Atmospheric Turbulence Effects on Wind-Turbine Wakes: An LES Study

A numerical study of atmospheric turbulence effects on wind-turbine wakes is presented. Large-eddy simulations of neutrally-stratified atmospheric boundary layer flows through stand-alone wind turbines were performed over homogeneous flat surfaces with four different aerodynamic roughness lengths. E...

Full description

Saved in:
Bibliographic Details
Published inEnergies (Basel) Vol. 5; no. 12; pp. 5340 - 5362
Main Authors Wu, Yu-Ting, Porté-Agel, Fernando
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.12.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A numerical study of atmospheric turbulence effects on wind-turbine wakes is presented. Large-eddy simulations of neutrally-stratified atmospheric boundary layer flows through stand-alone wind turbines were performed over homogeneous flat surfaces with four different aerodynamic roughness lengths. Emphasis is placed on the structure and characteristics of turbine wakes in the cases where the incident flows to the turbine have the same mean velocity at the hub height but different mean wind shears and turbulence intensity levels. The simulation results show that the different turbulence intensity levels of the incoming flow lead to considerable influence on the spatial distribution of the mean velocity deficit, turbulence intensity, and turbulent shear stress in the wake region. In particular, when the turbulence intensity level of the incoming flow is higher, the turbine-induced wake (velocity deficit) recovers faster, and the locations of the maximum turbulence intensity and turbulent stress are closer to the turbine. A detailed analysis of the turbulence kinetic energy budget in the wakes reveals also an important effect of the incoming flow turbulence level on the magnitude and spatial distribution of the shear production and transport terms.
AbstractList A numerical study of atmospheric turbulence effects on wind-turbine wakes is presented. Large-eddy simulations of neutrally-stratified atmospheric boundary layer flows through stand-alone wind turbines were performed over homogeneous flat surfaces with four different aerodynamic roughness lengths. Emphasis is placed on the structure and characteristics of turbine wakes in the cases where the incident flows to the turbine have the same mean velocity at the hub height but different mean wind shears and turbulence intensity levels. The simulation results show that the different turbulence intensity levels of the incoming flow lead to considerable influence on the spatial distribution of the mean velocity deficit, turbulence intensity, and turbulent shear stress in the wake region. In particular, when the turbulence intensity level of the incoming flow is higher, the turbine-induced wake (velocity deficit) recovers faster, and the locations of the maximum turbulence intensity and turbulent stress are closer to the turbine. A detailed analysis of the turbulence kinetic energy budget in the wakes reveals also an important effect of the incoming flow turbulence level on the magnitude and spatial distribution of the shear production and transport terms.
Author Wu, Yu-Ting
Porté-Agel, Fernando
Author_xml – sequence: 1
  givenname: Yu-Ting
  surname: Wu
  fullname: Wu, Yu-Ting
– sequence: 2
  givenname: Fernando
  orcidid: 0000-0002-9913-3350
  surname: Porté-Agel
  fullname: Porté-Agel, Fernando
BookMark eNptkMFKAzEQhoMoWLUH32DBk4e1yU6S3XirUrVQ8GClx5BmE02tSU2yh769Wysi4lxmmPnm_4c5QYc-eIPQOcFXAAKPjGekYkDxARoQIXhJcA2Hv-pjNExphfsAIAAwQDfj_B7S5tVEp4t5F5fd2nhtiom1RudUBF8snG_L3ch5UyzUm0nXxdgXs8lT8ZS7dnuGjqxaJzP8zqfo-W4yv30oZ4_309vxrNS0ornkVLeGMtsKKjTG1ZIzLZYNgarRxAgCnHAGqm4rSrQVhHPBCKZUCdtwITCcouletw1qJTfRvau4lUE5-dUI8UWqmJ1eG0nrGnNtbE1A9JZsaXd2lBpLoGlw1Wtd7LU2MXx0JmW5Cl30_fmSMKhxA6zZUZd7SseQUjT2x5Vgufu4_Pl4z47-sNpllV3wOSq3_mfjE-izgAs
CitedBy_id crossref_primary_10_1063_5_0245113
crossref_primary_10_1080_15567036_2022_2128939
crossref_primary_10_1016_j_ijheatfluidflow_2020_108604
crossref_primary_10_3390_en17051063
crossref_primary_10_1016_j_ijheatfluidflow_2016_04_004
crossref_primary_10_1016_j_oceaneng_2024_117244
crossref_primary_10_1016_j_jweia_2018_03_018
crossref_primary_10_1063_5_0239905
crossref_primary_10_3390_en13123197
crossref_primary_10_1016_j_enconman_2021_114610
crossref_primary_10_1016_j_jweia_2016_11_001
crossref_primary_10_1016_j_jweia_2019_103981
crossref_primary_10_1016_j_renene_2023_119418
crossref_primary_10_1002_we_2147
crossref_primary_10_1177_0309524X18824540
crossref_primary_10_1002_we_2941
crossref_primary_10_1016_j_renene_2023_02_058
crossref_primary_10_1088_1742_6596_753_9_092014
crossref_primary_10_1016_j_renene_2018_06_030
crossref_primary_10_1016_j_energy_2024_130843
crossref_primary_10_1016_j_renene_2024_120136
crossref_primary_10_1016_j_renene_2024_120251
crossref_primary_10_1016_j_renene_2023_05_002
crossref_primary_10_1016_j_energy_2024_132900
crossref_primary_10_1061__ASCE_EY_1943_7897_0000625
crossref_primary_10_1016_j_renene_2024_120801
crossref_primary_10_3390_jmse12122213
crossref_primary_10_1016_j_renene_2023_119524
crossref_primary_10_1017_jfm_2023_302
crossref_primary_10_1016_j_renene_2018_02_137
crossref_primary_10_1007_s00348_016_2233_6
crossref_primary_10_1002_ep_14302
crossref_primary_10_1016_j_apenergy_2020_116115
crossref_primary_10_1002_we_2801
crossref_primary_10_3390_en14133745
crossref_primary_10_1063_1_5016977
crossref_primary_10_3390_en15249477
crossref_primary_10_1016_j_jweia_2024_105840
crossref_primary_10_1016_j_renene_2014_01_002
crossref_primary_10_1016_j_apenergy_2019_114272
crossref_primary_10_1109_TPWRS_2019_2916906
crossref_primary_10_5194_amt_14_1303_2021
crossref_primary_10_1088_1742_6596_1618_6_062023
crossref_primary_10_1088_1742_6596_1618_6_062029
crossref_primary_10_1016_j_ecmx_2024_100830
crossref_primary_10_1002_we_2487
crossref_primary_10_3390_en10060821
crossref_primary_10_1103_PhysRevFluids_9_064604
crossref_primary_10_1016_j_jclepro_2018_07_217
crossref_primary_10_1016_j_renene_2024_120035
crossref_primary_10_1007_s10494_022_00349_3
crossref_primary_10_1175_JTECH_D_13_00252_1
crossref_primary_10_1016_j_renene_2019_03_127
crossref_primary_10_3390_en12142763
crossref_primary_10_1007_s10546_016_0127_z
crossref_primary_10_1016_j_energy_2023_127491
crossref_primary_10_1016_j_energy_2024_130823
crossref_primary_10_1088_1742_6596_1037_5_052006
crossref_primary_10_1088_1742_6596_1618_3_032014
crossref_primary_10_1016_j_renene_2014_06_019
crossref_primary_10_1016_j_renene_2017_05_046
crossref_primary_10_1080_01430750_2024_2304717
crossref_primary_10_1016_j_renene_2018_07_050
crossref_primary_10_3390_su15065139
crossref_primary_10_1016_j_apenergy_2016_06_085
crossref_primary_10_1017_jfm_2021_495
crossref_primary_10_1016_j_apenergy_2019_114025
crossref_primary_10_1016_j_renene_2022_10_001
crossref_primary_10_1016_j_renene_2024_120161
crossref_primary_10_5194_wes_8_433_2023
crossref_primary_10_1016_j_jweia_2017_12_016
crossref_primary_10_1016_j_jweia_2023_105625
crossref_primary_10_1088_1742_6596_2767_5_052020
crossref_primary_10_1007_s10409_017_0684_5
crossref_primary_10_1016_j_renene_2024_121804
crossref_primary_10_1016_j_energy_2021_121772
crossref_primary_10_1063_5_0242835
crossref_primary_10_1088_1742_6596_2265_2_022063
crossref_primary_10_3390_en16134953
crossref_primary_10_1088_1742_6596_2599_1_012008
crossref_primary_10_3390_en15072579
crossref_primary_10_1063_5_0162311
crossref_primary_10_5194_wes_8_1511_2023
crossref_primary_10_1016_j_apenergy_2018_10_110
crossref_primary_10_1016_j_renene_2022_10_013
crossref_primary_10_1002_ep_13980
crossref_primary_10_1016_j_renene_2016_12_069
crossref_primary_10_3390_app9204256
crossref_primary_10_1016_j_energy_2018_01_020
crossref_primary_10_1016_j_energy_2022_123200
crossref_primary_10_1007_s10586_017_1350_1
crossref_primary_10_1103_PhysRevFluids_1_073603
crossref_primary_10_3390_en13133353
crossref_primary_10_1063_5_0185542
crossref_primary_10_2139_ssrn_4153302
crossref_primary_10_1007_s10546_017_0309_3
crossref_primary_10_1016_j_renene_2024_122126
crossref_primary_10_1016_j_compfluid_2020_104604
crossref_primary_10_1016_j_renene_2022_05_035
crossref_primary_10_1088_1742_6596_1452_1_012034
crossref_primary_10_1063_5_0086746
crossref_primary_10_1016_j_renene_2025_122442
crossref_primary_10_1016_j_renene_2021_03_030
crossref_primary_10_3390_en10060757
crossref_primary_10_3390_en7020890
crossref_primary_10_1016_j_jweia_2021_104869
crossref_primary_10_3390_en14154494
crossref_primary_10_1007_s12206_024_0121_1
crossref_primary_10_1063_1_4989443
crossref_primary_10_5194_wes_7_2307_2022
crossref_primary_10_3390_en15051896
crossref_primary_10_1016_j_apenergy_2020_116048
crossref_primary_10_1017_jfm_2024_876
crossref_primary_10_1063_5_0047077
crossref_primary_10_1016_j_seta_2022_102499
crossref_primary_10_1016_j_rser_2021_110991
crossref_primary_10_1103_PhysRevFluids_1_063701
crossref_primary_10_1007_s10409_020_00934_7
crossref_primary_10_1016_j_renene_2021_11_097
crossref_primary_10_1007_s40997_023_00713_2
crossref_primary_10_1016_j_energy_2022_124674
crossref_primary_10_1002_we_2434
crossref_primary_10_1016_j_apenergy_2022_119599
crossref_primary_10_3390_en17020488
crossref_primary_10_1002_we_2430
crossref_primary_10_1007_s10546_016_0208_z
crossref_primary_10_1016_j_renene_2023_119465
crossref_primary_10_3390_en14196026
crossref_primary_10_3390_en11113007
crossref_primary_10_1016_j_renene_2018_08_055
crossref_primary_10_1002_we_2669
crossref_primary_10_1016_j_oceaneng_2023_115064
crossref_primary_10_1007_s10546_018_0377_z
crossref_primary_10_1088_1742_6596_2385_1_012139
crossref_primary_10_1016_j_renene_2021_05_090
crossref_primary_10_1016_j_renene_2023_119935
crossref_primary_10_1177_0144598720942852
crossref_primary_10_1002_we_1697
crossref_primary_10_1061_JLEED9_EYENG_5350
crossref_primary_10_5194_wes_2_439_2017
crossref_primary_10_3390_en13195199
crossref_primary_10_1016_j_renene_2022_08_116
crossref_primary_10_1177_0958305X221084038
crossref_primary_10_3390_en17174503
crossref_primary_10_1016_j_jweia_2013_11_005
crossref_primary_10_1088_1742_6596_625_1_012022
crossref_primary_10_1088_1742_6596_1934_1_012011
crossref_primary_10_1088_1742_6596_2767_9_092019
crossref_primary_10_1088_1742_6596_854_1_012012
crossref_primary_10_3390_en14165198
crossref_primary_10_1017_jfm_2024_175
crossref_primary_10_3390_fluids5040233
crossref_primary_10_1108_HFF_10_2023_0632
crossref_primary_10_1016_j_apenergy_2024_123189
crossref_primary_10_1017_jfm_2023_1095
crossref_primary_10_1017_flo_2021_20
crossref_primary_10_5194_wes_8_691_2023
crossref_primary_10_3390_en13143745
crossref_primary_10_1016_j_renene_2022_04_104
crossref_primary_10_1016_j_renene_2023_119240
crossref_primary_10_3390_en13040865
crossref_primary_10_1016_j_renene_2022_08_004
crossref_primary_10_1017_jfm_2023_385
crossref_primary_10_1016_j_oceaneng_2023_113787
crossref_primary_10_1088_1742_6596_625_1_012014
crossref_primary_10_1016_j_renene_2024_122281
crossref_primary_10_3390_rs11192247
crossref_primary_10_1088_1742_6596_854_1_012045
crossref_primary_10_3390_inventions7030058
crossref_primary_10_1002_ep_13856
crossref_primary_10_1016_j_jweia_2024_105685
crossref_primary_10_1016_j_renene_2022_03_074
crossref_primary_10_3390_en15155347
crossref_primary_10_3390_en13051078
crossref_primary_10_1016_j_jweia_2013_06_007
crossref_primary_10_1016_j_oceaneng_2024_119133
crossref_primary_10_3390_en6105297
crossref_primary_10_3390_en12040643
crossref_primary_10_1088_1742_6596_2151_1_012011
crossref_primary_10_3390_en17174527
crossref_primary_10_1002_we_1792
crossref_primary_10_3390_en14102895
crossref_primary_10_1016_j_renene_2018_08_083
crossref_primary_10_1080_14685248_2017_1316852
crossref_primary_10_1016_j_jweia_2020_104485
crossref_primary_10_1016_j_jweia_2022_105097
crossref_primary_10_1016_j_jweia_2014_12_001
crossref_primary_10_3390_en12234574
crossref_primary_10_59400_esc1956
crossref_primary_10_1017_jfm_2022_443
crossref_primary_10_1017_jfm_2024_282
crossref_primary_10_1016_j_apenergy_2024_122755
crossref_primary_10_1002_we_2072
crossref_primary_10_1063_5_0142872
crossref_primary_10_1016_j_apenergy_2021_117590
crossref_primary_10_1016_j_renene_2017_02_017
crossref_primary_10_1002_we_2507
crossref_primary_10_3390_en14144185
crossref_primary_10_1016_j_oceaneng_2024_116911
crossref_primary_10_1103_PhysRevFluids_9_124501
crossref_primary_10_1002_sys_21307
crossref_primary_10_1088_1742_6596_524_1_012151
crossref_primary_10_3390_en16248051
crossref_primary_10_1016_j_jweia_2018_04_010
crossref_primary_10_1016_j_renene_2016_10_065
crossref_primary_10_3390_aerospace8110352
crossref_primary_10_1016_j_renene_2024_120201
crossref_primary_10_5194_asr_11_55_2014
crossref_primary_10_1088_1755_1315_349_1_012012
crossref_primary_10_1016_j_enconman_2023_116949
crossref_primary_10_1098_rsos_210779
crossref_primary_10_3390_en13082113
crossref_primary_10_1063_5_0213321
crossref_primary_10_1016_j_renene_2020_04_134
crossref_primary_10_1063_5_0250111
crossref_primary_10_1063_1_4913695
crossref_primary_10_1016_j_renene_2020_08_156
crossref_primary_10_1017_jfm_2024_1215
crossref_primary_10_1088_1742_6596_1618_2_022067
crossref_primary_10_1016_j_energy_2021_121806
crossref_primary_10_1080_14786451_2020_1787411
crossref_primary_10_1016_j_jweia_2024_105877
crossref_primary_10_1016_j_renene_2024_122194
crossref_primary_10_1007_s10546_015_0004_1
crossref_primary_10_1038_s41598_018_20389_y
crossref_primary_10_1016_j_renene_2022_02_115
crossref_primary_10_1016_j_energy_2023_128840
crossref_primary_10_1088_1742_6596_524_1_012140
crossref_primary_10_1016_j_renene_2021_11_037
crossref_primary_10_1088_1742_6596_1618_3_032034
crossref_primary_10_1016_j_renene_2021_09_102
crossref_primary_10_1063_5_0145043
crossref_primary_10_3390_en13113004
crossref_primary_10_3390_en11123268
crossref_primary_10_1002_we_2299
crossref_primary_10_3390_en10070923
crossref_primary_10_1016_j_jweia_2023_105368
crossref_primary_10_3390_en13205392
crossref_primary_10_1016_j_jweia_2014_07_002
crossref_primary_10_1088_1742_6596_524_1_012138
crossref_primary_10_1115_1_4067120
crossref_primary_10_2174_1874282301812010107
crossref_primary_10_3390_app9050922
crossref_primary_10_1063_5_0222372
crossref_primary_10_1016_j_renene_2021_09_019
crossref_primary_10_1103_PhysRevFluids_6_114601
crossref_primary_10_1061__ASCE_EY_1943_7897_0000740
crossref_primary_10_1016_j_compfluid_2017_05_010
crossref_primary_10_1016_j_jweia_2018_11_021
crossref_primary_10_1103_PhysRevFluids_9_114607
crossref_primary_10_1088_1757_899X_52_5_052017
crossref_primary_10_1109_JSTARS_2013_2263577
crossref_primary_10_5194_wes_8_515_2023
crossref_primary_10_3390_aerospace9090489
crossref_primary_10_1016_j_ijheatfluidflow_2013_06_007
crossref_primary_10_3390_en15062022
crossref_primary_10_1007_s10546_019_00473_0
crossref_primary_10_3390_en15197431
crossref_primary_10_1016_j_oceaneng_2024_117691
crossref_primary_10_3390_en9090741
crossref_primary_10_1016_j_energy_2022_124277
crossref_primary_10_5194_amt_11_3801_2018
crossref_primary_10_1016_j_jweia_2017_03_010
crossref_primary_10_3390_en8076468
crossref_primary_10_1016_j_renene_2021_02_076
crossref_primary_10_1016_j_awe_2024_100021
crossref_primary_10_3390_aerospace9090484
Cites_doi 10.1007/s10546-012-9751-4
10.1007/s10546-010-9569-x
10.1016/j.paerosci.2006.10.002
10.1002/we.345
10.1016/S0065-2687(08)60463-X
10.1002/we.512
10.1002/we.458
10.1007/978-94-009-3027-8
10.1175/JTECH-D-12-00051.1
10.1016/j.jweia.2005.08.001
10.5772/643
10.1002/we.380
10.1007/s10546-012-9757-y
10.1016/j.jweia.2011.01.011
10.1029/1999WR900094
10.1017/S0022112000008776
10.1007/s10546-005-4735-2
10.1007/s10546-010-9512-1
10.1063/1.3589857
10.1007/s11630-011-0446-9
10.1007/s10546-010-9562-4
10.1007/s00348-011-1250-8
10.1016/j.jweia.2007.03.007
10.1080/14685248.2012.695077
10.1002/0470846127
10.1023/B:BOUN.0000020353.03398.20
10.1146/annurev-fluid-122109-160801
10.1017/S0022112001005924
10.1080/14685241003627760
10.1260/030952401760177846
10.1002/we.433
10.1007/s10546-009-9380-8
10.1029/2005WR003989
10.1080/14685248.2012.709635
10.1021/es051708m
10.1088/1742-6596/75/1/012063
10.1002/we.156
10.1016/S0376-0421(03)00078-2
ContentType Journal Article
Copyright Copyright MDPI AG 2012
Copyright_xml – notice: Copyright MDPI AG 2012
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/en5125340
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Acceso a contenido Full Text - Doaj
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1073
EndPage 5362
ExternalDocumentID oai_doaj_org_article_47706cef713945f5bf2b6544ef138802
3337823171
10_3390_en5125340
GroupedDBID 29G
2WC
5GY
5VS
7XC
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
CS3
DU5
EBS
ESX
FRP
GROUPED_DOAJ
GX1
I-F
IPNFZ
KQ8
L6V
L8X
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PROAC
RIG
TR2
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c424t-64cde45fd949c002b65c9b81328c1e91361653a7d241cf9166951044a9f869903
IEDL.DBID BENPR
ISSN 1996-1073
IngestDate Wed Aug 27 01:30:30 EDT 2025
Sun Jun 29 15:35:04 EDT 2025
Tue Jul 01 00:45:14 EDT 2025
Thu Apr 24 23:10:06 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://creativecommons.org/licenses/by/3.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c424t-64cde45fd949c002b65c9b81328c1e91361653a7d241cf9166951044a9f869903
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9913-3350
OpenAccessLink https://www.proquest.com/docview/1537083582?pq-origsite=%requestingapplication%
PQID 1537083582
PQPubID 2032402
PageCount 23
ParticipantIDs doaj_primary_oai_doaj_org_article_47706cef713945f5bf2b6544ef138802
proquest_journals_1537083582
crossref_primary_10_3390_en5125340
crossref_citationtrail_10_3390_en5125340
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-12-01
PublicationDateYYYYMMDD 2012-12-01
PublicationDate_xml – month: 12
  year: 2012
  text: 2012-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Energies (Basel)
PublicationYear 2012
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Vermeer (ref_1) 2003; 39
Tseng (ref_39) 2006; 40
Zhang (ref_14) 2012; 52
Sanderse (ref_3) 2011; 14
Stoll (ref_34) 2006; 118
Markfort (ref_18) 2012; 13
Troldborg (ref_21) 2010; 13
Chamorro (ref_7) 2010; 136
Rados (ref_9) 2001; 25
ref_11
Maeda (ref_13) 2011; 20
Hansen (ref_16) 2012; 15
ref_19
Wu (ref_20) 2011; 99
ref_17
ref_38
ref_15
Hansen (ref_2) 2006; 42
Marusic (ref_33) 2001; 446
Chamorro (ref_35) 2010; 11
Medici (ref_12) 2006; 9
Stoll (ref_29) 2006; 42
Abkar (ref_36) 2012; 13
ref_46
Orszag (ref_32) 1975; 18A
(ref_37) 2004; 112
ref_45
ref_22
Wan (ref_40) 2011; 138
ref_44
ref_43
ref_42
(ref_4) 2011; 43
ref_41
Wu (ref_8) 2011; 138
Jimenez (ref_25) 2010; 13
Meneveau (ref_31) 2000; 415
ref_28
Troldborg (ref_10) 2007; 75
Lu (ref_27) 2011; 23
Troldborg (ref_26) 2011; 14
Chamorro (ref_6) 2009; 132
Kasmi (ref_24) 2008; 96
ref_5
Crespo (ref_23) 2005; 93
Albertson (ref_30) 1999; 35
References_xml – ident: ref_17
  doi: 10.1007/s10546-012-9751-4
– ident: ref_28
– volume: 138
  start-page: 345
  year: 2011
  ident: ref_8
  article-title: Large-eddy simulation of wind-turbine wakes: Evaluation of turbine parametrisations
  publication-title: Bound. Layer Meteorol.
  doi: 10.1007/s10546-010-9569-x
– volume: 42
  start-page: 285
  year: 2006
  ident: ref_2
  article-title: State of the art in wind turbine aerodynamics and aeroelasticity
  publication-title: Prog. Aerosp. Sci.
  doi: 10.1016/j.paerosci.2006.10.002
– volume: 13
  start-page: 86
  year: 2010
  ident: ref_21
  article-title: Numerical simulations of wake characteristics of a wind turbine in uniform inflow
  publication-title: Wind Energy
  doi: 10.1002/we.345
– volume: 18A
  start-page: 225
  year: 1975
  ident: ref_32
  article-title: Numerical computation of turbulent shear flows
  publication-title: Adv. Geophys.
  doi: 10.1016/S0065-2687(08)60463-X
– ident: ref_5
– volume: 15
  start-page: 183
  year: 2012
  ident: ref_16
  article-title: The impact of turbulence intensity and atmospheric stability on power deficits due to wind turbine wakes at Horns Rev wind farm
  publication-title: Wind Energy
  doi: 10.1002/we.512
– volume: 14
  start-page: 799
  year: 2011
  ident: ref_3
  article-title: Review of computational fluid dynamics for wind turbine wake aerodynamics
  publication-title: Wind Energy
  doi: 10.1002/we.458
– ident: ref_38
  doi: 10.1007/978-94-009-3027-8
– ident: ref_19
  doi: 10.1175/JTECH-D-12-00051.1
– volume: 93
  start-page: 797
  year: 2005
  ident: ref_23
  article-title: Anisotropy of turbulence in wind turbine wakes
  publication-title: J. Wind Eng. Ind. Aerodyn.
  doi: 10.1016/j.jweia.2005.08.001
– ident: ref_42
  doi: 10.5772/643
– ident: ref_11
– volume: 13
  start-page: 559
  year: 2010
  ident: ref_25
  article-title: Application of a LES technique to characterize the wake deflection of a wind turbine in yaw
  publication-title: Wind Energy
  doi: 10.1002/we.380
– ident: ref_22
  doi: 10.1007/s10546-012-9757-y
– volume: 99
  start-page: 154
  year: 2011
  ident: ref_20
  article-title: Large-eddy simulation of atmospheric boundary layer flow through wind turbines and wind farms
  publication-title: J. Wind Eng. Ind. Aerodyn.
  doi: 10.1016/j.jweia.2011.01.011
– volume: 35
  start-page: 2121
  year: 1999
  ident: ref_30
  article-title: Surfaces length scales and shear stress: Implications for land-Atmosphere interactions over complex terrain
  publication-title: Water Resour. Res.
  doi: 10.1029/1999WR900094
– volume: 415
  start-page: 261
  year: 2000
  ident: ref_31
  article-title: A scale-dependent dynamic model for large-eddy simulations: Application to a neutral atmospheric boundary layer
  publication-title: J. Fluid. Mech.
  doi: 10.1017/S0022112000008776
– volume: 118
  start-page: 169
  year: 2006
  ident: ref_34
  article-title: Effect of roughness on surface boundary conditions for large-eddy simulation
  publication-title: Bound. Layer Meteorol.
  doi: 10.1007/s10546-005-4735-2
– ident: ref_44
– volume: 136
  start-page: 515
  year: 2010
  ident: ref_7
  article-title: Effects of thermal stability and incoming boundary-layer flow characteristics on wind-turbine wakes: A wind-tunnel study
  publication-title: Bound. Layer Meteorol.
  doi: 10.1007/s10546-010-9512-1
– volume: 23
  start-page: 065101
  year: 2011
  ident: ref_27
  article-title: Large-eddy simulation of a very large wind farm in a stable atmospheric boundary layer
  publication-title: Phys. Fluids
  doi: 10.1063/1.3589857
– volume: 20
  start-page: 127
  year: 2011
  ident: ref_13
  article-title: Wind tunnel study on wind and turbulence intensity profiles in wind turbine wake
  publication-title: J. Therm. Sci.
  doi: 10.1007/s11630-011-0446-9
– volume: 138
  start-page: 367
  year: 2011
  ident: ref_40
  article-title: Large-eddy simulation of stably-stratified flow over a steep hill
  publication-title: Bound. Layer Meteorol.
  doi: 10.1007/s10546-010-9562-4
– volume: 52
  start-page: 1219
  year: 2012
  ident: ref_14
  article-title: Near-wake flow structure downwind of a wind turbine in a turbulent boundary layer
  publication-title: Exp. Fluids.
  doi: 10.1007/s00348-011-1250-8
– volume: 96
  start-page: 103
  year: 2008
  ident: ref_24
  article-title: An extended κ-ε model for turbulent flow through horizontal-axis wind turbines
  publication-title: J. Wind Eng. Ind. Aerodyn.
  doi: 10.1016/j.jweia.2007.03.007
– volume: 13
  start-page: 1
  year: 2012
  ident: ref_36
  article-title: A new boundary condition for large-eddy simulation of boundary-layer flow over surface roughness transitions
  publication-title: J. Turbul.
  doi: 10.1080/14685248.2012.695077
– ident: ref_43
  doi: 10.1002/0470846127
– volume: 112
  start-page: 81
  year: 2004
  ident: ref_37
  article-title: A scale-dependent dynamic model for scalar transport in large-eddy simulations of the atmospheric boundary layer
  publication-title: Bound. Layer Meteorol.
  doi: 10.1023/B:BOUN.0000020353.03398.20
– volume: 43
  start-page: 427
  year: 2011
  ident: ref_4
  article-title: Aerodynamic aspects of wind energy conversion
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev-fluid-122109-160801
– ident: ref_46
– volume: 446
  start-page: 309
  year: 2001
  ident: ref_33
  article-title: Experimental study of wall boundary conditions for large-eddy simulation
  publication-title: J. Fluid. Mech.
  doi: 10.1017/S0022112001005924
– volume: 11
  start-page: 1
  year: 2010
  ident: ref_35
  article-title: Wind-tunnel study of surface boundary conditions for large-eddy simulation of turbulent flow past a rough-to-smooth surface transition
  publication-title: J. Turbul.
  doi: 10.1080/14685241003627760
– volume: 25
  start-page: 271
  year: 2001
  ident: ref_9
  article-title: Comparison of wake models with data for offshore windfarms
  publication-title: Wind Eng.
  doi: 10.1260/030952401760177846
– volume: 14
  start-page: 859
  year: 2011
  ident: ref_26
  article-title: Numerical simulations of wake interaction between two wind turbines at various inflow conditions
  publication-title: Wind Energy
  doi: 10.1002/we.433
– ident: ref_41
– ident: ref_15
– volume: 132
  start-page: 129
  year: 2009
  ident: ref_6
  article-title: A wind-tunnel investigation of wind-turbine wakes: Boundary-layer turbulence effects
  publication-title: Bound. Layer Meteorol.
  doi: 10.1007/s10546-009-9380-8
– volume: 42
  start-page: W01409
  year: 2006
  ident: ref_29
  article-title: Dynamic subgrid-scale models for momentum and scalar fluxes in large-eddy simulations of neutrally stratified atmospheric boundary layers over heterogeneous terrain
  publication-title: Water Resour. Res.
  doi: 10.1029/2005WR003989
– volume: 13
  start-page: 1
  year: 2012
  ident: ref_18
  article-title: Turbulent flow and scalar transport through and over aligned and staggered wind farms
  publication-title: J. Turbul.
  doi: 10.1080/14685248.2012.709635
– ident: ref_45
– volume: 40
  start-page: 2653
  year: 2006
  ident: ref_39
  article-title: Modeling flow around bluff bodies and predicting urban dispersion using large eddy simulation
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es051708m
– volume: 75
  start-page: 012063
  year: 2007
  ident: ref_10
  article-title: Actuator line simulation of wake of wind turbine operating in turbulent inflow
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/75/1/012063
– volume: 9
  start-page: 219
  year: 2006
  ident: ref_12
  article-title: Measurement on a wind turbine wake: 3D effects and bluff body vortex shedding
  publication-title: Wind Energy
  doi: 10.1002/we.156
– volume: 39
  start-page: 467
  year: 2003
  ident: ref_1
  article-title: Wind turbine wake aerodynamics
  publication-title: Prog. Aerosp. Sci.
  doi: 10.1016/S0376-0421(03)00078-2
SSID ssj0000331333
Score 2.472729
Snippet A numerical study of atmospheric turbulence effects on wind-turbine wakes is presented. Large-eddy simulations of neutrally-stratified atmospheric boundary...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 5340
SubjectTerms Atmospheric boundary layer
atmospheric turbulence
Energy
large-eddy simulation
Numerical analysis
Offshore
Simulation
Turbines
turbulence intensity
turbulence kinetic energy
Velocity
Wind farms
wind shear
wind-turbine wakes
SummonAdditionalLinks – databaseName: Acceso a contenido Full Text - Doaj
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEF2kJz2In1itsogHL0uT7key3lppKSJebGlvYXezC6KmYtKD_97ZTVoCCl68JpNN8iaZmRcmbxC64V6RxESO8EgrwoBDEK8JQnLHDbMuipwODbJPYjpnD0u-bI368j1htTxwDVyfJUkkjHVApiTjjms30IIzWCf2OiYh-kLOa5GpEIMpBfIVuut9ly1wHFrLClHg-H1bQJrj1H_waCWjoNn_IySHPDM5QPtNgYiH9YUdoh1bHKG9lmzgMRoNq_dV6fUAXgyerQGX8OcQrpWIS7wq8AKoNvG74Ci8UK-2vMPDAj-On7HvHPw6QfPJeHY_Jc0sBGLYgFVEMJNbuP9cMmkgigEGRuoUuGRqYitjKmLBqUpyyMjGQc0nfOnEmJIuFZBx6CnqFKvCniGsrUoMLCdVbMEtWmubasVyo2SeJiztotsNKJlphML9vIq3DAiDxy_b4tdF11vTj1od4zejkUd2a-AFrcMGcHPWuDn7y81d1Nv4JWvesjKDaJ34EjIdnP_HOS7QLpRDg7pZpYc61efaXkLJUemr8HR9A206zlY
  priority: 102
  providerName: Directory of Open Access Journals
Title Atmospheric Turbulence Effects on Wind-Turbine Wakes: An LES Study
URI https://www.proquest.com/docview/1537083582
https://doaj.org/article/47706cef713945f5bf2b6544ef138802
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDI5gu8AB8RTjMUWIA5do7Zq0KRe0oQ2E0IR4aLtVTZogBLRAx4F_j91mYxKISw-NWylOYvtz3c-EHAtkJNGeZcJTKeOAIRhygrDMCs2N9TyrqgLZUXj5wK8mYuISbqUrq5zZxMpQZ4XGHHkHTmaE4YLsnr29M-wahV9XXQuNZdIEEywBfDX7g9HN7TzL4gUBgLCgphQKAN93TA4uTgSY7FhwRBVf_y9zXPmY4TpZc8Eh7dWruUGWTL5JVhcoA7dIvzd9LUrkAnjS9P4TdFL9NURrFuKSFjkdA8xmOARP0XH6bMpT2svp9eCOYtXg1zZ5GA7uzy-Z64PANO_yKQu5zgwXNot5rMGCqVDoWEnAkVL7JvaD0A9FkEYZeGNtId4LMWziPI2tDMHbBDukkRe52SVUmTTS8Lo49Q0siVLKSJXyTKdxJiMuW-RkppREO5Jw7FXxkgBYQP0lc_21yNFc9K1mxvhLqI-anQsgmXV1o_h4TNzZSHgUeaE2FvByDNMUyuIUOWwVH6lqui1yMFuXxJ2wMvnZD3v_D--TFQhyunUJygFpTD8-zSEEElPVJstyeNF2e6ZdwXG4Xkz8b8E0yRc
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5Remh7QPQllgK1qlbqxSKJ7SRGQmhp2S5ly6WL4BZix0YVkFCyCPGn-hs7k8cWqVVvXGPHUsbfvJzxNwDvFTGS2MBzFZicS8whOHGC8MIrK50PAm-aAtnDeHwkv56okwX41d-FobLK3iY2hrqoLJ2Rb6JmJhQupNHO1U9OXaPo72rfQqOFxYG7u8WUrd7e_4z7-yGKRnvTT2PedRXgVkZyxmNpCyeVL7TUFu2BiZXVJsWsLLWh06GIw1iJPCnQt1mP0VNMQYiUufZpjLZb4LqP4LEUQpNGpaMv8zOdQAhM-URLYITjwaYr0aEqQUcr99xe0x3gL-PfeLTRMix1oSgbtth5DguufAHP7hEUvoTd4eyyqol54Idl0xvcgeaOEms5j2tWlewYk3pOQ_gWO87PXb3FhiWb7H1nVKN49wqOHkQ-r2GxrEq3Asy4PLG4nM5DhwAwxrjU5LKwuS7SRKYD-NgLJbMdJTl1xrjIMDUh-WVz-Q3g3XzqVcvD8a9JuyTZ-QSizm4eVNdnWaeJmUySILbOY3au8TOV8fSJEoEZEjFONIC1fl-yTp_r7A_6Vv8__BaejKffJtlk__DgDTzF8Cpqi1_WYHF2fePWMYSZmY0GNwxOHxqovwFCkv8V
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB21W6kqBwQUxEIBC1GpF2uT2E5iJIR26a5aWq2qfqi9hdixEQKS0myF-tf4dczkY6kE4tZr7FjK-Nkzzxm_AXijSJHEBp6rwORcIofgpAnCC6-sdD4IvGkSZOfx3pn8eKEuVuBXfxeG0ir7PbHZqIvK0hn5CFdmQuFCGo18lxZxtDt7f_mDUwUp-tPal9NoIXLgbn4ifavf7e_iXG9H0Wx6-mGPdxUGuJWRXPBY2sJJ5QsttcW9wcTKapMiQ0tt6HQo4jBWIk8K9HPWYyQVU0AiZa59GuM-LnDcVVhLkBUFA1ibTOdHx8sTnkAIJICilTMSQgcjV6J7VYIOWm45waZWwF-uoPFvswdwvwtM2bhF0kNYceUjuHdLrnATJuPF96omHYIvlp1e43w0N5ZYq4Bcs6pk50jxOTXhW-w8_-rqt2xcssPpCaOMxZvHcHYnFnoCg7Iq3VNgxuWJxeF0HjqEgzHGpSaXhc11kSYyHcJOb5TMdgLlVCfjW4ZEheyXLe03hNfLrpetKse_Ok3IsssOJKTdPKiuPmfdusxkkgSxdR65usbPVMbTJ0qEaUgyOdEQtvp5ybrVXWd_sPjs_82vYB1Bmh3uzw-ewwbGWlGbCbMFg8XVtXuB8czCvOyAw-DTXWP1N3qTBLY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Atmospheric+Turbulence+Effects+on+Wind-Turbine+Wakes%3A+An+LES+Study&rft.jtitle=Energies+%28Basel%29&rft.au=Wu%2C+Yu-Ting&rft.au=Port%C3%A9-Agel%2C+Fernando&rft.date=2012-12-01&rft.issn=1996-1073&rft.eissn=1996-1073&rft.volume=5&rft.issue=12&rft.spage=5340&rft.epage=5362&rft_id=info:doi/10.3390%2Fen5125340&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_en5125340
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon