On evolutionary system identification with applications to nonlinear benchmarks
•The paper presents the research associated with the VUB Workshop on Nonlinear System Identification.•A summary of a keynote from the meeting is presented, providing an overview and analysis of evolutionary and Bayesian frameworks for identification.•New evolutionary algorithms (to SI) are introduce...
Saved in:
Published in | Mechanical systems and signal processing Vol. 112; pp. 194 - 232 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin
Elsevier Ltd
01.11.2018
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •The paper presents the research associated with the VUB Workshop on Nonlinear System Identification.•A summary of a keynote from the meeting is presented, providing an overview and analysis of evolutionary and Bayesian frameworks for identification.•New evolutionary algorithms (to SI) are introduced, leading to the best benchmark results in two out of three cases.•A new hybrid/grey box approach is presented, based on evolutionary optimisation of a physics-based model combined with Gaussian process NARX models.
This paper presents a record of the participation of the authors in a workshop on nonlinear system identification held in 2016. It provides a summary of a keynote lecture by one of the authors and also gives an account of how the authors developed identification strategies and methods for a number of benchmark nonlinear systems presented as challenges, before and during the workshop. It is argued here that more general frameworks are now emerging for nonlinear system identification, which are capable of addressing substantial ranges of problems. One of these frameworks is based on evolutionary optimisation (EO); it is a framework developed by the authors in previous papers and extended here. As one might expect from the ‘no-free-lunch’ theorem for optimisation, the methodology is not particularly sensitive to the particular (EO) algorithm used, and a number of different variants are presented in this paper, some used for the first time in system identification problems, which show equal capability. In fact, the EO approach advocated in this paper succeeded in finding the best solutions to two of the three benchmark problems which motivated the workshop. The paper provides considerable discussion on the approaches used and makes a number of suggestions regarding best practice; one of the major new opportunities identified here concerns the application of grey-box models which combine the insight of any prior physical-law based models (white box) with the power of machine learners with universal approximation properties (black box). |
---|---|
AbstractList | •The paper presents the research associated with the VUB Workshop on Nonlinear System Identification.•A summary of a keynote from the meeting is presented, providing an overview and analysis of evolutionary and Bayesian frameworks for identification.•New evolutionary algorithms (to SI) are introduced, leading to the best benchmark results in two out of three cases.•A new hybrid/grey box approach is presented, based on evolutionary optimisation of a physics-based model combined with Gaussian process NARX models.
This paper presents a record of the participation of the authors in a workshop on nonlinear system identification held in 2016. It provides a summary of a keynote lecture by one of the authors and also gives an account of how the authors developed identification strategies and methods for a number of benchmark nonlinear systems presented as challenges, before and during the workshop. It is argued here that more general frameworks are now emerging for nonlinear system identification, which are capable of addressing substantial ranges of problems. One of these frameworks is based on evolutionary optimisation (EO); it is a framework developed by the authors in previous papers and extended here. As one might expect from the ‘no-free-lunch’ theorem for optimisation, the methodology is not particularly sensitive to the particular (EO) algorithm used, and a number of different variants are presented in this paper, some used for the first time in system identification problems, which show equal capability. In fact, the EO approach advocated in this paper succeeded in finding the best solutions to two of the three benchmark problems which motivated the workshop. The paper provides considerable discussion on the approaches used and makes a number of suggestions regarding best practice; one of the major new opportunities identified here concerns the application of grey-box models which combine the insight of any prior physical-law based models (white box) with the power of machine learners with universal approximation properties (black box). This paper presents a record of the participation of the authors in a workshop on nonlinear system identification held in 2016. It provides a summary of a keynote lecture by one of the authors and also gives an account of how the authors developed identification strategies and methods for a number of benchmark nonlinear systems presented as challenges, before and during the workshop. It is argued here that more general frameworks are now emerging for nonlinear system identification, which are capable of addressing substantial ranges of problems. One of these frameworks is based on evolutionary optimisation (EO); it is a framework developed by the authors in previous papers and extended here. As one might expect from the 'no-free-lunch' theorem for optimisation, the methodology is not particularly sensitive to the particular (EO) algorithm used, and a number of different variants are presented in this paper, some used for the first time in system identification problems, which show equal capability. In fact, the EO approach advocated in this paper succeeded in finding the best solutions to two of the three benchmark problems which motivated the workshop. The paper provides considerable discussion on the approaches used and makes a number of suggestions regarding best practice; one of the major new opportunities identified here concerns the application of grey-box models which combine the insight of any prior physical-law based models (white box) with the power of machine learners with universal approximation properties (black box). |
Author | Barthorpe, R.J. Rogers, T.J. Cross, E.J. Holmes, G.R. Worden, K. Dervilis, N. Manson, G. |
Author_xml | – sequence: 1 givenname: K. surname: Worden fullname: Worden, K. email: k.worden@sheffield.ac.uk – sequence: 2 givenname: R.J. surname: Barthorpe fullname: Barthorpe, R.J. – sequence: 3 givenname: E.J. surname: Cross fullname: Cross, E.J. – sequence: 4 givenname: N. surname: Dervilis fullname: Dervilis, N. – sequence: 5 givenname: G.R. surname: Holmes fullname: Holmes, G.R. – sequence: 6 givenname: G. surname: Manson fullname: Manson, G. – sequence: 7 givenname: T.J. surname: Rogers fullname: Rogers, T.J. |
BookMark | eNp9kE9PwzAMxSM0JLbBJ-ASiXOLk7RdeuCAJv5Jk3aBc5Q1jpbSJSXphvbt6RhnTpbs9-zn34xMfPBIyC2DnAGr7tv8uEupzzkwmUORA7ALMmVQVxnjrJqQKUgpM8EXcEVmKbUAUBdQTcl67SkeQrcfXPA6Hmk6pgF31Bn0g7Ou0acB_XbDluq-7_4aiQ6BjiE651FHukHfbHc6fqZrcml1l_Dmr87Jx_PT-_I1W61f3paPq6wpeDFkFZPIBErYbGppNerKIiKzII0phAGOtdbW8JKhQGMXDLkwGgppRV2Vi0bMyd15bx_D1x7ToNqwj348qXhZiJIJIfmoEmdVE0NKEa3qoxtzHhUDdSKnWvVLTp3IKSjUSG50PZxdOD5wcBhVatz4IRoXsRmUCe5f_w9TzXyR |
CitedBy_id | crossref_primary_10_1177_0954406220910451 crossref_primary_10_1016_j_ymssp_2020_106842 crossref_primary_10_1007_s11071_019_05443_2 crossref_primary_10_1016_j_ymssp_2021_108401 crossref_primary_10_1016_j_ymssp_2020_107134 crossref_primary_10_1016_j_ymssp_2021_107751 crossref_primary_10_1115_1_4046740 crossref_primary_10_1016_j_conengprac_2020_104546 crossref_primary_10_3390_axioms10030137 crossref_primary_10_1016_j_ymssp_2023_110405 crossref_primary_10_1016_j_ymssp_2022_109815 crossref_primary_10_1017_dce_2024_2 crossref_primary_10_3390_vibration4030036 crossref_primary_10_3390_s23167049 crossref_primary_10_1016_j_ymssp_2018_11_044 crossref_primary_10_1016_j_jsv_2022_117212 crossref_primary_10_1109_LCSYS_2020_2994806 crossref_primary_10_1115_1_4046739 crossref_primary_10_1016_j_jsv_2024_118295 crossref_primary_10_3390_s20071980 crossref_primary_10_1016_j_ymssp_2020_107528 crossref_primary_10_1007_s11071_019_05430_7 crossref_primary_10_1016_j_aei_2023_101914 crossref_primary_10_1016_j_ymssp_2021_107741 crossref_primary_10_1080_00207179_2021_1978555 crossref_primary_10_1016_j_ymssp_2022_109971 crossref_primary_10_1016_j_ymssp_2022_109984 crossref_primary_10_1016_j_ymssp_2021_108143 crossref_primary_10_1016_j_ymssp_2022_109426 crossref_primary_10_1016_j_ymssp_2022_109649 crossref_primary_10_1016_j_apm_2019_10_068 crossref_primary_10_1016_j_infsof_2022_107145 crossref_primary_10_1017_aer_2023_8 |
Cites_doi | 10.1016/j.automatica.2009.10.031 10.1016/j.automatica.2011.07.007 10.1061/(ASCE)0733-9399(1985)111:8(1010) 10.1016/0022-460X(87)90442-1 10.1061/(ASCE)0733-9399(1998)124:4(455) 10.1115/1.3269364 10.1137/S1052623497318992 10.1049/el.2014.3649 10.1016/j.icesjms.2004.03.028 10.1016/j.ymssp.2005.09.004 10.1016/j.ymssp.2005.04.008 10.1016/j.ymssp.2017.09.032 10.1016/j.ymssp.2012.01.004 10.1016/j.automatica.2013.12.027 10.3182/20120711-3-BE-2027.00135 10.1061/(ASCE)0733-9399(2004)130:2(192) 10.1016/j.ymssp.2012.01.005 10.1109/TEVC.2009.2014613 10.1093/comjnl/7.2.149 10.1016/j.tcs.2008.07.005 10.1016/j.conengprac.2012.07.001 10.1080/00207721.2015.1027758 10.1016/j.cnsns.2012.05.010 10.1016/j.ymssp.2016.07.020 10.1109/9.847103 10.1016/j.mechmachtheory.2013.10.009 10.1016/j.ymssp.2010.07.013 10.1061/(ASCE)0733-9399(2002)128:4(380) 10.1007/978-3-319-54930-9_31 10.1016/j.automatica.2014.01.001 10.1177/1077546307079400 10.1016/j.automatica.2008.02.016 10.1016/0888-3270(92)90061-M 10.1016/j.ymssp.2017.06.017 10.1023/A:1008202821328 10.1061/JMCEA3.0002106 10.1109/9.376053 10.1109/4235.585893 |
ContentType | Journal Article |
Copyright | 2018 The Authors Copyright Elsevier BV Nov 2018 |
Copyright_xml | – notice: 2018 The Authors – notice: Copyright Elsevier BV Nov 2018 |
DBID | 6I. AAFTH AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.ymssp.2018.04.001 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1096-1216 |
EndPage | 232 |
ExternalDocumentID | 10_1016_j_ymssp_2018_04_001 S0888327018301912 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADFGL ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CAG COF CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG5 LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SPD SST SSV SSZ T5K WUQ XPP ZMT ZU3 ~G- AAXKI AAYXX AFJKZ AKRWK CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c424t-618e13e80bb98faea6feee1f08dd43d02e9aafd251e3edf71e23da048f39657c3 |
IEDL.DBID | AIKHN |
ISSN | 0888-3270 |
IngestDate | Thu Oct 10 17:17:30 EDT 2024 Thu Sep 26 17:52:03 EDT 2024 Fri Feb 23 02:47:30 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Differential evolution SADE JADE Evolutionary optimisation Nonlinear system identification White-, grey-, black-box models |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c424t-618e13e80bb98faea6feee1f08dd43d02e9aafd251e3edf71e23da048f39657c3 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0888327018301912 |
PQID | 2543513382 |
PQPubID | 2045429 |
PageCount | 39 |
ParticipantIDs | proquest_journals_2543513382 crossref_primary_10_1016_j_ymssp_2018_04_001 elsevier_sciencedirect_doi_10_1016_j_ymssp_2018_04_001 |
PublicationCentury | 2000 |
PublicationDate | 2018-11-01 |
PublicationDateYYYYMMDD | 2018-11-01 |
PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin |
PublicationPlace_xml | – name: Berlin |
PublicationTitle | Mechanical systems and signal processing |
PublicationYear | 2018 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Worden, Wong, Parlitz, Hornstein, Engster, Tjahjiwidodo, Al-Bender, Risos, Fassois (b0170) 2007; 21 Schoukens, Vandersteen, Rolain, Ferranti (b0230) 2014; 50 Barber (b0060) 2012 Storn, Price (b0095) 1997; 11 A. Qin, P. Suganthan, Self-adaptive differential evolution algorithm for numerical optimization, in: 2005 IEEE Congress on Evolutionary Computation, 2005, pp. 1785–1791. Wolpert, Macready (b0005) 1997; 1 Hofmann, Haskell, Klinck, Lascara (b0320) 2004; 61 Beck, Au (b0125) 2002; 128 J. Judd, Analytical Modeling of Wood-frame Shear Walls and Diaphragms (Masters Thesis), Brigham Young University, 2005. Malik, Rahman, Hashim, Ngah (b0305) 2007; 1 Klir (b0040) 2005 Dai, Yuan (b0340) 1999; 10 Abdessalem, Dervilis, Wagg, Worden (b0200) 2018; 99 Baber, Noori (b0190) 1985; 111 M. Schoukens, P. Mattsson, T. Wigren, J.-P. Noël, Cascaded Tanks Benchmark Combining Soft and Hard Nonlinearities, Technical Report: ELEC Department, Vrije Universiteit Brussel, Brussels, Belgium, 2016. Billings (b0055) 2013 Sjöberg, Schoukens (b0270) 2012; 48 Nelles (b0345) 2013 Beck, Yuen (b0130) 2004; 130 Sjöberg, Lauwers, Schoukens (b0235) 2012; 20 R. Eberhart, J. Kennedy, et al., A new optimizer using particle swarm theory, in: Proceedings of the 6th International Symposium on Micro Machine and Human Science, New York, vol. 1, 1995, pp. 39–43. Hagenblad, Ljung, Wills (b0290) 2008; 44 Muto, Beck (b0135) 2008; 14 M. Schoukens, K. Worden, Evolutionary identification of block-structured systems, in: Proceedings of IMAC XXXV – 35th International Modal Analysis Conference, 2017. Piatkowski (b0160) 2014; 73 A. Marconato, J. Sjöberg, J. Suykens, J. Schoukens, Identification of the Silverbox benchmark using nonlinear state-space models, in: 16th IFAC Symposium on System Identification (SYSID), 2012, pp. 632–637. Chen, Fassois (b0285) 1992; 6 J. Sun, B. Feng, W. Xu, Particle swarm optimization with particles having quantum behavior, in: Congress on Evolutionary Computation, 2004. Girolami (b0140) 2008; 408 Gandomi, Alavi (b0315) 2012; 17 Baber, Noori (b0195) 1986; 108 Worden, Hensman, Staszewski (b0070) 2011; 25 Ljung (b0010) 1999 Bishop (b0065) 2007 O. Dewhirst, D. Simpson, N. Angarita, R. Allen, P. Newland, Wiener-Hammerstein parameter estimation using differential evolution: application to limb reflex dynamics, in: International Conference on Bio-inspired Systems and Signal Processing, 2010, pp. 271–276. Beck (b0115) 1919 R. Bouc, Forced vibration of mechanical systems with hysteresis, in: Proceedings of the 4th Conference on Non-linear Oscillation, Prague, Czechoslovakia, 1967. Worden, Manson (b0075) 2012; 29 Kerschen, Worden, Vakakis, Golinval (b0030) 2006; 20 Visitin (b0175) 1994 Mackay (b0105) 2003 de Wit, Olsson, Aström, Lischinky (b0155) 1995; 40 Worden, Tomlinson (b0025) 2001 Beck, Katafygiotis (b0120) 1998; 124 Naitali, Giri (b0245) 2016; 47 Popper (b0150) 1959 Ewins (b0020) 2000 B. Calderhead, M. Girolami, D. Higham, Is it safe to go out yet? Statistical inference in a zombie outbreak model, Preprint, University of Strathclyde, Department of Mathematics and Statistics, 2010. Worden, Becker (b0100) 2012; 29 Bishop (b0110) 2013 Rasmussen, Williams (b0325) 2006 Pillonetto, Nicolao (b0045) 2010; 46 Billings, Fakhouri (b0265) 1978; 125 Worden, Becker, Rogers, Cross (b0330) 2018; 104 Zhang, Sanderson (b0215) 2009; 13 Söderstrom, Stoica (b0015) 1994 Fletcher, Reeves (b0335) 1964; 7 J.-P. Nöel, G. Kerschen, 10 years of advances in nonlinear system identification in structural dynamics: a review, in: Proceedings of ISMA 2016-International Conference on Noise and Vibration Engineering, 2016. Swevers, Al-Bender, Ganesman, Prajogo (b0165) 2000; 45 Wen (b0085) 1976; 102 Baber, Wen (b0185) 1981; 107 J. Noël, M. Schoukens, Hysteretic Benchmark With a Dynamic Nonlinearity, Technical Report: Aerospace and Mechanical Engineering Department, University of Liége, 2015. V. Huang, A. Qin, P. Suganthan, Self-adaptive differential evolution algorithm for constrained real-parameter optimization, in: IEEE Congress on Evolutionary Computation, Vancouver, Canada, 2006, pp. 17–24. Pillonetto, Dinuzzo, Chen, Nicolao, Ljung (b0050) 2014; 50 M. Schoukens, J. Noël, Wiener-Hammerstein Benchmark with Process Noise, Technical Report:, ELEC Department, Vrije Universiteit Brussel, Brussels, Belgium, 2015. Yar, Hammond (b0090) 1987; 117 A. Abdessalem, N. Dervilis, D. Wagg, K. Worden, Model selection and parameter estimation of dynamical systems using a novel variant of approximate Bayesian computation, Mech. Syst. Signal Process. 2018 (submitted for publication). Schoukens, Pintelon, Rolain (b0250) 2014; 50 A. Abdessalem, N. Dervilis, D. Wagg, K. Worden, Identification of nonlinear dynamical systems using approximate Bayesian computation based on a sequential Monte Carlo sampler, in: Proceedings of 27th International Conference on Noise & Vibration Engineering, Leuven, 2016. 10.1016/j.ymssp.2018.04.001_b0205 Storn (10.1016/j.ymssp.2018.04.001_b0095) 1997; 11 Pillonetto (10.1016/j.ymssp.2018.04.001_b0045) 2010; 46 Worden (10.1016/j.ymssp.2018.04.001_b0070) 2011; 25 Abdessalem (10.1016/j.ymssp.2018.04.001_b0200) 2018; 99 Hagenblad (10.1016/j.ymssp.2018.04.001_b0290) 2008; 44 10.1016/j.ymssp.2018.04.001_b0295 Wen (10.1016/j.ymssp.2018.04.001_b0085) 1976; 102 Visitin (10.1016/j.ymssp.2018.04.001_b0175) 1994 10.1016/j.ymssp.2018.04.001_b0255 10.1016/j.ymssp.2018.04.001_b0210 Swevers (10.1016/j.ymssp.2018.04.001_b0165) 2000; 45 Zhang (10.1016/j.ymssp.2018.04.001_b0215) 2009; 13 Bishop (10.1016/j.ymssp.2018.04.001_b0110) 2013 10.1016/j.ymssp.2018.04.001_b0180 Popper (10.1016/j.ymssp.2018.04.001_b0150) 1959 Worden (10.1016/j.ymssp.2018.04.001_b0170) 2007; 21 Mackay (10.1016/j.ymssp.2018.04.001_b0105) 2003 10.1016/j.ymssp.2018.04.001_b0260 Naitali (10.1016/j.ymssp.2018.04.001_b0245) 2016; 47 Worden (10.1016/j.ymssp.2018.04.001_b0025) 2001 Gandomi (10.1016/j.ymssp.2018.04.001_b0315) 2012; 17 Rasmussen (10.1016/j.ymssp.2018.04.001_b0325) 2006 Pillonetto (10.1016/j.ymssp.2018.04.001_b0050) 2014; 50 Chen (10.1016/j.ymssp.2018.04.001_b0285) 1992; 6 Billings (10.1016/j.ymssp.2018.04.001_b0055) 2013 10.1016/j.ymssp.2018.04.001_b0145 Yar (10.1016/j.ymssp.2018.04.001_b0090) 1987; 117 10.1016/j.ymssp.2018.04.001_b0220 10.1016/j.ymssp.2018.04.001_b0225 Worden (10.1016/j.ymssp.2018.04.001_b0100) 2012; 29 10.1016/j.ymssp.2018.04.001_b0300 Schoukens (10.1016/j.ymssp.2018.04.001_b0230) 2014; 50 Hofmann (10.1016/j.ymssp.2018.04.001_b0320) 2004; 61 Bishop (10.1016/j.ymssp.2018.04.001_b0065) 2007 Sjöberg (10.1016/j.ymssp.2018.04.001_b0270) 2012; 48 Nelles (10.1016/j.ymssp.2018.04.001_b0345) 2013 Söderstrom (10.1016/j.ymssp.2018.04.001_b0015) 1994 Billings (10.1016/j.ymssp.2018.04.001_b0265) 1978; 125 Baber (10.1016/j.ymssp.2018.04.001_b0195) 1986; 108 Beck (10.1016/j.ymssp.2018.04.001_b0115) 1919 Malik (10.1016/j.ymssp.2018.04.001_b0305) 2007; 1 Piatkowski (10.1016/j.ymssp.2018.04.001_b0160) 2014; 73 Sjöberg (10.1016/j.ymssp.2018.04.001_b0235) 2012; 20 Girolami (10.1016/j.ymssp.2018.04.001_b0140) 2008; 408 10.1016/j.ymssp.2018.04.001_b0310 10.1016/j.ymssp.2018.04.001_b0035 Klir (10.1016/j.ymssp.2018.04.001_b0040) 2005 10.1016/j.ymssp.2018.04.001_b0275 Dai (10.1016/j.ymssp.2018.04.001_b0340) 1999; 10 Beck (10.1016/j.ymssp.2018.04.001_b0130) 2004; 130 Wolpert (10.1016/j.ymssp.2018.04.001_b0005) 1997; 1 Worden (10.1016/j.ymssp.2018.04.001_b0075) 2012; 29 Muto (10.1016/j.ymssp.2018.04.001_b0135) 2008; 14 Baber (10.1016/j.ymssp.2018.04.001_b0190) 1985; 111 10.1016/j.ymssp.2018.04.001_b0280 10.1016/j.ymssp.2018.04.001_b0080 10.1016/j.ymssp.2018.04.001_b0240 Barber (10.1016/j.ymssp.2018.04.001_b0060) 2012 Beck (10.1016/j.ymssp.2018.04.001_b0120) 1998; 124 de Wit (10.1016/j.ymssp.2018.04.001_b0155) 1995; 40 Baber (10.1016/j.ymssp.2018.04.001_b0185) 1981; 107 Schoukens (10.1016/j.ymssp.2018.04.001_b0250) 2014; 50 Ljung (10.1016/j.ymssp.2018.04.001_b0010) 1999 Beck (10.1016/j.ymssp.2018.04.001_b0125) 2002; 128 Worden (10.1016/j.ymssp.2018.04.001_b0330) 2018; 104 Fletcher (10.1016/j.ymssp.2018.04.001_b0335) 1964; 7 Kerschen (10.1016/j.ymssp.2018.04.001_b0030) 2006; 20 Ewins (10.1016/j.ymssp.2018.04.001_b0020) 2000 |
References_xml | – volume: 99 start-page: 306 year: 2018 end-page: 325 ident: b0200 article-title: Model selection and parameter estimation in structural dynamics using approximate Bayesian computation publication-title: Mech. Syst. Signal Process. contributor: fullname: Worden – volume: 10 start-page: 177 year: 1999 end-page: 182 ident: b0340 article-title: A nonlinear conjugate gradient method with a strong global convergence property publication-title: SIAM J. Optimiz. contributor: fullname: Yuan – volume: 117 start-page: 161 year: 1987 end-page: 172 ident: b0090 article-title: Parameter estimation for hysteretic systems publication-title: J. Sound Vib. contributor: fullname: Hammond – year: 2013 ident: b0110 article-title: Pattern Recognition and Machine Learning contributor: fullname: Bishop – volume: 25 start-page: 4 year: 2011 end-page: 11 ident: b0070 article-title: Natural computing for mechanical systems research: a tutorial overview publication-title: Mech. Syst. Signal Process. contributor: fullname: Staszewski – year: 2012 ident: b0060 article-title: Bayesian Reasoning and Machine Learning contributor: fullname: Barber – volume: 21 start-page: 514 year: 2007 end-page: 524 ident: b0170 article-title: Identification of pre-sliding and sliding friction dynamics: grey box and black box models publication-title: Mech. Syst. Signal Process. contributor: fullname: Fassois – volume: 1 start-page: 35 year: 2007 end-page: 44 ident: b0305 article-title: New particle swarm optimizer with sigmoid increasing inertia weight publication-title: Int. J. Comput. Sci. Secur. contributor: fullname: Ngah – year: 1994 ident: b0175 article-title: Differential Models of Hysteresis contributor: fullname: Visitin – volume: 29 start-page: 213 year: 2012 end-page: 227 ident: b0100 article-title: On the identification of hysteretic systems, Part II: Bayesian sensitivity analysis and parameter confidence publication-title: Mech. Syst. Signal Process. contributor: fullname: Becker – volume: 50 start-page: 657 year: 2014 end-page: 682 ident: b0050 article-title: Kernel methods in system identification, machine learning and function estimation: a survey publication-title: Automatica contributor: fullname: Ljung – year: 2005 ident: b0040 article-title: Uncertainty and Information: Foundations of Generalized Information Theory contributor: fullname: Klir – year: 1999 ident: b0010 article-title: System Identification: Theory for the User contributor: fullname: Ljung – volume: 20 start-page: 505 year: 2006 end-page: 592 ident: b0030 article-title: Past, present and future of nonlinear system identification in structural dynamics publication-title: Mech. Syst. Signal Process. contributor: fullname: Golinval – volume: 50 start-page: 1942 year: 2014 end-page: 1944 ident: b0230 article-title: Fast identification of Wiener-Hammerstein systems using discrete optimization publication-title: IET Electron. Lett. contributor: fullname: Ferranti – year: 2000 ident: b0020 article-title: Modal Testing: Theory, Practice and Application contributor: fullname: Ewins – year: 2001 ident: b0025 article-title: Nonlinearity in Structural Dynamics: Detection, Modelling and Identification contributor: fullname: Tomlinson – volume: 1 start-page: 67 year: 1997 ident: b0005 article-title: No free lunch theorems for optimization publication-title: IEEE Trans. Evol. Comput. contributor: fullname: Macready – volume: 48 start-page: 353 year: 2012 end-page: 359 ident: b0270 article-title: Initializing Wiener-Hammerstein models based on partitioning of the best linear approximation publication-title: Automatica contributor: fullname: Schoukens – volume: 11 start-page: 341 year: 1997 end-page: 359 ident: b0095 article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces publication-title: J. Global Optim. contributor: fullname: Price – volume: 47 start-page: 45 year: 2016 end-page: 61 ident: b0245 article-title: Wiener-Hammerstein system identification – an evolutionary approach publication-title: Int. J. Syst. Sci. contributor: fullname: Giri – volume: 111 start-page: 1010 year: 1985 end-page: 1026 ident: b0190 article-title: Random vibration of degrading pinching systems publication-title: ASCE J. Eng. Mech. contributor: fullname: Noori – year: 2007 ident: b0065 article-title: Pattern Recognition and Machine Learning (Information Science and Statistics) contributor: fullname: Bishop – volume: 14 start-page: 7 year: 2008 end-page: 34 ident: b0135 article-title: Bayesian updating and model class selection for hysteretic structural models using stochastic simulation publication-title: J. Vib. Control contributor: fullname: Beck – volume: 73 start-page: 91 year: 2014 end-page: 100 ident: b0160 article-title: Dahl and LuGre dynamic friction models – the analysis of selected properties publication-title: Mech. Mach. Theory contributor: fullname: Piatkowski – volume: 45 start-page: 675 year: 2000 end-page: 686 ident: b0165 article-title: An integrated friction model structure with improved presliding behavior for accurate friction compensation publication-title: IEEE Trans. Autom. Control contributor: fullname: Prajogo – volume: 108 start-page: 411 year: 1986 end-page: 420 ident: b0195 article-title: Modeling general hysteresis behaviour and random vibration applications publication-title: J. Vib. Acoust. Stress Reliab. Des. contributor: fullname: Noori – year: 2013 ident: b0055 article-title: Nonlinear System Identification: NARMAX, Methods in the Time, Frequency, and Spatio-Temporal Domains contributor: fullname: Billings – volume: 61 start-page: 617 year: 2004 end-page: 631 ident: b0320 article-title: Lagrangian modelling studies of Antarctic krill ( publication-title: ICES J. Mar. Sci.: J. Conseil contributor: fullname: Lascara – volume: 50 start-page: 628 year: 2014 end-page: 634 ident: b0250 article-title: Identification of Wiener-Hammerstein systems by a nonparametric separation of the best linear approximation publication-title: Automatica contributor: fullname: Rolain – volume: 6 start-page: 135 year: 1992 end-page: 153 ident: b0285 article-title: Maximum likelihood identification of stochastic Wiener-Hammerstein-type non-linear systems publication-title: Mech. Syst. Signal Process. contributor: fullname: Fassois – volume: 40 start-page: 419 year: 1995 end-page: 425 ident: b0155 article-title: New model for control of systems with friction publication-title: IEEE Trans. Autom. Control contributor: fullname: Lischinky – year: 2013 ident: b0345 article-title: Nonlinear System Identification: from Classical Approaches to Neural Networks and Fuzzy Models contributor: fullname: Nelles – start-page: 1395 year: 1919 end-page: 1402 ident: b0115 article-title: Statistical system identification of structures publication-title: Proceedings of 5th International Conference on Structural Safety and Reliability contributor: fullname: Beck – volume: 44 start-page: 2697 year: 2008 end-page: 2705 ident: b0290 article-title: Maximum likelihood identification of Wiener models publication-title: Automatica contributor: fullname: Wills – volume: 125 start-page: 691 year: 1978 end-page: 697 ident: b0265 article-title: Identification of a class of nonlinear systems using correlation analysis publication-title: Proc. IEE contributor: fullname: Fakhouri – volume: 7 start-page: 149 year: 1964 end-page: 154 ident: b0335 article-title: Function minimization by conjugate gradients publication-title: Comput. J. contributor: fullname: Reeves – volume: 102 start-page: 249 year: 1976 end-page: 263 ident: b0085 article-title: Method for random vibration of hysteretic systems publication-title: J. Eng. Mech. Div. contributor: fullname: Wen – volume: 124 start-page: 455 year: 1998 end-page: 461 ident: b0120 article-title: Updating models and their uncertainties. I: Bayesian statistical framework publication-title: ASCE J. Eng. Mech. contributor: fullname: Katafygiotis – volume: 29 start-page: 201 year: 2012 end-page: 212 ident: b0075 article-title: On the identification of hysteretic systems, Part I: fitness landscapes and evolutionary identification publication-title: Mech. Syst. Signal Process. contributor: fullname: Manson – volume: 130 start-page: 192 year: 2004 end-page: 203 ident: b0130 article-title: Model selection using response measurements: Bayesian probabilistic approach publication-title: ASCE J. Eng. Mech. contributor: fullname: Yuen – volume: 104 start-page: 188 year: 2018 end-page: 233 ident: b0330 article-title: On the confidence bounds of Gaussian process NARX models and their higher-order frequency response functions publication-title: Mech. Syst. Signal Process. contributor: fullname: Cross – volume: 128 start-page: 380 year: 2002 end-page: 391 ident: b0125 article-title: Bayesian updating of structural models and reliability using Markov chain Monte Carlo simulation publication-title: ASCE J. Eng. Mech. contributor: fullname: Au – year: 2006 ident: b0325 article-title: Gaussian Processes for Machine Learning contributor: fullname: Williams – volume: 46 start-page: 81 year: 2010 end-page: 93 ident: b0045 article-title: A new kernel-based approach for linear system identification publication-title: Automatica contributor: fullname: Nicolao – year: 1959 ident: b0150 article-title: The Logic of Scientific Discovery contributor: fullname: Popper – volume: 20 start-page: 1119 year: 2012 end-page: 1125 ident: b0235 article-title: Identification of Wiener-Hammerstein models: two algorithms based on the best split of a linear model applied to the SYSID’09 benchmark problem publication-title: Control Eng. Pract. contributor: fullname: Schoukens – year: 2003 ident: b0105 publication-title: Information Theory, Inference and Learning Algorithms contributor: fullname: Mackay – year: 1994 ident: b0015 article-title: System Identification contributor: fullname: Stoica – volume: 107 start-page: 1069 year: 1981 end-page: 1089 ident: b0185 article-title: Random vibrations of hysteretic degrading systems publication-title: ASCE J. Eng. Mech. contributor: fullname: Wen – volume: 13 start-page: 945 year: 2009 end-page: 958 ident: b0215 article-title: JADE: adaptive differential evolution with optional external archive publication-title: IEEE Trans. Evol. Comput. contributor: fullname: Sanderson – volume: 17 start-page: 4831 year: 2012 end-page: 4845 ident: b0315 article-title: Krill herd: a new bio-inspired optimization algorithm publication-title: Commun. Nonlinear Sci. Numer. Simul. contributor: fullname: Alavi – volume: 408 start-page: 4 year: 2008 end-page: 16 ident: b0140 article-title: Bayesian inference for differential equations publication-title: Theoret. Comput. Sci. contributor: fullname: Girolami – volume: 46 start-page: 81 year: 2010 ident: 10.1016/j.ymssp.2018.04.001_b0045 article-title: A new kernel-based approach for linear system identification publication-title: Automatica doi: 10.1016/j.automatica.2009.10.031 contributor: fullname: Pillonetto – ident: 10.1016/j.ymssp.2018.04.001_b0240 – volume: 48 start-page: 353 year: 2012 ident: 10.1016/j.ymssp.2018.04.001_b0270 article-title: Initializing Wiener-Hammerstein models based on partitioning of the best linear approximation publication-title: Automatica doi: 10.1016/j.automatica.2011.07.007 contributor: fullname: Sjöberg – volume: 111 start-page: 1010 year: 1985 ident: 10.1016/j.ymssp.2018.04.001_b0190 article-title: Random vibration of degrading pinching systems publication-title: ASCE J. Eng. Mech. doi: 10.1061/(ASCE)0733-9399(1985)111:8(1010) contributor: fullname: Baber – volume: 117 start-page: 161 year: 1987 ident: 10.1016/j.ymssp.2018.04.001_b0090 article-title: Parameter estimation for hysteretic systems publication-title: J. Sound Vib. doi: 10.1016/0022-460X(87)90442-1 contributor: fullname: Yar – volume: 124 start-page: 455 year: 1998 ident: 10.1016/j.ymssp.2018.04.001_b0120 article-title: Updating models and their uncertainties. I: Bayesian statistical framework publication-title: ASCE J. Eng. Mech. doi: 10.1061/(ASCE)0733-9399(1998)124:4(455) contributor: fullname: Beck – volume: 108 start-page: 411 year: 1986 ident: 10.1016/j.ymssp.2018.04.001_b0195 article-title: Modeling general hysteresis behaviour and random vibration applications publication-title: J. Vib. Acoust. Stress Reliab. Des. doi: 10.1115/1.3269364 contributor: fullname: Baber – volume: 10 start-page: 177 year: 1999 ident: 10.1016/j.ymssp.2018.04.001_b0340 article-title: A nonlinear conjugate gradient method with a strong global convergence property publication-title: SIAM J. Optimiz. doi: 10.1137/S1052623497318992 contributor: fullname: Dai – volume: 50 start-page: 1942 year: 2014 ident: 10.1016/j.ymssp.2018.04.001_b0230 article-title: Fast identification of Wiener-Hammerstein systems using discrete optimization publication-title: IET Electron. Lett. doi: 10.1049/el.2014.3649 contributor: fullname: Schoukens – volume: 61 start-page: 617 year: 2004 ident: 10.1016/j.ymssp.2018.04.001_b0320 article-title: Lagrangian modelling studies of Antarctic krill (Euphausia Superba) swarm formation publication-title: ICES J. Mar. Sci.: J. Conseil doi: 10.1016/j.icesjms.2004.03.028 contributor: fullname: Hofmann – volume: 21 start-page: 514 year: 2007 ident: 10.1016/j.ymssp.2018.04.001_b0170 article-title: Identification of pre-sliding and sliding friction dynamics: grey box and black box models publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2005.09.004 contributor: fullname: Worden – year: 2013 ident: 10.1016/j.ymssp.2018.04.001_b0055 contributor: fullname: Billings – volume: 20 start-page: 505 year: 2006 ident: 10.1016/j.ymssp.2018.04.001_b0030 article-title: Past, present and future of nonlinear system identification in structural dynamics publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2005.04.008 contributor: fullname: Kerschen – volume: 125 start-page: 691 year: 1978 ident: 10.1016/j.ymssp.2018.04.001_b0265 article-title: Identification of a class of nonlinear systems using correlation analysis publication-title: Proc. IEE contributor: fullname: Billings – volume: 104 start-page: 188 year: 2018 ident: 10.1016/j.ymssp.2018.04.001_b0330 article-title: On the confidence bounds of Gaussian process NARX models and their higher-order frequency response functions publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2017.09.032 contributor: fullname: Worden – volume: 29 start-page: 201 year: 2012 ident: 10.1016/j.ymssp.2018.04.001_b0075 article-title: On the identification of hysteretic systems, Part I: fitness landscapes and evolutionary identification publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2012.01.004 contributor: fullname: Worden – ident: 10.1016/j.ymssp.2018.04.001_b0225 – year: 2012 ident: 10.1016/j.ymssp.2018.04.001_b0060 contributor: fullname: Barber – volume: 50 start-page: 628 year: 2014 ident: 10.1016/j.ymssp.2018.04.001_b0250 article-title: Identification of Wiener-Hammerstein systems by a nonparametric separation of the best linear approximation publication-title: Automatica doi: 10.1016/j.automatica.2013.12.027 contributor: fullname: Schoukens – ident: 10.1016/j.ymssp.2018.04.001_b0280 doi: 10.3182/20120711-3-BE-2027.00135 – year: 1959 ident: 10.1016/j.ymssp.2018.04.001_b0150 contributor: fullname: Popper – volume: 130 start-page: 192 year: 2004 ident: 10.1016/j.ymssp.2018.04.001_b0130 article-title: Model selection using response measurements: Bayesian probabilistic approach publication-title: ASCE J. Eng. Mech. doi: 10.1061/(ASCE)0733-9399(2004)130:2(192) contributor: fullname: Beck – ident: 10.1016/j.ymssp.2018.04.001_b0300 – volume: 29 start-page: 213 year: 2012 ident: 10.1016/j.ymssp.2018.04.001_b0100 article-title: On the identification of hysteretic systems, Part II: Bayesian sensitivity analysis and parameter confidence publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2012.01.005 contributor: fullname: Worden – volume: 13 start-page: 945 year: 2009 ident: 10.1016/j.ymssp.2018.04.001_b0215 article-title: JADE: adaptive differential evolution with optional external archive publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2009.2014613 contributor: fullname: Zhang – volume: 7 start-page: 149 year: 1964 ident: 10.1016/j.ymssp.2018.04.001_b0335 article-title: Function minimization by conjugate gradients publication-title: Comput. J. doi: 10.1093/comjnl/7.2.149 contributor: fullname: Fletcher – ident: 10.1016/j.ymssp.2018.04.001_b0260 – volume: 408 start-page: 4 year: 2008 ident: 10.1016/j.ymssp.2018.04.001_b0140 article-title: Bayesian inference for differential equations publication-title: Theoret. Comput. Sci. doi: 10.1016/j.tcs.2008.07.005 contributor: fullname: Girolami – ident: 10.1016/j.ymssp.2018.04.001_b0295 – ident: 10.1016/j.ymssp.2018.04.001_b0310 – volume: 20 start-page: 1119 year: 2012 ident: 10.1016/j.ymssp.2018.04.001_b0235 article-title: Identification of Wiener-Hammerstein models: two algorithms based on the best split of a linear model applied to the SYSID’09 benchmark problem publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2012.07.001 contributor: fullname: Sjöberg – year: 2013 ident: 10.1016/j.ymssp.2018.04.001_b0345 contributor: fullname: Nelles – ident: 10.1016/j.ymssp.2018.04.001_b0145 – volume: 47 start-page: 45 year: 2016 ident: 10.1016/j.ymssp.2018.04.001_b0245 article-title: Wiener-Hammerstein system identification – an evolutionary approach publication-title: Int. J. Syst. Sci. doi: 10.1080/00207721.2015.1027758 contributor: fullname: Naitali – volume: 17 start-page: 4831 year: 2012 ident: 10.1016/j.ymssp.2018.04.001_b0315 article-title: Krill herd: a new bio-inspired optimization algorithm publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2012.05.010 contributor: fullname: Gandomi – ident: 10.1016/j.ymssp.2018.04.001_b0035 doi: 10.1016/j.ymssp.2016.07.020 – volume: 1 start-page: 35 year: 2007 ident: 10.1016/j.ymssp.2018.04.001_b0305 article-title: New particle swarm optimizer with sigmoid increasing inertia weight publication-title: Int. J. Comput. Sci. Secur. contributor: fullname: Malik – year: 2001 ident: 10.1016/j.ymssp.2018.04.001_b0025 contributor: fullname: Worden – ident: 10.1016/j.ymssp.2018.04.001_b0080 – volume: 45 start-page: 675 year: 2000 ident: 10.1016/j.ymssp.2018.04.001_b0165 article-title: An integrated friction model structure with improved presliding behavior for accurate friction compensation publication-title: IEEE Trans. Autom. Control doi: 10.1109/9.847103 contributor: fullname: Swevers – volume: 73 start-page: 91 year: 2014 ident: 10.1016/j.ymssp.2018.04.001_b0160 article-title: Dahl and LuGre dynamic friction models – the analysis of selected properties publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2013.10.009 contributor: fullname: Piatkowski – volume: 25 start-page: 4 year: 2011 ident: 10.1016/j.ymssp.2018.04.001_b0070 article-title: Natural computing for mechanical systems research: a tutorial overview publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2010.07.013 contributor: fullname: Worden – volume: 128 start-page: 380 year: 2002 ident: 10.1016/j.ymssp.2018.04.001_b0125 article-title: Bayesian updating of structural models and reliability using Markov chain Monte Carlo simulation publication-title: ASCE J. Eng. Mech. doi: 10.1061/(ASCE)0733-9399(2002)128:4(380) contributor: fullname: Beck – ident: 10.1016/j.ymssp.2018.04.001_b0275 doi: 10.1007/978-3-319-54930-9_31 – ident: 10.1016/j.ymssp.2018.04.001_b0255 – start-page: 1395 year: 1919 ident: 10.1016/j.ymssp.2018.04.001_b0115 article-title: Statistical system identification of structures contributor: fullname: Beck – year: 2007 ident: 10.1016/j.ymssp.2018.04.001_b0065 contributor: fullname: Bishop – volume: 50 start-page: 657 year: 2014 ident: 10.1016/j.ymssp.2018.04.001_b0050 article-title: Kernel methods in system identification, machine learning and function estimation: a survey publication-title: Automatica doi: 10.1016/j.automatica.2014.01.001 contributor: fullname: Pillonetto – volume: 14 start-page: 7 year: 2008 ident: 10.1016/j.ymssp.2018.04.001_b0135 article-title: Bayesian updating and model class selection for hysteretic structural models using stochastic simulation publication-title: J. Vib. Control doi: 10.1177/1077546307079400 contributor: fullname: Muto – volume: 44 start-page: 2697 year: 2008 ident: 10.1016/j.ymssp.2018.04.001_b0290 article-title: Maximum likelihood identification of Wiener models publication-title: Automatica doi: 10.1016/j.automatica.2008.02.016 contributor: fullname: Hagenblad – ident: 10.1016/j.ymssp.2018.04.001_b0220 – year: 2003 ident: 10.1016/j.ymssp.2018.04.001_b0105 contributor: fullname: Mackay – year: 1999 ident: 10.1016/j.ymssp.2018.04.001_b0010 contributor: fullname: Ljung – year: 2006 ident: 10.1016/j.ymssp.2018.04.001_b0325 contributor: fullname: Rasmussen – volume: 107 start-page: 1069 year: 1981 ident: 10.1016/j.ymssp.2018.04.001_b0185 article-title: Random vibrations of hysteretic degrading systems publication-title: ASCE J. Eng. Mech. contributor: fullname: Baber – volume: 6 start-page: 135 year: 1992 ident: 10.1016/j.ymssp.2018.04.001_b0285 article-title: Maximum likelihood identification of stochastic Wiener-Hammerstein-type non-linear systems publication-title: Mech. Syst. Signal Process. doi: 10.1016/0888-3270(92)90061-M contributor: fullname: Chen – ident: 10.1016/j.ymssp.2018.04.001_b0180 – ident: 10.1016/j.ymssp.2018.04.001_b0205 doi: 10.1016/j.ymssp.2017.06.017 – year: 1994 ident: 10.1016/j.ymssp.2018.04.001_b0015 contributor: fullname: Söderstrom – year: 2005 ident: 10.1016/j.ymssp.2018.04.001_b0040 contributor: fullname: Klir – year: 1994 ident: 10.1016/j.ymssp.2018.04.001_b0175 contributor: fullname: Visitin – year: 2000 ident: 10.1016/j.ymssp.2018.04.001_b0020 contributor: fullname: Ewins – volume: 11 start-page: 341 year: 1997 ident: 10.1016/j.ymssp.2018.04.001_b0095 article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces publication-title: J. Global Optim. doi: 10.1023/A:1008202821328 contributor: fullname: Storn – volume: 102 start-page: 249 year: 1976 ident: 10.1016/j.ymssp.2018.04.001_b0085 article-title: Method for random vibration of hysteretic systems publication-title: J. Eng. Mech. Div. doi: 10.1061/JMCEA3.0002106 contributor: fullname: Wen – volume: 40 start-page: 419 year: 1995 ident: 10.1016/j.ymssp.2018.04.001_b0155 article-title: New model for control of systems with friction publication-title: IEEE Trans. Autom. Control doi: 10.1109/9.376053 contributor: fullname: de Wit – ident: 10.1016/j.ymssp.2018.04.001_b0210 – volume: 1 start-page: 67 year: 1997 ident: 10.1016/j.ymssp.2018.04.001_b0005 article-title: No free lunch theorems for optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.585893 contributor: fullname: Wolpert – year: 2013 ident: 10.1016/j.ymssp.2018.04.001_b0110 contributor: fullname: Bishop – volume: 99 start-page: 306 year: 2018 ident: 10.1016/j.ymssp.2018.04.001_b0200 article-title: Model selection and parameter estimation in structural dynamics using approximate Bayesian computation publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2017.06.017 contributor: fullname: Abdessalem |
SSID | ssj0009406 |
Score | 2.4831185 |
Snippet | •The paper presents the research associated with the VUB Workshop on Nonlinear System Identification.•A summary of a keynote from the meeting is presented,... This paper presents a record of the participation of the authors in a workshop on nonlinear system identification held in 2016. It provides a summary of a... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 194 |
SubjectTerms | Algorithms Benchmarks Best practice Differential evolution Evolutionary optimisation JADE Mathematical models Nonlinear system identification Nonlinear systems Optimization SADE System identification White-, grey-, black-box models Workshops |
Title | On evolutionary system identification with applications to nonlinear benchmarks |
URI | https://dx.doi.org/10.1016/j.ymssp.2018.04.001 https://www.proquest.com/docview/2543513382 |
Volume | 112 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8QLnowfkYUSQ8enWxrV7ojIRLUCAcl4da061tEAxI2Tbj4t9tuXURjPHhcs3bLr--r23u_h9BFrCIOgQo9Yk4fHmWQeJJQ4rEwVaAYZ6ogML0fseGE3k6jaQ31q1oYm1bpbH9p0wtr7UY6Ds3OcjbrPBj9MOLY9Y1QmjjFdhpuGHcU8jpq9G7uhqMv7l1atNi093t2QkU-VKR5redZZnkrA15QnrrmML84qB-muvA_gz206wJH3CvfbR_VYHGAdjboBA_ReLzA8O5kSa7WuKRpxjPtUoKKXcD20yve_HGN81e8KCkz5Aorg8HTXK5esiM0GVw_9oeea5jgJTSkuTkGGtwJcF-pmKcSJEsBIEh9rjUl2g8hljLVJqQBAjrtBhASLY0OpyRmUTchx6huHgcnCFvaF60TpZkCSrXmoFIOxPiyJEh8EjXRZYWSWJa8GKJKGHsWBajCgip8atPmmohVSIpv2yuM5f57YqvCXTjtyoQt4Ld9aXh4-t91z9C2vSqrCluonq_e4NyEF7lqo62rj6DthOgTPZDSEQ |
link.rule.ids | 315,783,787,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8IHNSD8TOiqD14dGFbS-mOhEhAvg5Cwq1p17eIBiQDTfjvbbcuojEevK5rt_z6vrq993sI3UWqwSFQoUfM6cOjDGJPEko8FiYKFONMZQSmwxHrTunjrDEroXZRC2PTKp3tz216Zq3dlbpDs76az-tPRj-MODZ9I5QmTrGdhismGoiMdlZavX539MW9S7MWm_Z-z04oyIeyNK_tYr22vJUBzyhPXXOYXxzUD1Od-Z_OETp0gSNu5e92jEqwPEEHO3SCp2g8XmL4cLIk0y3OaZrxXLuUoGwXsP30ind_XOPNG17mlBkyxcpg8LyQ6ev6DE07D5N213MNE7yYhnRjjoEGdwLcVyriiQTJEgAIEp9rTYn2Q4ikTLQJaYCATpoBhERLo8MJiVijGZNzVDaPgwuELe2L1rHSTAGlWnNQCQdifFkcxD5pVNF9gZJY5bwYokgYexEZqMKCKnxq0-aqiBVIim_bK4zl_ntircBdOO1aC1vAb_vS8PDyv-veor3uZDgQg96of4X27UheYVhD5U36Dtcm1NioGydKn1Xo1AU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+evolutionary+system+identification+with+applications+to+nonlinear+benchmarks&rft.jtitle=Mechanical+systems+and+signal+processing&rft.au=Worden%2C+K.&rft.au=Barthorpe%2C+R.J.&rft.au=Cross%2C+E.J.&rft.au=Dervilis%2C+N.&rft.date=2018-11-01&rft.issn=0888-3270&rft.volume=112&rft.spage=194&rft.epage=232&rft_id=info:doi/10.1016%2Fj.ymssp.2018.04.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ymssp_2018_04_001 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-3270&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-3270&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-3270&client=summon |