On evolutionary system identification with applications to nonlinear benchmarks

•The paper presents the research associated with the VUB Workshop on Nonlinear System Identification.•A summary of a keynote from the meeting is presented, providing an overview and analysis of evolutionary and Bayesian frameworks for identification.•New evolutionary algorithms (to SI) are introduce...

Full description

Saved in:
Bibliographic Details
Published inMechanical systems and signal processing Vol. 112; pp. 194 - 232
Main Authors Worden, K., Barthorpe, R.J., Cross, E.J., Dervilis, N., Holmes, G.R., Manson, G., Rogers, T.J.
Format Journal Article
LanguageEnglish
Published Berlin Elsevier Ltd 01.11.2018
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •The paper presents the research associated with the VUB Workshop on Nonlinear System Identification.•A summary of a keynote from the meeting is presented, providing an overview and analysis of evolutionary and Bayesian frameworks for identification.•New evolutionary algorithms (to SI) are introduced, leading to the best benchmark results in two out of three cases.•A new hybrid/grey box approach is presented, based on evolutionary optimisation of a physics-based model combined with Gaussian process NARX models. This paper presents a record of the participation of the authors in a workshop on nonlinear system identification held in 2016. It provides a summary of a keynote lecture by one of the authors and also gives an account of how the authors developed identification strategies and methods for a number of benchmark nonlinear systems presented as challenges, before and during the workshop. It is argued here that more general frameworks are now emerging for nonlinear system identification, which are capable of addressing substantial ranges of problems. One of these frameworks is based on evolutionary optimisation (EO); it is a framework developed by the authors in previous papers and extended here. As one might expect from the ‘no-free-lunch’ theorem for optimisation, the methodology is not particularly sensitive to the particular (EO) algorithm used, and a number of different variants are presented in this paper, some used for the first time in system identification problems, which show equal capability. In fact, the EO approach advocated in this paper succeeded in finding the best solutions to two of the three benchmark problems which motivated the workshop. The paper provides considerable discussion on the approaches used and makes a number of suggestions regarding best practice; one of the major new opportunities identified here concerns the application of grey-box models which combine the insight of any prior physical-law based models (white box) with the power of machine learners with universal approximation properties (black box).
AbstractList •The paper presents the research associated with the VUB Workshop on Nonlinear System Identification.•A summary of a keynote from the meeting is presented, providing an overview and analysis of evolutionary and Bayesian frameworks for identification.•New evolutionary algorithms (to SI) are introduced, leading to the best benchmark results in two out of three cases.•A new hybrid/grey box approach is presented, based on evolutionary optimisation of a physics-based model combined with Gaussian process NARX models. This paper presents a record of the participation of the authors in a workshop on nonlinear system identification held in 2016. It provides a summary of a keynote lecture by one of the authors and also gives an account of how the authors developed identification strategies and methods for a number of benchmark nonlinear systems presented as challenges, before and during the workshop. It is argued here that more general frameworks are now emerging for nonlinear system identification, which are capable of addressing substantial ranges of problems. One of these frameworks is based on evolutionary optimisation (EO); it is a framework developed by the authors in previous papers and extended here. As one might expect from the ‘no-free-lunch’ theorem for optimisation, the methodology is not particularly sensitive to the particular (EO) algorithm used, and a number of different variants are presented in this paper, some used for the first time in system identification problems, which show equal capability. In fact, the EO approach advocated in this paper succeeded in finding the best solutions to two of the three benchmark problems which motivated the workshop. The paper provides considerable discussion on the approaches used and makes a number of suggestions regarding best practice; one of the major new opportunities identified here concerns the application of grey-box models which combine the insight of any prior physical-law based models (white box) with the power of machine learners with universal approximation properties (black box).
This paper presents a record of the participation of the authors in a workshop on nonlinear system identification held in 2016. It provides a summary of a keynote lecture by one of the authors and also gives an account of how the authors developed identification strategies and methods for a number of benchmark nonlinear systems presented as challenges, before and during the workshop. It is argued here that more general frameworks are now emerging for nonlinear system identification, which are capable of addressing substantial ranges of problems. One of these frameworks is based on evolutionary optimisation (EO); it is a framework developed by the authors in previous papers and extended here. As one might expect from the 'no-free-lunch' theorem for optimisation, the methodology is not particularly sensitive to the particular (EO) algorithm used, and a number of different variants are presented in this paper, some used for the first time in system identification problems, which show equal capability. In fact, the EO approach advocated in this paper succeeded in finding the best solutions to two of the three benchmark problems which motivated the workshop. The paper provides considerable discussion on the approaches used and makes a number of suggestions regarding best practice; one of the major new opportunities identified here concerns the application of grey-box models which combine the insight of any prior physical-law based models (white box) with the power of machine learners with universal approximation properties (black box).
Author Barthorpe, R.J.
Rogers, T.J.
Cross, E.J.
Holmes, G.R.
Worden, K.
Dervilis, N.
Manson, G.
Author_xml – sequence: 1
  givenname: K.
  surname: Worden
  fullname: Worden, K.
  email: k.worden@sheffield.ac.uk
– sequence: 2
  givenname: R.J.
  surname: Barthorpe
  fullname: Barthorpe, R.J.
– sequence: 3
  givenname: E.J.
  surname: Cross
  fullname: Cross, E.J.
– sequence: 4
  givenname: N.
  surname: Dervilis
  fullname: Dervilis, N.
– sequence: 5
  givenname: G.R.
  surname: Holmes
  fullname: Holmes, G.R.
– sequence: 6
  givenname: G.
  surname: Manson
  fullname: Manson, G.
– sequence: 7
  givenname: T.J.
  surname: Rogers
  fullname: Rogers, T.J.
BookMark eNp9kE9PwzAMxSM0JLbBJ-ASiXOLk7RdeuCAJv5Jk3aBc5Q1jpbSJSXphvbt6RhnTpbs9-zn34xMfPBIyC2DnAGr7tv8uEupzzkwmUORA7ALMmVQVxnjrJqQKUgpM8EXcEVmKbUAUBdQTcl67SkeQrcfXPA6Hmk6pgF31Bn0g7Ou0acB_XbDluq-7_4aiQ6BjiE651FHukHfbHc6fqZrcml1l_Dmr87Jx_PT-_I1W61f3paPq6wpeDFkFZPIBErYbGppNerKIiKzII0phAGOtdbW8JKhQGMXDLkwGgppRV2Vi0bMyd15bx_D1x7ToNqwj348qXhZiJIJIfmoEmdVE0NKEa3qoxtzHhUDdSKnWvVLTp3IKSjUSG50PZxdOD5wcBhVatz4IRoXsRmUCe5f_w9TzXyR
CitedBy_id crossref_primary_10_1177_0954406220910451
crossref_primary_10_1016_j_ymssp_2020_106842
crossref_primary_10_1007_s11071_019_05443_2
crossref_primary_10_1016_j_ymssp_2021_108401
crossref_primary_10_1016_j_ymssp_2020_107134
crossref_primary_10_1016_j_ymssp_2021_107751
crossref_primary_10_1115_1_4046740
crossref_primary_10_1016_j_conengprac_2020_104546
crossref_primary_10_3390_axioms10030137
crossref_primary_10_1016_j_ymssp_2023_110405
crossref_primary_10_1016_j_ymssp_2022_109815
crossref_primary_10_1017_dce_2024_2
crossref_primary_10_3390_vibration4030036
crossref_primary_10_3390_s23167049
crossref_primary_10_1016_j_ymssp_2018_11_044
crossref_primary_10_1016_j_jsv_2022_117212
crossref_primary_10_1109_LCSYS_2020_2994806
crossref_primary_10_1115_1_4046739
crossref_primary_10_1016_j_jsv_2024_118295
crossref_primary_10_3390_s20071980
crossref_primary_10_1016_j_ymssp_2020_107528
crossref_primary_10_1007_s11071_019_05430_7
crossref_primary_10_1016_j_aei_2023_101914
crossref_primary_10_1016_j_ymssp_2021_107741
crossref_primary_10_1080_00207179_2021_1978555
crossref_primary_10_1016_j_ymssp_2022_109971
crossref_primary_10_1016_j_ymssp_2022_109984
crossref_primary_10_1016_j_ymssp_2021_108143
crossref_primary_10_1016_j_ymssp_2022_109426
crossref_primary_10_1016_j_ymssp_2022_109649
crossref_primary_10_1016_j_apm_2019_10_068
crossref_primary_10_1016_j_infsof_2022_107145
crossref_primary_10_1017_aer_2023_8
Cites_doi 10.1016/j.automatica.2009.10.031
10.1016/j.automatica.2011.07.007
10.1061/(ASCE)0733-9399(1985)111:8(1010)
10.1016/0022-460X(87)90442-1
10.1061/(ASCE)0733-9399(1998)124:4(455)
10.1115/1.3269364
10.1137/S1052623497318992
10.1049/el.2014.3649
10.1016/j.icesjms.2004.03.028
10.1016/j.ymssp.2005.09.004
10.1016/j.ymssp.2005.04.008
10.1016/j.ymssp.2017.09.032
10.1016/j.ymssp.2012.01.004
10.1016/j.automatica.2013.12.027
10.3182/20120711-3-BE-2027.00135
10.1061/(ASCE)0733-9399(2004)130:2(192)
10.1016/j.ymssp.2012.01.005
10.1109/TEVC.2009.2014613
10.1093/comjnl/7.2.149
10.1016/j.tcs.2008.07.005
10.1016/j.conengprac.2012.07.001
10.1080/00207721.2015.1027758
10.1016/j.cnsns.2012.05.010
10.1016/j.ymssp.2016.07.020
10.1109/9.847103
10.1016/j.mechmachtheory.2013.10.009
10.1016/j.ymssp.2010.07.013
10.1061/(ASCE)0733-9399(2002)128:4(380)
10.1007/978-3-319-54930-9_31
10.1016/j.automatica.2014.01.001
10.1177/1077546307079400
10.1016/j.automatica.2008.02.016
10.1016/0888-3270(92)90061-M
10.1016/j.ymssp.2017.06.017
10.1023/A:1008202821328
10.1061/JMCEA3.0002106
10.1109/9.376053
10.1109/4235.585893
ContentType Journal Article
Copyright 2018 The Authors
Copyright Elsevier BV Nov 2018
Copyright_xml – notice: 2018 The Authors
– notice: Copyright Elsevier BV Nov 2018
DBID 6I.
AAFTH
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.ymssp.2018.04.001
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1096-1216
EndPage 232
ExternalDocumentID 10_1016_j_ymssp_2018_04_001
S0888327018301912
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG5
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SST
SSV
SSZ
T5K
WUQ
XPP
ZMT
ZU3
~G-
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c424t-618e13e80bb98faea6feee1f08dd43d02e9aafd251e3edf71e23da048f39657c3
IEDL.DBID AIKHN
ISSN 0888-3270
IngestDate Thu Oct 10 17:17:30 EDT 2024
Thu Sep 26 17:52:03 EDT 2024
Fri Feb 23 02:47:30 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Differential evolution
SADE
JADE
Evolutionary optimisation
Nonlinear system identification
White-, grey-, black-box models
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c424t-618e13e80bb98faea6feee1f08dd43d02e9aafd251e3edf71e23da048f39657c3
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0888327018301912
PQID 2543513382
PQPubID 2045429
PageCount 39
ParticipantIDs proquest_journals_2543513382
crossref_primary_10_1016_j_ymssp_2018_04_001
elsevier_sciencedirect_doi_10_1016_j_ymssp_2018_04_001
PublicationCentury 2000
PublicationDate 2018-11-01
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
PublicationTitle Mechanical systems and signal processing
PublicationYear 2018
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Worden, Wong, Parlitz, Hornstein, Engster, Tjahjiwidodo, Al-Bender, Risos, Fassois (b0170) 2007; 21
Schoukens, Vandersteen, Rolain, Ferranti (b0230) 2014; 50
Barber (b0060) 2012
Storn, Price (b0095) 1997; 11
A. Qin, P. Suganthan, Self-adaptive differential evolution algorithm for numerical optimization, in: 2005 IEEE Congress on Evolutionary Computation, 2005, pp. 1785–1791.
Wolpert, Macready (b0005) 1997; 1
Hofmann, Haskell, Klinck, Lascara (b0320) 2004; 61
Beck, Au (b0125) 2002; 128
J. Judd, Analytical Modeling of Wood-frame Shear Walls and Diaphragms (Masters Thesis), Brigham Young University, 2005.
Malik, Rahman, Hashim, Ngah (b0305) 2007; 1
Klir (b0040) 2005
Dai, Yuan (b0340) 1999; 10
Abdessalem, Dervilis, Wagg, Worden (b0200) 2018; 99
Baber, Noori (b0190) 1985; 111
M. Schoukens, P. Mattsson, T. Wigren, J.-P. Noël, Cascaded Tanks Benchmark Combining Soft and Hard Nonlinearities, Technical Report: ELEC Department, Vrije Universiteit Brussel, Brussels, Belgium, 2016.
Billings (b0055) 2013
Sjöberg, Schoukens (b0270) 2012; 48
Nelles (b0345) 2013
Beck, Yuen (b0130) 2004; 130
Sjöberg, Lauwers, Schoukens (b0235) 2012; 20
R. Eberhart, J. Kennedy, et al., A new optimizer using particle swarm theory, in: Proceedings of the 6th International Symposium on Micro Machine and Human Science, New York, vol. 1, 1995, pp. 39–43.
Hagenblad, Ljung, Wills (b0290) 2008; 44
Muto, Beck (b0135) 2008; 14
M. Schoukens, K. Worden, Evolutionary identification of block-structured systems, in: Proceedings of IMAC XXXV – 35th International Modal Analysis Conference, 2017.
Piatkowski (b0160) 2014; 73
A. Marconato, J. Sjöberg, J. Suykens, J. Schoukens, Identification of the Silverbox benchmark using nonlinear state-space models, in: 16th IFAC Symposium on System Identification (SYSID), 2012, pp. 632–637.
Chen, Fassois (b0285) 1992; 6
J. Sun, B. Feng, W. Xu, Particle swarm optimization with particles having quantum behavior, in: Congress on Evolutionary Computation, 2004.
Girolami (b0140) 2008; 408
Gandomi, Alavi (b0315) 2012; 17
Baber, Noori (b0195) 1986; 108
Worden, Hensman, Staszewski (b0070) 2011; 25
Ljung (b0010) 1999
Bishop (b0065) 2007
O. Dewhirst, D. Simpson, N. Angarita, R. Allen, P. Newland, Wiener-Hammerstein parameter estimation using differential evolution: application to limb reflex dynamics, in: International Conference on Bio-inspired Systems and Signal Processing, 2010, pp. 271–276.
Beck (b0115) 1919
R. Bouc, Forced vibration of mechanical systems with hysteresis, in: Proceedings of the 4th Conference on Non-linear Oscillation, Prague, Czechoslovakia, 1967.
Worden, Manson (b0075) 2012; 29
Kerschen, Worden, Vakakis, Golinval (b0030) 2006; 20
Visitin (b0175) 1994
Mackay (b0105) 2003
de Wit, Olsson, Aström, Lischinky (b0155) 1995; 40
Worden, Tomlinson (b0025) 2001
Beck, Katafygiotis (b0120) 1998; 124
Naitali, Giri (b0245) 2016; 47
Popper (b0150) 1959
Ewins (b0020) 2000
B. Calderhead, M. Girolami, D. Higham, Is it safe to go out yet? Statistical inference in a zombie outbreak model, Preprint, University of Strathclyde, Department of Mathematics and Statistics, 2010.
Worden, Becker (b0100) 2012; 29
Bishop (b0110) 2013
Rasmussen, Williams (b0325) 2006
Pillonetto, Nicolao (b0045) 2010; 46
Billings, Fakhouri (b0265) 1978; 125
Worden, Becker, Rogers, Cross (b0330) 2018; 104
Zhang, Sanderson (b0215) 2009; 13
Söderstrom, Stoica (b0015) 1994
Fletcher, Reeves (b0335) 1964; 7
J.-P. Nöel, G. Kerschen, 10 years of advances in nonlinear system identification in structural dynamics: a review, in: Proceedings of ISMA 2016-International Conference on Noise and Vibration Engineering, 2016.
Swevers, Al-Bender, Ganesman, Prajogo (b0165) 2000; 45
Wen (b0085) 1976; 102
Baber, Wen (b0185) 1981; 107
J. Noël, M. Schoukens, Hysteretic Benchmark With a Dynamic Nonlinearity, Technical Report: Aerospace and Mechanical Engineering Department, University of Liége, 2015.
V. Huang, A. Qin, P. Suganthan, Self-adaptive differential evolution algorithm for constrained real-parameter optimization, in: IEEE Congress on Evolutionary Computation, Vancouver, Canada, 2006, pp. 17–24.
Pillonetto, Dinuzzo, Chen, Nicolao, Ljung (b0050) 2014; 50
M. Schoukens, J. Noël, Wiener-Hammerstein Benchmark with Process Noise, Technical Report:, ELEC Department, Vrije Universiteit Brussel, Brussels, Belgium, 2015.
Yar, Hammond (b0090) 1987; 117
A. Abdessalem, N. Dervilis, D. Wagg, K. Worden, Model selection and parameter estimation of dynamical systems using a novel variant of approximate Bayesian computation, Mech. Syst. Signal Process. 2018 (submitted for publication).
Schoukens, Pintelon, Rolain (b0250) 2014; 50
A. Abdessalem, N. Dervilis, D. Wagg, K. Worden, Identification of nonlinear dynamical systems using approximate Bayesian computation based on a sequential Monte Carlo sampler, in: Proceedings of 27th International Conference on Noise & Vibration Engineering, Leuven, 2016.
10.1016/j.ymssp.2018.04.001_b0205
Storn (10.1016/j.ymssp.2018.04.001_b0095) 1997; 11
Pillonetto (10.1016/j.ymssp.2018.04.001_b0045) 2010; 46
Worden (10.1016/j.ymssp.2018.04.001_b0070) 2011; 25
Abdessalem (10.1016/j.ymssp.2018.04.001_b0200) 2018; 99
Hagenblad (10.1016/j.ymssp.2018.04.001_b0290) 2008; 44
10.1016/j.ymssp.2018.04.001_b0295
Wen (10.1016/j.ymssp.2018.04.001_b0085) 1976; 102
Visitin (10.1016/j.ymssp.2018.04.001_b0175) 1994
10.1016/j.ymssp.2018.04.001_b0255
10.1016/j.ymssp.2018.04.001_b0210
Swevers (10.1016/j.ymssp.2018.04.001_b0165) 2000; 45
Zhang (10.1016/j.ymssp.2018.04.001_b0215) 2009; 13
Bishop (10.1016/j.ymssp.2018.04.001_b0110) 2013
10.1016/j.ymssp.2018.04.001_b0180
Popper (10.1016/j.ymssp.2018.04.001_b0150) 1959
Worden (10.1016/j.ymssp.2018.04.001_b0170) 2007; 21
Mackay (10.1016/j.ymssp.2018.04.001_b0105) 2003
10.1016/j.ymssp.2018.04.001_b0260
Naitali (10.1016/j.ymssp.2018.04.001_b0245) 2016; 47
Worden (10.1016/j.ymssp.2018.04.001_b0025) 2001
Gandomi (10.1016/j.ymssp.2018.04.001_b0315) 2012; 17
Rasmussen (10.1016/j.ymssp.2018.04.001_b0325) 2006
Pillonetto (10.1016/j.ymssp.2018.04.001_b0050) 2014; 50
Chen (10.1016/j.ymssp.2018.04.001_b0285) 1992; 6
Billings (10.1016/j.ymssp.2018.04.001_b0055) 2013
10.1016/j.ymssp.2018.04.001_b0145
Yar (10.1016/j.ymssp.2018.04.001_b0090) 1987; 117
10.1016/j.ymssp.2018.04.001_b0220
10.1016/j.ymssp.2018.04.001_b0225
Worden (10.1016/j.ymssp.2018.04.001_b0100) 2012; 29
10.1016/j.ymssp.2018.04.001_b0300
Schoukens (10.1016/j.ymssp.2018.04.001_b0230) 2014; 50
Hofmann (10.1016/j.ymssp.2018.04.001_b0320) 2004; 61
Bishop (10.1016/j.ymssp.2018.04.001_b0065) 2007
Sjöberg (10.1016/j.ymssp.2018.04.001_b0270) 2012; 48
Nelles (10.1016/j.ymssp.2018.04.001_b0345) 2013
Söderstrom (10.1016/j.ymssp.2018.04.001_b0015) 1994
Billings (10.1016/j.ymssp.2018.04.001_b0265) 1978; 125
Baber (10.1016/j.ymssp.2018.04.001_b0195) 1986; 108
Beck (10.1016/j.ymssp.2018.04.001_b0115) 1919
Malik (10.1016/j.ymssp.2018.04.001_b0305) 2007; 1
Piatkowski (10.1016/j.ymssp.2018.04.001_b0160) 2014; 73
Sjöberg (10.1016/j.ymssp.2018.04.001_b0235) 2012; 20
Girolami (10.1016/j.ymssp.2018.04.001_b0140) 2008; 408
10.1016/j.ymssp.2018.04.001_b0310
10.1016/j.ymssp.2018.04.001_b0035
Klir (10.1016/j.ymssp.2018.04.001_b0040) 2005
10.1016/j.ymssp.2018.04.001_b0275
Dai (10.1016/j.ymssp.2018.04.001_b0340) 1999; 10
Beck (10.1016/j.ymssp.2018.04.001_b0130) 2004; 130
Wolpert (10.1016/j.ymssp.2018.04.001_b0005) 1997; 1
Worden (10.1016/j.ymssp.2018.04.001_b0075) 2012; 29
Muto (10.1016/j.ymssp.2018.04.001_b0135) 2008; 14
Baber (10.1016/j.ymssp.2018.04.001_b0190) 1985; 111
10.1016/j.ymssp.2018.04.001_b0280
10.1016/j.ymssp.2018.04.001_b0080
10.1016/j.ymssp.2018.04.001_b0240
Barber (10.1016/j.ymssp.2018.04.001_b0060) 2012
Beck (10.1016/j.ymssp.2018.04.001_b0120) 1998; 124
de Wit (10.1016/j.ymssp.2018.04.001_b0155) 1995; 40
Baber (10.1016/j.ymssp.2018.04.001_b0185) 1981; 107
Schoukens (10.1016/j.ymssp.2018.04.001_b0250) 2014; 50
Ljung (10.1016/j.ymssp.2018.04.001_b0010) 1999
Beck (10.1016/j.ymssp.2018.04.001_b0125) 2002; 128
Worden (10.1016/j.ymssp.2018.04.001_b0330) 2018; 104
Fletcher (10.1016/j.ymssp.2018.04.001_b0335) 1964; 7
Kerschen (10.1016/j.ymssp.2018.04.001_b0030) 2006; 20
Ewins (10.1016/j.ymssp.2018.04.001_b0020) 2000
References_xml – volume: 99
  start-page: 306
  year: 2018
  end-page: 325
  ident: b0200
  article-title: Model selection and parameter estimation in structural dynamics using approximate Bayesian computation
  publication-title: Mech. Syst. Signal Process.
  contributor:
    fullname: Worden
– volume: 10
  start-page: 177
  year: 1999
  end-page: 182
  ident: b0340
  article-title: A nonlinear conjugate gradient method with a strong global convergence property
  publication-title: SIAM J. Optimiz.
  contributor:
    fullname: Yuan
– volume: 117
  start-page: 161
  year: 1987
  end-page: 172
  ident: b0090
  article-title: Parameter estimation for hysteretic systems
  publication-title: J. Sound Vib.
  contributor:
    fullname: Hammond
– year: 2013
  ident: b0110
  article-title: Pattern Recognition and Machine Learning
  contributor:
    fullname: Bishop
– volume: 25
  start-page: 4
  year: 2011
  end-page: 11
  ident: b0070
  article-title: Natural computing for mechanical systems research: a tutorial overview
  publication-title: Mech. Syst. Signal Process.
  contributor:
    fullname: Staszewski
– year: 2012
  ident: b0060
  article-title: Bayesian Reasoning and Machine Learning
  contributor:
    fullname: Barber
– volume: 21
  start-page: 514
  year: 2007
  end-page: 524
  ident: b0170
  article-title: Identification of pre-sliding and sliding friction dynamics: grey box and black box models
  publication-title: Mech. Syst. Signal Process.
  contributor:
    fullname: Fassois
– volume: 1
  start-page: 35
  year: 2007
  end-page: 44
  ident: b0305
  article-title: New particle swarm optimizer with sigmoid increasing inertia weight
  publication-title: Int. J. Comput. Sci. Secur.
  contributor:
    fullname: Ngah
– year: 1994
  ident: b0175
  article-title: Differential Models of Hysteresis
  contributor:
    fullname: Visitin
– volume: 29
  start-page: 213
  year: 2012
  end-page: 227
  ident: b0100
  article-title: On the identification of hysteretic systems, Part II: Bayesian sensitivity analysis and parameter confidence
  publication-title: Mech. Syst. Signal Process.
  contributor:
    fullname: Becker
– volume: 50
  start-page: 657
  year: 2014
  end-page: 682
  ident: b0050
  article-title: Kernel methods in system identification, machine learning and function estimation: a survey
  publication-title: Automatica
  contributor:
    fullname: Ljung
– year: 2005
  ident: b0040
  article-title: Uncertainty and Information: Foundations of Generalized Information Theory
  contributor:
    fullname: Klir
– year: 1999
  ident: b0010
  article-title: System Identification: Theory for the User
  contributor:
    fullname: Ljung
– volume: 20
  start-page: 505
  year: 2006
  end-page: 592
  ident: b0030
  article-title: Past, present and future of nonlinear system identification in structural dynamics
  publication-title: Mech. Syst. Signal Process.
  contributor:
    fullname: Golinval
– volume: 50
  start-page: 1942
  year: 2014
  end-page: 1944
  ident: b0230
  article-title: Fast identification of Wiener-Hammerstein systems using discrete optimization
  publication-title: IET Electron. Lett.
  contributor:
    fullname: Ferranti
– year: 2000
  ident: b0020
  article-title: Modal Testing: Theory, Practice and Application
  contributor:
    fullname: Ewins
– year: 2001
  ident: b0025
  article-title: Nonlinearity in Structural Dynamics: Detection, Modelling and Identification
  contributor:
    fullname: Tomlinson
– volume: 1
  start-page: 67
  year: 1997
  ident: b0005
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans. Evol. Comput.
  contributor:
    fullname: Macready
– volume: 48
  start-page: 353
  year: 2012
  end-page: 359
  ident: b0270
  article-title: Initializing Wiener-Hammerstein models based on partitioning of the best linear approximation
  publication-title: Automatica
  contributor:
    fullname: Schoukens
– volume: 11
  start-page: 341
  year: 1997
  end-page: 359
  ident: b0095
  article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Global Optim.
  contributor:
    fullname: Price
– volume: 47
  start-page: 45
  year: 2016
  end-page: 61
  ident: b0245
  article-title: Wiener-Hammerstein system identification – an evolutionary approach
  publication-title: Int. J. Syst. Sci.
  contributor:
    fullname: Giri
– volume: 111
  start-page: 1010
  year: 1985
  end-page: 1026
  ident: b0190
  article-title: Random vibration of degrading pinching systems
  publication-title: ASCE J. Eng. Mech.
  contributor:
    fullname: Noori
– year: 2007
  ident: b0065
  article-title: Pattern Recognition and Machine Learning (Information Science and Statistics)
  contributor:
    fullname: Bishop
– volume: 14
  start-page: 7
  year: 2008
  end-page: 34
  ident: b0135
  article-title: Bayesian updating and model class selection for hysteretic structural models using stochastic simulation
  publication-title: J. Vib. Control
  contributor:
    fullname: Beck
– volume: 73
  start-page: 91
  year: 2014
  end-page: 100
  ident: b0160
  article-title: Dahl and LuGre dynamic friction models – the analysis of selected properties
  publication-title: Mech. Mach. Theory
  contributor:
    fullname: Piatkowski
– volume: 45
  start-page: 675
  year: 2000
  end-page: 686
  ident: b0165
  article-title: An integrated friction model structure with improved presliding behavior for accurate friction compensation
  publication-title: IEEE Trans. Autom. Control
  contributor:
    fullname: Prajogo
– volume: 108
  start-page: 411
  year: 1986
  end-page: 420
  ident: b0195
  article-title: Modeling general hysteresis behaviour and random vibration applications
  publication-title: J. Vib. Acoust. Stress Reliab. Des.
  contributor:
    fullname: Noori
– year: 2013
  ident: b0055
  article-title: Nonlinear System Identification: NARMAX, Methods in the Time, Frequency, and Spatio-Temporal Domains
  contributor:
    fullname: Billings
– volume: 61
  start-page: 617
  year: 2004
  end-page: 631
  ident: b0320
  article-title: Lagrangian modelling studies of Antarctic krill (
  publication-title: ICES J. Mar. Sci.: J. Conseil
  contributor:
    fullname: Lascara
– volume: 50
  start-page: 628
  year: 2014
  end-page: 634
  ident: b0250
  article-title: Identification of Wiener-Hammerstein systems by a nonparametric separation of the best linear approximation
  publication-title: Automatica
  contributor:
    fullname: Rolain
– volume: 6
  start-page: 135
  year: 1992
  end-page: 153
  ident: b0285
  article-title: Maximum likelihood identification of stochastic Wiener-Hammerstein-type non-linear systems
  publication-title: Mech. Syst. Signal Process.
  contributor:
    fullname: Fassois
– volume: 40
  start-page: 419
  year: 1995
  end-page: 425
  ident: b0155
  article-title: New model for control of systems with friction
  publication-title: IEEE Trans. Autom. Control
  contributor:
    fullname: Lischinky
– year: 2013
  ident: b0345
  article-title: Nonlinear System Identification: from Classical Approaches to Neural Networks and Fuzzy Models
  contributor:
    fullname: Nelles
– start-page: 1395
  year: 1919
  end-page: 1402
  ident: b0115
  article-title: Statistical system identification of structures
  publication-title: Proceedings of 5th International Conference on Structural Safety and Reliability
  contributor:
    fullname: Beck
– volume: 44
  start-page: 2697
  year: 2008
  end-page: 2705
  ident: b0290
  article-title: Maximum likelihood identification of Wiener models
  publication-title: Automatica
  contributor:
    fullname: Wills
– volume: 125
  start-page: 691
  year: 1978
  end-page: 697
  ident: b0265
  article-title: Identification of a class of nonlinear systems using correlation analysis
  publication-title: Proc. IEE
  contributor:
    fullname: Fakhouri
– volume: 7
  start-page: 149
  year: 1964
  end-page: 154
  ident: b0335
  article-title: Function minimization by conjugate gradients
  publication-title: Comput. J.
  contributor:
    fullname: Reeves
– volume: 102
  start-page: 249
  year: 1976
  end-page: 263
  ident: b0085
  article-title: Method for random vibration of hysteretic systems
  publication-title: J. Eng. Mech. Div.
  contributor:
    fullname: Wen
– volume: 124
  start-page: 455
  year: 1998
  end-page: 461
  ident: b0120
  article-title: Updating models and their uncertainties. I: Bayesian statistical framework
  publication-title: ASCE J. Eng. Mech.
  contributor:
    fullname: Katafygiotis
– volume: 29
  start-page: 201
  year: 2012
  end-page: 212
  ident: b0075
  article-title: On the identification of hysteretic systems, Part I: fitness landscapes and evolutionary identification
  publication-title: Mech. Syst. Signal Process.
  contributor:
    fullname: Manson
– volume: 130
  start-page: 192
  year: 2004
  end-page: 203
  ident: b0130
  article-title: Model selection using response measurements: Bayesian probabilistic approach
  publication-title: ASCE J. Eng. Mech.
  contributor:
    fullname: Yuen
– volume: 104
  start-page: 188
  year: 2018
  end-page: 233
  ident: b0330
  article-title: On the confidence bounds of Gaussian process NARX models and their higher-order frequency response functions
  publication-title: Mech. Syst. Signal Process.
  contributor:
    fullname: Cross
– volume: 128
  start-page: 380
  year: 2002
  end-page: 391
  ident: b0125
  article-title: Bayesian updating of structural models and reliability using Markov chain Monte Carlo simulation
  publication-title: ASCE J. Eng. Mech.
  contributor:
    fullname: Au
– year: 2006
  ident: b0325
  article-title: Gaussian Processes for Machine Learning
  contributor:
    fullname: Williams
– volume: 46
  start-page: 81
  year: 2010
  end-page: 93
  ident: b0045
  article-title: A new kernel-based approach for linear system identification
  publication-title: Automatica
  contributor:
    fullname: Nicolao
– year: 1959
  ident: b0150
  article-title: The Logic of Scientific Discovery
  contributor:
    fullname: Popper
– volume: 20
  start-page: 1119
  year: 2012
  end-page: 1125
  ident: b0235
  article-title: Identification of Wiener-Hammerstein models: two algorithms based on the best split of a linear model applied to the SYSID’09 benchmark problem
  publication-title: Control Eng. Pract.
  contributor:
    fullname: Schoukens
– year: 2003
  ident: b0105
  publication-title: Information Theory, Inference and Learning Algorithms
  contributor:
    fullname: Mackay
– year: 1994
  ident: b0015
  article-title: System Identification
  contributor:
    fullname: Stoica
– volume: 107
  start-page: 1069
  year: 1981
  end-page: 1089
  ident: b0185
  article-title: Random vibrations of hysteretic degrading systems
  publication-title: ASCE J. Eng. Mech.
  contributor:
    fullname: Wen
– volume: 13
  start-page: 945
  year: 2009
  end-page: 958
  ident: b0215
  article-title: JADE: adaptive differential evolution with optional external archive
  publication-title: IEEE Trans. Evol. Comput.
  contributor:
    fullname: Sanderson
– volume: 17
  start-page: 4831
  year: 2012
  end-page: 4845
  ident: b0315
  article-title: Krill herd: a new bio-inspired optimization algorithm
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  contributor:
    fullname: Alavi
– volume: 408
  start-page: 4
  year: 2008
  end-page: 16
  ident: b0140
  article-title: Bayesian inference for differential equations
  publication-title: Theoret. Comput. Sci.
  contributor:
    fullname: Girolami
– volume: 46
  start-page: 81
  year: 2010
  ident: 10.1016/j.ymssp.2018.04.001_b0045
  article-title: A new kernel-based approach for linear system identification
  publication-title: Automatica
  doi: 10.1016/j.automatica.2009.10.031
  contributor:
    fullname: Pillonetto
– ident: 10.1016/j.ymssp.2018.04.001_b0240
– volume: 48
  start-page: 353
  year: 2012
  ident: 10.1016/j.ymssp.2018.04.001_b0270
  article-title: Initializing Wiener-Hammerstein models based on partitioning of the best linear approximation
  publication-title: Automatica
  doi: 10.1016/j.automatica.2011.07.007
  contributor:
    fullname: Sjöberg
– volume: 111
  start-page: 1010
  year: 1985
  ident: 10.1016/j.ymssp.2018.04.001_b0190
  article-title: Random vibration of degrading pinching systems
  publication-title: ASCE J. Eng. Mech.
  doi: 10.1061/(ASCE)0733-9399(1985)111:8(1010)
  contributor:
    fullname: Baber
– volume: 117
  start-page: 161
  year: 1987
  ident: 10.1016/j.ymssp.2018.04.001_b0090
  article-title: Parameter estimation for hysteretic systems
  publication-title: J. Sound Vib.
  doi: 10.1016/0022-460X(87)90442-1
  contributor:
    fullname: Yar
– volume: 124
  start-page: 455
  year: 1998
  ident: 10.1016/j.ymssp.2018.04.001_b0120
  article-title: Updating models and their uncertainties. I: Bayesian statistical framework
  publication-title: ASCE J. Eng. Mech.
  doi: 10.1061/(ASCE)0733-9399(1998)124:4(455)
  contributor:
    fullname: Beck
– volume: 108
  start-page: 411
  year: 1986
  ident: 10.1016/j.ymssp.2018.04.001_b0195
  article-title: Modeling general hysteresis behaviour and random vibration applications
  publication-title: J. Vib. Acoust. Stress Reliab. Des.
  doi: 10.1115/1.3269364
  contributor:
    fullname: Baber
– volume: 10
  start-page: 177
  year: 1999
  ident: 10.1016/j.ymssp.2018.04.001_b0340
  article-title: A nonlinear conjugate gradient method with a strong global convergence property
  publication-title: SIAM J. Optimiz.
  doi: 10.1137/S1052623497318992
  contributor:
    fullname: Dai
– volume: 50
  start-page: 1942
  year: 2014
  ident: 10.1016/j.ymssp.2018.04.001_b0230
  article-title: Fast identification of Wiener-Hammerstein systems using discrete optimization
  publication-title: IET Electron. Lett.
  doi: 10.1049/el.2014.3649
  contributor:
    fullname: Schoukens
– volume: 61
  start-page: 617
  year: 2004
  ident: 10.1016/j.ymssp.2018.04.001_b0320
  article-title: Lagrangian modelling studies of Antarctic krill (Euphausia Superba) swarm formation
  publication-title: ICES J. Mar. Sci.: J. Conseil
  doi: 10.1016/j.icesjms.2004.03.028
  contributor:
    fullname: Hofmann
– volume: 21
  start-page: 514
  year: 2007
  ident: 10.1016/j.ymssp.2018.04.001_b0170
  article-title: Identification of pre-sliding and sliding friction dynamics: grey box and black box models
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2005.09.004
  contributor:
    fullname: Worden
– year: 2013
  ident: 10.1016/j.ymssp.2018.04.001_b0055
  contributor:
    fullname: Billings
– volume: 20
  start-page: 505
  year: 2006
  ident: 10.1016/j.ymssp.2018.04.001_b0030
  article-title: Past, present and future of nonlinear system identification in structural dynamics
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2005.04.008
  contributor:
    fullname: Kerschen
– volume: 125
  start-page: 691
  year: 1978
  ident: 10.1016/j.ymssp.2018.04.001_b0265
  article-title: Identification of a class of nonlinear systems using correlation analysis
  publication-title: Proc. IEE
  contributor:
    fullname: Billings
– volume: 104
  start-page: 188
  year: 2018
  ident: 10.1016/j.ymssp.2018.04.001_b0330
  article-title: On the confidence bounds of Gaussian process NARX models and their higher-order frequency response functions
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2017.09.032
  contributor:
    fullname: Worden
– volume: 29
  start-page: 201
  year: 2012
  ident: 10.1016/j.ymssp.2018.04.001_b0075
  article-title: On the identification of hysteretic systems, Part I: fitness landscapes and evolutionary identification
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2012.01.004
  contributor:
    fullname: Worden
– ident: 10.1016/j.ymssp.2018.04.001_b0225
– year: 2012
  ident: 10.1016/j.ymssp.2018.04.001_b0060
  contributor:
    fullname: Barber
– volume: 50
  start-page: 628
  year: 2014
  ident: 10.1016/j.ymssp.2018.04.001_b0250
  article-title: Identification of Wiener-Hammerstein systems by a nonparametric separation of the best linear approximation
  publication-title: Automatica
  doi: 10.1016/j.automatica.2013.12.027
  contributor:
    fullname: Schoukens
– ident: 10.1016/j.ymssp.2018.04.001_b0280
  doi: 10.3182/20120711-3-BE-2027.00135
– year: 1959
  ident: 10.1016/j.ymssp.2018.04.001_b0150
  contributor:
    fullname: Popper
– volume: 130
  start-page: 192
  year: 2004
  ident: 10.1016/j.ymssp.2018.04.001_b0130
  article-title: Model selection using response measurements: Bayesian probabilistic approach
  publication-title: ASCE J. Eng. Mech.
  doi: 10.1061/(ASCE)0733-9399(2004)130:2(192)
  contributor:
    fullname: Beck
– ident: 10.1016/j.ymssp.2018.04.001_b0300
– volume: 29
  start-page: 213
  year: 2012
  ident: 10.1016/j.ymssp.2018.04.001_b0100
  article-title: On the identification of hysteretic systems, Part II: Bayesian sensitivity analysis and parameter confidence
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2012.01.005
  contributor:
    fullname: Worden
– volume: 13
  start-page: 945
  year: 2009
  ident: 10.1016/j.ymssp.2018.04.001_b0215
  article-title: JADE: adaptive differential evolution with optional external archive
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2009.2014613
  contributor:
    fullname: Zhang
– volume: 7
  start-page: 149
  year: 1964
  ident: 10.1016/j.ymssp.2018.04.001_b0335
  article-title: Function minimization by conjugate gradients
  publication-title: Comput. J.
  doi: 10.1093/comjnl/7.2.149
  contributor:
    fullname: Fletcher
– ident: 10.1016/j.ymssp.2018.04.001_b0260
– volume: 408
  start-page: 4
  year: 2008
  ident: 10.1016/j.ymssp.2018.04.001_b0140
  article-title: Bayesian inference for differential equations
  publication-title: Theoret. Comput. Sci.
  doi: 10.1016/j.tcs.2008.07.005
  contributor:
    fullname: Girolami
– ident: 10.1016/j.ymssp.2018.04.001_b0295
– ident: 10.1016/j.ymssp.2018.04.001_b0310
– volume: 20
  start-page: 1119
  year: 2012
  ident: 10.1016/j.ymssp.2018.04.001_b0235
  article-title: Identification of Wiener-Hammerstein models: two algorithms based on the best split of a linear model applied to the SYSID’09 benchmark problem
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2012.07.001
  contributor:
    fullname: Sjöberg
– year: 2013
  ident: 10.1016/j.ymssp.2018.04.001_b0345
  contributor:
    fullname: Nelles
– ident: 10.1016/j.ymssp.2018.04.001_b0145
– volume: 47
  start-page: 45
  year: 2016
  ident: 10.1016/j.ymssp.2018.04.001_b0245
  article-title: Wiener-Hammerstein system identification – an evolutionary approach
  publication-title: Int. J. Syst. Sci.
  doi: 10.1080/00207721.2015.1027758
  contributor:
    fullname: Naitali
– volume: 17
  start-page: 4831
  year: 2012
  ident: 10.1016/j.ymssp.2018.04.001_b0315
  article-title: Krill herd: a new bio-inspired optimization algorithm
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2012.05.010
  contributor:
    fullname: Gandomi
– ident: 10.1016/j.ymssp.2018.04.001_b0035
  doi: 10.1016/j.ymssp.2016.07.020
– volume: 1
  start-page: 35
  year: 2007
  ident: 10.1016/j.ymssp.2018.04.001_b0305
  article-title: New particle swarm optimizer with sigmoid increasing inertia weight
  publication-title: Int. J. Comput. Sci. Secur.
  contributor:
    fullname: Malik
– year: 2001
  ident: 10.1016/j.ymssp.2018.04.001_b0025
  contributor:
    fullname: Worden
– ident: 10.1016/j.ymssp.2018.04.001_b0080
– volume: 45
  start-page: 675
  year: 2000
  ident: 10.1016/j.ymssp.2018.04.001_b0165
  article-title: An integrated friction model structure with improved presliding behavior for accurate friction compensation
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/9.847103
  contributor:
    fullname: Swevers
– volume: 73
  start-page: 91
  year: 2014
  ident: 10.1016/j.ymssp.2018.04.001_b0160
  article-title: Dahl and LuGre dynamic friction models – the analysis of selected properties
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2013.10.009
  contributor:
    fullname: Piatkowski
– volume: 25
  start-page: 4
  year: 2011
  ident: 10.1016/j.ymssp.2018.04.001_b0070
  article-title: Natural computing for mechanical systems research: a tutorial overview
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2010.07.013
  contributor:
    fullname: Worden
– volume: 128
  start-page: 380
  year: 2002
  ident: 10.1016/j.ymssp.2018.04.001_b0125
  article-title: Bayesian updating of structural models and reliability using Markov chain Monte Carlo simulation
  publication-title: ASCE J. Eng. Mech.
  doi: 10.1061/(ASCE)0733-9399(2002)128:4(380)
  contributor:
    fullname: Beck
– ident: 10.1016/j.ymssp.2018.04.001_b0275
  doi: 10.1007/978-3-319-54930-9_31
– ident: 10.1016/j.ymssp.2018.04.001_b0255
– start-page: 1395
  year: 1919
  ident: 10.1016/j.ymssp.2018.04.001_b0115
  article-title: Statistical system identification of structures
  contributor:
    fullname: Beck
– year: 2007
  ident: 10.1016/j.ymssp.2018.04.001_b0065
  contributor:
    fullname: Bishop
– volume: 50
  start-page: 657
  year: 2014
  ident: 10.1016/j.ymssp.2018.04.001_b0050
  article-title: Kernel methods in system identification, machine learning and function estimation: a survey
  publication-title: Automatica
  doi: 10.1016/j.automatica.2014.01.001
  contributor:
    fullname: Pillonetto
– volume: 14
  start-page: 7
  year: 2008
  ident: 10.1016/j.ymssp.2018.04.001_b0135
  article-title: Bayesian updating and model class selection for hysteretic structural models using stochastic simulation
  publication-title: J. Vib. Control
  doi: 10.1177/1077546307079400
  contributor:
    fullname: Muto
– volume: 44
  start-page: 2697
  year: 2008
  ident: 10.1016/j.ymssp.2018.04.001_b0290
  article-title: Maximum likelihood identification of Wiener models
  publication-title: Automatica
  doi: 10.1016/j.automatica.2008.02.016
  contributor:
    fullname: Hagenblad
– ident: 10.1016/j.ymssp.2018.04.001_b0220
– year: 2003
  ident: 10.1016/j.ymssp.2018.04.001_b0105
  contributor:
    fullname: Mackay
– year: 1999
  ident: 10.1016/j.ymssp.2018.04.001_b0010
  contributor:
    fullname: Ljung
– year: 2006
  ident: 10.1016/j.ymssp.2018.04.001_b0325
  contributor:
    fullname: Rasmussen
– volume: 107
  start-page: 1069
  year: 1981
  ident: 10.1016/j.ymssp.2018.04.001_b0185
  article-title: Random vibrations of hysteretic degrading systems
  publication-title: ASCE J. Eng. Mech.
  contributor:
    fullname: Baber
– volume: 6
  start-page: 135
  year: 1992
  ident: 10.1016/j.ymssp.2018.04.001_b0285
  article-title: Maximum likelihood identification of stochastic Wiener-Hammerstein-type non-linear systems
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/0888-3270(92)90061-M
  contributor:
    fullname: Chen
– ident: 10.1016/j.ymssp.2018.04.001_b0180
– ident: 10.1016/j.ymssp.2018.04.001_b0205
  doi: 10.1016/j.ymssp.2017.06.017
– year: 1994
  ident: 10.1016/j.ymssp.2018.04.001_b0015
  contributor:
    fullname: Söderstrom
– year: 2005
  ident: 10.1016/j.ymssp.2018.04.001_b0040
  contributor:
    fullname: Klir
– year: 1994
  ident: 10.1016/j.ymssp.2018.04.001_b0175
  contributor:
    fullname: Visitin
– year: 2000
  ident: 10.1016/j.ymssp.2018.04.001_b0020
  contributor:
    fullname: Ewins
– volume: 11
  start-page: 341
  year: 1997
  ident: 10.1016/j.ymssp.2018.04.001_b0095
  article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Global Optim.
  doi: 10.1023/A:1008202821328
  contributor:
    fullname: Storn
– volume: 102
  start-page: 249
  year: 1976
  ident: 10.1016/j.ymssp.2018.04.001_b0085
  article-title: Method for random vibration of hysteretic systems
  publication-title: J. Eng. Mech. Div.
  doi: 10.1061/JMCEA3.0002106
  contributor:
    fullname: Wen
– volume: 40
  start-page: 419
  year: 1995
  ident: 10.1016/j.ymssp.2018.04.001_b0155
  article-title: New model for control of systems with friction
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/9.376053
  contributor:
    fullname: de Wit
– ident: 10.1016/j.ymssp.2018.04.001_b0210
– volume: 1
  start-page: 67
  year: 1997
  ident: 10.1016/j.ymssp.2018.04.001_b0005
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.585893
  contributor:
    fullname: Wolpert
– year: 2013
  ident: 10.1016/j.ymssp.2018.04.001_b0110
  contributor:
    fullname: Bishop
– volume: 99
  start-page: 306
  year: 2018
  ident: 10.1016/j.ymssp.2018.04.001_b0200
  article-title: Model selection and parameter estimation in structural dynamics using approximate Bayesian computation
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2017.06.017
  contributor:
    fullname: Abdessalem
SSID ssj0009406
Score 2.4831185
Snippet •The paper presents the research associated with the VUB Workshop on Nonlinear System Identification.•A summary of a keynote from the meeting is presented,...
This paper presents a record of the participation of the authors in a workshop on nonlinear system identification held in 2016. It provides a summary of a...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 194
SubjectTerms Algorithms
Benchmarks
Best practice
Differential evolution
Evolutionary optimisation
JADE
Mathematical models
Nonlinear system identification
Nonlinear systems
Optimization
SADE
System identification
White-, grey-, black-box models
Workshops
Title On evolutionary system identification with applications to nonlinear benchmarks
URI https://dx.doi.org/10.1016/j.ymssp.2018.04.001
https://www.proquest.com/docview/2543513382
Volume 112
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8QLnowfkYUSQ8enWxrV7ojIRLUCAcl4da061tEAxI2Tbj4t9tuXURjPHhcs3bLr--r23u_h9BFrCIOgQo9Yk4fHmWQeJJQ4rEwVaAYZ6ogML0fseGE3k6jaQ31q1oYm1bpbH9p0wtr7UY6Ds3OcjbrPBj9MOLY9Y1QmjjFdhpuGHcU8jpq9G7uhqMv7l1atNi093t2QkU-VKR5redZZnkrA15QnrrmML84qB-muvA_gz206wJH3CvfbR_VYHGAdjboBA_ReLzA8O5kSa7WuKRpxjPtUoKKXcD20yve_HGN81e8KCkz5Aorg8HTXK5esiM0GVw_9oeea5jgJTSkuTkGGtwJcF-pmKcSJEsBIEh9rjUl2g8hljLVJqQBAjrtBhASLY0OpyRmUTchx6huHgcnCFvaF60TpZkCSrXmoFIOxPiyJEh8EjXRZYWSWJa8GKJKGHsWBajCgip8atPmmohVSIpv2yuM5f57YqvCXTjtyoQt4Ld9aXh4-t91z9C2vSqrCluonq_e4NyEF7lqo62rj6DthOgTPZDSEQ
link.rule.ids 315,783,787,4509,24128,27936,27937,45597,45691
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8IHNSD8TOiqD14dGFbS-mOhEhAvg5Cwq1p17eIBiQDTfjvbbcuojEevK5rt_z6vrq993sI3UWqwSFQoUfM6cOjDGJPEko8FiYKFONMZQSmwxHrTunjrDEroXZRC2PTKp3tz216Zq3dlbpDs76az-tPRj-MODZ9I5QmTrGdhismGoiMdlZavX539MW9S7MWm_Z-z04oyIeyNK_tYr22vJUBzyhPXXOYXxzUD1Od-Z_OETp0gSNu5e92jEqwPEEHO3SCp2g8XmL4cLIk0y3OaZrxXLuUoGwXsP30ind_XOPNG17mlBkyxcpg8LyQ6ev6DE07D5N213MNE7yYhnRjjoEGdwLcVyriiQTJEgAIEp9rTYn2Q4ikTLQJaYCATpoBhERLo8MJiVijGZNzVDaPgwuELe2L1rHSTAGlWnNQCQdifFkcxD5pVNF9gZJY5bwYokgYexEZqMKCKnxq0-aqiBVIim_bK4zl_ntircBdOO1aC1vAb_vS8PDyv-veor3uZDgQg96of4X27UheYVhD5U36Dtcm1NioGydKn1Xo1AU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+evolutionary+system+identification+with+applications+to+nonlinear+benchmarks&rft.jtitle=Mechanical+systems+and+signal+processing&rft.au=Worden%2C+K.&rft.au=Barthorpe%2C+R.J.&rft.au=Cross%2C+E.J.&rft.au=Dervilis%2C+N.&rft.date=2018-11-01&rft.issn=0888-3270&rft.volume=112&rft.spage=194&rft.epage=232&rft_id=info:doi/10.1016%2Fj.ymssp.2018.04.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ymssp_2018_04_001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-3270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-3270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-3270&client=summon