175 article-title: Incremental dual-memory LSTM in land cover prediction publication-title: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – volume: 9 year: 2017 ident: bb0230 article-title: Deep learning based oil palm tree detection and counting for high-resolution remote sensing images publication-title: Remote Sens. – volume: 95 start-page: 480 year: 2005 end-page: 492 ident: bb0480 article-title: Mapping paddy rice agriculture in southern China using multi-temporal MODIS images publication-title: Remote Sens. Environ. – volume: 15 start-page: 3133 year: 2014 end-page: 3181 ident: bb0110 article-title: Do we need hundreds of classifiers to solve real world classification problems? publication-title: J. Mach. Learn. Res. – ident: bb0475 article-title: XGBoost documentation, Python API reference – volume: 37 start-page: 5632 year: 2016 end-page: 5646 ident: bb0220 article-title: Stacked autoencoder-based deep learning for remote-sensing image classification: a case study of African land-cover mapping publication-title: Int. J. Remote Sens. – volume: 135 start-page: 158 year: 2018 end-page: 172 ident: bb0265 article-title: Classification with an edge: improving semantic image segmentation with boundary detection publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 100 start-page: 95 year: 2006 end-page: 113 ident: bb0485 article-title: Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images publication-title: Remote Sens. Environ. – volume: 14 start-page: 334 year: 2008 end-page: 346 ident: bb0025 article-title: Comparison of phenology trends by land cover class: a case study in the Great Basin, USA publication-title: Glob. Chang. Biol. – year: 2018 ident: bb0270 article-title: RiFCN: recurrent network in fully convolutional network for semantic segmentation of high resolution remote sensing images – volume: 105 start-page: 1 year: 2006 end-page: 8 ident: bb0105 article-title: Classifying rangeland vegetation type and coverage using a Fourier component based similarity measure publication-title: Remote Sens. Environ. – volume: 106 start-page: 137 year: 2007 end-page: 145 ident: bb0030 article-title: A curve fitting procedure to derive inter-annual phenologies from time series of noisy satellite NDVI data publication-title: Remote Sens. Environ. – volume: 8 start-page: 506 year: 2016 ident: bb0245 article-title: Learning a transferable change rule from a recurrent neural network for land cover change detection publication-title: Remote Sens. – year: 1984 ident: bb0035 article-title: Classification and Regression Trees – volume: 7 start-page: 2094 year: 2014 end-page: 2107 ident: bb0075 article-title: Deep learning-based classification of hyperspectral data publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. – volume: 119 start-page: 151 year: 2016 end-page: 164 ident: bb0560 article-title: Automated mapping of soybean and corn using phenology publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 78 start-page: 799 year: 2012 end-page: 813 ident: bb0550 article-title: Phenology-based crop classification algorithm and its implications on agricultural water use assessments in California's central valley publication-title: Photogramm. Eng. Remote. Sens. – volume: 54 start-page: 4544 year: 2016 end-page: 4554 ident: bb0540 article-title: Spectral–spatial feature extraction for hyperspectral image classification: a dimension reduction and deep learning approach publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 165 start-page: 42 year: 2015 end-page: 52 ident: bb0435 article-title: Land surface phenology along urban to rural gradients in the U.S. Great Plains publication-title: Remote Sens. Environ. – volume: 33 start-page: 1905 year: 2012 end-page: 1916 ident: bb0445 article-title: Rice heading date retrieval based on multi-temporal MODIS data and polynomial fitting publication-title: Int. J. Remote Sens. – volume: 100 start-page: 265 year: 2006 end-page: 279 ident: bb0120 article-title: Green leaf phenology at Landsat resolution: scaling from the field to the satellite publication-title: Remote Sens. Environ. – volume: 11 start-page: 1797 year: 2014 end-page: 1801 ident: bb0070 article-title: Vehicle detection in satellite images by hybrid deep convolutional neural networks publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 96 start-page: 1139 year: 2004 end-page: 1147 ident: bb0420 article-title: Remote sensing - monitoring maize ( publication-title: Agron. J. – volume: 15 start-page: 3735 year: 1994 end-page: 3741 ident: bb0290 article-title: Fourier-series for analysis of temporal sequences of satellite sensor imagery publication-title: Int. J. Remote Sens. – volume: 100 start-page: 321 year: 2006 end-page: 334 ident: bb0015 article-title: Improved monitoring of vegetation dynamics at very high latitudes: a new method using MODIS NDVI publication-title: Remote Sens. Environ. – volume: 91 start-page: 332 year: 2004 end-page: 344 ident: bb0065 article-title: A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter publication-title: Remote Sens. Environ. – volume: 9 start-page: 629 year: 2017 ident: bb0150 article-title: One-dimensional convolutional neural network land-cover classification of multi-seasonal hyperspectral imagery in the San Francisco Bay Area, California publication-title: Remote Sens. – volume: 30 start-page: 833 year: 2004 end-page: 845 ident: bb0180 article-title: TIMESAT—a program for analyzing time-series of satellite sensor data publication-title: Comput. Geosci. – volume: 114 start-page: 2146 year: 2010 end-page: 2159 ident: bb0340 article-title: A two-step filtering approach for detecting maize and soybean phenology with time-series MODIS data publication-title: Remote Sens. Environ. – volume: 144 start-page: 85 year: 2014 end-page: 97 ident: bb0430 article-title: Dryland vegetation phenology across an elevation gradient in Arizona, USA, investigated with fused MODIS and Landsat data publication-title: Remote Sens. Environ. – volume: 2 start-page: 18 year: 2002 end-page: 22 ident: bb0235 article-title: Classification and regression by randomForest publication-title: R News – volume: 64 start-page: 422 year: 2009 end-page: 431 ident: bb0140 article-title: An algorithm to classify and monitor seasonal variations in vegetation phenologies and their inter-annual change publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 112 start-page: 2643 year: 2008 end-page: 2655 ident: bb0390 article-title: Evaluation of the onset of green-up in temperate deciduous broadleaf forests derived from Moderate Resolution Imaging Spectroradiometer (MODIS) data publication-title: Remote Sens. Environ. – volume: 6 year: 2016 ident: bb0565 article-title: Rapid corn and soybean mapping in US Corn Belt and neighboring areas publication-title: Sci. Rep. – volume: 9 start-page: 67 year: 2017 ident: bb0225 article-title: Spectral–spatial classification of hyperspectral imagery with 3D convolutional neural network publication-title: Remote Sens. – volume: 140 start-page: 1 year: 2014 end-page: 13 ident: bb0555 article-title: Efficient corn and soybean mapping with temporal extendability: a multi-year experiment using Landsat imagery publication-title: Remote Sens. Environ. – volume: 21 start-page: 1911 year: 2000 end-page: 1917 ident: bb0310 article-title: Reconstructing cloudfree NDVI composites using Fourier analysis of time series publication-title: Int. J. Remote Sens. – volume: 96 start-page: 366 year: 2005 end-page: 374 ident: bb0330 article-title: A crop phenology detection method using time-series MODIS data publication-title: Remote Sens. Environ. – volume: 11 start-page: 2269 year: 1990 end-page: 2279 ident: bb0240 article-title: A phenological classification of terrestrial vegetation cover using shortwave vegetation index imagery publication-title: Int. J. Remote Sens. – volume: 7 year: 2015 ident: bb0375 article-title: A hidden Markov models approach for crop classification: linking crop phenology to time series of multi-sensor remote sensing data publication-title: Remote Sens. – volume: 2 start-page: 1097 year: 2012 end-page: 1105 ident: bb0200 article-title: ImageNet classification with deep convolutional neural networks publication-title: Adv. Neural Inf. Proces. Syst. – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: bb0155 article-title: Long short-term memory publication-title: Neural Comput. – volume: 160 start-page: 99 year: 2015 end-page: 113 ident: bb0100 article-title: Tracking the dynamics of paddy rice planting area in 1986–2010 through time series Landsat images and phenology-based algorithms publication-title: Remote Sens. Environ. – volume: 55 start-page: 881 year: 2017 end-page: 893 ident: bb0425 article-title: Dense semantic labeling of subdecimeter resolution images with convolutional neural networks publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 80 start-page: 143 year: 2002 end-page: 156 ident: bb0315 article-title: A comparison of methods for monitoring multitemporal vegetation change using Thematic Mapper imagery publication-title: Remote Sens. Environ. – volume: 112 start-page: 986 year: 2008 end-page: 997 ident: bb0045 article-title: Contribution of multispectral and multitemporal information from MODIS images to land cover classification publication-title: Remote Sens. Environ. – volume: 37 start-page: 969 year: 1999 end-page: 977 ident: bb0125 article-title: Maximizing land cover classification accuracies produced by decision trees at continental to global scales publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 83 start-page: 195 year: 2002 end-page: 213 ident: bb0170 article-title: Overview of the radiometric and biophysical performance of the MODIS vegetation indices publication-title: Remote Sens. Environ. – volume: 112 start-page: 1096 year: 2008 end-page: 1116 ident: bb0450 article-title: Large-area crop mapping using time-series MODIS 250 m NDVI data: an assessment for the US Central Great Plains publication-title: Remote Sens. Environ. – start-page: 785 year: 2016 end-page: 794 ident: bb0060 article-title: XGBoost: a scalable tree boosting system publication-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – volume: 86 start-page: 77 year: 2017 end-page: 89 ident: bb0440 article-title: Stacked sparse autoencoder in hyperspectral data classification using spectral-spatial, higher order statistics and multifractal spectrum features publication-title: Infrared Phys. Technol. – volume: 100 start-page: 356 year: 2006 end-page: 362 ident: bb0210 article-title: Mapping invasive plants using hyperspectral imagery and Breiman Cutler classifications (RandomForest) publication-title: Remote Sens. Environ. – volume: 14 start-page: 31 year: 1984 end-page: 37 ident: bb0010 article-title: Automatic corn-soybean classification using Landsat MSS data. II. Early season crop proportion estimation publication-title: Remote Sens. Environ. – start-page: 818 year: 2014 end-page: 833 ident: bb0515 article-title: Visualizing and understanding convolutional networks publication-title: European Conference on Computer Vision – volume: 10 start-page: 471 year: 2018 ident: bb0250 article-title: Long-term annual mapping of four cities on different continents by applying a deep information learning method to Landsat data publication-title: Remote Sens. – ident: bb0460 article-title: Keras: the Python deep learning library – volume: 2015 year: 2015 ident: bb0160 article-title: Deep convolutional neural networks for hyperspectral image classification publication-title: J. Sens. – volume: 7 start-page: 14680 year: 2015 end-page: 14707 ident: bb0165 article-title: Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery publication-title: Remote Sens. – volume: 15 start-page: 1929 year: 2014 end-page: 1958 ident: bb0395 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – volume: 20 start-page: 215 year: 1983 end-page: 251 ident: bb0080 article-title: The epistemology of a rule-based expert system—a framework for explanation publication-title: Artif. Intell. – volume: 109 start-page: 261 year: 2007 end-page: 273 ident: bb0115 article-title: Cross-scalar satellite phenology from ground, Landsat, and MODIS data publication-title: Remote Sens. Environ. – volume: 76 start-page: 833 year: 2010 end-page: 840 ident: bb0285 article-title: Improved land cover mapping using random forests combined with Landsat thematic mapper imagery and ancillary geographic data publication-title: Photogramm. Eng. Remote. Sens. – volume: 14 start-page: 778 year: 2017 end-page: 782 ident: bb0205 article-title: Deep learning classification of land cover and crop types using remote sensing data publication-title: IEEE Geosci. Remote Sens. Lett. – start-page: 44 year: 2015 end-page: 51 ident: bb0295 article-title: Do deep features generalize from everyday objects to remote sensing and aerial scenes domains? publication-title: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2015-October – ident: bb0455 article-title: U.S. Geological Survey Science (USGS) Land Satellites Data System (LSDS) research and development – volume: 82 start-page: 407 year: 2016 end-page: 417 ident: bb0370 article-title: An assessment of algorithmic parameters affecting image classification accuracy by random forests publication-title: Photogramm. Eng. Remote. Sens. – volume: 12 start-page: 2321 year: 2015 end-page: 2325 ident: bb0575 article-title: Deep learning based feature selection for remote sensing scene classification publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 145 start-page: 96 year: 2018 end-page: 107 ident: bb0260 article-title: Land cover mapping at very high resolution with rotation equivariant CNNs: towards small yet accurate models publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 113 start-page: 115 year: 2009 end-page: 125 ident: bb0130 article-title: Phenologically-tuned MODIS NDVI-based production anomaly estimates for Zimbabwe publication-title: Remote Sens. Environ. – volume: 140 start-page: 20 year: 2018 end-page: 32 ident: bb0005 article-title: Beyond RGB: very high resolution urban remote sensing with multimodal deep networks publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 55 start-page: 7092 year: 2017 end-page: 7103 ident: bb0255 article-title: High-resolution aerial image labeling with convolutional neural networks publication-title: IEEE Trans. Geosci. Remote Sens. – year: 2018 ident: bb0275 article-title: Unsupervised spectral-spatial feature learning via deep residual conv-deconv network for hyperspectral image classification publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 174 start-page: 258 year: 2016 end-page: 265 ident: bb0360 article-title: An evaluation of time-series smoothing algorithms for land-cover classifications using MODIS-NDVI multi-temporal data publication-title: Remote Sens. Environ. – year: 2018 ident: bb0280 article-title: Learning spectral-spatial-temporal features via a recurrent convolutional neural network for change detection in multispectral imagery – volume: 147 start-page: 219 year: 2014 end-page: 231 ident: bb0355 article-title: Near real-time prediction of U.S. corn yields based on time-series MODIS data publication-title: Remote Sens. Environ. – volume: 159 start-page: 167 year: 2015 end-page: 180 ident: bb0095 article-title: Empirical evidence of El Niño–Southern Oscillation influence on land surface phenology and productivity in the western United States publication-title: Remote Sens. Environ. – year: 1995 ident: bb0215 article-title: Convolutional networks for images, speech, and time-series publication-title: The Handbook of Brain Theory and Neural Networks – year: 2014 ident: bb0195 article-title: Adam: a method for stochastic optimization – volume: 10 start-page: 4055 year: 2013 end-page: 4071 ident: bb0190 article-title: A comparison of methods for smoothing and gap filling time series of remote sensing observations–application to MODIS LAI products publication-title: Biogeosciences – volume: 10 start-page: 476 year: 2008 end-page: 485 ident: bb0525 article-title: Crop discrimination in Northern China with double cropping systems using Fourier analysis of time-series MODIS data publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 100 start-page: 1 year: 2006 end-page: 16 ident: bb0335 article-title: Spatio–temporal distribution of rice phenology and cropping systems in the Mekong Delta with special reference to the seasonal water flow of the Mekong and Bassac rivers publication-title: Remote Sens. Environ. – volume: 1 start-page: 9 year: 2008 end-page: 23 ident: bb0490 article-title: Remote sensing imagery in vegetation mapping: a review publication-title: J. Plant Ecol. – volume: 11 start-page: 1081 year: 2014 end-page: 1085 ident: bb0415 article-title: Crop phenology estimation using a multitemporal model and a Kalman filtering strategy publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 112 start-page: 576 year: 2008 end-page: 587 ident: bb0135 article-title: Wavelet analysis of MODIS time series to detect expansion and intensification of row-crop agriculture in Brazil publication-title: Remote Sens. Environ. – ident: bb0465 article-title: Tensorflow: an open source software library for high performance numerical computation – volume: 32 start-page: 7777 year: 2011 end-page: 7804 ident: bb0545 article-title: A phenology-based approach to map crop types in the San Joaquin Valley, California publication-title: Int. J. Remote Sens. – start-page: 1 year: 2015 end-page: 9 ident: bb0400 article-title: Going deeper with convolutions publication-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. – volume: 131 start-page: 215 year: 2013 end-page: 231 ident: bb0350 article-title: MODIS-based corn grain yield estimation model incorporating crop phenology information publication-title: Remote Sens. Environ. – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: bb0090 article-title: Support-vector networks publication-title: Mach. Learn. – ident: bb0470 article-title: Scikit-learn: machine learning in Python – volume: 106 start-page: 157 year: 2015 end-page: 171 ident: bb0535 article-title: Mapping paddy rice planting areas through time series analysis of MODIS land surface temperature and vegetation index data publication-title: ISPRS J. Photogramm. Remote Sens. – year: 2015 ident: bb0500 article-title: Understanding neural networks through deep visualization – year: 2007 ident: bb0305 article-title: Pattern Recognition and Neural Networks – volume: 114 start-page: 2286 year: 2010 end-page: 2296 ident: bb0040 article-title: The response of African land surface phenology to large scale climate oscillations publication-title: Remote Sens. Environ. – start-page: 1 year: 2016 end-page: 9 ident: bb0185 article-title: Semantic segmentation of small objects and modeling of uncertainty in urban remote sensing images using deep convolutional publication-title: Neural Netw. – year: 2017 ident: bb0320 article-title: Temporal vegetation modelling using long short-term memory networks for crop identification from medium-resolution multi-spectral satellite images publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops – volume: 6 start-page: 468 year: 2015 end-page: 477 ident: bb0505 article-title: Spectral-spatial classification of hyperspectral images using deep convolutional neural networks publication-title: Remote Sens. Lett. – volume: vol. 1 start-page: 252 year: 2003 end-page: 254 ident: bb0380 article-title: Identifying main crop classes in an irrigated area using high resolution image time series publication-title: Geoscience and Remote Sensing Symposium, 2003. IGARSS '03. Proceedings. 2003 IEEE International – start-page: 160 year: 2009 end-page: 169 ident: bb0050 article-title: California water plan, update 2009 publication-title: California Department of Water Resources, Bulletin – volume: 29 start-page: 95 year: 2008 end-page: 116 ident: bb0385 article-title: The use of high-resolution image time series for crop classification and evapotranspiration estimate over an irrigated area in central Morocco publication-title: Int. J. Remote Sens. – volume: 49 start-page: 1926 year: 2011 end-page: 1936 ident: bb0345 article-title: Detecting spatiotemporal changes of corn developmental stages in the U.S. Corn Belt using MODIS WDRVI data publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 5 start-page: 8 year: 2017 end-page: 36 ident: bb0570 article-title: Deep learning in remote sensing: a comprehensive review and list of resources publication-title: IEEE Geosci. Remote Sens. Mag. – volume: 7 start-page: 129 year: 2018 ident: bb0325 article-title: Multi-temporal land cover classification with sequential recurrent encoders publication-title: ISPRS Int. J. Geoinf. – volume: 5 start-page: 703 year: 1994 end-page: 714 ident: bb0300 article-title: Measuring phenological variability from satellite imagery publication-title: J. Veg. Sci. – start-page: 160 year: 2009 ident: 10.1016/j.rse.2018.11.032_bb0050 article-title: California water plan, update 2009 – volume: 96 start-page: 1139 year: 2004 ident: 10.1016/j.rse.2018.11.032_bb0420 article-title: Remote sensing - monitoring maize (Zea mays L.) phenology with remote sensing publication-title: Agron. J. doi: 10.2134/agronj2004.1139 – volume: 94 start-page: 102 year: 2014 ident: 10.1016/j.rse.2018.11.032_bb0530 article-title: Improved maize cultivated area estimation over a large scale combining MODIS–EVI time series data and crop phenological information publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2014.04.023 – volume: 131 start-page: 215 year: 2013 ident: 10.1016/j.rse.2018.11.032_bb0350 article-title: MODIS-based corn grain yield estimation model incorporating crop phenology information publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.12.017 – ident: 10.1016/j.rse.2018.11.032_bb0195 – volume: 30 start-page: 833 year: 2004 ident: 10.1016/j.rse.2018.11.032_bb0180 article-title: TIMESAT—a program for analyzing time-series of satellite sensor data publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2004.05.006 – volume: 5 start-page: 240 year: 1994 ident: 10.1016/j.rse.2018.11.032_bb0085 article-title: Recurrent neural networks and robust time series prediction publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.279188 – volume: 37 start-page: 5632 year: 2016 ident: 10.1016/j.rse.2018.11.032_bb0220 article-title: Stacked autoencoder-based deep learning for remote-sensing image classification: a case study of African land-cover mapping publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2016.1246775 – year: 2017 ident: 10.1016/j.rse.2018.11.032_bb0320 article-title: Temporal vegetation modelling using long short-term memory networks for crop identification from medium-resolution multi-spectral satellite images – volume: 2 start-page: 1097 year: 2012 ident: 10.1016/j.rse.2018.11.032_bb0200 article-title: ImageNet classification with deep convolutional neural networks publication-title: Adv. Neural Inf. Proces. Syst. – volume: 10 start-page: 471 year: 2018 ident: 10.1016/j.rse.2018.11.032_bb0250 article-title: Long-term annual mapping of four cities on different continents by applying a deep information learning method to Landsat data publication-title: Remote Sens. doi: 10.3390/rs10030471 – ident: 10.1016/j.rse.2018.11.032_bb0475 – volume: 159 start-page: 167 year: 2015 ident: 10.1016/j.rse.2018.11.032_bb0095 article-title: Empirical evidence of El Niño–Southern Oscillation influence on land surface phenology and productivity in the western United States publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.11.026 – start-page: 1 year: 2016 ident: 10.1016/j.rse.2018.11.032_bb0185 article-title: Semantic segmentation of small objects and modeling of uncertainty in urban remote sensing images using deep convolutional publication-title: Neural Netw. – volume: 174 start-page: 258 year: 2016 ident: 10.1016/j.rse.2018.11.032_bb0360 article-title: An evaluation of time-series smoothing algorithms for land-cover classifications using MODIS-NDVI multi-temporal data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.12.023 – start-page: 1 year: 2015 ident: 10.1016/j.rse.2018.11.032_bb0400 article-title: Going deeper with convolutions publication-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. – volume: 2015 year: 2015 ident: 10.1016/j.rse.2018.11.032_bb0160 article-title: Deep convolutional neural networks for hyperspectral image classification publication-title: J. Sens. doi: 10.1155/2015/258619 – volume: 20 start-page: 215 year: 1983 ident: 10.1016/j.rse.2018.11.032_bb0080 article-title: The epistemology of a rule-based expert system—a framework for explanation publication-title: Artif. Intell. doi: 10.1016/0004-3702(83)90008-5 – volume: 7 start-page: 14680 year: 2015 ident: 10.1016/j.rse.2018.11.032_bb0165 article-title: Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery publication-title: Remote Sens. doi: 10.3390/rs71114680 – volume: 14 start-page: 778 year: 2017 ident: 10.1016/j.rse.2018.11.032_bb0205 article-title: Deep learning classification of land cover and crop types using remote sensing data publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2017.2681128 – volume: 21 start-page: 1911 year: 2000 ident: 10.1016/j.rse.2018.11.032_bb0310 article-title: Reconstructing cloudfree NDVI composites using Fourier analysis of time series publication-title: Int. J. Remote Sens. doi: 10.1080/014311600209814 – volume: 114 start-page: 2286 year: 2010 ident: 10.1016/j.rse.2018.11.032_bb0040 article-title: The response of African land surface phenology to large scale climate oscillations publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2010.05.005 – volume: 11 start-page: 1797 year: 2014 ident: 10.1016/j.rse.2018.11.032_bb0070 article-title: Vehicle detection in satellite images by hybrid deep convolutional neural networks publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2014.2309695 – start-page: 44 year: 2015 ident: 10.1016/j.rse.2018.11.032_bb0295 article-title: Do deep features generalize from everyday objects to remote sensing and aerial scenes domains? – volume: 100 start-page: 95 year: 2006 ident: 10.1016/j.rse.2018.11.032_bb0485 article-title: Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2005.10.004 – volume: 105 start-page: 1 year: 2006 ident: 10.1016/j.rse.2018.11.032_bb0105 article-title: Classifying rangeland vegetation type and coverage using a Fourier component based similarity measure publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2006.05.017 – year: 2018 ident: 10.1016/j.rse.2018.11.032_bb0275 article-title: Unsupervised spectral-spatial feature learning via deep residual conv-deconv network for hyperspectral image classification publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2017.2748160 – volume: 9 start-page: 1735 year: 1997 ident: 10.1016/j.rse.2018.11.032_bb0155 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – ident: 10.1016/j.rse.2018.11.032_bb0365 – volume: 6 year: 2016 ident: 10.1016/j.rse.2018.11.032_bb0565 article-title: Rapid corn and soybean mapping in US Corn Belt and neighboring areas publication-title: Sci. Rep. doi: 10.1038/srep36240 – ident: 10.1016/j.rse.2018.11.032_bb0465 – volume: 161 start-page: 63 year: 2015 ident: 10.1016/j.rse.2018.11.032_bb0495 article-title: Modeling grassland spring onset across the Western United States using climate variables and MODIS-derived phenology metrics publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.02.003 – volume: 140 start-page: 1 year: 2014 ident: 10.1016/j.rse.2018.11.032_bb0555 article-title: Efficient corn and soybean mapping with temporal extendability: a multi-year experiment using Landsat imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.08.023 – volume: 37 start-page: 969 year: 1999 ident: 10.1016/j.rse.2018.11.032_bb0125 article-title: Maximizing land cover classification accuracies produced by decision trees at continental to global scales publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.752215 – year: 1984 ident: 10.1016/j.rse.2018.11.032_bb0035 – volume: 106 start-page: 157 year: 2015 ident: 10.1016/j.rse.2018.11.032_bb0535 article-title: Mapping paddy rice planting areas through time series analysis of MODIS land surface temperature and vegetation index data publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2015.05.011 – volume: 32 start-page: 7777 year: 2011 ident: 10.1016/j.rse.2018.11.032_bb0545 article-title: A phenology-based approach to map crop types in the San Joaquin Valley, California publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2010.527397 – volume: 83 start-page: 195 year: 2002 ident: 10.1016/j.rse.2018.11.032_bb0170 article-title: Overview of the radiometric and biophysical performance of the MODIS vegetation indices publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(02)00096-2 – volume: 100 start-page: 1 year: 2006 ident: 10.1016/j.rse.2018.11.032_bb0335 article-title: Spatio–temporal distribution of rice phenology and cropping systems in the Mekong Delta with special reference to the seasonal water flow of the Mekong and Bassac rivers publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2005.09.007 – volume: 6 start-page: 468 year: 2015 ident: 10.1016/j.rse.2018.11.032_bb0505 article-title: Spectral-spatial classification of hyperspectral images using deep convolutional neural networks publication-title: Remote Sens. Lett. doi: 10.1080/2150704X.2015.1047045 – volume: 7 start-page: 129 year: 2018 ident: 10.1016/j.rse.2018.11.032_bb0325 article-title: Multi-temporal land cover classification with sequential recurrent encoders publication-title: ISPRS Int. J. Geoinf. doi: 10.3390/ijgi7040129 – volume: 91 start-page: 332 year: 2004 ident: 10.1016/j.rse.2018.11.032_bb0065 article-title: A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2004.03.014 – volume: 7 year: 2015 ident: 10.1016/j.rse.2018.11.032_bb0375 article-title: A hidden Markov models approach for crop classification: linking crop phenology to time series of multi-sensor remote sensing data publication-title: Remote Sens. doi: 10.3390/rs70403633 – ident: 10.1016/j.rse.2018.11.032_bb0280 – volume: 80 start-page: 143 year: 2002 ident: 10.1016/j.rse.2018.11.032_bb0315 article-title: A comparison of methods for monitoring multitemporal vegetation change using Thematic Mapper imagery publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(01)00296-6 – volume: 140 start-page: 20 year: 2018 ident: 10.1016/j.rse.2018.11.032_bb0005 article-title: Beyond RGB: very high resolution urban remote sensing with multimodal deep networks publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2017.11.011 – year: 1995 ident: 10.1016/j.rse.2018.11.032_bb0215 article-title: Convolutional networks for images, speech, and time-series – volume: 15 start-page: 1929 year: 2014 ident: 10.1016/j.rse.2018.11.032_bb0395 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – ident: 10.1016/j.rse.2018.11.032_bb0500 – volume: 11 start-page: 1081 year: 2014 ident: 10.1016/j.rse.2018.11.032_bb0415 article-title: Crop phenology estimation using a multitemporal model and a Kalman filtering strategy publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2013.2286214 – volume: 9 start-page: 629 year: 2017 ident: 10.1016/j.rse.2018.11.032_bb0150 article-title: One-dimensional convolutional neural network land-cover classification of multi-seasonal hyperspectral imagery in the San Francisco Bay Area, California publication-title: Remote Sens. doi: 10.3390/rs9060629 – volume: 7 start-page: 2094 year: 2014 ident: 10.1016/j.rse.2018.11.032_bb0075 article-title: Deep learning-based classification of hyperspectral data publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. doi: 10.1109/JSTARS.2014.2329330 – volume: 76 start-page: 833 year: 2010 ident: 10.1016/j.rse.2018.11.032_bb0285 article-title: Improved land cover mapping using random forests combined with Landsat thematic mapper imagery and ancillary geographic data publication-title: Photogramm. Eng. Remote. Sens. doi: 10.14358/PERS.76.7.833 – start-page: 818 year: 2014 ident: 10.1016/j.rse.2018.11.032_bb0515 article-title: Visualizing and understanding convolutional networks – volume: 84 start-page: 471 year: 2003 ident: 10.1016/j.rse.2018.11.032_bb0520 article-title: Monitoring vegetation phenology using MODIS publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(02)00135-9 – volume: 145 start-page: 96 year: 2018 ident: 10.1016/j.rse.2018.11.032_bb0260 article-title: Land cover mapping at very high resolution with rotation equivariant CNNs: towards small yet accurate models publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.01.021 – volume: 112 start-page: 2643 year: 2008 ident: 10.1016/j.rse.2018.11.032_bb0390 article-title: Evaluation of the onset of green-up in temperate deciduous broadleaf forests derived from Moderate Resolution Imaging Spectroradiometer (MODIS) data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2007.12.004 – volume: 165 start-page: 42 year: 2015 ident: 10.1016/j.rse.2018.11.032_bb0435 article-title: Land surface phenology along urban to rural gradients in the U.S. Great Plains publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.04.019 – volume: 182 start-page: 13 year: 2016 ident: 10.1016/j.rse.2018.11.032_bb0145 article-title: Circumpolar vegetation dynamics product for global change study publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.04.022 – volume: 5 start-page: 703 year: 1994 ident: 10.1016/j.rse.2018.11.032_bb0300 article-title: Measuring phenological variability from satellite imagery publication-title: J. Veg. Sci. doi: 10.2307/3235884 – volume: 13 start-page: 281 year: 2012 ident: 10.1016/j.rse.2018.11.032_bb0020 article-title: Random search for hyper-parameter optimization publication-title: J. Mach. Learn. Res. – volume: 49 start-page: 1926 year: 2011 ident: 10.1016/j.rse.2018.11.032_bb0345 article-title: Detecting spatiotemporal changes of corn developmental stages in the U.S. Corn Belt using MODIS WDRVI data publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2010.2095462 – volume: 147 start-page: 219 year: 2014 ident: 10.1016/j.rse.2018.11.032_bb0355 article-title: Near real-time prediction of U.S. corn yields based on time-series MODIS data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.03.008 – volume: 8 start-page: 506 year: 2016 ident: 10.1016/j.rse.2018.11.032_bb0245 article-title: Learning a transferable change rule from a recurrent neural network for land cover change detection publication-title: Remote Sens. doi: 10.3390/rs8060506 – ident: 10.1016/j.rse.2018.11.032_bb0470 – volume: 106 start-page: 137 year: 2007 ident: 10.1016/j.rse.2018.11.032_bb0030 article-title: A curve fitting procedure to derive inter-annual phenologies from time series of noisy satellite NDVI data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2006.08.002 – year: 2007 ident: 10.1016/j.rse.2018.11.032_bb0305 – volume: 14 start-page: 334 year: 2008 ident: 10.1016/j.rse.2018.11.032_bb0025 article-title: Comparison of phenology trends by land cover class: a case study in the Great Basin, USA publication-title: Glob. Chang. Biol. doi: 10.1111/j.1365-2486.2007.01479.x – ident: 10.1016/j.rse.2018.11.032_bb0270 – volume: 135 start-page: 158 year: 2018 ident: 10.1016/j.rse.2018.11.032_bb0265 article-title: Classification with an edge: improving semantic image segmentation with boundary detection publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2017.11.009 – volume: 15 start-page: 3735 year: 1994 ident: 10.1016/j.rse.2018.11.032_bb0290 article-title: Fourier-series for analysis of temporal sequences of satellite sensor imagery publication-title: Int. J. Remote Sens. doi: 10.1080/01431169408954355 – volume: 119 start-page: 151 year: 2016 ident: 10.1016/j.rse.2018.11.032_bb0560 article-title: Automated mapping of soybean and corn using phenology publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2016.05.014 – volume: 112 start-page: 1096 year: 2008 ident: 10.1016/j.rse.2018.11.032_bb0450 article-title: Large-area crop mapping using time-series MODIS 250 m NDVI data: an assessment for the US Central Great Plains publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2007.07.019 – volume: 17 start-page: 231 year: 1996 ident: 10.1016/j.rse.2018.11.032_bb0410 article-title: A colour composite of NOAA-AVHRR-NDVI based on time series analysis (1981–1992) publication-title: Int. J. Remote Sens. doi: 10.1080/01431169608949001 – volume: 14 start-page: 31 year: 1984 ident: 10.1016/j.rse.2018.11.032_bb0010 article-title: Automatic corn-soybean classification using Landsat MSS data. II. Early season crop proportion estimation publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(84)90005-1 – ident: 10.1016/j.rse.2018.11.032_bb0510 – volume: 29 start-page: 95 year: 2008 ident: 10.1016/j.rse.2018.11.032_bb0385 article-title: The use of high-resolution image time series for crop classification and evapotranspiration estimate over an irrigated area in central Morocco publication-title: Int. J. Remote Sens. doi: 10.1080/01431160701250390 – volume: 160 start-page: 99 year: 2015 ident: 10.1016/j.rse.2018.11.032_bb0100 article-title: Tracking the dynamics of paddy rice planting area in 1986–2010 through time series Landsat images and phenology-based algorithms publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.01.004 – volume: 1 start-page: 9 year: 2008 ident: 10.1016/j.rse.2018.11.032_bb0490 article-title: Remote sensing imagery in vegetation mapping: a review publication-title: J. Plant Ecol. doi: 10.1093/jpe/rtm005 – volume: 78 start-page: 799 year: 2012 ident: 10.1016/j.rse.2018.11.032_bb0550 article-title: Phenology-based crop classification algorithm and its implications on agricultural water use assessments in California's central valley publication-title: Photogramm. Eng. Remote. Sens. doi: 10.14358/PERS.78.8.799 – volume: 96 start-page: 366 year: 2005 ident: 10.1016/j.rse.2018.11.032_bb0330 article-title: A crop phenology detection method using time-series MODIS data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2005.03.008 – volume: 15 start-page: 3133 year: 2014 ident: 10.1016/j.rse.2018.11.032_bb0110 article-title: Do we need hundreds of classifiers to solve real world classification problems? publication-title: J. Mach. Learn. Res. – volume: 9 start-page: 67 year: 2017 ident: 10.1016/j.rse.2018.11.032_bb0225 article-title: Spectral–spatial classification of hyperspectral imagery with 3D convolutional neural network publication-title: Remote Sens. doi: 10.3390/rs9010067 – volume: 12 start-page: 2321 year: 2015 ident: 10.1016/j.rse.2018.11.032_bb0575 article-title: Deep learning based feature selection for remote sensing scene classification publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2015.2475299 – volume: 112 start-page: 576 year: 2008 ident: 10.1016/j.rse.2018.11.032_bb0135 article-title: Wavelet analysis of MODIS time series to detect expansion and intensification of row-crop agriculture in Brazil publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2007.05.017 – volume: vol. 1 start-page: 252 year: 2003 ident: 10.1016/j.rse.2018.11.032_bb0380 article-title: Identifying main crop classes in an irrigated area using high resolution image time series – volume: 82 start-page: 407 year: 2016 ident: 10.1016/j.rse.2018.11.032_bb0370 article-title: An assessment of algorithmic parameters affecting image classification accuracy by random forests publication-title: Photogramm. Eng. Remote. Sens. doi: 10.14358/PERS.82.6.407 – volume: 95 start-page: 480 year: 2005 ident: 10.1016/j.rse.2018.11.032_bb0480 article-title: Mapping paddy rice agriculture in southern China using multi-temporal MODIS images publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2004.12.009 – volume: 108 start-page: 19 year: 1996 ident: 10.1016/j.rse.2018.11.032_bb0405 article-title: Application of harmonic analysis of NDVI time series (HANTS) – volume: 5 start-page: 8 year: 2017 ident: 10.1016/j.rse.2018.11.032_bb0570 article-title: Deep learning in remote sensing: a comprehensive review and list of resources publication-title: IEEE Geosci. Remote Sens. Mag. doi: 10.1109/MGRS.2017.2762307 – volume: 100 start-page: 321 year: 2006 ident: 10.1016/j.rse.2018.11.032_bb0015 article-title: Improved monitoring of vegetation dynamics at very high latitudes: a new method using MODIS NDVI publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2005.10.021 – volume: 33 start-page: 1905 year: 2012 ident: 10.1016/j.rse.2018.11.032_bb0445 article-title: Rice heading date retrieval based on multi-temporal MODIS data and polynomial fitting publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2011.603378 – volume: 114 start-page: 2146 year: 2010 ident: 10.1016/j.rse.2018.11.032_bb0340 article-title: A two-step filtering approach for detecting maize and soybean phenology with time-series MODIS data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2010.04.019 – volume: 55 start-page: 7092 year: 2017 ident: 10.1016/j.rse.2018.11.032_bb0255 article-title: High-resolution aerial image labeling with convolutional neural networks publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2017.2740362 – volume: 10 start-page: 4055 year: 2013 ident: 10.1016/j.rse.2018.11.032_bb0190 article-title: A comparison of methods for smoothing and gap filling time series of remote sensing observations–application to MODIS LAI products publication-title: Biogeosciences doi: 10.5194/bg-10-4055-2013 – volume: 113 start-page: 115 year: 2009 ident: 10.1016/j.rse.2018.11.032_bb0130 article-title: Phenologically-tuned MODIS NDVI-based production anomaly estimates for Zimbabwe publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2008.08.015 – volume: 86 start-page: 77 year: 2017 ident: 10.1016/j.rse.2018.11.032_bb0440 article-title: Stacked sparse autoencoder in hyperspectral data classification using spectral-spatial, higher order statistics and multifractal spectrum features publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2017.08.021 – volume: 20 start-page: 273 year: 1995 ident: 10.1016/j.rse.2018.11.032_bb0090 article-title: Support-vector networks publication-title: Mach. Learn. doi: 10.1007/BF00994018 – volume: 144 start-page: 85 year: 2014 ident: 10.1016/j.rse.2018.11.032_bb0430 article-title: Dryland vegetation phenology across an elevation gradient in Arizona, USA, investigated with fused MODIS and Landsat data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.01.007 – volume: 112 start-page: 986 year: 2008 ident: 10.1016/j.rse.2018.11.032_bb0045 article-title: Contribution of multispectral and multitemporal information from MODIS images to land cover classification publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2007.07.002 – volume: 55 start-page: 881 year: 2017 ident: 10.1016/j.rse.2018.11.032_bb0425 article-title: Dense semantic labeling of subdecimeter resolution images with convolutional neural networks publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2016.2616585 – volume: 10 start-page: 476 year: 2008 ident: 10.1016/j.rse.2018.11.032_bb0525 article-title: Crop discrimination in Northern China with double cropping systems using Fourier analysis of time-series MODIS data publication-title: Int. J. Appl. Earth Obs. Geoinf. doi: 10.1016/j.jag.2007.11.002 – volume: 64 start-page: 422 year: 2009 ident: 10.1016/j.rse.2018.11.032_bb0140 article-title: An algorithm to classify and monitor seasonal variations in vegetation phenologies and their inter-annual change publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2009.03.001 – ident: 10.1016/j.rse.2018.11.032_bb0455 – volume: 9 year: 2017 ident: 10.1016/j.rse.2018.11.032_bb0230 article-title: Deep learning based oil palm tree detection and counting for high-resolution remote sensing images publication-title: Remote Sens. – start-page: 785 year: 2016 ident: 10.1016/j.rse.2018.11.032_bb0060 article-title: XGBoost: a scalable tree boosting system – volume: 11 start-page: 2269 year: 1990 ident: 10.1016/j.rse.2018.11.032_bb0240 article-title: A phenological classification of terrestrial vegetation cover using shortwave vegetation index imagery publication-title: Int. J. Remote Sens. doi: 10.1080/01431169008955174 – ident: 10.1016/j.rse.2018.11.032_bb0460 – volume: 100 start-page: 356 year: 2006 ident: 10.1016/j.rse.2018.11.032_bb0210 article-title: Mapping invasive plants using hyperspectral imagery and Breiman Cutler classifications (RandomForest) publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2005.10.014 – volume: 109 start-page: 261 year: 2007 ident: 10.1016/j.rse.2018.11.032_bb0115 article-title: Cross-scalar satellite phenology from ground, Landsat, and MODIS data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2007.01.004 – volume: 2 start-page: 18 year: 2002 ident: 10.1016/j.rse.2018.11.032_bb0235 article-title: Classification and regression by randomForest publication-title: R News – volume: 54 start-page: 4544 year: 2016 ident: 10.1016/j.rse.2018.11.032_bb0540 article-title: Spectral–spatial feature extraction for hyperspectral image classification: a dimension reduction and deep learning approach publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2016.2543748 – start-page: 867 year: 2017 ident: 10.1016/j.rse.2018.11.032_bb0175 article-title: Incremental dual-memory LSTM in land cover prediction – volume: 10 start-page: 1055 year: 1999 ident: 10.1016/j.rse.2018.11.032_bb0055 article-title: Support vector machines for histogram-based image classification publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.788646 – volume: 100 start-page: 265 year: 2006 ident: 10.1016/j.rse.2018.11.032_bb0120 article-title: Green leaf phenology at Landsat resolution: scaling from the field to the satellite publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2005.10.022 |
SSID | ssj0015871 |
Score | 2.7059577 |
Snippet | This study aims to develop a deep learning based classification framework for remotely sensed time series. The experiment was carried out in Yolo County,... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 430 |
SubjectTerms | Accuracy Agronomy Artificial neural network automation California Classification Classifiers Convolutional neural network Crop classification Crops Data processing Deep learning Dependence equations Farming systems Feature extraction irrigation Irrigation systems Landsat Landsat satellites Long short-term memory Multi-temporal classification Remote sensing Representations seasonal variation summer Support vector machines Temporal variations Time series time series analysis Vegetation index |
Title | Deep learning based multi-temporal crop classification |
URI | https://dx.doi.org/10.1016/j.rse.2018.11.032 https://www.proquest.com/docview/2176697571 https://www.proquest.com/docview/2176345975 |
Volume | 221 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH-IInoRnYrTKRU8CdU1SZf0OHRzKnhy4C2kaaqTUYfbDrv4t_tem04U9OAx7Qst7zvkvfcDOItS1mGOt0OVZzEeUNCkjDIizGTCMpnnvJ2V1RYPncFQ3D3FTytwVffCUFml9_2VTy-9tX9y6bl5ORmNqMeXC9I4VErMOyJq-BVCkpZffCzLPKJYyQo1j4uQqOubzbLG631KkzIjdUGDPDn7LTb98NJl6Olvw5bPGYNu9Vs7sOKKBuz3vlrU8KW30WkDNjyu-cuiAes3JXDvYhc6185NAo8R8RxQ8MqCspow9NOpxgGheQWW0mmqHypFtgfDfu_xahB6zITQCiZmoUqEMYoZmzgjeW5N1iF8ImmYwVCVq9iyPItywyKRWstTI1OkVxF3hlOPLN-H1eKtcAcQOGFRfrmgI4UQCTMOcz1cqlgxyTLbhHbNLW39QHHCtRjrunLsVSODNTEYDxoaGdyE8-WWSTVN4y9iUYtAf1MJjd7-r22tWlza2-NUM5qDmUhUliacLl-jJdH1iCnc27yi4QIPWPHh_758BJu4Sqqa7haszt7n7hhTlll6UurkCax1b-8HD5_yHeo5 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFH9RjNGLUZSInzPxZDJlbce6o1EQFTlpwq3puk4xBInAgf_e97YOo4kcPG5ts-V9v_S99wM4DxLWZJY3fJmlISYoqFJaauGnUczSKMt4I82rLXrNzot46If9Fbgpe2GorNLZ_sKm59bavbly1LwaDwbU48sFSRwKJcYdgVyFNZpOFVZg7fr-sdNbXCaEMiqA87jw6UB5uZmXeX1OaFhmIC9plidnf7mnX4Y69z7tbdhyYaN3XfzZDqzYURVqre8uNVx0ajqpwoaDNn-bV2H9Lsfune9C89basedgIl498l-plxcU-m5A1dAjQC_PUERNJUQ51_bgpd16vun4DjbBN4KJqS9jobVk2sRWRzwzOm0SRFGkmUZvlcnQsCwNMs0CkRjDEx0luF8G3GpObbK8BpXRx8jug2eFQRZmgrIKIWKmLYZ7-ChDySKWmjo0Smop42aKE7TFUJXFY-8KCayIwJhrKCRwHS4WR8bFQI1lm0XJAvVDKhQa_GXHjkp2KaeSE8VoFGYcobzU4WyxjMpENyR6ZD9mxR4uMMcKD_735VPY6Dw_dVX3vvd4CJu4Ehcl3kdQmX7O7DFGMNPkxEnoF_867Oo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+based+multi-temporal+crop+classification&rft.jtitle=Remote+sensing+of+environment&rft.au=Zhong%2C+Liheng&rft.au=Hu%2C+Lina&rft.au=Zhou%2C+Hang&rft.date=2019-02-01&rft.pub=Elsevier+Inc&rft.issn=0034-4257&rft.volume=221&rft.spage=430&rft.epage=443&rft_id=info:doi/10.1016%2Fj.rse.2018.11.032&rft.externalDocID=S0034425718305418 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4257&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4257&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4257&client=summon |