Pathogenesis of Alopecia Areata and Vitiligo: Commonalities and Differences
Both alopecia areata (AA) and vitiligo are distinct, heterogenous, and complex disease entities, characterized by nonscarring scalp terminal hair loss and skin pigment loss, respectively. In AA, inflammatory cell infiltrates are in the deep reticular dermis close to the hair bulb (swarm of bees), wh...
Saved in:
Published in | International journal of molecular sciences Vol. 25; no. 8; p. 4409 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
01.04.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Both alopecia areata (AA) and vitiligo are distinct, heterogenous, and complex disease entities, characterized by nonscarring scalp terminal hair loss and skin pigment loss, respectively. In AA, inflammatory cell infiltrates are in the deep reticular dermis close to the hair bulb (swarm of bees), whereas in vitiligo the inflammatory infiltrates are in the epidermis and papillary dermis. Immune privilege collapse has been extensively investigated in AA pathogenesis, including the suppression of immunomodulatory factors (e.g., transforming growth factor-β (TGF-β), programmed death-ligand 1 (PDL1), interleukin-10 (IL-10), α-melanocyte-stimulating hormone (α-MSH), and macrophage migration inhibitory factor (MIF)) and enhanced expression of the major histocompatibility complex (MHC) throughout hair follicles. However, immune privilege collapse in vitiligo remains less explored. Both AA and vitiligo are autoimmune diseases that share commonalities in pathogenesis, including the involvement of plasmacytoid dendritic cells (and interferon-α (IFN- α) signaling pathways) and cytotoxic CD8+ T lymphocytes (and activated IFN-γ signaling pathways). Blood chemokine C-X-C motif ligand 9 (CXCL9) and CXCL10 are elevated in both diseases. Common factors that contribute to AA and vitiligo include oxidative stress, autophagy, type 2 cytokines, and the Wnt/β-catenin pathway (e.g., dickkopf 1 (DKK1)). Here, we summarize the commonalities and differences between AA and vitiligo, focusing on their pathogenesis. |
---|---|
AbstractList | Both alopecia areata (AA) and vitiligo are distinct, heterogenous, and complex disease entities, characterized by nonscarring scalp terminal hair loss and skin pigment loss, respectively. In AA, inflammatory cell infiltrates are in the deep reticular dermis close to the hair bulb (swarm of bees), whereas in vitiligo the inflammatory infiltrates are in the epidermis and papillary dermis. Immune privilege collapse has been extensively investigated in AA pathogenesis, including the suppression of immunomodulatory factors (e.g., transforming growth factor-β (TGF-β), programmed death-ligand 1 (PDL1), interleukin-10 (IL-10), α-melanocyte-stimulating hormone (α-MSH), and macrophage migration inhibitory factor (MIF)) and enhanced expression of the major histocompatibility complex (MHC) throughout hair follicles. However, immune privilege collapse in vitiligo remains less explored. Both AA and vitiligo are autoimmune diseases that share commonalities in pathogenesis, including the involvement of plasmacytoid dendritic cells (and interferon-α (IFN- α) signaling pathways) and cytotoxic CD8+ T lymphocytes (and activated IFN-γ signaling pathways). Blood chemokine C-X-C motif ligand 9 (CXCL9) and CXCL10 are elevated in both diseases. Common factors that contribute to AA and vitiligo include oxidative stress, autophagy, type 2 cytokines, and the Wnt/β-catenin pathway (e.g., dickkopf 1 (DKK1)). Here, we summarize the commonalities and differences between AA and vitiligo, focusing on their pathogenesis.Both alopecia areata (AA) and vitiligo are distinct, heterogenous, and complex disease entities, characterized by nonscarring scalp terminal hair loss and skin pigment loss, respectively. In AA, inflammatory cell infiltrates are in the deep reticular dermis close to the hair bulb (swarm of bees), whereas in vitiligo the inflammatory infiltrates are in the epidermis and papillary dermis. Immune privilege collapse has been extensively investigated in AA pathogenesis, including the suppression of immunomodulatory factors (e.g., transforming growth factor-β (TGF-β), programmed death-ligand 1 (PDL1), interleukin-10 (IL-10), α-melanocyte-stimulating hormone (α-MSH), and macrophage migration inhibitory factor (MIF)) and enhanced expression of the major histocompatibility complex (MHC) throughout hair follicles. However, immune privilege collapse in vitiligo remains less explored. Both AA and vitiligo are autoimmune diseases that share commonalities in pathogenesis, including the involvement of plasmacytoid dendritic cells (and interferon-α (IFN- α) signaling pathways) and cytotoxic CD8+ T lymphocytes (and activated IFN-γ signaling pathways). Blood chemokine C-X-C motif ligand 9 (CXCL9) and CXCL10 are elevated in both diseases. Common factors that contribute to AA and vitiligo include oxidative stress, autophagy, type 2 cytokines, and the Wnt/β-catenin pathway (e.g., dickkopf 1 (DKK1)). Here, we summarize the commonalities and differences between AA and vitiligo, focusing on their pathogenesis. Both alopecia areata (AA) and vitiligo are distinct, heterogenous, and complex disease entities, characterized by nonscarring scalp terminal hair loss and skin pigment loss, respectively. In AA, inflammatory cell infiltrates are in the deep reticular dermis close to the hair bulb (swarm of bees), whereas in vitiligo the inflammatory infiltrates are in the epidermis and papillary dermis. Immune privilege collapse has been extensively investigated in AA pathogenesis, including the suppression of immunomodulatory factors (e.g., transforming growth factor-β (TGF-β), programmed death-ligand 1 (PDL1), interleukin-10 (IL-10), α-melanocyte-stimulating hormone (α-MSH), and macrophage migration inhibitory factor (MIF)) and enhanced expression of the major histocompatibility complex (MHC) throughout hair follicles. However, immune privilege collapse in vitiligo remains less explored. Both AA and vitiligo are autoimmune diseases that share commonalities in pathogenesis, including the involvement of plasmacytoid dendritic cells (and interferon-α (IFN- α) signaling pathways) and cytotoxic CD8+ T lymphocytes (and activated IFN-γ signaling pathways). Blood chemokine C-X-C motif ligand 9 (CXCL9) and CXCL10 are elevated in both diseases. Common factors that contribute to AA and vitiligo include oxidative stress, autophagy, type 2 cytokines, and the Wnt/β-catenin pathway (e.g., dickkopf 1 (DKK1)). Here, we summarize the commonalities and differences between AA and vitiligo, focusing on their pathogenesis. |
Audience | Academic |
Author | Yamaguchi, Yuji Yamaguchi, Hiroki L. Peeva, Elena |
Author_xml | – sequence: 1 givenname: Hiroki L. surname: Yamaguchi fullname: Yamaguchi, Hiroki L. – sequence: 2 givenname: Yuji orcidid: 0000-0003-4338-2662 surname: Yamaguchi fullname: Yamaguchi, Yuji – sequence: 3 givenname: Elena surname: Peeva fullname: Peeva, Elena |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38673994$$D View this record in MEDLINE/PubMed |
BookMark | eNptkUlPHDEQhS1ExBZunKOWuOTAkPIy7ja30YQlChIcAlfL7S4PHnXbE7vnkH8fD4tYhHywVf7eK1W9fbIdYkBCjiiccq7gh18OmU2hEQLUFtmjgrEJgKy337x3yX7OSwDG2VTtkF3eyJorJfbI71szPsQFBsw-V9FVsz6u0HpTzRKa0VQmdNW9H33vF_GsmsdhiMH0pYD58e-ndw4TBov5K_niTJ_x8Pk-IHcX53_mV5Prm8tf89n1xAomxolkTQfcUQaSCQdgp0wBR9HWxjomJWWuhbaloARzskCyUw10rVOqto2U_IB8f_Jdpfh3jXnUg88W-94EjOusOYhaCSVqWtDjD-gyrlMZ4JGSChrJ5Su1MD1qH1wck7EbUz2rFaeqpmzjdfoJVU6Hg7clFOdL_Z3g23PzdTtgp1fJDyb90y_bLwB7AmyKOSd02vrRjD6G4ux7TUFvItZvIy6ikw-iF99P8f9zNKOJ |
CitedBy_id | crossref_primary_10_1007_s12016_025_09040_7 crossref_primary_10_1038_s41598_025_86061_4 crossref_primary_10_1111_exd_15177 crossref_primary_10_1111_jdv_20311 crossref_primary_10_3390_ijms26010179 crossref_primary_10_1016_j_bbi_2024_10_031 crossref_primary_10_1186_s43088_024_00549_y crossref_primary_10_2340_actadv_v105_42819 crossref_primary_10_1016_j_jaad_2024_11_064 |
Cites_doi | 10.1684/ejd.2010.0853 10.1016/j.jid.2020.06.004 10.1111/pcmr.12208 10.1016/j.jdermsci.2020.08.006 10.1126/scitranslmed.aam7710 10.1001/jamadermatol.2015.2707 10.1111/jocd.12171 10.1073/pnas.2305764120 10.1038/nm962 10.1111/exd.13868 10.1097/DAD.0000000000001266 10.1126/scitranslmed.3007811 10.1126/scitranslmed.3005127 10.1038/jid.2015.335 10.1016/j.jaad.2020.09.028 10.1038/jid.2011.463 10.1016/j.jaci.2019.08.035 10.3389/fimmu.2023.1112811 10.1007/s40257-023-00805-4 10.1371/journal.pone.0094260 10.1016/j.jid.2018.10.032 10.1016/j.jid.2019.11.013 10.1111/all.15561 10.1111/jdv.19842 10.1158/1078-0432.CCR-15-1136 10.1038/nm.3645 10.1080/15548627.2022.2074104 10.3109/08916934.2011.593599 10.2147/CCID.S245649 10.1111/all.15071 10.4049/jimmunol.1002188 10.1016/j.jaad.2021.09.056 10.1016/j.ebiom.2016.03.036 10.1016/j.coi.2013.10.010 10.3390/cancers16020340 10.1016/j.jid.2018.01.030 10.1111/1346-8138.15534 10.1016/j.jid.2022.10.021 10.1016/S0140-6736(14)60763-7 10.1007/s00403-018-1830-z 10.1016/j.jaad.2017.04.1141 10.1083/jcb.200602132 10.1111/exd.12264 10.1016/j.immuni.2017.01.009 10.1016/j.jdermsci.2012.01.010 10.1111/1523-1747.ep12481002 10.1002/biof.29 10.1016/j.jaad.2020.04.138 10.1002/path.6247 10.1155/2020/5693572 10.1001/jamadermatol.2021.4724 10.1111/exd.13069 10.4049/jimmunol.1900027 10.1111/exd.14155 10.1016/S1534-5807(02)00167-3 10.1038/nature09114 10.1016/j.jaad.2018.12.047 10.1097/MOP.0000000000000375 10.1111/jocd.15725 10.1111/pcmr.12949 10.1111/exd.13128 10.1172/JCI31942 10.3389/fimmu.2023.1243556 10.1111/pcmr.12559 10.1016/j.jaci.2017.07.011 10.1007/s40257-023-00808-1 10.1007/978-3-030-92616-8_3 10.1084/jem.187.10.1565 10.1111/bjd.15550 10.1152/ajpcell.00101.2009 10.1038/d41586-020-01808-5 10.1016/j.jaci.2018.11.031 10.1111/jdv.12932 10.1111/j.0022-202X.2004.23580.x 10.1126/science.1130088 10.1084/jem.20060028 10.1083/jcb.200311122 10.1111/j.1365-2133.2012.10889.x 10.1007/s12016-022-08954-w 10.1111/all.13128 10.3389/fimmu.2022.890027 10.1016/j.jid.2017.08.038 10.3389/fimmu.2021.624517 10.1371/journal.pone.0240221 10.1096/fj.07-9475com 10.1016/j.crimmu.2021.02.001 10.1038/nrdp.2015.11 10.1111/jdv.19768 10.1007/978-3-030-92616-8_2 10.1111/all.14814 10.1038/nature10160 10.1016/j.alit.2019.07.009 10.1016/j.clindermatol.2022.02.009 10.1038/s41419-021-03592-0 10.1016/j.jaad.2016.10.048 10.1038/nature05766 10.1080/1744666X.2022.2096590 10.1016/j.autrev.2017.07.005 10.3389/fimmu.2021.652191 10.1111/cpr.13562 10.1111/j.1755-148X.2012.00997.x 10.7554/eLife.80768 10.1016/j.jid.2019.03.1142 10.1038/jid.2010.34 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO FYUFA GHDGH GNUQQ GUQSH K9. M0S M1P M2O MBDVC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS Q9U 7X8 |
DOI | 10.3390/ijms25084409 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central (New) ProQuest One Community College Coronavirus Research Database ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection PML(ProQuest Medical Library) Research Library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Central Basic ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1422-0067 |
ExternalDocumentID | A793197121 38673994 10_3390_ijms25084409 |
Genre | Journal Article Review |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GroupedDBID | --- 29J 2WC 53G 5GY 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8G5 A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BCNDV BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DIK DU5 DWQXO E3Z EBD EBS EJD ESX F5P FRP FYUFA GNUQQ GUQSH GX1 HH5 HMCUK HYE IAO IHR ITC KQ8 LK8 M1P M2O M48 MODMG O5R O5S OK1 OVT P2P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TR2 TUS UKHRP ~8M CGR CUY CVF ECM EIF NPM PJZUB PPXIY PMFND 3V. 7XB 8FK COVID K9. MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 |
ID | FETCH-LOGICAL-c424t-628d03f120624f00c52903e4b7acf26612fb0bb10942f60626d980dbf997c8663 |
IEDL.DBID | M48 |
ISSN | 1422-0067 1661-6596 |
IngestDate | Thu Aug 07 13:56:05 EDT 2025 Fri Jul 25 22:57:30 EDT 2025 Tue Jun 17 22:11:40 EDT 2025 Tue Jun 10 21:09:49 EDT 2025 Mon Jul 21 05:45:34 EDT 2025 Tue Jul 01 01:43:23 EDT 2025 Thu Apr 24 22:55:02 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | natural killer cell receptor (NKG2D) hair bulge keratinocyte melanocyte interleukin 15 receptor β (IL-15Rβ) MHC class 1 polypeptide-related sequence A (MICA) genome-wide association studies (GWAS) danger-associated molecular pattern (DAMP) indoleamine 2,3-dioxygenase (IDO) hair germ |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c424t-628d03f120624f00c52903e4b7acf26612fb0bb10942f60626d980dbf997c8663 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-4338-2662 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/ijms25084409 |
PMID | 38673994 |
PQID | 3046908636 |
PQPubID | 2032341 |
ParticipantIDs | proquest_miscellaneous_3047949471 proquest_journals_3046908636 gale_infotracmisc_A793197121 gale_infotracacademiconefile_A793197121 pubmed_primary_38673994 crossref_citationtrail_10_3390_ijms25084409 crossref_primary_10_3390_ijms25084409 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-01 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | International journal of molecular sciences |
PublicationTitleAlternate | Int J Mol Sci |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_92 Westgate (ref_20) 1991; 97 ref_90 Maouia (ref_94) 2017; 30 Drucker (ref_5) 2017; 72 Yamaguchi (ref_85) 2004; 165 Harris (ref_54) 2012; 132 Czarnowicki (ref_38) 2019; 143 Kurban (ref_28) 2016; 30 Lee (ref_34) 2023; 120 Rodrigues (ref_51) 2017; 77 Speeckaert (ref_83) 2017; 16 Lee (ref_4) 2023; 143 Xie (ref_32) 2022; 63 Ito (ref_44) 2007; 447 Andl (ref_42) 2002; 2 Gilhar (ref_13) 2007; 117 Hua (ref_103) 2016; 152 Keren (ref_35) 2023; 12 Katz (ref_60) 2021; 12 Pavel (ref_40) 2023; 78 Ezzedine (ref_50) 2015; 386 Kim (ref_80) 2010; 20 Jacquemin (ref_56) 2020; 140 Zloza (ref_53) 2011; 44 Regazzetti (ref_91) 2015; 135 Bertolini (ref_22) 2020; 29 Boniface (ref_73) 2018; 138 Arenas (ref_33) 2023; 89 Olayinka (ref_16) 2021; 2 Barbulescu (ref_100) 2020; 140 Fawzi (ref_46) 2016; 15 Jabbari (ref_15) 2016; 7 Gilhar (ref_24) 2019; 144 Kim (ref_104) 2016; 22 Meyer (ref_23) 2008; 159 Speeckaert (ref_105) 2017; 26 Gilhar (ref_21) 2005; 124 Martinez (ref_78) 2006; 175 Silverberg (ref_93) 2022; 40 Eldesouky (ref_97) 2020; 13 Frisoli (ref_57) 2017; 140 Oh (ref_88) 2012; 66 Yamaguchi (ref_86) 2008; 22 Benigno (ref_10) 2020; 13 Dwivedi (ref_61) 2022; 1367 Spritz (ref_2) 2021; 141 Gund (ref_26) 2023; 19 Meresse (ref_29) 2006; 203 Ryan (ref_101) 2021; 12 Richmond (ref_75) 2019; 139 Tomaszewska (ref_95) 2020; 2020 Mosenson (ref_66) 2014; 27 Passeron (ref_19) 2023; 14 Choi (ref_45) 2023; 57 Basmanav (ref_17) 2022; 18 Dawoud (ref_96) 2023; 22 Millar (ref_63) 2003; 9 Rajabi (ref_18) 2022; 1367 Glickman (ref_37) 2021; 76 Boniface (ref_107) 2017; 26 Gandhi (ref_52) 2022; 158 Cheuk (ref_55) 2017; 46 Jadeja (ref_31) 2022; 13 Boukhedouni (ref_76) 2020; 5 Ly (ref_3) 2023; 24 Glickman (ref_39) 2021; 84 ref_67 Petukhova (ref_1) 2010; 466 Walker (ref_79) 2010; 130 Bastonini (ref_82) 2019; 28 Yamaguchi (ref_70) 2009; 35 Rork (ref_99) 2016; 28 Abe (ref_81) 2020; 47 Esmat (ref_89) 2018; 310 Harris (ref_98) 2013; 22 Rahoma (ref_6) 2012; 167 Bastonini (ref_68) 2021; 12 Seneschal (ref_59) 2021; 34 Xing (ref_14) 2014; 20 Peterson (ref_9) 2022; 87 Sick (ref_43) 2006; 314 ref_36 Fujisaki (ref_102) 2011; 474 Ezzedine (ref_48) 2012; 25 Kang (ref_69) 2024; 262 Meah (ref_11) 2021; 84 Bares (ref_41) 2022; 77 Sun (ref_87) 2018; 138 Hardman (ref_25) 2020; 100 Saikali (ref_30) 2010; 185 Kunisada (ref_71) 1998; 187 Strazzulla (ref_12) 2018; 78 Picardo (ref_49) 2015; 1 Wang (ref_77) 2009; 297 ref_106 Ito (ref_27) 2020; 69 Speeckaert (ref_84) 2023; 14 Richmond (ref_74) 2018; 10 Rudnicka (ref_8) 2024; 38 Riding (ref_58) 2019; 203 Rashighi (ref_72) 2014; 6 Richmond (ref_62) 2013; 25 Jacquemin (ref_64) 2017; 177 Mahmoud (ref_47) 2019; 41 Dahabreh (ref_7) 2023; 24 Mosenson (ref_65) 2013; 5 |
References_xml | – volume: 20 start-page: 231 year: 2010 ident: ref_80 article-title: Association between polymorphisms of discoidin domain receptor tyrosine kinase 1 (DDR1) and non-segmental vitiligo in the Korean population publication-title: Eur. J. Dermatol. doi: 10.1684/ejd.2010.0853 – volume: 141 start-page: 265 year: 2021 ident: ref_2 article-title: The Genetic Basis of Vitiligo publication-title: J. Investig. Dermatol. doi: 10.1016/j.jid.2020.06.004 – volume: 27 start-page: 209 year: 2014 ident: ref_66 article-title: Preferential secretion of inducible HSP70 by vitiligo melanocytes under stress publication-title: Pigment. Cell Melanoma Res. doi: 10.1111/pcmr.12208 – volume: 100 start-page: 75 year: 2020 ident: ref_25 article-title: Does dysfunctional autophagy contribute to immune privilege collapse and alopecia areata pathogenesis? publication-title: J. Dermatol. Sci. doi: 10.1016/j.jdermsci.2020.08.006 – volume: 10 start-page: eaam7710 year: 2018 ident: ref_74 article-title: Antibody blockade of IL-15 signaling has the potential to durably reverse vitiligo publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aam7710 – volume: 152 start-page: 45 year: 2016 ident: ref_103 article-title: Association of Vitiligo With Tumor Response in Patients With Metastatic Melanoma Treated With Pembrolizumab publication-title: JAMA Dermatol. doi: 10.1001/jamadermatol.2015.2707 – volume: 15 start-page: 10 year: 2016 ident: ref_46 article-title: Assessment of tissue levels of dickkopf-1 in androgenetic alopecia and alopecia areata publication-title: J. Cosmet. Dermatol. doi: 10.1111/jocd.12171 – volume: 120 start-page: e2305764120 year: 2023 ident: ref_34 article-title: Functional interrogation of lymphocyte subsets in alopecia areata using single-cell RNA sequencing publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2305764120 – volume: 9 start-page: 1469 year: 2003 ident: ref_63 article-title: Hsp70 promotes antigen-presenting cell function and converts T-cell tolerance to autoimmunity in vivo publication-title: Nat. Med. doi: 10.1038/nm962 – volume: 28 start-page: 667 year: 2019 ident: ref_82 article-title: Involvement of non-melanocytic skin cells in vitiligo publication-title: Exp. Dermatol. doi: 10.1111/exd.13868 – volume: 41 start-page: 122 year: 2019 ident: ref_47 article-title: Dickkopf-1 Expression in Androgenetic Alopecia and Alopecia Areata in Male Patients publication-title: Am. J. Dermatopathol. doi: 10.1097/DAD.0000000000001266 – volume: 6 start-page: 223ra23 year: 2014 ident: ref_72 article-title: CXCL10 is critical for the progression and maintenance of depigmentation in a mouse model of vitiligo publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.3007811 – volume: 5 start-page: 174ra28 year: 2013 ident: ref_65 article-title: Mutant HSP70 reverses autoimmune depigmentation in vitiligo publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.3005127 – volume: 135 start-page: 3105 year: 2015 ident: ref_91 article-title: Transcriptional Analysis of Vitiligo Skin Reveals the Alteration of WNT Pathway: A Promising Target for Repigmenting Vitiligo Patients publication-title: J. Investig. Dermatol. doi: 10.1038/jid.2015.335 – volume: 84 start-page: 1594 year: 2021 ident: ref_11 article-title: The Alopecia Areata Consensus of Experts (ACE) study part II: Results of an international expert opinion on diagnosis and laboratory evaluation for alopecia areata publication-title: J. Am. Acad. Dermatol. doi: 10.1016/j.jaad.2020.09.028 – volume: 132 start-page: 1869 year: 2012 ident: ref_54 article-title: A mouse model of vitiligo with focused epidermal depigmentation requires IFN-gamma for autoreactive CD8(+) T-cell accumulation in the skin publication-title: J. Investig. Dermatol. doi: 10.1038/jid.2011.463 – volume: 144 start-page: 1478 year: 2019 ident: ref_24 article-title: Frontiers in alopecia areata pathobiology research publication-title: J. Allergy Clin. Immunol. doi: 10.1016/j.jaci.2019.08.035 – volume: 14 start-page: 1112811 year: 2023 ident: ref_84 article-title: A meta-analysis of chemokines in vitiligo: Recruiting immune cells towards melanocytes publication-title: Front. Immunol. doi: 10.3389/fimmu.2023.1112811 – volume: 24 start-page: 875 year: 2023 ident: ref_3 article-title: Comorbid Conditions Associated with Alopecia Areata: A Systematic Review and Meta-analysis publication-title: Am. J. Clin. Dermatol. doi: 10.1007/s40257-023-00805-4 – ident: ref_36 doi: 10.1371/journal.pone.0094260 – volume: 139 start-page: 769 year: 2019 ident: ref_75 article-title: Resident Memory and Recirculating Memory T Cells Cooperate to Maintain Disease in a Mouse Model of Vitiligo publication-title: J. Investig. Dermatol. doi: 10.1016/j.jid.2018.10.032 – volume: 140 start-page: 1143 year: 2020 ident: ref_56 article-title: NKG2D Defines a Subset of Skin Effector Memory CD8 T Cells with Proinflammatory Functions in Vitiligo publication-title: J. Investig. Dermatol. doi: 10.1016/j.jid.2019.11.013 – volume: 78 start-page: 1047 year: 2023 ident: ref_40 article-title: Scalp biomarkers during dupilumab treatment support Th2 pathway pathogenicity in alopecia areata publication-title: Allergy doi: 10.1111/all.15561 – ident: ref_90 doi: 10.1111/jdv.19842 – volume: 22 start-page: 886 year: 2016 ident: ref_104 article-title: Nivolumab in Resected and Unresectable Metastatic Melanoma: Characteristics of Immune-Related Adverse Events and Association with Outcomes publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-15-1136 – volume: 20 start-page: 1043 year: 2014 ident: ref_14 article-title: Alopecia areata is driven by cytotoxic T lymphocytes and is reversed by JAK inhibition publication-title: Nat. Med. doi: 10.1038/nm.3645 – volume: 19 start-page: 296 year: 2023 ident: ref_26 article-title: Impaired autophagy promotes hair loss in the C3H/HeJ mouse model of alopecia areata publication-title: Autophagy doi: 10.1080/15548627.2022.2074104 – volume: 44 start-page: 599 year: 2011 ident: ref_53 article-title: Engagement of NK receptor NKG2D, but not 2B4, results in self-reactive CD8+ T cells and autoimmune vitiligo publication-title: Autoimmunity doi: 10.3109/08916934.2011.593599 – volume: 13 start-page: 259 year: 2020 ident: ref_10 article-title: A Large Cross-Sectional Survey Study of the Prevalence of Alopecia Areata in the United States publication-title: Clin. Cosmet. Investig. Dermatol. doi: 10.2147/CCID.S245649 – volume: 77 start-page: 897 year: 2022 ident: ref_41 article-title: Phase 2a randomized clinical trial of dupilumab (anti-IL-4Ralpha) for alopecia areata patients publication-title: Allergy doi: 10.1111/all.15071 – volume: 5 start-page: e133772 year: 2020 ident: ref_76 article-title: Type-1 cytokines regulate MMP-9 production and E-cadherin disruption to promote melanocyte loss in vitiligo publication-title: JCI Insight – volume: 185 start-page: 5693 year: 2010 ident: ref_30 article-title: Contribution of astrocyte-derived IL-15 to CD8 T cell effector functions in multiple sclerosis publication-title: J. Immunol. doi: 10.4049/jimmunol.1002188 – volume: 87 start-page: e149 year: 2022 ident: ref_9 article-title: It is all alopecia areata: It is time to abandon the terms alopecia totalis and alopecia universalis publication-title: J. Am. Acad. Dermatol. doi: 10.1016/j.jaad.2021.09.056 – volume: 7 start-page: 240 year: 2016 ident: ref_15 article-title: Molecular signatures define alopecia areata subtypes and transcriptional biomarkers publication-title: EBioMedicine doi: 10.1016/j.ebiom.2016.03.036 – volume: 25 start-page: 676 year: 2013 ident: ref_62 article-title: Innate immune mechanisms in vitiligo: Danger from within publication-title: Curr. Opin. Immunol. doi: 10.1016/j.coi.2013.10.010 – ident: ref_106 doi: 10.3390/cancers16020340 – volume: 138 start-page: 1591 year: 2018 ident: ref_87 article-title: Dissecting Wnt Signaling for Melanocyte Regulation during Wound Healing publication-title: J. Investig. Dermatol. doi: 10.1016/j.jid.2018.01.030 – volume: 47 start-page: 1330 year: 2020 ident: ref_81 article-title: Expression of discoidin domain receptor 1 and E-cadherin in epidermis affects melanocyte behavior in rhododendrol-induced leukoderma mouse model publication-title: J. Dermatol. doi: 10.1111/1346-8138.15534 – volume: 143 start-page: 777 year: 2023 ident: ref_4 article-title: Comorbidities in Patients with Vitiligo: A Systematic Review and Meta-Analysis publication-title: J. Investig. Dermatol. doi: 10.1016/j.jid.2022.10.021 – volume: 386 start-page: 74 year: 2015 ident: ref_50 article-title: Vitiligo publication-title: Lancet doi: 10.1016/S0140-6736(14)60763-7 – volume: 310 start-page: 425 year: 2018 ident: ref_89 article-title: Increased tenascin C and DKK1 in vitiligo: Possible role of fibroblasts in acral and non-acral disease publication-title: Arch. Dermatol. Res. doi: 10.1007/s00403-018-1830-z – volume: 78 start-page: 1 year: 2018 ident: ref_12 article-title: Alopecia areata: Disease characteristics, clinical evaluation, and new perspectives on pathogenesis publication-title: J. Am. Acad. Dermatol. doi: 10.1016/j.jaad.2017.04.1141 – volume: 175 start-page: 563 year: 2006 ident: ref_78 article-title: CCN3 controls 3D spatial localization of melanocytes in the human skin through DDR1 publication-title: J. Cell Biol. doi: 10.1083/jcb.200602132 – volume: 22 start-page: 785 year: 2013 ident: ref_98 article-title: Vitiligo and alopecia areata: Apples and oranges? publication-title: Exp. Dermatol. doi: 10.1111/exd.12264 – volume: 46 start-page: 287 year: 2017 ident: ref_55 article-title: CD49a Expression Defines Tissue-Resident CD8(+) T Cells Poised for Cytotoxic Function in Human Skin publication-title: Immunity doi: 10.1016/j.immuni.2017.01.009 – volume: 66 start-page: 163 year: 2012 ident: ref_88 article-title: DKK1 is highly expressed in the dermis of vitiligo lesion: Is there association between DKK1 and vitiligo? publication-title: J. Dermatol. Sci. doi: 10.1016/j.jdermsci.2012.01.010 – volume: 97 start-page: 417 year: 1991 ident: ref_20 article-title: Immune privilege in hair growth publication-title: J. Investig. Dermatol. doi: 10.1111/1523-1747.ep12481002 – volume: 35 start-page: 193 year: 2009 ident: ref_70 article-title: Physiological factors that regulate skin pigmentation publication-title: Biofactors doi: 10.1002/biof.29 – volume: 84 start-page: 370 year: 2021 ident: ref_39 article-title: Cross-sectional study of blood biomarkers of patients with moderate to severe alopecia areata reveals systemic immune and cardiovascular biomarker dysregulation publication-title: J. Am. Acad. Dermatol. doi: 10.1016/j.jaad.2020.04.138 – volume: 262 start-page: 441 year: 2024 ident: ref_69 article-title: TRPM2-dependent autophagy inhibition exacerbates oxidative stress-induced CXCL16 secretion by keratinocytes in vitiligo publication-title: J. Pathol. doi: 10.1002/path.6247 – volume: 2020 start-page: 5693572 year: 2020 ident: ref_95 article-title: Increased Serum Levels of IFN-gamma, IL-1beta, and IL-6 in Patients with Alopecia Areata and Nonsegmental Vitiligo publication-title: Oxid. Med. Cell. Longev. doi: 10.1155/2020/5693572 – volume: 158 start-page: 43 year: 2022 ident: ref_52 article-title: Prevalence of Vitiligo Among Adults in the United States publication-title: JAMA Dermatol. doi: 10.1001/jamadermatol.2021.4724 – volume: 26 start-page: 630 year: 2017 ident: ref_105 article-title: Targeting CTLA-4, PD-L1 and IDO to modulate immune responses in vitiligo publication-title: Exp. Dermatol. doi: 10.1111/exd.13069 – volume: 203 start-page: 11 year: 2019 ident: ref_58 article-title: The Role of Memory CD8(+) T Cells in Vitiligo publication-title: J. Immunol. doi: 10.4049/jimmunol.1900027 – volume: 29 start-page: 703 year: 2020 ident: ref_22 article-title: Hair follicle immune privilege and its collapse in alopecia areata publication-title: Exp. Dermatol. doi: 10.1111/exd.14155 – volume: 2 start-page: 643 year: 2002 ident: ref_42 article-title: WNT signals are required for the initiation of hair follicle development publication-title: Dev. Cell doi: 10.1016/S1534-5807(02)00167-3 – volume: 466 start-page: 113 year: 2010 ident: ref_1 article-title: Genome-wide association study in alopecia areata implicates both innate and adaptive immunity publication-title: Nature doi: 10.1038/nature09114 – volume: 89 start-page: 758 year: 2023 ident: ref_33 article-title: White hair in alopecia areata: Clinical forms and proposed physiopathologic mechanisms publication-title: J. Am. Acad. Dermatol. doi: 10.1016/j.jaad.2018.12.047 – volume: 28 start-page: 463 year: 2016 ident: ref_99 article-title: Understanding autoimmunity of vitiligo and alopecia areata publication-title: Curr. Opin. Pediatr. doi: 10.1097/MOP.0000000000000375 – volume: 22 start-page: 2343 year: 2023 ident: ref_96 article-title: Serum brain-derived neurotrophic factor and vitamin D: Two concordant players controlling depression among alopecia areata and vitiligo patients: A case-control study publication-title: J. Cosmet. Dermatol. doi: 10.1111/jocd.15725 – volume: 34 start-page: 236 year: 2021 ident: ref_59 article-title: An update on Vitiligo pathogenesis publication-title: Pigment. Cell Melanoma Res. doi: 10.1111/pcmr.12949 – volume: 26 start-page: 635 year: 2017 ident: ref_107 article-title: Vitiligo therapy: Restoring immune privilege? publication-title: Exp. Dermatol. doi: 10.1111/exd.13128 – volume: 117 start-page: 2019 year: 2007 ident: ref_13 article-title: Lymphocytes, neuropeptides, and genes involved in alopecia areata publication-title: J. Clin. Investig. doi: 10.1172/JCI31942 – volume: 14 start-page: 1243556 year: 2023 ident: ref_19 article-title: Inhibition of T-cell activity in alopecia areata: Recent developments and new directions publication-title: Front. Immunol. doi: 10.3389/fimmu.2023.1243556 – volume: 30 start-page: 259 year: 2017 ident: ref_94 article-title: Differential expression of CXCL9, CXCL10, and IFN-gamma in vitiligo and alopecia areata patients publication-title: Pigment. Cell Melanoma Res. doi: 10.1111/pcmr.12559 – volume: 140 start-page: 654 year: 2017 ident: ref_57 article-title: Vitiligo: Mechanistic insights lead to novel treatments publication-title: J. Allergy Clin. Immunol. doi: 10.1016/j.jaci.2017.07.011 – volume: 24 start-page: 895 year: 2023 ident: ref_7 article-title: Alopecia Areata: Current Treatments and New Directions publication-title: Am. J. Clin. Dermatol. doi: 10.1007/s40257-023-00808-1 – volume: 1367 start-page: 61 year: 2022 ident: ref_61 article-title: The Immunogenetics of Vitiligo: An Approach Toward Revealing the Secret of Depigmentation publication-title: Adv. Exp. Med. Biol. doi: 10.1007/978-3-030-92616-8_3 – volume: 187 start-page: 1565 year: 1998 ident: ref_71 article-title: Murine cutaneous mastocytosis and epidermal melanocytosis induced by keratinocyte expression of transgenic stem cell factor publication-title: J. Exp. Med. doi: 10.1084/jem.187.10.1565 – volume: 13 start-page: 24 year: 2020 ident: ref_97 article-title: Macrophage Migration Inhibitory Factor in Alopecia Areata and Vitiligo: A Case-Controlled Serological Study publication-title: J. Clin. Aesthet. Dermatol. – volume: 177 start-page: 1367 year: 2017 ident: ref_64 article-title: Heat shock protein 70 potentiates interferon alpha production by plasmacytoid dendritic cells: Relevance for cutaneous lupus and vitiligo pathogenesis publication-title: Br. J. Dermatol. doi: 10.1111/bjd.15550 – volume: 297 start-page: C419 year: 2009 ident: ref_77 article-title: DDR1/E-cadherin complex regulates the activation of DDR1 and cell spreading publication-title: Am. J. Physiol. Cell Physiol. doi: 10.1152/ajpcell.00101.2009 – ident: ref_67 doi: 10.1038/d41586-020-01808-5 – volume: 143 start-page: 2095 year: 2019 ident: ref_38 article-title: Blood endotyping distinguishes the profile of vitiligo from that of other inflammatory and autoimmune skin diseases publication-title: J. Allergy Clin. Immunol. doi: 10.1016/j.jaci.2018.11.031 – volume: 30 start-page: 119 year: 2016 ident: ref_28 article-title: Plasmacytoid dendritic cells in alopecia areata: Missing link? publication-title: J. Eur. Acad. Dermatol. Venereol. doi: 10.1111/jdv.12932 – volume: 124 start-page: 288 year: 2005 ident: ref_21 article-title: Alopecia areata induced in C3H/HeJ mice by interferon-gamma: Evidence for loss of immune privilege publication-title: J. Investig. Dermatol. doi: 10.1111/j.0022-202X.2004.23580.x – volume: 314 start-page: 1447 year: 2006 ident: ref_43 article-title: WNT and DKK determine hair follicle spacing through a reaction-diffusion mechanism publication-title: Science doi: 10.1126/science.1130088 – volume: 203 start-page: 1343 year: 2006 ident: ref_29 article-title: Reprogramming of CTLs into natural killer-like cells in celiac disease publication-title: J. Exp. Med. doi: 10.1084/jem.20060028 – volume: 165 start-page: 275 year: 2004 ident: ref_85 article-title: Mesenchymal-epithelial interactions in the skin: Increased expression of dickkopf1 by palmoplantar fibroblasts inhibits melanocyte growth and differentiation publication-title: J. Cell Biol. doi: 10.1083/jcb.200311122 – volume: 167 start-page: 17 year: 2012 ident: ref_6 article-title: Epitopes, avidity and IgG subclasses of tyrosine hydroxylase autoantibodies in vitiligo and alopecia areata patients publication-title: Br. J. Dermatol. doi: 10.1111/j.1365-2133.2012.10889.x – volume: 63 start-page: 417 year: 2022 ident: ref_32 article-title: Hair Follicle Melanocytes Initiate Autoimmunity in Alopecia Areata: A Trigger Point publication-title: Clin. Rev. Allergy Immunol. doi: 10.1007/s12016-022-08954-w – volume: 72 start-page: 831 year: 2017 ident: ref_5 article-title: Incident alopecia areata and vitiligo in adult women with atopic dermatitis: Nurses’ Health Study 2 publication-title: Allergy doi: 10.1111/all.13128 – volume: 159 start-page: 1077 year: 2008 ident: ref_23 article-title: Evidence that the bulge region is a site of relative immune privilege in human hair follicles publication-title: Br. J. Dermatol. – volume: 13 start-page: 890027 year: 2022 ident: ref_31 article-title: Autoantigen Discovery in the Hair Loss Disorder, Alopecia Areata: Implication of Post-Translational Modifications publication-title: Front. Immunol. doi: 10.3389/fimmu.2022.890027 – volume: 138 start-page: 355 year: 2018 ident: ref_73 article-title: Vitiligo Skin Is Imprinted with Resident Memory CD8 T Cells Expressing CXCR3 publication-title: J. Investig. Dermatol. doi: 10.1016/j.jid.2017.08.038 – volume: 12 start-page: 624517 year: 2021 ident: ref_60 article-title: Translational Research in Vitiligo publication-title: Front. Immunol. doi: 10.3389/fimmu.2021.624517 – ident: ref_92 doi: 10.1371/journal.pone.0240221 – volume: 22 start-page: 1009 year: 2008 ident: ref_86 article-title: Dickkopf 1 (DKK1) regulates skin pigmentation and thickness by affecting Wnt/beta-catenin signaling in keratinocytes publication-title: FASEB J. doi: 10.1096/fj.07-9475com – volume: 2 start-page: 7 year: 2021 ident: ref_16 article-title: Immunopathogenesis of alopecia areata publication-title: Curr. Res. Immunol. doi: 10.1016/j.crimmu.2021.02.001 – volume: 1 start-page: 15011 year: 2015 ident: ref_49 article-title: Vitiligo publication-title: Nat. Rev. Dis. Prim. doi: 10.1038/nrdp.2015.11 – volume: 38 start-page: 687 year: 2024 ident: ref_8 article-title: European expert consensus statement on the systemic treatment of alopecia areata publication-title: J. Eur. Acad. Dermatol. Venereol. doi: 10.1111/jdv.19768 – volume: 1367 start-page: 19 year: 2022 ident: ref_18 article-title: The Immunogenetics of Alopecia areata publication-title: Adv. Exp. Med. Biol. doi: 10.1007/978-3-030-92616-8_2 – volume: 76 start-page: 3053 year: 2021 ident: ref_37 article-title: An integrated scalp and blood biomarker approach suggests the systemic nature of alopecia areata publication-title: Allergy doi: 10.1111/all.14814 – volume: 474 start-page: 216 year: 2011 ident: ref_102 article-title: In vivo imaging of Treg cells providing immune privilege to the haematopoietic stem-cell niche publication-title: Nature doi: 10.1038/nature10160 – volume: 69 start-page: 121 year: 2020 ident: ref_27 article-title: Plasmacytoid dendritic cells as a possible key player to initiate alopecia areata in the C3H/HeJ mouse publication-title: Allergol. Int. doi: 10.1016/j.alit.2019.07.009 – volume: 40 start-page: 363 year: 2022 ident: ref_93 article-title: The genetics of pediatric cutaneous autoimmunity: The sister diseases vitiligo and alopecia areata publication-title: Clin. Dermatol. doi: 10.1016/j.clindermatol.2022.02.009 – volume: 12 start-page: 318 year: 2021 ident: ref_68 article-title: A protective role for autophagy in vitiligo publication-title: Cell Death Dis. doi: 10.1038/s41419-021-03592-0 – volume: 77 start-page: 1 year: 2017 ident: ref_51 article-title: New discoveries in the pathogenesis and classification of vitiligo publication-title: J. Am. Acad. Dermatol. doi: 10.1016/j.jaad.2016.10.048 – volume: 447 start-page: 316 year: 2007 ident: ref_44 article-title: Wnt-dependent de novo hair follicle regeneration in adult mouse skin after wounding publication-title: Nature doi: 10.1038/nature05766 – volume: 18 start-page: 845 year: 2022 ident: ref_17 article-title: Translational impact of omics studies in alopecia areata: Recent advances and future perspectives publication-title: Expert. Rev. Clin. Immunol. doi: 10.1080/1744666X.2022.2096590 – volume: 16 start-page: 937 year: 2017 ident: ref_83 article-title: Biomarkers of disease activity in vitiligo: A systematic review publication-title: Autoimmun. Rev. doi: 10.1016/j.autrev.2017.07.005 – volume: 12 start-page: 652191 year: 2021 ident: ref_101 article-title: Resident Memory T Cells in Autoimmune Skin Diseases publication-title: Front. Immunol. doi: 10.3389/fimmu.2021.652191 – volume: 57 start-page: e13562 year: 2023 ident: ref_45 article-title: Involvement of DKK1 secreted from adipose-derived stem cells in alopecia areata publication-title: Cell Prolif. doi: 10.1111/cpr.13562 – volume: 25 start-page: E1 year: 2012 ident: ref_48 article-title: Revised classification/nomenclature of vitiligo and related issues: The Vitiligo Global Issues Consensus Conference publication-title: Pigment. Cell Melanoma Res. doi: 10.1111/j.1755-148X.2012.00997.x – volume: 12 start-page: e80768 year: 2023 ident: ref_35 article-title: Involvement of ILC1-like innate lymphocytes in human autoimmunity, lessons from alopecia areata publication-title: Elife doi: 10.7554/eLife.80768 – volume: 140 start-page: 29 year: 2020 ident: ref_100 article-title: Harnessing the Power of Regenerative Therapy for Vitiligo and Alopecia Areata publication-title: J. Investig. Dermatol. doi: 10.1016/j.jid.2019.03.1142 – volume: 130 start-page: 1813 year: 2010 ident: ref_79 article-title: Genetic variants of the DDR1 gene are associated with vitiligo in two independent Brazilian population samples publication-title: J. Investig. Dermatol. doi: 10.1038/jid.2010.34 |
SSID | ssj0023259 |
Score | 2.482186 |
SecondaryResourceType | review_article |
Snippet | Both alopecia areata (AA) and vitiligo are distinct, heterogenous, and complex disease entities, characterized by nonscarring scalp terminal hair loss and skin... |
SourceID | proquest gale pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 4409 |
SubjectTerms | Alopecia Alopecia Areata - etiology Alopecia Areata - immunology Alopecia Areata - metabolism Alopecia Areata - pathology Animals Antigens Autophagy B cells Baldness Biological response modifiers Biomarkers Celiac disease Chemokines Cytokines Cytokines - metabolism Cytomegalovirus Cytotoxicity Dendritic cells Dermatitis Hair loss Humans Immune Privilege Interferon Interleukins Intermedin Keratin Ligands Lymphocytes Monoclonal antibodies Pathogenesis Pharmaceutical industry Psoriasis Skin T cells Thyroid diseases Transforming growth factors Viral infections Vitiligo Vitiligo - etiology Vitiligo - immunology Vitiligo - metabolism Vitiligo - pathology |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB61VEi9oL5Ju0WpVNRDFWE7Xj96qVZttwgE4lAQtyhxbBS0JNDdPfTfdybxbgGpHCM_ZI3tb76Jx_4APnJvHNLwKlNl0Jn0NmS2FgiGVpXcSeespgvOR8dq_1QenI_P4w-3eUyrXGFiD9R15-gf-V7eB3JG5err9U1GqlF0uholNB7DE46ehlK6zPTnOuDKRS-WxtEHZWps1ZD4nmOYv9dcXs3R-xspKRXxlku6D8z36GbvdqbPYCvyxXQyTPBzeOTbF7A5KEj-eQmHJ8jgugsCrGaediGdzLpeUR5bIMqWadnW6VmzaGbNRfclpesgA_XGALkv-x4FUhAuXsHp9Mevb_tZ1EfInBRykSlhapYHLpgSMjDmxsKy3MtKly6Q4xWhYlXFMYITAQMVoWprWF0Fa7UzSDVew0bbtX4bUi-ls6zywZVa1l4bZFG1pFNHlmv8TuDzykSFi4-Hk4bFrMAgggxa3DZoArvr2tfDoxn_qfeJrF3QXsLeXBmvBOCY6FWqYoLgwa3mgicwulMT94C7W7yaryLuwXnxb8Uk8GFdTC0pr6z13bKvg4Bk0UMn8GaY5_WIc6M00jf59uHO38FTgURnyOYZwcbi99K_R6KyqHb61fgXfwLjtg priority: 102 providerName: ProQuest |
Title | Pathogenesis of Alopecia Areata and Vitiligo: Commonalities and Differences |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38673994 https://www.proquest.com/docview/3046908636 https://www.proquest.com/docview/3047949471 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED-6lsFexrqveuuCBy17GN5kWdFHYZS0a1pWWspYRt6MLUvFI7PbJoX2v--d7YSm-3gxGJ1scZLufifp9APYip22CMPzSGZeRcIZH5mCozE0MoutsNYoSnA-OZVHI_Ft3B-vwJxttFPg9K-hHfFJja4mn24ub3dxwn-hiBND9s_lr99T9ORaCMrkW0OfpIjL4EQs9hMQNjS0abTgEZGBbo_A_1F7yTk9NNEPgGfjgIbP4GmHHMNB29XrsOKq5_C45ZK8fQHHZ4jl6nMyXeU0rH04mNQNtzzWQHubhVlVhD_LWTkpz-udkBJDWhCOoXJT9rWjSkHD8RJGw4Mf-0dRx5QQWcHFLJJcFyzxMWeSC8-Y7XPDEidylVlPLpj7nOV5jLEc9xiycFkYzYrcG6OsRtDxClarunIbEDohrGG58zZTonBKI54qBO0_skThewAf5ypKbXeNOLFZTFIMJ0ih6X2FBrC9kL5or8_4h9wH0nZK_Yxfs1mXHIBtovup0gGakdiomMcBbC5J4mywy8Xz_krngylNmkUALRMZwPtFMdWkE2aVq68bGTRNBn11AK_bfl60ONFSIZATb_7_77fwhCPkac_1bMLq7OravUPIMst78EiNFT718LAHa3sHp2ffe-RE-r1mnN4BlEvqVA |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RUFUuCPoM0DaVinqoIhzHa8dIVbUq3S5dQD1AxS0kjo2ClgTYRYg_xW_sTB5bQGpvHCOPLWs8j2_iGQ_Ax9DGBmF4FsjUqUBY7QKdczSGWqahEcZoRQXOe_tyeCh-HvWO5uC2q4WhtMrOJtaGOq8M_SPfjOpALpaR_Hp-EVDXKLpd7VpoNGIxsjfXGLJNvuxs4_lucD74fvBtGLRdBQIjuJgGksc5i1zImeTCMWZ6XLPIikylxpG74i5jWRZi3MMdwnsucx2zPHNaKxOjg8Z1n8CCiNCTU2X64McswIt43ZwtxEUC2dOySbRHQrZZnJ5NEG3EQlDq4x0X-NARPIC3tZsbLMNSi0_9fiNQKzBny-fwtOlYefMCRr8QMVYnZCCLiV85vz-u6g72OAOteuqnZe7_LqbFuDiptnwqP2mgPgbk9dh225AFzdNLOHwUzr2C-bIq7RvwrRBGs8w6kyqRWxUjassF3XKySOG3B587FiWmfaycemaMEwxaiKHJXYZ6sDGjPm8e6fgH3SfidkK6i6uZtC1BwD3RK1hJH41VqFXIQw_W71Gizpn7w915Ja3OT5K_EurBh9kwzaQ8ttJWVzUNGkCNiMCD1805z3YcxVIhXBSr_1_8PTwbHuztJrs7-6M1WOQIsppMonWYn15e2bcIkqbZu1oyfTh-bFX4A2IyHns |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTqC9oPG5wIAgMfGAojqOa8eTECp01UahqhBDewuJY0-ZumTQTmj_Gn8dd_ko2yR422Pk88k627_7XXz2AbwKbWyQhmeBTJ0KhNUu0DlHMNQyDY0wRiu64Px5KvcPxcejwdEa_O7uwlBaZYeJNVDnlaF_5P2oDuRiGcm-a9MiZqPxu7MfAVWQopPWrpxGs0Qm9uIXhm-LtwcjnOsdzsd7Xz_sB22FgcAILpaB5HHOIhdyJrlwjJkB1yyyIlOpceS6uMtYloUYA3GHVJ_LXMcsz5zWysTorFHvLVhXFBX1YP393nT2ZRXuRbwu1RaimkAOtGzS7qNIs35xcrpA7hELQYmQlxzidbdwjezWTm-8CXdbtuoPm-V1D9ZseR9uN_UrLx7AZIb8sTomuCwWfuX84byq69ljD8T41E_L3P9WLIt5cVzt-nQZpSH-GJ7XbaO2PAuC1UM4vBHbPYJeWZV2C3wrhNEss86kSuRWxcjhckFnnixS-O3Bm85EiWmfLqcKGvMEQxgyaHLZoB7srKTPmic7_iH3mqyd0E5GbSZtLyTgmOhNrGSI0BVqFfLQg-0rkrgDzdXmbr6SFgEWyd_16sHLVTP1pKy20lbntQzCoUZ-4MHjZp5XI45iqZA8iif_V_4C7uA2SD4dTCdPYYMj42rSiraht_x5bp8hY1pmz9ul6cP3m94NfwDBeSQN |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pathogenesis+of+Alopecia+Areata+and+Vitiligo%3A+Commonalities+and+Differences&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Yamaguchi%2C+Hiroki+L&rft.au=Yamaguchi%2C+Yuji&rft.au=Peeva%2C+Elena&rft.date=2024-04-01&rft.pub=MDPI+AG&rft.issn=1422-0067&rft.volume=25&rft.issue=8&rft_id=info:doi/10.3390%2Fijms25084409&rft.externalDocID=A793197121 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon |