VARIATIONS OF THE ISM COMPACTNESS ACROSS THE MAIN SEQUENCE OF STAR FORMING GALAXIES: OBSERVATIONS AND SIMULATIONS

ABSTRACT The majority of star-forming galaxies follow a simple empirical correlation in the star formation rate (SFR) versus stellar mass (M*) plane, of the form , usually referred to as the star formation main sequence (MS). The physics that sets the properties of the MS is currently a subject of d...

Full description

Saved in:
Bibliographic Details
Published inThe Astrophysical journal Vol. 817; no. 1; pp. 76 - 93
Main Authors Martínez-Galarza, J. R., Smith, H. A., Lanz, L., Hayward, Christopher C., Zezas, A., Rosenthal, L., Weiner, A., Hung, C., Ashby, M. L. N., Groves, B.
Format Journal Article
LanguageEnglish
Published United Kingdom The American Astronomical Society 20.01.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ABSTRACT The majority of star-forming galaxies follow a simple empirical correlation in the star formation rate (SFR) versus stellar mass (M*) plane, of the form , usually referred to as the star formation main sequence (MS). The physics that sets the properties of the MS is currently a subject of debate, and no consensus has been reached regarding the fundamental difference between members of the sequence and its outliers. Here we combine a set of hydro-dynamical simulations of interacting galactic disks with state-of-the-art radiative transfer codes to analyze how the evolution of mergers is reflected upon the properties of the MS. We present Chiburst, a Markov Chain Monte Carlo spectral energy distribution (SED) code that fits the multi-wavelength, broad-band photometry of galaxies and derives stellar masses, SFRs, and geometrical properties of the dust distribution. We apply this tool to the SEDs of simulated mergers and compare the derived results with the reference output from the simulations. Our results indicate that changes in the SEDs of mergers as they approach coalescence and depart from the MS are related to an evolution of dust geometry in scales larger than a few hundred parsecs. This is reflected in a correlation between the specific star formation rate, and the compactness parameter , that parametrizes this geometry and hence the evolution of dust temperature ( ) with time. As mergers approach coalescence, they depart from the MS and increase their compactness, which implies that moderate outliers of the MS are consistent with late-type mergers. By further applying our method to real observations of luminous infrared galaxies (LIRGs), we show that the merger scenario is unable to explain these extreme outliers of the MS. Only by significantly increasing the gas fraction in the simulations are we able to reproduce the SEDs of LIRGs.
AbstractList The majority of star-forming galaxies follow a simple empirical correlation in the star formation rate (SFR) versus stellar mass (M*) plane, of the form ${\rm{SFR}}\propto {M}_{*} super({\alpha })$, usually referred to as the star formation main sequence (MS). The physics that sets the properties of the MS is currently a subject of debate, and no consensus has been reached regarding the fundamental difference between members of the sequence and its outliers. Here we combine a set of hydro-dynamical simulations of interacting galactic disks with state-of-the-art radiative transfer codes to analyze how the evolution of mergers is reflected upon the properties of the MS. By further applying our method to real observations of luminous infrared galaxies (LIRGs), we show that the merger scenario is unable to explain these extreme outliers of the MS. Only by significantly increasing the gas fraction in the simulations are we able to reproduce the SEDs of LIRGs.
The majority of star-forming galaxies follow a simple empirical correlation in the star formation rate (SFR) versus stellar mass (M{sub *}) plane, of the form SFR∝M{sub ∗}{sup α}, usually referred to as the star formation main sequence (MS). The physics that sets the properties of the MS is currently a subject of debate, and no consensus has been reached regarding the fundamental difference between members of the sequence and its outliers. Here we combine a set of hydro-dynamical simulations of interacting galactic disks with state-of-the-art radiative transfer codes to analyze how the evolution of mergers is reflected upon the properties of the MS. We present Chiburst, a Markov Chain Monte Carlo spectral energy distribution (SED) code that fits the multi-wavelength, broad-band photometry of galaxies and derives stellar masses, SFRs, and geometrical properties of the dust distribution. We apply this tool to the SEDs of simulated mergers and compare the derived results with the reference output from the simulations. Our results indicate that changes in the SEDs of mergers as they approach coalescence and depart from the MS are related to an evolution of dust geometry in scales larger than a few hundred parsecs. This is reflected in a correlation between the specific star formation rate, and the compactness parameter C, that parametrizes this geometry and hence the evolution of dust temperature (T{sub dust}) with time. As mergers approach coalescence, they depart from the MS and increase their compactness, which implies that moderate outliers of the MS are consistent with late-type mergers. By further applying our method to real observations of luminous infrared galaxies (LIRGs), we show that the merger scenario is unable to explain these extreme outliers of the MS. Only by significantly increasing the gas fraction in the simulations are we able to reproduce the SEDs of LIRGs.
The majority of star-forming galaxies follow a simple empirical correlation in the star formation rate (SFR) versus stellar mass ( M * ) plane, of the form , usually referred to as the star formation main sequence (MS). The physics that sets the properties of the MS is currently a subject of debate, and no consensus has been reached regarding the fundamental difference between members of the sequence and its outliers. Here we combine a set of hydro-dynamical simulations of interacting galactic disks with state-of-the-art radiative transfer codes to analyze how the evolution of mergers is reflected upon the properties of the MS. We present Chiburst , a Markov Chain Monte Carlo spectral energy distribution (SED) code that fits the multi-wavelength, broad-band photometry of galaxies and derives stellar masses, SFRs, and geometrical properties of the dust distribution. We apply this tool to the SEDs of simulated mergers and compare the derived results with the reference output from the simulations. Our results indicate that changes in the SEDs of mergers as they approach coalescence and depart from the MS are related to an evolution of dust geometry in scales larger than a few hundred parsecs. This is reflected in a correlation between the specific star formation rate, and the compactness parameter , that parametrizes this geometry and hence the evolution of dust temperature ( ) with time. As mergers approach coalescence, they depart from the MS and increase their compactness, which implies that moderate outliers of the MS are consistent with late-type mergers. By further applying our method to real observations of luminous infrared galaxies (LIRGs), we show that the merger scenario is unable to explain these extreme outliers of the MS. Only by significantly increasing the gas fraction in the simulations are we able to reproduce the SEDs of LIRGs.
ABSTRACT The majority of star-forming galaxies follow a simple empirical correlation in the star formation rate (SFR) versus stellar mass (M*) plane, of the form , usually referred to as the star formation main sequence (MS). The physics that sets the properties of the MS is currently a subject of debate, and no consensus has been reached regarding the fundamental difference between members of the sequence and its outliers. Here we combine a set of hydro-dynamical simulations of interacting galactic disks with state-of-the-art radiative transfer codes to analyze how the evolution of mergers is reflected upon the properties of the MS. We present Chiburst, a Markov Chain Monte Carlo spectral energy distribution (SED) code that fits the multi-wavelength, broad-band photometry of galaxies and derives stellar masses, SFRs, and geometrical properties of the dust distribution. We apply this tool to the SEDs of simulated mergers and compare the derived results with the reference output from the simulations. Our results indicate that changes in the SEDs of mergers as they approach coalescence and depart from the MS are related to an evolution of dust geometry in scales larger than a few hundred parsecs. This is reflected in a correlation between the specific star formation rate, and the compactness parameter , that parametrizes this geometry and hence the evolution of dust temperature ( ) with time. As mergers approach coalescence, they depart from the MS and increase their compactness, which implies that moderate outliers of the MS are consistent with late-type mergers. By further applying our method to real observations of luminous infrared galaxies (LIRGs), we show that the merger scenario is unable to explain these extreme outliers of the MS. Only by significantly increasing the gas fraction in the simulations are we able to reproduce the SEDs of LIRGs.
Author Lanz, L.
Ashby, M. L. N.
Martínez-Galarza, J. R.
Weiner, A.
Hung, C.
Hayward, Christopher C.
Groves, B.
Smith, H. A.
Rosenthal, L.
Zezas, A.
Author_xml – sequence: 1
  givenname: J. R.
  orcidid: 0000-0002-5069-0324
  surname: Martínez-Galarza
  fullname: Martínez-Galarza, J. R.
  organization: Harvard-Smithsonian Center for Astrophysics , 60 Garden Street, Cambridge, MA 02138, USA
– sequence: 2
  givenname: H. A.
  surname: Smith
  fullname: Smith, H. A.
  organization: Harvard-Smithsonian Center for Astrophysics , 60 Garden Street, Cambridge, MA 02138, USA
– sequence: 3
  givenname: L.
  orcidid: 0000-0002-3249-8224
  surname: Lanz
  fullname: Lanz, L.
  organization: California Institute of Technology Infrared Processing and Archival Center, MC 100-22, Pasadena, CA 91125, USA
– sequence: 4
  givenname: Christopher C.
  orcidid: 0000-0003-4073-3236
  surname: Hayward
  fullname: Hayward, Christopher C.
  organization: California Institute of Technology TAPIR 350-17, 1200 E. California Blvd., Pasadena, CA 91125, USA
– sequence: 5
  givenname: A.
  surname: Zezas
  fullname: Zezas, A.
  organization: Physics Department University of Crete, P.O. Box 2208, 710 03 Heraklion, Crete, Greece
– sequence: 6
  givenname: L.
  surname: Rosenthal
  fullname: Rosenthal, L.
  organization: Haverford College , 370 Lancaster Ave, Haverford, PA 19041, USA
– sequence: 7
  givenname: A.
  surname: Weiner
  fullname: Weiner, A.
  organization: RPI Institute , 110 8th St, Troy, NY 12180, USA
– sequence: 8
  givenname: C.
  surname: Hung
  fullname: Hung, C.
  organization: Institute for Astronomy , 2680 Woodlawn Drive, Honolulu, HI 96822-1839, USA
– sequence: 9
  givenname: M. L. N.
  orcidid: 0000-0002-3993-0745
  surname: Ashby
  fullname: Ashby, M. L. N.
  organization: Harvard-Smithsonian Center for Astrophysics , 60 Garden Street, Cambridge, MA 02138, USA
– sequence: 10
  givenname: B.
  surname: Groves
  fullname: Groves, B.
  organization: Max-Planck-Institut für Astronomie , Königstuhl 17, D-69117, Heidelberg, Germany
BackLink https://www.osti.gov/biblio/22882291$$D View this record in Osti.gov
BookMark eNqFkU9vmzAYh62pk5Zm-wI7WdplFxr_AWx28yhJkQJsQKreLGKMRpXiFJPDvv2MqHbooT1Yr16_z_Na8u8aXA1m0AB8xeiGcp9tEEK-F1L2sOGYbfCGhR_ACgeUez4N2BVY_Qc-gWtrH-eWRNEKPN-LMhV1WuQVLLawvktgWmUwLrJfIq7zpKqgiMvClXmUiTSHVfL7kORxMvNVLUq4LcoszXdwJ_biIU2qH7D4WSXl_ctakd_CKs0O-6X_DD52zcnqLy91DQ7bpI7vvH2xS2Ox95RP_MljmmPVYU2OYUTDjrO2C1Db-FwFmB0VcfddozHW9Bhp1SI3a33GOGo51Zhrugbflr3GTr20qp-0-qPMMGg1SUI4JyTCjvq-UOfRPF-0neRTb5U-nZpBm4uVmOMQ0RDz4H2URSiilLmzBnxB1WisHXUn3fPN1JthGpv-JDGSc2xyjkHOqUgXm8SShU4lr9Tz2D8149-3pZtF6s1ZPprLOLiffUv4B_FToHc
CitedBy_id crossref_primary_10_3847_1538_4357_ab86a6
crossref_primary_10_1093_mnras_staa2952
crossref_primary_10_3847_1538_4357_aa76dc
crossref_primary_10_1093_mnras_staa2813
crossref_primary_10_3847_1538_4357_aa6c5b
Cites_doi 10.1086/321609
10.1088/0067-0049/218/1/6
10.1086/508261
10.1088/0004-637X/742/2/96
10.1088/2041-8205/720/2/L185
10.1088/2041-8205/714/1/L118
10.1111/j.1365-2966.2012.21696.x
10.1086/313233
10.1093/mnras/stu957
10.1088/0004-637X/757/1/23
10.1093/mnras/stu2195
10.1088/0004-637X/745/1/69
10.1086/318651
10.1086/511055
10.1088/0004-637X/768/2/168
10.1146/annurev-astro-081309-130914
10.1088/0004-637X/743/2/159
10.1086/517926
10.1111/j.1365-2966.2010.16969.x
10.1086/521818
10.1086/169800
10.1088/0004-637X/778/2/129
10.1086/426185
10.1051/0004-6361:20077525
10.1088/0004-637X/694/2/1517
10.1111/j.1365-2966.2006.10884.x
10.1086/600092
10.1093/mnras/stt1338
10.1086/423948
10.1051/0004-6361/201425252
10.1088/0004-637X/713/1/686
10.1088/0004-637X/755/2/165
10.1086/146614
10.1111/j.1365-2966.2012.20912.x
10.1088/0004-637X/785/1/39
10.1051/0004-6361/201117239
10.1051/0004-6361/201322217
10.1086/324269
10.1093/mnras/stt2295
10.1088/0004-637X/768/1/90
10.1111/j.1365-2966.2011.20148.x
10.1088/0004-637X/770/1/57
10.1051/0004-6361/201425031
10.1111/j.1365-2966.2011.18823.x
10.1088/0004-637X/795/2/104
10.1111/j.1365-2966.2007.12730.x
10.1111/j.1365-2966.2005.09655.x
10.1093/mnras/stu1843
10.1088/2041-8205/739/2/L40
10.1111/j.1365-2966.2004.07881.x
10.1111/j.1365-2966.2010.16433.x
10.1111/j.1365-2966.2010.16997.x
10.1093/mnras/stu1434
10.1088/0004-637X/752/2/134
10.1111/j.1365-2966.2009.16087.x
10.1086/505418
10.1111/j.1365-2966.2012.21254.x
10.1088/0004-637X/714/2/1256
10.1086/528711
10.1093/mnras/stu1639
10.1093/mnras/stu1787
10.1111/j.1365-2966.2011.18680.x
10.1111/j.1365-2966.2008.13689.x
10.1111/j.1365-2966.2010.16620.x
10.1086/589830
10.1111/j.1365-2966.2009.15790.x
10.1046/j.1365-8711.2003.06206.x
10.1088/0004-637X/760/1/6
10.1088/0004-637X/768/1/74
10.1086/513715
10.1146/annurev.astro.36.1.189
10.1086/181908
10.1088/0004-637X/706/2/1364
10.1088/0004-637X/795/2/159
ContentType Journal Article
Copyright 2016. The American Astronomical Society. All rights reserved.
Copyright_xml – notice: 2016. The American Astronomical Society. All rights reserved.
DBID AAYXX
CITATION
7TG
KL.
8FD
H8D
L7M
OTOTI
DOI 10.3847/0004-637X/817/1/76
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
OSTI.GOV
DatabaseTitle CrossRef
Meteorological & Geoastrophysical Abstracts - Academic
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Technology Research Database

Meteorological & Geoastrophysical Abstracts - Academic
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
DocumentTitleAlternate VARIATIONS OF THE ISM COMPACTNESS ACROSS THE MAIN SEQUENCE OF STAR FORMING GALAXIES: OBSERVATIONS AND SIMULATIONS
EISSN 1538-4357
ExternalDocumentID 22882291
10_3847_0004_637X_817_1_76
apj522149
GroupedDBID -DZ
-~X
123
1JI
23N
2FS
2WC
4.4
6J9
85S
AAFWJ
AAGCD
AAJIO
AALHV
ABHWH
ACBEA
ACGFS
ACHIP
ACNCT
ADACN
ADIYS
AEFHF
AENEX
AFPKN
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
CJUJL
CRLBU
CS3
EBS
EJD
F5P
FRP
GROUPED_DOAJ
IJHAN
IOP
KOT
M~E
N5L
O3W
O43
OK1
PJBAE
RIN
RNS
ROL
SJN
SY9
T37
TN5
TR2
WH7
XSW
AAYXX
CITATION
7TG
KL.
8FD
H8D
L7M
ABPTK
OTOTI
ID FETCH-LOGICAL-c424t-7e81cf1e2b6936f87df50da48c517bc22b6fae11e3b9ecd00dad47780d83e18e3
IEDL.DBID IOP
ISSN 0004-637X
IngestDate Fri May 19 01:43:19 EDT 2023
Fri Jul 11 11:26:19 EDT 2025
Fri Jul 11 16:12:10 EDT 2025
Thu Apr 24 22:51:12 EDT 2025
Tue Jul 01 01:05:17 EDT 2025
Wed Aug 21 03:41:35 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c424t-7e81cf1e2b6936f87df50da48c517bc22b6fae11e3b9ecd00dad47780d83e18e3
Notes ApJ97456
Current Universe
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5069-0324
0000-0002-3249-8224
0000-0002-3993-0745
0000-0003-4073-3236
OpenAccessLink http://nrs.harvard.edu/urn-3:HUL.InstRepos:34708489
PQID 1790933793
PQPubID 23462
PageCount 18
ParticipantIDs osti_scitechconnect_22882291
proquest_miscellaneous_1790933793
iop_journals_10_3847_0004_637X_817_1_76
proquest_miscellaneous_1816036185
crossref_primary_10_3847_0004_637X_817_1_76
crossref_citationtrail_10_3847_0004_637X_817_1_76
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-01-20
PublicationDateYYYYMMDD 2016-01-20
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-01-20
  day: 20
PublicationDecade 2010
PublicationPlace United Kingdom
PublicationPlace_xml – name: United Kingdom
PublicationTitle The Astrophysical journal
PublicationTitleAbbrev APJ
PublicationTitleAlternate Astrophys. J
PublicationYear 2016
Publisher The American Astronomical Society
Publisher_xml – name: The American Astronomical Society
References Frayer (apj522149bib32) 2008; 680
Kartaltepe (apj522149bib46) 2012; 757
Weingartner (apj522149bib82) 2001; 548
Dopita (apj522149bib24) 2006b; 167
Draine (apj522149bib26) 2007; 657
Jonsson (apj522149bib44) 2006; 372
Mentuch Cooper (apj522149bib59) 2012; 755
Springel (apj522149bib76) 2005; 364
Ceverino (apj522149bib11) 2010; 404
Armus (apj522149bib3) 2009; 121
Calzetti (apj522149bib9) 2010; 714
Torrey (apj522149bib80) 2014; 438
Mitchell (apj522149bib60) 2014; 444
Ciesla (apj522149bib13) 2015; 576
Hung (apj522149bib42) 2013; 778
Kennicutt (apj522149bib48) 1998; 36
Elbaz (apj522149bib29) 2011; 533
Moshir (apj522149bib61) 1992
Snyder (apj522149bib74) 2013; 768
Jonsson (apj522149bib45) 2010; 403
Narayanan (apj522149bib63) 2010b; 401
Kelson (apj522149bib47) 2014
Brinchmann (apj522149bib7) 2004; 351
Hayward (apj522149bib37) 2011; 743
Förster Schreiber (apj522149bib31) 2009; 706
Hayward (apj522149bib38) 2014a; 445
Lintott (apj522149bib54) 2008; 389
Alatalo (apj522149bib2) 2014; 795
Behroozi (apj522149bib4) 2013; 770
Sparre (apj522149bib75) 2014
Whitaker (apj522149bib83) 2014; 795
Calzetti (apj522149bib8) 2001; 113
Dopita (apj522149bib25) 2005; 619
Schmidt (apj522149bib72) 1959; 129
Davé (apj522149bib21) 2011; 415
Oliver (apj522149bib65) 2012; 424
Dekel (apj522149bib22) 2013; 435
Imanishi (apj522149bib43) 2007; 171
Cox (apj522149bib15) 2008; 384
Porter (apj522149bib67) 2014; 444
Krumholz (apj522149bib49) 2012; 745
Magnelli (apj522149bib58) 2014; 561
Rodighiero (apj522149bib69) 2011; 739
Daddi (apj522149bib16) 2010a; 713
Springel (apj522149bib77) 2010; 48
Lanz (apj522149bib51) 2013; 768
Magdis (apj522149bib57) 2014
Chary (apj522149bib12) 2001; 556
Dutton (apj522149bib27) 2010; 405
Cook (apj522149bib14) 2014; 445
Davé (apj522149bib20) 2012; 421
Lanz (apj522149bib50) 2014; 785
Groves (apj522149bib34) 2008; 176
Ott (apj522149bib66) 2010
Wuyts (apj522149bib85) 2011; 742
Magdis (apj522149bib56) 2010; 720
Daddi (apj522149bib19) 2010b; 714
Fischera (apj522149bib30) 2005; 619
Springel (apj522149bib78) 2003; 339
Daddi (apj522149bib18) 2007; 670
Scoville (apj522149bib73) 2015
Elbaz (apj522149bib28) 2007; 468
Saintonge (apj522149bib70) 2011; 415
Hayward (apj522149bib39) 2015; 446
Groves (apj522149bib35) 2012; 426
Hayward (apj522149bib40) 2014b; 442
Béthermin (apj522149bib5) 2015; 573
Narayanan (apj522149bib62) 2010a; 407
Sanders (apj522149bib71) 1991; 370
Castor (apj522149bib10) 1975; 200
Genzel (apj522149bib33) 2010; 407
Dopita (apj522149bib23) 2006a; 647
Tacconi (apj522149bib79) 2013; 768
Hayward (apj522149bib36) 2012; 424
Leitherer (apj522149bib53) 1999; 123
Magdis (apj522149bib55) 2012; 760
Noeske (apj522149bib64) 2007; 660
Daddi (apj522149bib17) 2009; 694
Wang (apj522149bib81) 2012; 752
Brassington (apj522149bib6) 2015; 218
References_xml – volume: 556
  start-page: 562
  year: 2001
  ident: apj522149bib12
  publication-title: ApJ
  doi: 10.1086/321609
– volume: 218
  start-page: 6
  year: 2015
  ident: apj522149bib6
  publication-title: ApJS
  doi: 10.1088/0067-0049/218/1/6
– volume: 167
  start-page: 177
  year: 2006b
  ident: apj522149bib24
  publication-title: ApJS
  doi: 10.1086/508261
– year: 2015
  ident: apj522149bib73
– volume: 742
  start-page: 96
  year: 2011
  ident: apj522149bib85
  publication-title: ApJ
  doi: 10.1088/0004-637X/742/2/96
– volume: 720
  start-page: L185
  year: 2010
  ident: apj522149bib56
  publication-title: ApJL
  doi: 10.1088/2041-8205/720/2/L185
– volume: 714
  start-page: L118
  year: 2010b
  ident: apj522149bib19
  publication-title: ApJL
  doi: 10.1088/2041-8205/714/1/L118
– volume: 426
  start-page: 892
  year: 2012
  ident: apj522149bib35
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2012.21696.x
– volume: 123
  start-page: 3
  year: 1999
  ident: apj522149bib53
  publication-title: ApJS
  doi: 10.1086/313233
– volume: 442
  start-page: 1992
  year: 2014b
  ident: apj522149bib40
  publication-title: MNRAS
  doi: 10.1093/mnras/stu957
– volume: 757
  start-page: 23
  year: 2012
  ident: apj522149bib46
  publication-title: ApJ
  doi: 10.1088/0004-637X/757/1/23
– volume: 446
  start-page: 1512
  year: 2015
  ident: apj522149bib39
  doi: 10.1093/mnras/stu2195
– volume: 745
  start-page: 69
  year: 2012
  ident: apj522149bib49
  publication-title: ApJ
  doi: 10.1088/0004-637X/745/1/69
– volume: 548
  start-page: 296
  year: 2001
  ident: apj522149bib82
  publication-title: ApJ
  doi: 10.1086/318651
– volume: 657
  start-page: 810
  year: 2007
  ident: apj522149bib26
  publication-title: ApJ
  doi: 10.1086/511055
– volume: 768
  start-page: 168
  year: 2013
  ident: apj522149bib74
  publication-title: ApJ
  doi: 10.1088/0004-637X/768/2/168
– volume: 48
  start-page: 391
  year: 2010
  ident: apj522149bib77
  publication-title: ARA&A
  doi: 10.1146/annurev-astro-081309-130914
– start-page: 139
  year: 2010
  ident: apj522149bib66
– volume: 743
  start-page: 159
  year: 2011
  ident: apj522149bib37
  publication-title: ApJ
  doi: 10.1088/0004-637X/743/2/159
– volume: 660
  start-page: L43
  year: 2007
  ident: apj522149bib64
  publication-title: ApJL
  doi: 10.1086/517926
– volume: 407
  start-page: 2091
  year: 2010
  ident: apj522149bib33
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2010.16969.x
– year: 1992
  ident: apj522149bib61
  publication-title: IRAS Faint Source Survey Explanatory Supplement Version 2
– volume: 670
  start-page: 156
  year: 2007
  ident: apj522149bib18
  publication-title: ApJ
  doi: 10.1086/521818
– volume: 370
  start-page: 158
  year: 1991
  ident: apj522149bib71
  publication-title: ApJ
  doi: 10.1086/169800
– volume: 778
  start-page: 129
  year: 2013
  ident: apj522149bib42
  publication-title: ApJ
  doi: 10.1088/0004-637X/778/2/129
– volume: 619
  start-page: 340
  year: 2005
  ident: apj522149bib30
  publication-title: ApJ
  doi: 10.1086/426185
– volume: 468
  start-page: 33
  year: 2007
  ident: apj522149bib28
  publication-title: A&A
  doi: 10.1051/0004-6361:20077525
– volume: 694
  start-page: 1517
  year: 2009
  ident: apj522149bib17
  publication-title: ApJ
  doi: 10.1088/0004-637X/694/2/1517
– volume: 372
  start-page: 2
  year: 2006
  ident: apj522149bib44
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2006.10884.x
– volume: 121
  start-page: 559
  year: 2009
  ident: apj522149bib3
  publication-title: PASP
  doi: 10.1086/600092
– volume: 435
  start-page: 999
  year: 2013
  ident: apj522149bib22
  publication-title: MNRAS
  doi: 10.1093/mnras/stt1338
– volume: 619
  start-page: 755
  year: 2005
  ident: apj522149bib25
  publication-title: ApJ
  doi: 10.1086/423948
– volume: 576
  start-page: A10
  year: 2015
  ident: apj522149bib13
  publication-title: A&A
  doi: 10.1051/0004-6361/201425252
– volume: 713
  start-page: 686
  year: 2010a
  ident: apj522149bib16
  publication-title: ApJ
  doi: 10.1088/0004-637X/713/1/686
– volume: 755
  start-page: 165
  year: 2012
  ident: apj522149bib59
  publication-title: ApJ
  doi: 10.1088/0004-637X/755/2/165
– volume: 129
  start-page: 243
  year: 1959
  ident: apj522149bib72
  publication-title: ApJ
  doi: 10.1086/146614
– volume: 424
  start-page: 1614
  year: 2012
  ident: apj522149bib65
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2012.20912.x
– volume: 785
  start-page: 39
  year: 2014
  ident: apj522149bib50
  publication-title: ApJ
  doi: 10.1088/0004-637X/785/1/39
– volume: 533
  start-page: A119
  year: 2011
  ident: apj522149bib29
  publication-title: A&A
  doi: 10.1051/0004-6361/201117239
– volume: 561
  start-page: A86
  year: 2014
  ident: apj522149bib58
  publication-title: A&A
  doi: 10.1051/0004-6361/201322217
– volume: 113
  start-page: 1449
  year: 2001
  ident: apj522149bib8
  publication-title: PASP
  doi: 10.1086/324269
– volume: 438
  start-page: 1985
  year: 2014
  ident: apj522149bib80
  publication-title: MNRAS
  doi: 10.1093/mnras/stt2295
– volume: 768
  start-page: 90
  year: 2013
  ident: apj522149bib51
  publication-title: ApJ
  doi: 10.1088/0004-637X/768/1/90
– volume: 421
  start-page: 98
  year: 2012
  ident: apj522149bib20
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2011.20148.x
– volume: 770
  start-page: 57
  year: 2013
  ident: apj522149bib4
  publication-title: ApJ
  doi: 10.1088/0004-637X/770/1/57
– volume: 573
  start-page: A113
  year: 2015
  ident: apj522149bib5
  publication-title: A&A
  doi: 10.1051/0004-6361/201425031
– volume: 415
  start-page: 61
  year: 2011
  ident: apj522149bib70
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2011.18823.x
– volume: 795
  start-page: 104
  year: 2014
  ident: apj522149bib83
  publication-title: ApJ
  doi: 10.1088/0004-637X/795/2/104
– volume: 384
  start-page: 386
  year: 2008
  ident: apj522149bib15
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2007.12730.x
– volume: 364
  start-page: 1105
  year: 2005
  ident: apj522149bib76
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2005.09655.x
– volume: 445
  start-page: 1598
  year: 2014a
  ident: apj522149bib38
  doi: 10.1093/mnras/stu1843
– volume: 739
  start-page: L40
  year: 2011
  ident: apj522149bib69
  publication-title: ApJL
  doi: 10.1088/2041-8205/739/2/L40
– volume: 351
  start-page: 1151
  year: 2004
  ident: apj522149bib7
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2004.07881.x
– volume: 404
  start-page: 2151
  year: 2010
  ident: apj522149bib11
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2010.16433.x
– volume: 407
  start-page: 1701
  year: 2010a
  ident: apj522149bib62
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2010.16997.x
– volume: 444
  start-page: 942
  year: 2014
  ident: apj522149bib67
  publication-title: MNRAS
  doi: 10.1093/mnras/stu1434
– volume: 752
  start-page: 134
  year: 2012
  ident: apj522149bib81
  publication-title: ApJ
  doi: 10.1088/0004-637X/752/2/134
– volume: 403
  start-page: 17
  year: 2010
  ident: apj522149bib45
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2009.16087.x
– volume: 647
  start-page: 244
  year: 2006a
  ident: apj522149bib23
  publication-title: ApJ
  doi: 10.1086/505418
– volume: 424
  start-page: 951
  year: 2012
  ident: apj522149bib36
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2012.21254.x
– volume: 714
  start-page: 1256
  year: 2010
  ident: apj522149bib9
  publication-title: ApJ
  doi: 10.1088/0004-637X/714/2/1256
– volume: 176
  start-page: 438
  year: 2008
  ident: apj522149bib34
  publication-title: ApJS
  doi: 10.1086/528711
– year: 2014
  ident: apj522149bib47
– volume: 444
  start-page: 2637
  year: 2014
  ident: apj522149bib60
  publication-title: MNRAS
  doi: 10.1093/mnras/stu1639
– year: 2014
  ident: apj522149bib57
– volume: 445
  start-page: 899
  year: 2014
  ident: apj522149bib14
  publication-title: MNRAS
  doi: 10.1093/mnras/stu1787
– volume: 415
  start-page: 11
  year: 2011
  ident: apj522149bib21
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2011.18680.x
– volume: 389
  start-page: 1179
  year: 2008
  ident: apj522149bib54
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2008.13689.x
– volume: 405
  start-page: 1690
  year: 2010
  ident: apj522149bib27
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2010.16620.x
– volume: 680
  start-page: L21
  year: 2008
  ident: apj522149bib32
  publication-title: ApJL
  doi: 10.1086/589830
– year: 2014
  ident: apj522149bib75
– volume: 401
  start-page: 1613
  year: 2010b
  ident: apj522149bib63
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2009.15790.x
– volume: 339
  start-page: 289
  year: 2003
  ident: apj522149bib78
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2003.06206.x
– volume: 760
  start-page: 6
  year: 2012
  ident: apj522149bib55
  publication-title: ApJ
  doi: 10.1088/0004-637X/760/1/6
– volume: 768
  start-page: 74
  year: 2013
  ident: apj522149bib79
  publication-title: ApJ
  doi: 10.1088/0004-637X/768/1/74
– volume: 171
  start-page: 72
  year: 2007
  ident: apj522149bib43
  publication-title: ApJS
  doi: 10.1086/513715
– volume: 36
  start-page: 189
  year: 1998
  ident: apj522149bib48
  publication-title: ARA&A
  doi: 10.1146/annurev.astro.36.1.189
– volume: 200
  start-page: L107
  year: 1975
  ident: apj522149bib10
  publication-title: ApJL
  doi: 10.1086/181908
– volume: 706
  start-page: 1364
  year: 2009
  ident: apj522149bib31
  publication-title: ApJ
  doi: 10.1088/0004-637X/706/2/1364
– volume: 795
  start-page: 159
  year: 2014
  ident: apj522149bib2
  publication-title: ApJ
  doi: 10.1088/0004-637X/795/2/159
SSID ssj0004299
Score 2.2329195
Snippet ABSTRACT The majority of star-forming galaxies follow a simple empirical correlation in the star formation rate (SFR) versus stellar mass (M*) plane, of the...
The majority of star-forming galaxies follow a simple empirical correlation in the star formation rate (SFR) versus stellar mass ( M * ) plane, of the form ,...
The majority of star-forming galaxies follow a simple empirical correlation in the star formation rate (SFR) versus stellar mass (M*) plane, of the form...
The majority of star-forming galaxies follow a simple empirical correlation in the star formation rate (SFR) versus stellar mass (M{sub *}) plane, of the form...
SourceID osti
proquest
crossref
iop
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 76
SubjectTerms Acquisitions
ASTROPHYSICS, COSMOLOGY AND ASTRONOMY
COALESCENCE
COMPARATIVE EVALUATIONS
COMPUTERIZED SIMULATION
COSMIC DUST
DISTRIBUTION
ENERGY SPECTRA
evolution
Galactic disk
GALACTIC EVOLUTION
GALAXIES
galaxies: evolution
galaxies: interactions
galaxies: star formation
galaxies: starburst
MAIN SEQUENCE STARS
MARKOV PROCESS
MASS
MONTE CARLO METHOD
Outliers (statistics)
PHOTOMETRY
RADIANT HEAT TRANSFER
Radiative transfer
Simulation
STAR EVOLUTION
Star formation
STARS
State of the art
Title VARIATIONS OF THE ISM COMPACTNESS ACROSS THE MAIN SEQUENCE OF STAR FORMING GALAXIES: OBSERVATIONS AND SIMULATIONS
URI https://iopscience.iop.org/article/10.3847/0004-637X/817/1/76
https://www.proquest.com/docview/1790933793
https://www.proquest.com/docview/1816036185
https://www.osti.gov/biblio/22882291
Volume 817
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1db9Mw0GJDSLzwMUDrGMhICB5Q2jh2Y4e3UNo1aGlK046-RYljv8DaQdsH-PXcxRkIEBXiJXHii5OcfR8---4IeR5qabWRxuvroPYE95VXghjywjCqLedlVHH0HU4n4Xgh3i37y3ZvTuMLs75qWX8Xii5QsEMh0jcHXoq-B8ILuVz2FJM91pPhAbnJFYhO9N_Lpj_dIoOo1X4dvPOZ-Usbv8ilA3g38Og1UNkfPLoRPKO7LrvqpolXiPtNPnZ326qrv_0WzfG__-keudOqpDR2wPfJDbM6IsfxBo3k68uv9AVtys4Gsjkit6au9IB8vohniXNEptmIzsdDmuQpHWTpNB7MMZ0HjQezDE5YlcbJhObD9wu0aiF8Po9nFGahaTI5o2fxebwE3fQ1zd7kw9lF22w8eUvzJF2cu-uHZDEazgdjr83h4GkRiK0njWLaMhNUYcRDq2Rt-35dCqX7TFY6gPu2NIwZXkVG1z7U1UJK5deKG6YMf0QOV-uVOSbUlJYbzawxwgq_klVpmbVWipJLpYXqEHbdg4VuA5xjno1PBUx0EMu40C4KxHIBWC5YIcMOefXjmSsX3mMv9EvowKKl8s1eyFMcPAX0O8bi1bhpSW-LIFAYYJ91yLPrQVUAOeMaTbky6x00KSO0MQHX3AOjMDd4CJrWyT9_0GNyG1S9xngU-KfkcPtlZ56AOrWtnjZEA8eMf_gO4V0MLw
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw0NqGQHtBMEDrGGAkPh5Q1jh2YgeJh9CPNaxJSj9G30zi2E_QFNoJ7WfxDzk32RBCVLzsKY59sZw7n-989t0h9CJQ3CjNteMrr3QYdYWTgxhygiAsDaV5WFDrO5ykwWDGPsz9-Q76ee0LUy2bpf8EinWg4BqFlr8prKXW94A5AeXztiC8Tdo8aC9L09yrPNOXP2DXtnoXd4HELz2v35t2Bk6TWMBRzGNrh2tBlCHaK4KQBkbw0vhumTOhfMIL5UG9yTUhmhahVqULbSXjXLiloJoITaHfXXTLpyDcgIUy-um3K6YXNhp3PcbaT-cf4_5DFu7C_4JcqICz_5ILG2HXv4fuNloqjmqc3Ec7enGADqOVtZtXXy_xK7wp12aR1QG6PapLD9C382gc177JOOvj6aCH40mCO1kyijpTm-EDR51xBg_blERxiie9jzNr6LLwk2k0xrAxTeL0FJ9Gw2gO6upbnL2f9MbnTbdR2sWTOJkN6_eHaHYj2H-E9hbVQh8irHNDtSJGa2aYW_AiN8QYw1lOuVBMtBC5QrBUTcxzm3rji4S9jyWKPXtn0hJFAlEkkTxooTfX3yzriB9boV8D3WTD-KutkMeWthKmtw3Pq-w9JrWWnidszH3SQs-vaC6Bw-2xTb7Q1QV0yUNrdoKFdAuMsOnCA1C-jv57QM_QnVG3L4dxevYY7YMiuDEtee4x2lt_v9BPQNlaF0830xujzzfNT78AJcorVQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variations+of+the+ISM+compactness+across+the+main+sequence+of+star+forming+galaxies%3A+Observations+and+simulations&rft.jtitle=The+Astrophysical+journal&rft.au=Mart%C3%ADnez-Galarza%2C+J.+R.&rft.au=Smith%2C+H.+A.&rft.au=Hayward%2C+Christopher+C.&rft.au=Zezas%2C+A.&rft.date=2016-01-20&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=817&rft.issue=1&rft_id=info:doi/10.3847%2F0004-637X%2F817%2F1%2F76&rft.externalDocID=22882291
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon