VARIATIONS OF THE ISM COMPACTNESS ACROSS THE MAIN SEQUENCE OF STAR FORMING GALAXIES: OBSERVATIONS AND SIMULATIONS
ABSTRACT The majority of star-forming galaxies follow a simple empirical correlation in the star formation rate (SFR) versus stellar mass (M*) plane, of the form , usually referred to as the star formation main sequence (MS). The physics that sets the properties of the MS is currently a subject of d...
Saved in:
Published in | The Astrophysical journal Vol. 817; no. 1; pp. 76 - 93 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United Kingdom
The American Astronomical Society
20.01.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ABSTRACT The majority of star-forming galaxies follow a simple empirical correlation in the star formation rate (SFR) versus stellar mass (M*) plane, of the form , usually referred to as the star formation main sequence (MS). The physics that sets the properties of the MS is currently a subject of debate, and no consensus has been reached regarding the fundamental difference between members of the sequence and its outliers. Here we combine a set of hydro-dynamical simulations of interacting galactic disks with state-of-the-art radiative transfer codes to analyze how the evolution of mergers is reflected upon the properties of the MS. We present Chiburst, a Markov Chain Monte Carlo spectral energy distribution (SED) code that fits the multi-wavelength, broad-band photometry of galaxies and derives stellar masses, SFRs, and geometrical properties of the dust distribution. We apply this tool to the SEDs of simulated mergers and compare the derived results with the reference output from the simulations. Our results indicate that changes in the SEDs of mergers as they approach coalescence and depart from the MS are related to an evolution of dust geometry in scales larger than a few hundred parsecs. This is reflected in a correlation between the specific star formation rate, and the compactness parameter , that parametrizes this geometry and hence the evolution of dust temperature ( ) with time. As mergers approach coalescence, they depart from the MS and increase their compactness, which implies that moderate outliers of the MS are consistent with late-type mergers. By further applying our method to real observations of luminous infrared galaxies (LIRGs), we show that the merger scenario is unable to explain these extreme outliers of the MS. Only by significantly increasing the gas fraction in the simulations are we able to reproduce the SEDs of LIRGs. |
---|---|
AbstractList | The majority of star-forming galaxies follow a simple empirical correlation in the star formation rate (SFR) versus stellar mass (M*) plane, of the form ${\rm{SFR}}\propto {M}_{*} super({\alpha })$, usually referred to as the star formation main sequence (MS). The physics that sets the properties of the MS is currently a subject of debate, and no consensus has been reached regarding the fundamental difference between members of the sequence and its outliers. Here we combine a set of hydro-dynamical simulations of interacting galactic disks with state-of-the-art radiative transfer codes to analyze how the evolution of mergers is reflected upon the properties of the MS. By further applying our method to real observations of luminous infrared galaxies (LIRGs), we show that the merger scenario is unable to explain these extreme outliers of the MS. Only by significantly increasing the gas fraction in the simulations are we able to reproduce the SEDs of LIRGs. The majority of star-forming galaxies follow a simple empirical correlation in the star formation rate (SFR) versus stellar mass (M{sub *}) plane, of the form SFR∝M{sub ∗}{sup α}, usually referred to as the star formation main sequence (MS). The physics that sets the properties of the MS is currently a subject of debate, and no consensus has been reached regarding the fundamental difference between members of the sequence and its outliers. Here we combine a set of hydro-dynamical simulations of interacting galactic disks with state-of-the-art radiative transfer codes to analyze how the evolution of mergers is reflected upon the properties of the MS. We present Chiburst, a Markov Chain Monte Carlo spectral energy distribution (SED) code that fits the multi-wavelength, broad-band photometry of galaxies and derives stellar masses, SFRs, and geometrical properties of the dust distribution. We apply this tool to the SEDs of simulated mergers and compare the derived results with the reference output from the simulations. Our results indicate that changes in the SEDs of mergers as they approach coalescence and depart from the MS are related to an evolution of dust geometry in scales larger than a few hundred parsecs. This is reflected in a correlation between the specific star formation rate, and the compactness parameter C, that parametrizes this geometry and hence the evolution of dust temperature (T{sub dust}) with time. As mergers approach coalescence, they depart from the MS and increase their compactness, which implies that moderate outliers of the MS are consistent with late-type mergers. By further applying our method to real observations of luminous infrared galaxies (LIRGs), we show that the merger scenario is unable to explain these extreme outliers of the MS. Only by significantly increasing the gas fraction in the simulations are we able to reproduce the SEDs of LIRGs. The majority of star-forming galaxies follow a simple empirical correlation in the star formation rate (SFR) versus stellar mass ( M * ) plane, of the form , usually referred to as the star formation main sequence (MS). The physics that sets the properties of the MS is currently a subject of debate, and no consensus has been reached regarding the fundamental difference between members of the sequence and its outliers. Here we combine a set of hydro-dynamical simulations of interacting galactic disks with state-of-the-art radiative transfer codes to analyze how the evolution of mergers is reflected upon the properties of the MS. We present Chiburst , a Markov Chain Monte Carlo spectral energy distribution (SED) code that fits the multi-wavelength, broad-band photometry of galaxies and derives stellar masses, SFRs, and geometrical properties of the dust distribution. We apply this tool to the SEDs of simulated mergers and compare the derived results with the reference output from the simulations. Our results indicate that changes in the SEDs of mergers as they approach coalescence and depart from the MS are related to an evolution of dust geometry in scales larger than a few hundred parsecs. This is reflected in a correlation between the specific star formation rate, and the compactness parameter , that parametrizes this geometry and hence the evolution of dust temperature ( ) with time. As mergers approach coalescence, they depart from the MS and increase their compactness, which implies that moderate outliers of the MS are consistent with late-type mergers. By further applying our method to real observations of luminous infrared galaxies (LIRGs), we show that the merger scenario is unable to explain these extreme outliers of the MS. Only by significantly increasing the gas fraction in the simulations are we able to reproduce the SEDs of LIRGs. ABSTRACT The majority of star-forming galaxies follow a simple empirical correlation in the star formation rate (SFR) versus stellar mass (M*) plane, of the form , usually referred to as the star formation main sequence (MS). The physics that sets the properties of the MS is currently a subject of debate, and no consensus has been reached regarding the fundamental difference between members of the sequence and its outliers. Here we combine a set of hydro-dynamical simulations of interacting galactic disks with state-of-the-art radiative transfer codes to analyze how the evolution of mergers is reflected upon the properties of the MS. We present Chiburst, a Markov Chain Monte Carlo spectral energy distribution (SED) code that fits the multi-wavelength, broad-band photometry of galaxies and derives stellar masses, SFRs, and geometrical properties of the dust distribution. We apply this tool to the SEDs of simulated mergers and compare the derived results with the reference output from the simulations. Our results indicate that changes in the SEDs of mergers as they approach coalescence and depart from the MS are related to an evolution of dust geometry in scales larger than a few hundred parsecs. This is reflected in a correlation between the specific star formation rate, and the compactness parameter , that parametrizes this geometry and hence the evolution of dust temperature ( ) with time. As mergers approach coalescence, they depart from the MS and increase their compactness, which implies that moderate outliers of the MS are consistent with late-type mergers. By further applying our method to real observations of luminous infrared galaxies (LIRGs), we show that the merger scenario is unable to explain these extreme outliers of the MS. Only by significantly increasing the gas fraction in the simulations are we able to reproduce the SEDs of LIRGs. |
Author | Lanz, L. Ashby, M. L. N. Martínez-Galarza, J. R. Weiner, A. Hung, C. Hayward, Christopher C. Groves, B. Smith, H. A. Rosenthal, L. Zezas, A. |
Author_xml | – sequence: 1 givenname: J. R. orcidid: 0000-0002-5069-0324 surname: Martínez-Galarza fullname: Martínez-Galarza, J. R. organization: Harvard-Smithsonian Center for Astrophysics , 60 Garden Street, Cambridge, MA 02138, USA – sequence: 2 givenname: H. A. surname: Smith fullname: Smith, H. A. organization: Harvard-Smithsonian Center for Astrophysics , 60 Garden Street, Cambridge, MA 02138, USA – sequence: 3 givenname: L. orcidid: 0000-0002-3249-8224 surname: Lanz fullname: Lanz, L. organization: California Institute of Technology Infrared Processing and Archival Center, MC 100-22, Pasadena, CA 91125, USA – sequence: 4 givenname: Christopher C. orcidid: 0000-0003-4073-3236 surname: Hayward fullname: Hayward, Christopher C. organization: California Institute of Technology TAPIR 350-17, 1200 E. California Blvd., Pasadena, CA 91125, USA – sequence: 5 givenname: A. surname: Zezas fullname: Zezas, A. organization: Physics Department University of Crete, P.O. Box 2208, 710 03 Heraklion, Crete, Greece – sequence: 6 givenname: L. surname: Rosenthal fullname: Rosenthal, L. organization: Haverford College , 370 Lancaster Ave, Haverford, PA 19041, USA – sequence: 7 givenname: A. surname: Weiner fullname: Weiner, A. organization: RPI Institute , 110 8th St, Troy, NY 12180, USA – sequence: 8 givenname: C. surname: Hung fullname: Hung, C. organization: Institute for Astronomy , 2680 Woodlawn Drive, Honolulu, HI 96822-1839, USA – sequence: 9 givenname: M. L. N. orcidid: 0000-0002-3993-0745 surname: Ashby fullname: Ashby, M. L. N. organization: Harvard-Smithsonian Center for Astrophysics , 60 Garden Street, Cambridge, MA 02138, USA – sequence: 10 givenname: B. surname: Groves fullname: Groves, B. organization: Max-Planck-Institut für Astronomie , Königstuhl 17, D-69117, Heidelberg, Germany |
BackLink | https://www.osti.gov/biblio/22882291$$D View this record in Osti.gov |
BookMark | eNqFkU9vmzAYh62pk5Zm-wI7WdplFxr_AWx28yhJkQJsQKreLGKMRpXiFJPDvv2MqHbooT1Yr16_z_Na8u8aXA1m0AB8xeiGcp9tEEK-F1L2sOGYbfCGhR_ACgeUez4N2BVY_Qc-gWtrH-eWRNEKPN-LMhV1WuQVLLawvktgWmUwLrJfIq7zpKqgiMvClXmUiTSHVfL7kORxMvNVLUq4LcoszXdwJ_biIU2qH7D4WSXl_ctakd_CKs0O-6X_DD52zcnqLy91DQ7bpI7vvH2xS2Ox95RP_MljmmPVYU2OYUTDjrO2C1Db-FwFmB0VcfddozHW9Bhp1SI3a33GOGo51Zhrugbflr3GTr20qp-0-qPMMGg1SUI4JyTCjvq-UOfRPF-0neRTb5U-nZpBm4uVmOMQ0RDz4H2URSiilLmzBnxB1WisHXUn3fPN1JthGpv-JDGSc2xyjkHOqUgXm8SShU4lr9Tz2D8149-3pZtF6s1ZPprLOLiffUv4B_FToHc |
CitedBy_id | crossref_primary_10_3847_1538_4357_ab86a6 crossref_primary_10_1093_mnras_staa2952 crossref_primary_10_3847_1538_4357_aa76dc crossref_primary_10_1093_mnras_staa2813 crossref_primary_10_3847_1538_4357_aa6c5b |
Cites_doi | 10.1086/321609 10.1088/0067-0049/218/1/6 10.1086/508261 10.1088/0004-637X/742/2/96 10.1088/2041-8205/720/2/L185 10.1088/2041-8205/714/1/L118 10.1111/j.1365-2966.2012.21696.x 10.1086/313233 10.1093/mnras/stu957 10.1088/0004-637X/757/1/23 10.1093/mnras/stu2195 10.1088/0004-637X/745/1/69 10.1086/318651 10.1086/511055 10.1088/0004-637X/768/2/168 10.1146/annurev-astro-081309-130914 10.1088/0004-637X/743/2/159 10.1086/517926 10.1111/j.1365-2966.2010.16969.x 10.1086/521818 10.1086/169800 10.1088/0004-637X/778/2/129 10.1086/426185 10.1051/0004-6361:20077525 10.1088/0004-637X/694/2/1517 10.1111/j.1365-2966.2006.10884.x 10.1086/600092 10.1093/mnras/stt1338 10.1086/423948 10.1051/0004-6361/201425252 10.1088/0004-637X/713/1/686 10.1088/0004-637X/755/2/165 10.1086/146614 10.1111/j.1365-2966.2012.20912.x 10.1088/0004-637X/785/1/39 10.1051/0004-6361/201117239 10.1051/0004-6361/201322217 10.1086/324269 10.1093/mnras/stt2295 10.1088/0004-637X/768/1/90 10.1111/j.1365-2966.2011.20148.x 10.1088/0004-637X/770/1/57 10.1051/0004-6361/201425031 10.1111/j.1365-2966.2011.18823.x 10.1088/0004-637X/795/2/104 10.1111/j.1365-2966.2007.12730.x 10.1111/j.1365-2966.2005.09655.x 10.1093/mnras/stu1843 10.1088/2041-8205/739/2/L40 10.1111/j.1365-2966.2004.07881.x 10.1111/j.1365-2966.2010.16433.x 10.1111/j.1365-2966.2010.16997.x 10.1093/mnras/stu1434 10.1088/0004-637X/752/2/134 10.1111/j.1365-2966.2009.16087.x 10.1086/505418 10.1111/j.1365-2966.2012.21254.x 10.1088/0004-637X/714/2/1256 10.1086/528711 10.1093/mnras/stu1639 10.1093/mnras/stu1787 10.1111/j.1365-2966.2011.18680.x 10.1111/j.1365-2966.2008.13689.x 10.1111/j.1365-2966.2010.16620.x 10.1086/589830 10.1111/j.1365-2966.2009.15790.x 10.1046/j.1365-8711.2003.06206.x 10.1088/0004-637X/760/1/6 10.1088/0004-637X/768/1/74 10.1086/513715 10.1146/annurev.astro.36.1.189 10.1086/181908 10.1088/0004-637X/706/2/1364 10.1088/0004-637X/795/2/159 |
ContentType | Journal Article |
Copyright | 2016. The American Astronomical Society. All rights reserved. |
Copyright_xml | – notice: 2016. The American Astronomical Society. All rights reserved. |
DBID | AAYXX CITATION 7TG KL. 8FD H8D L7M OTOTI |
DOI | 10.3847/0004-637X/817/1/76 |
DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Meteorological & Geoastrophysical Abstracts - Academic Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace OSTI.GOV |
DatabaseTitle | CrossRef Meteorological & Geoastrophysical Abstracts - Academic Meteorological & Geoastrophysical Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Technology Research Database Meteorological & Geoastrophysical Abstracts - Academic CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
DocumentTitleAlternate | VARIATIONS OF THE ISM COMPACTNESS ACROSS THE MAIN SEQUENCE OF STAR FORMING GALAXIES: OBSERVATIONS AND SIMULATIONS |
EISSN | 1538-4357 |
ExternalDocumentID | 22882291 10_3847_0004_637X_817_1_76 apj522149 |
GroupedDBID | -DZ -~X 123 1JI 23N 2FS 2WC 4.4 6J9 85S AAFWJ AAGCD AAJIO AALHV ABHWH ACBEA ACGFS ACHIP ACNCT ADACN ADIYS AEFHF AENEX AFPKN AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN CJUJL CRLBU CS3 EBS EJD F5P FRP GROUPED_DOAJ IJHAN IOP KOT M~E N5L O3W O43 OK1 PJBAE RIN RNS ROL SJN SY9 T37 TN5 TR2 WH7 XSW AAYXX CITATION 7TG KL. 8FD H8D L7M ABPTK OTOTI |
ID | FETCH-LOGICAL-c424t-7e81cf1e2b6936f87df50da48c517bc22b6fae11e3b9ecd00dad47780d83e18e3 |
IEDL.DBID | IOP |
ISSN | 0004-637X |
IngestDate | Fri May 19 01:43:19 EDT 2023 Fri Jul 11 11:26:19 EDT 2025 Fri Jul 11 16:12:10 EDT 2025 Thu Apr 24 22:51:12 EDT 2025 Tue Jul 01 01:05:17 EDT 2025 Wed Aug 21 03:41:35 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c424t-7e81cf1e2b6936f87df50da48c517bc22b6fae11e3b9ecd00dad47780d83e18e3 |
Notes | ApJ97456 Current Universe ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-5069-0324 0000-0002-3249-8224 0000-0002-3993-0745 0000-0003-4073-3236 |
OpenAccessLink | http://nrs.harvard.edu/urn-3:HUL.InstRepos:34708489 |
PQID | 1790933793 |
PQPubID | 23462 |
PageCount | 18 |
ParticipantIDs | osti_scitechconnect_22882291 proquest_miscellaneous_1790933793 iop_journals_10_3847_0004_637X_817_1_76 proquest_miscellaneous_1816036185 crossref_primary_10_3847_0004_637X_817_1_76 crossref_citationtrail_10_3847_0004_637X_817_1_76 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-01-20 |
PublicationDateYYYYMMDD | 2016-01-20 |
PublicationDate_xml | – month: 01 year: 2016 text: 2016-01-20 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | United Kingdom |
PublicationPlace_xml | – name: United Kingdom |
PublicationTitle | The Astrophysical journal |
PublicationTitleAbbrev | APJ |
PublicationTitleAlternate | Astrophys. J |
PublicationYear | 2016 |
Publisher | The American Astronomical Society |
Publisher_xml | – name: The American Astronomical Society |
References | Frayer (apj522149bib32) 2008; 680 Kartaltepe (apj522149bib46) 2012; 757 Weingartner (apj522149bib82) 2001; 548 Dopita (apj522149bib24) 2006b; 167 Draine (apj522149bib26) 2007; 657 Jonsson (apj522149bib44) 2006; 372 Mentuch Cooper (apj522149bib59) 2012; 755 Springel (apj522149bib76) 2005; 364 Ceverino (apj522149bib11) 2010; 404 Armus (apj522149bib3) 2009; 121 Calzetti (apj522149bib9) 2010; 714 Torrey (apj522149bib80) 2014; 438 Mitchell (apj522149bib60) 2014; 444 Ciesla (apj522149bib13) 2015; 576 Hung (apj522149bib42) 2013; 778 Kennicutt (apj522149bib48) 1998; 36 Elbaz (apj522149bib29) 2011; 533 Moshir (apj522149bib61) 1992 Snyder (apj522149bib74) 2013; 768 Jonsson (apj522149bib45) 2010; 403 Narayanan (apj522149bib63) 2010b; 401 Kelson (apj522149bib47) 2014 Brinchmann (apj522149bib7) 2004; 351 Hayward (apj522149bib37) 2011; 743 Förster Schreiber (apj522149bib31) 2009; 706 Hayward (apj522149bib38) 2014a; 445 Lintott (apj522149bib54) 2008; 389 Alatalo (apj522149bib2) 2014; 795 Behroozi (apj522149bib4) 2013; 770 Sparre (apj522149bib75) 2014 Whitaker (apj522149bib83) 2014; 795 Calzetti (apj522149bib8) 2001; 113 Dopita (apj522149bib25) 2005; 619 Schmidt (apj522149bib72) 1959; 129 Davé (apj522149bib21) 2011; 415 Oliver (apj522149bib65) 2012; 424 Dekel (apj522149bib22) 2013; 435 Imanishi (apj522149bib43) 2007; 171 Cox (apj522149bib15) 2008; 384 Porter (apj522149bib67) 2014; 444 Krumholz (apj522149bib49) 2012; 745 Magnelli (apj522149bib58) 2014; 561 Rodighiero (apj522149bib69) 2011; 739 Daddi (apj522149bib16) 2010a; 713 Springel (apj522149bib77) 2010; 48 Lanz (apj522149bib51) 2013; 768 Magdis (apj522149bib57) 2014 Chary (apj522149bib12) 2001; 556 Dutton (apj522149bib27) 2010; 405 Cook (apj522149bib14) 2014; 445 Davé (apj522149bib20) 2012; 421 Lanz (apj522149bib50) 2014; 785 Groves (apj522149bib34) 2008; 176 Ott (apj522149bib66) 2010 Wuyts (apj522149bib85) 2011; 742 Magdis (apj522149bib56) 2010; 720 Daddi (apj522149bib19) 2010b; 714 Fischera (apj522149bib30) 2005; 619 Springel (apj522149bib78) 2003; 339 Daddi (apj522149bib18) 2007; 670 Scoville (apj522149bib73) 2015 Elbaz (apj522149bib28) 2007; 468 Saintonge (apj522149bib70) 2011; 415 Hayward (apj522149bib39) 2015; 446 Groves (apj522149bib35) 2012; 426 Hayward (apj522149bib40) 2014b; 442 Béthermin (apj522149bib5) 2015; 573 Narayanan (apj522149bib62) 2010a; 407 Sanders (apj522149bib71) 1991; 370 Castor (apj522149bib10) 1975; 200 Genzel (apj522149bib33) 2010; 407 Dopita (apj522149bib23) 2006a; 647 Tacconi (apj522149bib79) 2013; 768 Hayward (apj522149bib36) 2012; 424 Leitherer (apj522149bib53) 1999; 123 Magdis (apj522149bib55) 2012; 760 Noeske (apj522149bib64) 2007; 660 Daddi (apj522149bib17) 2009; 694 Wang (apj522149bib81) 2012; 752 Brassington (apj522149bib6) 2015; 218 |
References_xml | – volume: 556 start-page: 562 year: 2001 ident: apj522149bib12 publication-title: ApJ doi: 10.1086/321609 – volume: 218 start-page: 6 year: 2015 ident: apj522149bib6 publication-title: ApJS doi: 10.1088/0067-0049/218/1/6 – volume: 167 start-page: 177 year: 2006b ident: apj522149bib24 publication-title: ApJS doi: 10.1086/508261 – year: 2015 ident: apj522149bib73 – volume: 742 start-page: 96 year: 2011 ident: apj522149bib85 publication-title: ApJ doi: 10.1088/0004-637X/742/2/96 – volume: 720 start-page: L185 year: 2010 ident: apj522149bib56 publication-title: ApJL doi: 10.1088/2041-8205/720/2/L185 – volume: 714 start-page: L118 year: 2010b ident: apj522149bib19 publication-title: ApJL doi: 10.1088/2041-8205/714/1/L118 – volume: 426 start-page: 892 year: 2012 ident: apj522149bib35 publication-title: MNRAS doi: 10.1111/j.1365-2966.2012.21696.x – volume: 123 start-page: 3 year: 1999 ident: apj522149bib53 publication-title: ApJS doi: 10.1086/313233 – volume: 442 start-page: 1992 year: 2014b ident: apj522149bib40 publication-title: MNRAS doi: 10.1093/mnras/stu957 – volume: 757 start-page: 23 year: 2012 ident: apj522149bib46 publication-title: ApJ doi: 10.1088/0004-637X/757/1/23 – volume: 446 start-page: 1512 year: 2015 ident: apj522149bib39 doi: 10.1093/mnras/stu2195 – volume: 745 start-page: 69 year: 2012 ident: apj522149bib49 publication-title: ApJ doi: 10.1088/0004-637X/745/1/69 – volume: 548 start-page: 296 year: 2001 ident: apj522149bib82 publication-title: ApJ doi: 10.1086/318651 – volume: 657 start-page: 810 year: 2007 ident: apj522149bib26 publication-title: ApJ doi: 10.1086/511055 – volume: 768 start-page: 168 year: 2013 ident: apj522149bib74 publication-title: ApJ doi: 10.1088/0004-637X/768/2/168 – volume: 48 start-page: 391 year: 2010 ident: apj522149bib77 publication-title: ARA&A doi: 10.1146/annurev-astro-081309-130914 – start-page: 139 year: 2010 ident: apj522149bib66 – volume: 743 start-page: 159 year: 2011 ident: apj522149bib37 publication-title: ApJ doi: 10.1088/0004-637X/743/2/159 – volume: 660 start-page: L43 year: 2007 ident: apj522149bib64 publication-title: ApJL doi: 10.1086/517926 – volume: 407 start-page: 2091 year: 2010 ident: apj522149bib33 publication-title: MNRAS doi: 10.1111/j.1365-2966.2010.16969.x – year: 1992 ident: apj522149bib61 publication-title: IRAS Faint Source Survey Explanatory Supplement Version 2 – volume: 670 start-page: 156 year: 2007 ident: apj522149bib18 publication-title: ApJ doi: 10.1086/521818 – volume: 370 start-page: 158 year: 1991 ident: apj522149bib71 publication-title: ApJ doi: 10.1086/169800 – volume: 778 start-page: 129 year: 2013 ident: apj522149bib42 publication-title: ApJ doi: 10.1088/0004-637X/778/2/129 – volume: 619 start-page: 340 year: 2005 ident: apj522149bib30 publication-title: ApJ doi: 10.1086/426185 – volume: 468 start-page: 33 year: 2007 ident: apj522149bib28 publication-title: A&A doi: 10.1051/0004-6361:20077525 – volume: 694 start-page: 1517 year: 2009 ident: apj522149bib17 publication-title: ApJ doi: 10.1088/0004-637X/694/2/1517 – volume: 372 start-page: 2 year: 2006 ident: apj522149bib44 publication-title: MNRAS doi: 10.1111/j.1365-2966.2006.10884.x – volume: 121 start-page: 559 year: 2009 ident: apj522149bib3 publication-title: PASP doi: 10.1086/600092 – volume: 435 start-page: 999 year: 2013 ident: apj522149bib22 publication-title: MNRAS doi: 10.1093/mnras/stt1338 – volume: 619 start-page: 755 year: 2005 ident: apj522149bib25 publication-title: ApJ doi: 10.1086/423948 – volume: 576 start-page: A10 year: 2015 ident: apj522149bib13 publication-title: A&A doi: 10.1051/0004-6361/201425252 – volume: 713 start-page: 686 year: 2010a ident: apj522149bib16 publication-title: ApJ doi: 10.1088/0004-637X/713/1/686 – volume: 755 start-page: 165 year: 2012 ident: apj522149bib59 publication-title: ApJ doi: 10.1088/0004-637X/755/2/165 – volume: 129 start-page: 243 year: 1959 ident: apj522149bib72 publication-title: ApJ doi: 10.1086/146614 – volume: 424 start-page: 1614 year: 2012 ident: apj522149bib65 publication-title: MNRAS doi: 10.1111/j.1365-2966.2012.20912.x – volume: 785 start-page: 39 year: 2014 ident: apj522149bib50 publication-title: ApJ doi: 10.1088/0004-637X/785/1/39 – volume: 533 start-page: A119 year: 2011 ident: apj522149bib29 publication-title: A&A doi: 10.1051/0004-6361/201117239 – volume: 561 start-page: A86 year: 2014 ident: apj522149bib58 publication-title: A&A doi: 10.1051/0004-6361/201322217 – volume: 113 start-page: 1449 year: 2001 ident: apj522149bib8 publication-title: PASP doi: 10.1086/324269 – volume: 438 start-page: 1985 year: 2014 ident: apj522149bib80 publication-title: MNRAS doi: 10.1093/mnras/stt2295 – volume: 768 start-page: 90 year: 2013 ident: apj522149bib51 publication-title: ApJ doi: 10.1088/0004-637X/768/1/90 – volume: 421 start-page: 98 year: 2012 ident: apj522149bib20 publication-title: MNRAS doi: 10.1111/j.1365-2966.2011.20148.x – volume: 770 start-page: 57 year: 2013 ident: apj522149bib4 publication-title: ApJ doi: 10.1088/0004-637X/770/1/57 – volume: 573 start-page: A113 year: 2015 ident: apj522149bib5 publication-title: A&A doi: 10.1051/0004-6361/201425031 – volume: 415 start-page: 61 year: 2011 ident: apj522149bib70 publication-title: MNRAS doi: 10.1111/j.1365-2966.2011.18823.x – volume: 795 start-page: 104 year: 2014 ident: apj522149bib83 publication-title: ApJ doi: 10.1088/0004-637X/795/2/104 – volume: 384 start-page: 386 year: 2008 ident: apj522149bib15 publication-title: MNRAS doi: 10.1111/j.1365-2966.2007.12730.x – volume: 364 start-page: 1105 year: 2005 ident: apj522149bib76 publication-title: MNRAS doi: 10.1111/j.1365-2966.2005.09655.x – volume: 445 start-page: 1598 year: 2014a ident: apj522149bib38 doi: 10.1093/mnras/stu1843 – volume: 739 start-page: L40 year: 2011 ident: apj522149bib69 publication-title: ApJL doi: 10.1088/2041-8205/739/2/L40 – volume: 351 start-page: 1151 year: 2004 ident: apj522149bib7 publication-title: MNRAS doi: 10.1111/j.1365-2966.2004.07881.x – volume: 404 start-page: 2151 year: 2010 ident: apj522149bib11 publication-title: MNRAS doi: 10.1111/j.1365-2966.2010.16433.x – volume: 407 start-page: 1701 year: 2010a ident: apj522149bib62 publication-title: MNRAS doi: 10.1111/j.1365-2966.2010.16997.x – volume: 444 start-page: 942 year: 2014 ident: apj522149bib67 publication-title: MNRAS doi: 10.1093/mnras/stu1434 – volume: 752 start-page: 134 year: 2012 ident: apj522149bib81 publication-title: ApJ doi: 10.1088/0004-637X/752/2/134 – volume: 403 start-page: 17 year: 2010 ident: apj522149bib45 publication-title: MNRAS doi: 10.1111/j.1365-2966.2009.16087.x – volume: 647 start-page: 244 year: 2006a ident: apj522149bib23 publication-title: ApJ doi: 10.1086/505418 – volume: 424 start-page: 951 year: 2012 ident: apj522149bib36 publication-title: MNRAS doi: 10.1111/j.1365-2966.2012.21254.x – volume: 714 start-page: 1256 year: 2010 ident: apj522149bib9 publication-title: ApJ doi: 10.1088/0004-637X/714/2/1256 – volume: 176 start-page: 438 year: 2008 ident: apj522149bib34 publication-title: ApJS doi: 10.1086/528711 – year: 2014 ident: apj522149bib47 – volume: 444 start-page: 2637 year: 2014 ident: apj522149bib60 publication-title: MNRAS doi: 10.1093/mnras/stu1639 – year: 2014 ident: apj522149bib57 – volume: 445 start-page: 899 year: 2014 ident: apj522149bib14 publication-title: MNRAS doi: 10.1093/mnras/stu1787 – volume: 415 start-page: 11 year: 2011 ident: apj522149bib21 publication-title: MNRAS doi: 10.1111/j.1365-2966.2011.18680.x – volume: 389 start-page: 1179 year: 2008 ident: apj522149bib54 publication-title: MNRAS doi: 10.1111/j.1365-2966.2008.13689.x – volume: 405 start-page: 1690 year: 2010 ident: apj522149bib27 publication-title: MNRAS doi: 10.1111/j.1365-2966.2010.16620.x – volume: 680 start-page: L21 year: 2008 ident: apj522149bib32 publication-title: ApJL doi: 10.1086/589830 – year: 2014 ident: apj522149bib75 – volume: 401 start-page: 1613 year: 2010b ident: apj522149bib63 publication-title: MNRAS doi: 10.1111/j.1365-2966.2009.15790.x – volume: 339 start-page: 289 year: 2003 ident: apj522149bib78 publication-title: MNRAS doi: 10.1046/j.1365-8711.2003.06206.x – volume: 760 start-page: 6 year: 2012 ident: apj522149bib55 publication-title: ApJ doi: 10.1088/0004-637X/760/1/6 – volume: 768 start-page: 74 year: 2013 ident: apj522149bib79 publication-title: ApJ doi: 10.1088/0004-637X/768/1/74 – volume: 171 start-page: 72 year: 2007 ident: apj522149bib43 publication-title: ApJS doi: 10.1086/513715 – volume: 36 start-page: 189 year: 1998 ident: apj522149bib48 publication-title: ARA&A doi: 10.1146/annurev.astro.36.1.189 – volume: 200 start-page: L107 year: 1975 ident: apj522149bib10 publication-title: ApJL doi: 10.1086/181908 – volume: 706 start-page: 1364 year: 2009 ident: apj522149bib31 publication-title: ApJ doi: 10.1088/0004-637X/706/2/1364 – volume: 795 start-page: 159 year: 2014 ident: apj522149bib2 publication-title: ApJ doi: 10.1088/0004-637X/795/2/159 |
SSID | ssj0004299 |
Score | 2.2329195 |
Snippet | ABSTRACT The majority of star-forming galaxies follow a simple empirical correlation in the star formation rate (SFR) versus stellar mass (M*) plane, of the... The majority of star-forming galaxies follow a simple empirical correlation in the star formation rate (SFR) versus stellar mass ( M * ) plane, of the form ,... The majority of star-forming galaxies follow a simple empirical correlation in the star formation rate (SFR) versus stellar mass (M*) plane, of the form... The majority of star-forming galaxies follow a simple empirical correlation in the star formation rate (SFR) versus stellar mass (M{sub *}) plane, of the form... |
SourceID | osti proquest crossref iop |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 76 |
SubjectTerms | Acquisitions ASTROPHYSICS, COSMOLOGY AND ASTRONOMY COALESCENCE COMPARATIVE EVALUATIONS COMPUTERIZED SIMULATION COSMIC DUST DISTRIBUTION ENERGY SPECTRA evolution Galactic disk GALACTIC EVOLUTION GALAXIES galaxies: evolution galaxies: interactions galaxies: star formation galaxies: starburst MAIN SEQUENCE STARS MARKOV PROCESS MASS MONTE CARLO METHOD Outliers (statistics) PHOTOMETRY RADIANT HEAT TRANSFER Radiative transfer Simulation STAR EVOLUTION Star formation STARS State of the art |
Title | VARIATIONS OF THE ISM COMPACTNESS ACROSS THE MAIN SEQUENCE OF STAR FORMING GALAXIES: OBSERVATIONS AND SIMULATIONS |
URI | https://iopscience.iop.org/article/10.3847/0004-637X/817/1/76 https://www.proquest.com/docview/1790933793 https://www.proquest.com/docview/1816036185 https://www.osti.gov/biblio/22882291 |
Volume | 817 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1db9Mw0GJDSLzwMUDrGMhICB5Q2jh2Y4e3UNo1aGlK046-RYljv8DaQdsH-PXcxRkIEBXiJXHii5OcfR8---4IeR5qabWRxuvroPYE95VXghjywjCqLedlVHH0HU4n4Xgh3i37y3ZvTuMLs75qWX8Xii5QsEMh0jcHXoq-B8ILuVz2FJM91pPhAbnJFYhO9N_Lpj_dIoOo1X4dvPOZ-Usbv8ilA3g38Og1UNkfPLoRPKO7LrvqpolXiPtNPnZ326qrv_0WzfG__-keudOqpDR2wPfJDbM6IsfxBo3k68uv9AVtys4Gsjkit6au9IB8vohniXNEptmIzsdDmuQpHWTpNB7MMZ0HjQezDE5YlcbJhObD9wu0aiF8Po9nFGahaTI5o2fxebwE3fQ1zd7kw9lF22w8eUvzJF2cu-uHZDEazgdjr83h4GkRiK0njWLaMhNUYcRDq2Rt-35dCqX7TFY6gPu2NIwZXkVG1z7U1UJK5deKG6YMf0QOV-uVOSbUlJYbzawxwgq_klVpmbVWipJLpYXqEHbdg4VuA5xjno1PBUx0EMu40C4KxHIBWC5YIcMOefXjmSsX3mMv9EvowKKl8s1eyFMcPAX0O8bi1bhpSW-LIFAYYJ91yLPrQVUAOeMaTbky6x00KSO0MQHX3AOjMDd4CJrWyT9_0GNyG1S9xngU-KfkcPtlZ56AOrWtnjZEA8eMf_gO4V0MLw |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw0NqGQHtBMEDrGGAkPh5Q1jh2YgeJh9CPNaxJSj9G30zi2E_QFNoJ7WfxDzk32RBCVLzsKY59sZw7n-989t0h9CJQ3CjNteMrr3QYdYWTgxhygiAsDaV5WFDrO5ykwWDGPsz9-Q76ee0LUy2bpf8EinWg4BqFlr8prKXW94A5AeXztiC8Tdo8aC9L09yrPNOXP2DXtnoXd4HELz2v35t2Bk6TWMBRzGNrh2tBlCHaK4KQBkbw0vhumTOhfMIL5UG9yTUhmhahVqULbSXjXLiloJoITaHfXXTLpyDcgIUy-um3K6YXNhp3PcbaT-cf4_5DFu7C_4JcqICz_5ILG2HXv4fuNloqjmqc3Ec7enGADqOVtZtXXy_xK7wp12aR1QG6PapLD9C382gc177JOOvj6aCH40mCO1kyijpTm-EDR51xBg_blERxiie9jzNr6LLwk2k0xrAxTeL0FJ9Gw2gO6upbnL2f9MbnTbdR2sWTOJkN6_eHaHYj2H-E9hbVQh8irHNDtSJGa2aYW_AiN8QYw1lOuVBMtBC5QrBUTcxzm3rji4S9jyWKPXtn0hJFAlEkkTxooTfX3yzriB9boV8D3WTD-KutkMeWthKmtw3Pq-w9JrWWnidszH3SQs-vaC6Bw-2xTb7Q1QV0yUNrdoKFdAuMsOnCA1C-jv57QM_QnVG3L4dxevYY7YMiuDEtee4x2lt_v9BPQNlaF0830xujzzfNT78AJcorVQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variations+of+the+ISM+compactness+across+the+main+sequence+of+star+forming+galaxies%3A+Observations+and+simulations&rft.jtitle=The+Astrophysical+journal&rft.au=Mart%C3%ADnez-Galarza%2C+J.+R.&rft.au=Smith%2C+H.+A.&rft.au=Hayward%2C+Christopher+C.&rft.au=Zezas%2C+A.&rft.date=2016-01-20&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=817&rft.issue=1&rft_id=info:doi/10.3847%2F0004-637X%2F817%2F1%2F76&rft.externalDocID=22882291 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon |