Atmospheric Turbulence Effects on Wind-Turbine Wakes: An LES Study
A numerical study of atmospheric turbulence effects on wind-turbine wakes is presented. Large-eddy simulations of neutrally-stratified atmospheric boundary layer flows through stand-alone wind turbines were performed over homogeneous flat surfaces with four different aerodynamic roughness lengths. E...
Saved in:
Published in | Energies (Basel) Vol. 5; no. 12; pp. 5340 - 5362 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.12.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A numerical study of atmospheric turbulence effects on wind-turbine wakes is presented. Large-eddy simulations of neutrally-stratified atmospheric boundary layer flows through stand-alone wind turbines were performed over homogeneous flat surfaces with four different aerodynamic roughness lengths. Emphasis is placed on the structure and characteristics of turbine wakes in the cases where the incident flows to the turbine have the same mean velocity at the hub height but different mean wind shears and turbulence intensity levels. The simulation results show that the different turbulence intensity levels of the incoming flow lead to considerable influence on the spatial distribution of the mean velocity deficit, turbulence intensity, and turbulent shear stress in the wake region. In particular, when the turbulence intensity level of the incoming flow is higher, the turbine-induced wake (velocity deficit) recovers faster, and the locations of the maximum turbulence intensity and turbulent stress are closer to the turbine. A detailed analysis of the turbulence kinetic energy budget in the wakes reveals also an important effect of the incoming flow turbulence level on the magnitude and spatial distribution of the shear production and transport terms. |
---|---|
AbstractList | A numerical study of atmospheric turbulence effects on wind-turbine wakes is presented. Large-eddy simulations of neutrally-stratified atmospheric boundary layer flows through stand-alone wind turbines were performed over homogeneous flat surfaces with four different aerodynamic roughness lengths. Emphasis is placed on the structure and characteristics of turbine wakes in the cases where the incident flows to the turbine have the same mean velocity at the hub height but different mean wind shears and turbulence intensity levels. The simulation results show that the different turbulence intensity levels of the incoming flow lead to considerable influence on the spatial distribution of the mean velocity deficit, turbulence intensity, and turbulent shear stress in the wake region. In particular, when the turbulence intensity level of the incoming flow is higher, the turbine-induced wake (velocity deficit) recovers faster, and the locations of the maximum turbulence intensity and turbulent stress are closer to the turbine. A detailed analysis of the turbulence kinetic energy budget in the wakes reveals also an important effect of the incoming flow turbulence level on the magnitude and spatial distribution of the shear production and transport terms. |
Author | Wu, Yu-Ting Porté-Agel, Fernando |
Author_xml | – sequence: 1 givenname: Yu-Ting surname: Wu fullname: Wu, Yu-Ting – sequence: 2 givenname: Fernando orcidid: 0000-0002-9913-3350 surname: Porté-Agel fullname: Porté-Agel, Fernando |
BookMark | eNptkMFKAzEQhoMoWLUH32DBk4e1yU6S3XirUrVQ8GClx5BmE02tSU2yh769Wysi4lxmmPnm_4c5QYc-eIPQOcFXAAKPjGekYkDxARoQIXhJcA2Hv-pjNExphfsAIAAwQDfj_B7S5tVEp4t5F5fd2nhtiom1RudUBF8snG_L3ch5UyzUm0nXxdgXs8lT8ZS7dnuGjqxaJzP8zqfo-W4yv30oZ4_309vxrNS0ornkVLeGMtsKKjTG1ZIzLZYNgarRxAgCnHAGqm4rSrQVhHPBCKZUCdtwITCcouletw1qJTfRvau4lUE5-dUI8UWqmJ1eG0nrGnNtbE1A9JZsaXd2lBpLoGlw1Wtd7LU2MXx0JmW5Cl30_fmSMKhxA6zZUZd7SseQUjT2x5Vgufu4_Pl4z47-sNpllV3wOSq3_mfjE-izgAs |
CitedBy_id | crossref_primary_10_1063_5_0245113 crossref_primary_10_1080_15567036_2022_2128939 crossref_primary_10_1016_j_ijheatfluidflow_2020_108604 crossref_primary_10_3390_en17051063 crossref_primary_10_1016_j_ijheatfluidflow_2016_04_004 crossref_primary_10_1016_j_oceaneng_2024_117244 crossref_primary_10_1016_j_jweia_2018_03_018 crossref_primary_10_1063_5_0239905 crossref_primary_10_3390_en13123197 crossref_primary_10_1016_j_enconman_2021_114610 crossref_primary_10_1016_j_jweia_2016_11_001 crossref_primary_10_1016_j_jweia_2019_103981 crossref_primary_10_1016_j_renene_2023_119418 crossref_primary_10_1002_we_2147 crossref_primary_10_1177_0309524X18824540 crossref_primary_10_1002_we_2941 crossref_primary_10_1016_j_renene_2023_02_058 crossref_primary_10_1088_1742_6596_753_9_092014 crossref_primary_10_1016_j_renene_2018_06_030 crossref_primary_10_1016_j_energy_2024_130843 crossref_primary_10_1016_j_renene_2024_120136 crossref_primary_10_1016_j_renene_2024_120251 crossref_primary_10_1016_j_renene_2023_05_002 crossref_primary_10_1016_j_energy_2024_132900 crossref_primary_10_1061__ASCE_EY_1943_7897_0000625 crossref_primary_10_1016_j_renene_2024_120801 crossref_primary_10_3390_jmse12122213 crossref_primary_10_1016_j_renene_2023_119524 crossref_primary_10_1017_jfm_2023_302 crossref_primary_10_1016_j_renene_2018_02_137 crossref_primary_10_1007_s00348_016_2233_6 crossref_primary_10_1002_ep_14302 crossref_primary_10_1016_j_apenergy_2020_116115 crossref_primary_10_1002_we_2801 crossref_primary_10_3390_en14133745 crossref_primary_10_1063_1_5016977 crossref_primary_10_3390_en15249477 crossref_primary_10_1016_j_jweia_2024_105840 crossref_primary_10_1016_j_renene_2014_01_002 crossref_primary_10_1016_j_apenergy_2019_114272 crossref_primary_10_1109_TPWRS_2019_2916906 crossref_primary_10_5194_amt_14_1303_2021 crossref_primary_10_1088_1742_6596_1618_6_062023 crossref_primary_10_1088_1742_6596_1618_6_062029 crossref_primary_10_1016_j_ecmx_2024_100830 crossref_primary_10_1002_we_2487 crossref_primary_10_3390_en10060821 crossref_primary_10_1103_PhysRevFluids_9_064604 crossref_primary_10_1016_j_jclepro_2018_07_217 crossref_primary_10_1016_j_renene_2024_120035 crossref_primary_10_1007_s10494_022_00349_3 crossref_primary_10_1175_JTECH_D_13_00252_1 crossref_primary_10_1016_j_renene_2019_03_127 crossref_primary_10_3390_en12142763 crossref_primary_10_1007_s10546_016_0127_z crossref_primary_10_1016_j_energy_2023_127491 crossref_primary_10_1016_j_energy_2024_130823 crossref_primary_10_1088_1742_6596_1037_5_052006 crossref_primary_10_1088_1742_6596_1618_3_032014 crossref_primary_10_1016_j_renene_2014_06_019 crossref_primary_10_1016_j_renene_2017_05_046 crossref_primary_10_1080_01430750_2024_2304717 crossref_primary_10_1016_j_renene_2018_07_050 crossref_primary_10_3390_su15065139 crossref_primary_10_1016_j_apenergy_2016_06_085 crossref_primary_10_1017_jfm_2021_495 crossref_primary_10_1016_j_apenergy_2019_114025 crossref_primary_10_1016_j_renene_2022_10_001 crossref_primary_10_1016_j_renene_2024_120161 crossref_primary_10_5194_wes_8_433_2023 crossref_primary_10_1016_j_jweia_2017_12_016 crossref_primary_10_1016_j_jweia_2023_105625 crossref_primary_10_1088_1742_6596_2767_5_052020 crossref_primary_10_1007_s10409_017_0684_5 crossref_primary_10_1016_j_renene_2024_121804 crossref_primary_10_1016_j_energy_2021_121772 crossref_primary_10_1063_5_0242835 crossref_primary_10_1088_1742_6596_2265_2_022063 crossref_primary_10_3390_en16134953 crossref_primary_10_1088_1742_6596_2599_1_012008 crossref_primary_10_3390_en15072579 crossref_primary_10_1063_5_0162311 crossref_primary_10_5194_wes_8_1511_2023 crossref_primary_10_1016_j_apenergy_2018_10_110 crossref_primary_10_1016_j_renene_2022_10_013 crossref_primary_10_1002_ep_13980 crossref_primary_10_1016_j_renene_2016_12_069 crossref_primary_10_3390_app9204256 crossref_primary_10_1016_j_energy_2018_01_020 crossref_primary_10_1016_j_energy_2022_123200 crossref_primary_10_1007_s10586_017_1350_1 crossref_primary_10_1103_PhysRevFluids_1_073603 crossref_primary_10_3390_en13133353 crossref_primary_10_1063_5_0185542 crossref_primary_10_2139_ssrn_4153302 crossref_primary_10_1007_s10546_017_0309_3 crossref_primary_10_1016_j_renene_2024_122126 crossref_primary_10_1016_j_compfluid_2020_104604 crossref_primary_10_1016_j_renene_2022_05_035 crossref_primary_10_1088_1742_6596_1452_1_012034 crossref_primary_10_1063_5_0086746 crossref_primary_10_1016_j_renene_2025_122442 crossref_primary_10_1016_j_renene_2021_03_030 crossref_primary_10_3390_en10060757 crossref_primary_10_3390_en7020890 crossref_primary_10_1016_j_jweia_2021_104869 crossref_primary_10_3390_en14154494 crossref_primary_10_1007_s12206_024_0121_1 crossref_primary_10_1063_1_4989443 crossref_primary_10_5194_wes_7_2307_2022 crossref_primary_10_3390_en15051896 crossref_primary_10_1016_j_apenergy_2020_116048 crossref_primary_10_1017_jfm_2024_876 crossref_primary_10_1063_5_0047077 crossref_primary_10_1016_j_seta_2022_102499 crossref_primary_10_1016_j_rser_2021_110991 crossref_primary_10_1103_PhysRevFluids_1_063701 crossref_primary_10_1007_s10409_020_00934_7 crossref_primary_10_1016_j_renene_2021_11_097 crossref_primary_10_1007_s40997_023_00713_2 crossref_primary_10_1016_j_energy_2022_124674 crossref_primary_10_1002_we_2434 crossref_primary_10_1016_j_apenergy_2022_119599 crossref_primary_10_3390_en17020488 crossref_primary_10_1002_we_2430 crossref_primary_10_1007_s10546_016_0208_z crossref_primary_10_1016_j_renene_2023_119465 crossref_primary_10_3390_en14196026 crossref_primary_10_3390_en11113007 crossref_primary_10_1016_j_renene_2018_08_055 crossref_primary_10_1002_we_2669 crossref_primary_10_1016_j_oceaneng_2023_115064 crossref_primary_10_1007_s10546_018_0377_z crossref_primary_10_1088_1742_6596_2385_1_012139 crossref_primary_10_1016_j_renene_2021_05_090 crossref_primary_10_1016_j_renene_2023_119935 crossref_primary_10_1177_0144598720942852 crossref_primary_10_1002_we_1697 crossref_primary_10_1061_JLEED9_EYENG_5350 crossref_primary_10_5194_wes_2_439_2017 crossref_primary_10_3390_en13195199 crossref_primary_10_1016_j_renene_2022_08_116 crossref_primary_10_1177_0958305X221084038 crossref_primary_10_3390_en17174503 crossref_primary_10_1016_j_jweia_2013_11_005 crossref_primary_10_1088_1742_6596_625_1_012022 crossref_primary_10_1088_1742_6596_1934_1_012011 crossref_primary_10_1088_1742_6596_2767_9_092019 crossref_primary_10_1088_1742_6596_854_1_012012 crossref_primary_10_3390_en14165198 crossref_primary_10_1017_jfm_2024_175 crossref_primary_10_3390_fluids5040233 crossref_primary_10_1108_HFF_10_2023_0632 crossref_primary_10_1016_j_apenergy_2024_123189 crossref_primary_10_1017_jfm_2023_1095 crossref_primary_10_1017_flo_2021_20 crossref_primary_10_5194_wes_8_691_2023 crossref_primary_10_3390_en13143745 crossref_primary_10_1016_j_renene_2022_04_104 crossref_primary_10_1016_j_renene_2023_119240 crossref_primary_10_3390_en13040865 crossref_primary_10_1016_j_renene_2022_08_004 crossref_primary_10_1017_jfm_2023_385 crossref_primary_10_1016_j_oceaneng_2023_113787 crossref_primary_10_1088_1742_6596_625_1_012014 crossref_primary_10_1016_j_renene_2024_122281 crossref_primary_10_3390_rs11192247 crossref_primary_10_1088_1742_6596_854_1_012045 crossref_primary_10_3390_inventions7030058 crossref_primary_10_1002_ep_13856 crossref_primary_10_1016_j_jweia_2024_105685 crossref_primary_10_1016_j_renene_2022_03_074 crossref_primary_10_3390_en15155347 crossref_primary_10_3390_en13051078 crossref_primary_10_1016_j_jweia_2013_06_007 crossref_primary_10_1016_j_oceaneng_2024_119133 crossref_primary_10_3390_en6105297 crossref_primary_10_3390_en12040643 crossref_primary_10_1088_1742_6596_2151_1_012011 crossref_primary_10_3390_en17174527 crossref_primary_10_1002_we_1792 crossref_primary_10_3390_en14102895 crossref_primary_10_1016_j_renene_2018_08_083 crossref_primary_10_1080_14685248_2017_1316852 crossref_primary_10_1016_j_jweia_2020_104485 crossref_primary_10_1016_j_jweia_2022_105097 crossref_primary_10_1016_j_jweia_2014_12_001 crossref_primary_10_3390_en12234574 crossref_primary_10_59400_esc1956 crossref_primary_10_1017_jfm_2022_443 crossref_primary_10_1017_jfm_2024_282 crossref_primary_10_1016_j_apenergy_2024_122755 crossref_primary_10_1002_we_2072 crossref_primary_10_1063_5_0142872 crossref_primary_10_1016_j_apenergy_2021_117590 crossref_primary_10_1016_j_renene_2017_02_017 crossref_primary_10_1002_we_2507 crossref_primary_10_3390_en14144185 crossref_primary_10_1016_j_oceaneng_2024_116911 crossref_primary_10_1103_PhysRevFluids_9_124501 crossref_primary_10_1002_sys_21307 crossref_primary_10_1088_1742_6596_524_1_012151 crossref_primary_10_3390_en16248051 crossref_primary_10_1016_j_jweia_2018_04_010 crossref_primary_10_1016_j_renene_2016_10_065 crossref_primary_10_3390_aerospace8110352 crossref_primary_10_1016_j_renene_2024_120201 crossref_primary_10_5194_asr_11_55_2014 crossref_primary_10_1088_1755_1315_349_1_012012 crossref_primary_10_1016_j_enconman_2023_116949 crossref_primary_10_1098_rsos_210779 crossref_primary_10_3390_en13082113 crossref_primary_10_1063_5_0213321 crossref_primary_10_1016_j_renene_2020_04_134 crossref_primary_10_1063_5_0250111 crossref_primary_10_1063_1_4913695 crossref_primary_10_1016_j_renene_2020_08_156 crossref_primary_10_1017_jfm_2024_1215 crossref_primary_10_1088_1742_6596_1618_2_022067 crossref_primary_10_1016_j_energy_2021_121806 crossref_primary_10_1080_14786451_2020_1787411 crossref_primary_10_1016_j_jweia_2024_105877 crossref_primary_10_1016_j_renene_2024_122194 crossref_primary_10_1007_s10546_015_0004_1 crossref_primary_10_1038_s41598_018_20389_y crossref_primary_10_1016_j_renene_2022_02_115 crossref_primary_10_1016_j_energy_2023_128840 crossref_primary_10_1088_1742_6596_524_1_012140 crossref_primary_10_1016_j_renene_2021_11_037 crossref_primary_10_1088_1742_6596_1618_3_032034 crossref_primary_10_1016_j_renene_2021_09_102 crossref_primary_10_1063_5_0145043 crossref_primary_10_3390_en13113004 crossref_primary_10_3390_en11123268 crossref_primary_10_1002_we_2299 crossref_primary_10_3390_en10070923 crossref_primary_10_1016_j_jweia_2023_105368 crossref_primary_10_3390_en13205392 crossref_primary_10_1016_j_jweia_2014_07_002 crossref_primary_10_1088_1742_6596_524_1_012138 crossref_primary_10_1115_1_4067120 crossref_primary_10_2174_1874282301812010107 crossref_primary_10_3390_app9050922 crossref_primary_10_1063_5_0222372 crossref_primary_10_1016_j_renene_2021_09_019 crossref_primary_10_1103_PhysRevFluids_6_114601 crossref_primary_10_1061__ASCE_EY_1943_7897_0000740 crossref_primary_10_1016_j_compfluid_2017_05_010 crossref_primary_10_1016_j_jweia_2018_11_021 crossref_primary_10_1103_PhysRevFluids_9_114607 crossref_primary_10_1088_1757_899X_52_5_052017 crossref_primary_10_1109_JSTARS_2013_2263577 crossref_primary_10_5194_wes_8_515_2023 crossref_primary_10_3390_aerospace9090489 crossref_primary_10_1016_j_ijheatfluidflow_2013_06_007 crossref_primary_10_3390_en15062022 crossref_primary_10_1007_s10546_019_00473_0 crossref_primary_10_3390_en15197431 crossref_primary_10_1016_j_oceaneng_2024_117691 crossref_primary_10_3390_en9090741 crossref_primary_10_1016_j_energy_2022_124277 crossref_primary_10_5194_amt_11_3801_2018 crossref_primary_10_1016_j_jweia_2017_03_010 crossref_primary_10_3390_en8076468 crossref_primary_10_1016_j_renene_2021_02_076 crossref_primary_10_1016_j_awe_2024_100021 crossref_primary_10_3390_aerospace9090484 |
Cites_doi | 10.1007/s10546-012-9751-4 10.1007/s10546-010-9569-x 10.1016/j.paerosci.2006.10.002 10.1002/we.345 10.1016/S0065-2687(08)60463-X 10.1002/we.512 10.1002/we.458 10.1007/978-94-009-3027-8 10.1175/JTECH-D-12-00051.1 10.1016/j.jweia.2005.08.001 10.5772/643 10.1002/we.380 10.1007/s10546-012-9757-y 10.1016/j.jweia.2011.01.011 10.1029/1999WR900094 10.1017/S0022112000008776 10.1007/s10546-005-4735-2 10.1007/s10546-010-9512-1 10.1063/1.3589857 10.1007/s11630-011-0446-9 10.1007/s10546-010-9562-4 10.1007/s00348-011-1250-8 10.1016/j.jweia.2007.03.007 10.1080/14685248.2012.695077 10.1002/0470846127 10.1023/B:BOUN.0000020353.03398.20 10.1146/annurev-fluid-122109-160801 10.1017/S0022112001005924 10.1080/14685241003627760 10.1260/030952401760177846 10.1002/we.433 10.1007/s10546-009-9380-8 10.1029/2005WR003989 10.1080/14685248.2012.709635 10.1021/es051708m 10.1088/1742-6596/75/1/012063 10.1002/we.156 10.1016/S0376-0421(03)00078-2 |
ContentType | Journal Article |
Copyright | Copyright MDPI AG 2012 |
Copyright_xml | – notice: Copyright MDPI AG 2012 |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/en5125340 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Acceso a contenido Full Text - Doaj |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1996-1073 |
EndPage | 5362 |
ExternalDocumentID | oai_doaj_org_article_47706cef713945f5bf2b6544ef138802 3337823171 10_3390_en5125340 |
GroupedDBID | 29G 2WC 5GY 5VS 7XC 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION CS3 DU5 EBS ESX FRP GROUPED_DOAJ GX1 I-F IPNFZ KQ8 L6V L8X MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PROAC RIG TR2 TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c424t-64cde45fd949c002b65c9b81328c1e91361653a7d241cf9166951044a9f869903 |
IEDL.DBID | BENPR |
ISSN | 1996-1073 |
IngestDate | Wed Aug 27 01:30:30 EDT 2025 Sun Jun 29 15:35:04 EDT 2025 Tue Jul 01 00:45:14 EDT 2025 Thu Apr 24 23:10:06 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | https://creativecommons.org/licenses/by/3.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c424t-64cde45fd949c002b65c9b81328c1e91361653a7d241cf9166951044a9f869903 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9913-3350 |
OpenAccessLink | https://www.proquest.com/docview/1537083582?pq-origsite=%requestingapplication% |
PQID | 1537083582 |
PQPubID | 2032402 |
PageCount | 23 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_47706cef713945f5bf2b6544ef138802 proquest_journals_1537083582 crossref_primary_10_3390_en5125340 crossref_citationtrail_10_3390_en5125340 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-12-01 |
PublicationDateYYYYMMDD | 2012-12-01 |
PublicationDate_xml | – month: 12 year: 2012 text: 2012-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Energies (Basel) |
PublicationYear | 2012 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Vermeer (ref_1) 2003; 39 Tseng (ref_39) 2006; 40 Zhang (ref_14) 2012; 52 Sanderse (ref_3) 2011; 14 Stoll (ref_34) 2006; 118 Markfort (ref_18) 2012; 13 Troldborg (ref_21) 2010; 13 Chamorro (ref_7) 2010; 136 Rados (ref_9) 2001; 25 ref_11 Maeda (ref_13) 2011; 20 Hansen (ref_16) 2012; 15 ref_19 Wu (ref_20) 2011; 99 ref_17 ref_38 ref_15 Hansen (ref_2) 2006; 42 Marusic (ref_33) 2001; 446 Chamorro (ref_35) 2010; 11 Medici (ref_12) 2006; 9 Stoll (ref_29) 2006; 42 Abkar (ref_36) 2012; 13 ref_46 Orszag (ref_32) 1975; 18A (ref_37) 2004; 112 ref_45 ref_22 Wan (ref_40) 2011; 138 ref_44 ref_43 ref_42 (ref_4) 2011; 43 ref_41 Wu (ref_8) 2011; 138 Jimenez (ref_25) 2010; 13 Meneveau (ref_31) 2000; 415 ref_28 Troldborg (ref_10) 2007; 75 Lu (ref_27) 2011; 23 Troldborg (ref_26) 2011; 14 Chamorro (ref_6) 2009; 132 Kasmi (ref_24) 2008; 96 ref_5 Crespo (ref_23) 2005; 93 Albertson (ref_30) 1999; 35 |
References_xml | – ident: ref_17 doi: 10.1007/s10546-012-9751-4 – ident: ref_28 – volume: 138 start-page: 345 year: 2011 ident: ref_8 article-title: Large-eddy simulation of wind-turbine wakes: Evaluation of turbine parametrisations publication-title: Bound. Layer Meteorol. doi: 10.1007/s10546-010-9569-x – volume: 42 start-page: 285 year: 2006 ident: ref_2 article-title: State of the art in wind turbine aerodynamics and aeroelasticity publication-title: Prog. Aerosp. Sci. doi: 10.1016/j.paerosci.2006.10.002 – volume: 13 start-page: 86 year: 2010 ident: ref_21 article-title: Numerical simulations of wake characteristics of a wind turbine in uniform inflow publication-title: Wind Energy doi: 10.1002/we.345 – volume: 18A start-page: 225 year: 1975 ident: ref_32 article-title: Numerical computation of turbulent shear flows publication-title: Adv. Geophys. doi: 10.1016/S0065-2687(08)60463-X – ident: ref_5 – volume: 15 start-page: 183 year: 2012 ident: ref_16 article-title: The impact of turbulence intensity and atmospheric stability on power deficits due to wind turbine wakes at Horns Rev wind farm publication-title: Wind Energy doi: 10.1002/we.512 – volume: 14 start-page: 799 year: 2011 ident: ref_3 article-title: Review of computational fluid dynamics for wind turbine wake aerodynamics publication-title: Wind Energy doi: 10.1002/we.458 – ident: ref_38 doi: 10.1007/978-94-009-3027-8 – ident: ref_19 doi: 10.1175/JTECH-D-12-00051.1 – volume: 93 start-page: 797 year: 2005 ident: ref_23 article-title: Anisotropy of turbulence in wind turbine wakes publication-title: J. Wind Eng. Ind. Aerodyn. doi: 10.1016/j.jweia.2005.08.001 – ident: ref_42 doi: 10.5772/643 – ident: ref_11 – volume: 13 start-page: 559 year: 2010 ident: ref_25 article-title: Application of a LES technique to characterize the wake deflection of a wind turbine in yaw publication-title: Wind Energy doi: 10.1002/we.380 – ident: ref_22 doi: 10.1007/s10546-012-9757-y – volume: 99 start-page: 154 year: 2011 ident: ref_20 article-title: Large-eddy simulation of atmospheric boundary layer flow through wind turbines and wind farms publication-title: J. Wind Eng. Ind. Aerodyn. doi: 10.1016/j.jweia.2011.01.011 – volume: 35 start-page: 2121 year: 1999 ident: ref_30 article-title: Surfaces length scales and shear stress: Implications for land-Atmosphere interactions over complex terrain publication-title: Water Resour. Res. doi: 10.1029/1999WR900094 – volume: 415 start-page: 261 year: 2000 ident: ref_31 article-title: A scale-dependent dynamic model for large-eddy simulations: Application to a neutral atmospheric boundary layer publication-title: J. Fluid. Mech. doi: 10.1017/S0022112000008776 – volume: 118 start-page: 169 year: 2006 ident: ref_34 article-title: Effect of roughness on surface boundary conditions for large-eddy simulation publication-title: Bound. Layer Meteorol. doi: 10.1007/s10546-005-4735-2 – ident: ref_44 – volume: 136 start-page: 515 year: 2010 ident: ref_7 article-title: Effects of thermal stability and incoming boundary-layer flow characteristics on wind-turbine wakes: A wind-tunnel study publication-title: Bound. Layer Meteorol. doi: 10.1007/s10546-010-9512-1 – volume: 23 start-page: 065101 year: 2011 ident: ref_27 article-title: Large-eddy simulation of a very large wind farm in a stable atmospheric boundary layer publication-title: Phys. Fluids doi: 10.1063/1.3589857 – volume: 20 start-page: 127 year: 2011 ident: ref_13 article-title: Wind tunnel study on wind and turbulence intensity profiles in wind turbine wake publication-title: J. Therm. Sci. doi: 10.1007/s11630-011-0446-9 – volume: 138 start-page: 367 year: 2011 ident: ref_40 article-title: Large-eddy simulation of stably-stratified flow over a steep hill publication-title: Bound. Layer Meteorol. doi: 10.1007/s10546-010-9562-4 – volume: 52 start-page: 1219 year: 2012 ident: ref_14 article-title: Near-wake flow structure downwind of a wind turbine in a turbulent boundary layer publication-title: Exp. Fluids. doi: 10.1007/s00348-011-1250-8 – volume: 96 start-page: 103 year: 2008 ident: ref_24 article-title: An extended κ-ε model for turbulent flow through horizontal-axis wind turbines publication-title: J. Wind Eng. Ind. Aerodyn. doi: 10.1016/j.jweia.2007.03.007 – volume: 13 start-page: 1 year: 2012 ident: ref_36 article-title: A new boundary condition for large-eddy simulation of boundary-layer flow over surface roughness transitions publication-title: J. Turbul. doi: 10.1080/14685248.2012.695077 – ident: ref_43 doi: 10.1002/0470846127 – volume: 112 start-page: 81 year: 2004 ident: ref_37 article-title: A scale-dependent dynamic model for scalar transport in large-eddy simulations of the atmospheric boundary layer publication-title: Bound. Layer Meteorol. doi: 10.1023/B:BOUN.0000020353.03398.20 – volume: 43 start-page: 427 year: 2011 ident: ref_4 article-title: Aerodynamic aspects of wind energy conversion publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev-fluid-122109-160801 – ident: ref_46 – volume: 446 start-page: 309 year: 2001 ident: ref_33 article-title: Experimental study of wall boundary conditions for large-eddy simulation publication-title: J. Fluid. Mech. doi: 10.1017/S0022112001005924 – volume: 11 start-page: 1 year: 2010 ident: ref_35 article-title: Wind-tunnel study of surface boundary conditions for large-eddy simulation of turbulent flow past a rough-to-smooth surface transition publication-title: J. Turbul. doi: 10.1080/14685241003627760 – volume: 25 start-page: 271 year: 2001 ident: ref_9 article-title: Comparison of wake models with data for offshore windfarms publication-title: Wind Eng. doi: 10.1260/030952401760177846 – volume: 14 start-page: 859 year: 2011 ident: ref_26 article-title: Numerical simulations of wake interaction between two wind turbines at various inflow conditions publication-title: Wind Energy doi: 10.1002/we.433 – ident: ref_41 – ident: ref_15 – volume: 132 start-page: 129 year: 2009 ident: ref_6 article-title: A wind-tunnel investigation of wind-turbine wakes: Boundary-layer turbulence effects publication-title: Bound. Layer Meteorol. doi: 10.1007/s10546-009-9380-8 – volume: 42 start-page: W01409 year: 2006 ident: ref_29 article-title: Dynamic subgrid-scale models for momentum and scalar fluxes in large-eddy simulations of neutrally stratified atmospheric boundary layers over heterogeneous terrain publication-title: Water Resour. Res. doi: 10.1029/2005WR003989 – volume: 13 start-page: 1 year: 2012 ident: ref_18 article-title: Turbulent flow and scalar transport through and over aligned and staggered wind farms publication-title: J. Turbul. doi: 10.1080/14685248.2012.709635 – ident: ref_45 – volume: 40 start-page: 2653 year: 2006 ident: ref_39 article-title: Modeling flow around bluff bodies and predicting urban dispersion using large eddy simulation publication-title: Environ. Sci. Technol. doi: 10.1021/es051708m – volume: 75 start-page: 012063 year: 2007 ident: ref_10 article-title: Actuator line simulation of wake of wind turbine operating in turbulent inflow publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/75/1/012063 – volume: 9 start-page: 219 year: 2006 ident: ref_12 article-title: Measurement on a wind turbine wake: 3D effects and bluff body vortex shedding publication-title: Wind Energy doi: 10.1002/we.156 – volume: 39 start-page: 467 year: 2003 ident: ref_1 article-title: Wind turbine wake aerodynamics publication-title: Prog. Aerosp. Sci. doi: 10.1016/S0376-0421(03)00078-2 |
SSID | ssj0000331333 |
Score | 2.472729 |
Snippet | A numerical study of atmospheric turbulence effects on wind-turbine wakes is presented. Large-eddy simulations of neutrally-stratified atmospheric boundary... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 5340 |
SubjectTerms | Atmospheric boundary layer atmospheric turbulence Energy large-eddy simulation Numerical analysis Offshore Simulation Turbines turbulence intensity turbulence kinetic energy Velocity Wind farms wind shear wind-turbine wakes |
SummonAdditionalLinks | – databaseName: Acceso a contenido Full Text - Doaj dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEF2kJz2In1itsogHL0uT7key3lppKSJebGlvYXezC6KmYtKD_97ZTVoCCl68JpNN8iaZmRcmbxC64V6RxESO8EgrwoBDEK8JQnLHDbMuipwODbJPYjpnD0u-bI368j1htTxwDVyfJUkkjHVApiTjjms30IIzWCf2OiYh-kLOa5GpEIMpBfIVuut9ly1wHFrLClHg-H1bQJrj1H_waCWjoNn_IySHPDM5QPtNgYiH9YUdoh1bHKG9lmzgMRoNq_dV6fUAXgyerQGX8OcQrpWIS7wq8AKoNvG74Ci8UK-2vMPDAj-On7HvHPw6QfPJeHY_Jc0sBGLYgFVEMJNbuP9cMmkgigEGRuoUuGRqYitjKmLBqUpyyMjGQc0nfOnEmJIuFZBx6CnqFKvCniGsrUoMLCdVbMEtWmubasVyo2SeJiztotsNKJlphML9vIq3DAiDxy_b4tdF11vTj1od4zejkUd2a-AFrcMGcHPWuDn7y81d1Nv4JWvesjKDaJ34EjIdnP_HOS7QLpRDg7pZpYc61efaXkLJUemr8HR9A206zlY priority: 102 providerName: Directory of Open Access Journals |
Title | Atmospheric Turbulence Effects on Wind-Turbine Wakes: An LES Study |
URI | https://www.proquest.com/docview/1537083582 https://doaj.org/article/47706cef713945f5bf2b6544ef138802 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDI5gu8AB8RTjMUWIA5do7Zq0KRe0oQ2E0IR4aLtVTZogBLRAx4F_j91mYxKISw-NWylOYvtz3c-EHAtkJNGeZcJTKeOAIRhygrDMCs2N9TyrqgLZUXj5wK8mYuISbqUrq5zZxMpQZ4XGHHkHTmaE4YLsnr29M-wahV9XXQuNZdIEEywBfDX7g9HN7TzL4gUBgLCgphQKAN93TA4uTgSY7FhwRBVf_y9zXPmY4TpZc8Eh7dWruUGWTL5JVhcoA7dIvzd9LUrkAnjS9P4TdFL9NURrFuKSFjkdA8xmOARP0XH6bMpT2svp9eCOYtXg1zZ5GA7uzy-Z64PANO_yKQu5zgwXNot5rMGCqVDoWEnAkVL7JvaD0A9FkEYZeGNtId4LMWziPI2tDMHbBDukkRe52SVUmTTS8Lo49Q0siVLKSJXyTKdxJiMuW-RkppREO5Jw7FXxkgBYQP0lc_21yNFc9K1mxvhLqI-anQsgmXV1o_h4TNzZSHgUeaE2FvByDNMUyuIUOWwVH6lqui1yMFuXxJ2wMvnZD3v_D--TFQhyunUJygFpTD8-zSEEElPVJstyeNF2e6ZdwXG4Xkz8b8E0yRc |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5Remh7QPQllgK1qlbqxSKJ7SRGQmhp2S5ly6WL4BZix0YVkFCyCPGn-hs7k8cWqVVvXGPHUsbfvJzxNwDvFTGS2MBzFZicS8whOHGC8MIrK50PAm-aAtnDeHwkv56okwX41d-FobLK3iY2hrqoLJ2Rb6JmJhQupNHO1U9OXaPo72rfQqOFxYG7u8WUrd7e_4z7-yGKRnvTT2PedRXgVkZyxmNpCyeVL7TUFu2BiZXVJsWsLLWh06GIw1iJPCnQt1mP0VNMQYiUufZpjLZb4LqP4LEUQpNGpaMv8zOdQAhM-URLYITjwaYr0aEqQUcr99xe0x3gL-PfeLTRMix1oSgbtth5DguufAHP7hEUvoTd4eyyqol54Idl0xvcgeaOEms5j2tWlewYk3pOQ_gWO87PXb3FhiWb7H1nVKN49wqOHkQ-r2GxrEq3Asy4PLG4nM5DhwAwxrjU5LKwuS7SRKYD-NgLJbMdJTl1xrjIMDUh-WVz-Q3g3XzqVcvD8a9JuyTZ-QSizm4eVNdnWaeJmUySILbOY3au8TOV8fSJEoEZEjFONIC1fl-yTp_r7A_6Vv8__BaejKffJtlk__DgDTzF8Cpqi1_WYHF2fePWMYSZmY0GNwxOHxqovwFCkv8V |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB21W6kqBwQUxEIBC1GpF2uT2E5iJIR26a5aWq2qfqi9hdixEQKS0myF-tf4dczkY6kE4tZr7FjK-Nkzzxm_AXijSJHEBp6rwORcIofgpAnCC6-sdD4IvGkSZOfx3pn8eKEuVuBXfxeG0ir7PbHZqIvK0hn5CFdmQuFCGo18lxZxtDt7f_mDUwUp-tPal9NoIXLgbn4ifavf7e_iXG9H0Wx6-mGPdxUGuJWRXPBY2sJJ5QsttcW9wcTKapMiQ0tt6HQo4jBWIk8K9HPWYyQVU0AiZa59GuM-LnDcVVhLkBUFA1ibTOdHx8sTnkAIJICilTMSQgcjV6J7VYIOWm45waZWwF-uoPFvswdwvwtM2bhF0kNYceUjuHdLrnATJuPF96omHYIvlp1e43w0N5ZYq4Bcs6pk50jxOTXhW-w8_-rqt2xcssPpCaOMxZvHcHYnFnoCg7Iq3VNgxuWJxeF0HjqEgzHGpSaXhc11kSYyHcJOb5TMdgLlVCfjW4ZEheyXLe03hNfLrpetKse_Ok3IsssOJKTdPKiuPmfdusxkkgSxdR65usbPVMbTJ0qEaUgyOdEQtvp5ybrVXWd_sPjs_82vYB1Bmh3uzw-ewwbGWlGbCbMFg8XVtXuB8czCvOyAw-DTXWP1N3qTBLY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Atmospheric+Turbulence+Effects+on+Wind-Turbine+Wakes%3A+An+LES+Study&rft.jtitle=Energies+%28Basel%29&rft.au=Wu%2C+Yu-Ting&rft.au=Port%C3%A9-Agel%2C+Fernando&rft.date=2012-12-01&rft.issn=1996-1073&rft.eissn=1996-1073&rft.volume=5&rft.issue=12&rft.spage=5340&rft.epage=5362&rft_id=info:doi/10.3390%2Fen5125340&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_en5125340 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon |