The relative contributions of pH, organic anions, and phosphatase to rhizosphere soil phosphorus mobilization and crop phosphorus uptake in maize/alfalfa polyculture

Aims To investigate the relative contributions of pH, organic anions concentration, and phosphatase activity to rhizosphere soil phosphorus availability and crop phosphorus uptake in polycultures. Methods A field experiment was conducted for three consecutive years in a split-plot design with main p...

Full description

Saved in:
Bibliographic Details
Published inPlant and soil Vol. 447; no. 1-2; pp. 117 - 133
Main Authors Sun, Baoru, Gao, Yingzhi, Wu, Xue, Ma, Huimin, Zheng, Congcong, Wang, Xinyu, Zhang, Hualiang, Li, Zhijian, Yang, Haijun
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.02.2020
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aims To investigate the relative contributions of pH, organic anions concentration, and phosphatase activity to rhizosphere soil phosphorus availability and crop phosphorus uptake in polycultures. Methods A field experiment was conducted for three consecutive years in a split-plot design with main plots treated with two phosphorus levels and subplots treated with maize and alfalfa grown alone or intercropped. Results Intercropped maize and alfalfa had 0.35 and 0.24 units lower rhizosphere pH, 28% and 30% higher total organic anions (TOA) concentration, and 21% and 41% greater acid phosphatase activity than those in monoculture. These changes in root exudates induced significant increases in rhizosphere phosphorus concentration of intercropped maize and alfalfa by 21% and 41%, and pH and TOA had greatest contributions, respectively. Rhizosphere phosphorus mobilization facilitated phosphorus uptake of intercropped maize, but this facilitation was offset by phosphorus uptake reduction due to decreased crown root surface area. Lateral root volume enhancement accounted for phosphorus uptake improvement of intercropped alfalfa by 86.6%, while rhizosphere phosphorus mobilization only had a 0.2% contribution. Conclusions Rhizosphere pH and organic anions exhibit greater contributions than acid phosphatase activity in enhancing rhizosphere phosphorus availability. However, root surface area of maize and lateral root volume of alfalfa unveil greater influences on crop phosphorus uptake than rhizosphere pH and organic anions.
AbstractList Aims To investigate the relative contributions of pH, organic anions concentration, and phosphatase activity to rhizosphere soil phosphorus availability and crop phosphorus uptake in polycultures. Methods A field experiment was conducted for three consecutive years in a split-plot design with main plots treated with two phosphorus levels and subplots treated with maize and alfalfa grown alone or intercropped. Results Intercropped maize and alfalfa had 0.35 and 0.24 units lower rhizosphere pH, 28% and 30% higher total organic anions (TOA) concentration, and 21% and 41% greater acid phosphatase activity than those in monoculture. These changes in root exudates induced significant increases in rhizosphere phosphorus concentration of intercropped maize and alfalfa by 21% and 41%, and pH and TOA had greatest contributions, respectively. Rhizosphere phosphorus mobilization facilitated phosphorus uptake of intercropped maize, but this facilitation was offset by phosphorus uptake reduction due to decreased crown root surface area. Lateral root volume enhancement accounted for phosphorus uptake improvement of intercropped alfalfa by 86.6%, while rhizosphere phosphorus mobilization only had a 0.2% contribution. Conclusions Rhizosphere pH and organic anions exhibit greater contributions than acid phosphatase activity in enhancing rhizosphere phosphorus availability. However, root surface area of maize and lateral root volume of alfalfa unveil greater influences on crop phosphorus uptake than rhizosphere pH and organic anions.
Aims To investigate the relative contributions of pH, organic anions concentration, and phosphatase activity to rhizosphere soil phosphorus availability and crop phosphorus uptake in polycultures. Methods A field experiment was conducted for three consecutive years in a split-plot design with main plots treated with two phosphorus levels and subplots treated with maize and alfalfa grown alone or intercropped. Results Intercropped maize and alfalfa had 0.35 and 0.24 units lower rhizosphere pH, 28% and 30% higher total organic anions (TOA) concentration, and 21% and 41% greater acid phosphatase activity than those in monoculture. These changes in root exudates induced significant increases in rhizosphere phosphorus concentration of intercropped maize and alfalfa by 21% and 41%, and pH and TOA had greatest contributions, respectively. Rhizosphere phosphorus mobilization facilitated phosphorus uptake of intercropped maize, but this facilitation was offset by phosphorus uptake reduction due to decreased crown root surface area. Lateral root volume enhancement accounted for phosphorus uptake improvement of intercropped alfalfa by 86.6%, while rhizosphere phosphorus mobilization only had a 0.2% contribution. Conclusions Rhizosphere pH and organic anions exhibit greater contributions than acid phosphatase activity in enhancing rhizosphere phosphorus availability. However, root surface area of maize and lateral root volume of alfalfa unveil greater influences on crop phosphorus uptake than rhizosphere pH and organic anions.
AimsTo investigate the relative contributions of pH, organic anions concentration, and phosphatase activity to rhizosphere soil phosphorus availability and crop phosphorus uptake in polycultures.MethodsA field experiment was conducted for three consecutive years in a split-plot design with main plots treated with two phosphorus levels and subplots treated with maize and alfalfa grown alone or intercropped.ResultsIntercropped maize and alfalfa had 0.35 and 0.24 units lower rhizosphere pH, 28% and 30% higher total organic anions (TOA) concentration, and 21% and 41% greater acid phosphatase activity than those in monoculture. These changes in root exudates induced significant increases in rhizosphere phosphorus concentration of intercropped maize and alfalfa by 21% and 41%, and pH and TOA had greatest contributions, respectively. Rhizosphere phosphorus mobilization facilitated phosphorus uptake of intercropped maize, but this facilitation was offset by phosphorus uptake reduction due to decreased crown root surface area. Lateral root volume enhancement accounted for phosphorus uptake improvement of intercropped alfalfa by 86.6%, while rhizosphere phosphorus mobilization only had a 0.2% contribution.ConclusionsRhizosphere pH and organic anions exhibit greater contributions than acid phosphatase activity in enhancing rhizosphere phosphorus availability. However, root surface area of maize and lateral root volume of alfalfa unveil greater influences on crop phosphorus uptake than rhizosphere pH and organic anions.
Audience Academic
Author Ma, Huimin
Wang, Xinyu
Zhang, Hualiang
Sun, Baoru
Wu, Xue
Zheng, Congcong
Li, Zhijian
Yang, Haijun
Gao, Yingzhi
Author_xml – sequence: 1
  givenname: Baoru
  surname: Sun
  fullname: Sun, Baoru
  organization: Key Laboratory of Vegetation Ecology, Northeast Normal University, State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Science (IBCAS)
– sequence: 2
  givenname: Yingzhi
  surname: Gao
  fullname: Gao, Yingzhi
  email: gaoyz108@nenu.edu.cn
  organization: Key Laboratory of Vegetation Ecology, Northeast Normal University, State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Northeast Normal University, School of Biology and Geography Science, Yili Normal University
– sequence: 3
  givenname: Xue
  surname: Wu
  fullname: Wu, Xue
  organization: Key Laboratory of Vegetation Ecology, Northeast Normal University
– sequence: 4
  givenname: Huimin
  surname: Ma
  fullname: Ma, Huimin
  organization: Key Laboratory of Vegetation Ecology, Northeast Normal University
– sequence: 5
  givenname: Congcong
  surname: Zheng
  fullname: Zheng, Congcong
  organization: Key Laboratory of Vegetation Ecology, Northeast Normal University
– sequence: 6
  givenname: Xinyu
  surname: Wang
  fullname: Wang, Xinyu
  organization: Key Laboratory of Vegetation Ecology, Northeast Normal University
– sequence: 7
  givenname: Hualiang
  surname: Zhang
  fullname: Zhang, Hualiang
  organization: Key Laboratory of Vegetation Ecology, Northeast Normal University
– sequence: 8
  givenname: Zhijian
  surname: Li
  fullname: Li, Zhijian
  organization: Key Laboratory of Vegetation Ecology, Northeast Normal University
– sequence: 9
  givenname: Haijun
  surname: Yang
  fullname: Yang, Haijun
  organization: Key Laboratory of Vegetation Ecology, Northeast Normal University
BookMark eNp9UcFq3DAQFSGFbNL-QE-CXuNkJNmyfQyhbQKBXlLoTcjyeFepV3IluZD9n_5n5HWgpYcgoZGe3pth5p2TU-cdEvKRwRUDqK8jYwzKAlhbQJmvBZyQDatqUVQg5CnZAAheQN3-OCPnMT7B8mZyQ_487pAGHHWyv5Ea71Kw3Zysd5H6gU53l9SHrXbW0Hxk9DLHnk47H6edTjoiTZ6GnT0sAAak0dvx9d-HOdK97-xoD3rJedSa4Kd_CfOU9E-k1tG9tge81uOwbDr58dnMY5oDvifvMhbxw2u8IN-_fH68vSsevn29v715KEzJy1RIVnWm4qXQrRANK9s8irqSHaCsW4SWQ18xxKbvsW1k0-uhY7oXVWN4wwGZuCCf1rxT8L9mjEk9-Tm4XFJxzlkleS0hs65W1laPqKwbfAra5NXj3uYR4mAzfiOZbEUt2JK2WQW59RgDDsrYdBxIFtpRMVCLi2p1UWUX1dFFtdTi_0mnYPc6PL8tEqsoZrLbYvjbxhuqFxO9tJc
CitedBy_id crossref_primary_10_3390_plants13212992
crossref_primary_10_1016_j_rhisph_2024_100907
crossref_primary_10_1080_09064710_2021_1933161
crossref_primary_10_3390_ijms252312819
crossref_primary_10_1155_2024_5510660
crossref_primary_10_3390_su15086635
crossref_primary_10_1016_j_soilbio_2021_108537
crossref_primary_10_1007_s42729_022_00936_3
crossref_primary_10_3390_applmicrobiol3020025
crossref_primary_10_1007_s10533_025_01210_1
crossref_primary_10_1002_glr2_12039
crossref_primary_10_1007_s42729_022_01081_7
crossref_primary_10_1080_01448765_2021_1903556
crossref_primary_10_3389_fmicb_2022_1047313
crossref_primary_10_1016_j_fcr_2022_108637
crossref_primary_10_1016_j_foreco_2023_121037
crossref_primary_10_1007_s42729_025_02322_1
crossref_primary_10_1016_j_eja_2023_127072
crossref_primary_10_1038_s41598_021_95242_w
crossref_primary_10_1080_15320383_2020_1771276
crossref_primary_10_1016_j_rhisph_2020_100237
crossref_primary_10_1111_nph_18423
crossref_primary_10_1016_j_agee_2024_109141
crossref_primary_10_1016_j_apsoil_2022_104523
crossref_primary_10_1186_s43014_022_00096_y
crossref_primary_10_1016_j_geoderma_2021_115218
crossref_primary_10_1007_s11104_024_06990_3
crossref_primary_10_1007_s11104_019_04417_y
crossref_primary_10_1016_j_stress_2023_100345
crossref_primary_10_2139_ssrn_3983793
crossref_primary_10_3389_fpls_2023_1292114
crossref_primary_10_1007_s11356_022_21311_w
crossref_primary_10_1002_adsu_202000269
crossref_primary_10_1016_j_scitotenv_2024_174439
crossref_primary_10_1016_j_catena_2022_106873
crossref_primary_10_3389_fmicb_2024_1349305
crossref_primary_10_1016_j_microb_2024_100159
crossref_primary_10_1371_journal_pone_0292542
crossref_primary_10_1002_fes3_252
crossref_primary_10_1007_s42729_024_02033_z
crossref_primary_10_3390_agronomy15030724
crossref_primary_10_1016_j_envexpbot_2020_104162
crossref_primary_10_1016_j_agee_2024_108886
crossref_primary_10_1016_j_scienta_2025_113955
crossref_primary_10_3390_agronomy13030900
crossref_primary_10_3390_plants11223043
crossref_primary_10_1016_j_jece_2022_107482
crossref_primary_10_1021_acs_jafc_3c05970
crossref_primary_10_1002_ldr_3957
crossref_primary_10_1016_j_apsoil_2022_104734
crossref_primary_10_3390_soilsystems4040074
crossref_primary_10_3390_horticulturae10010025
crossref_primary_10_3390_plants14010106
crossref_primary_10_1016_j_scitotenv_2022_153908
crossref_primary_10_1002_sae2_12026
crossref_primary_10_1016_j_geoderma_2022_115964
crossref_primary_10_1590_1678_4499_20240039
crossref_primary_10_1007_s42729_021_00495_z
crossref_primary_10_1016_j_ecoenv_2022_113385
crossref_primary_10_1016_j_scitotenv_2021_150555
crossref_primary_10_1111_gfs_12693
crossref_primary_10_1007_s42729_021_00605_x
crossref_primary_10_1016_j_ecoenv_2023_115593
crossref_primary_10_1007_s11104_023_06252_8
crossref_primary_10_3390_agriculture12111949
crossref_primary_10_3389_fpls_2023_1122285
crossref_primary_10_1038_s41598_023_38369_2
crossref_primary_10_1016_j_still_2024_106276
crossref_primary_10_2139_ssrn_3932861
crossref_primary_10_3389_fpls_2023_1256084
crossref_primary_10_1016_j_ecoenv_2024_116904
crossref_primary_10_1016_j_geoderma_2021_115274
crossref_primary_10_1016_j_chemosphere_2022_134288
crossref_primary_10_1007_s11104_023_06136_x
crossref_primary_10_1016_j_jenvman_2020_111033
crossref_primary_10_1016_j_indcrop_2022_114693
crossref_primary_10_1111_pce_15034
crossref_primary_10_3390_agriculture13040858
crossref_primary_10_1016_j_fcr_2023_109136
Cites_doi 10.1055/s-2001-12905
10.1093/aob/mcq098
10.1016/j.soilbio.2004.10.016
10.1093/jxb/ers342
10.1016/0038-0717(69)90012-1
10.1023/A:1013351617532
10.1104/pp.114.245225
10.1007/s11104-009-9990-4
10.1016/j.pbi.2007.10.003
10.1093/aob/mcl114
10.1071/FP05005
10.1007/s11104-007-9512-1
10.1007/s11104-007-9516-x
10.1111/j.1469-8137.2007.02206.x
10.1111/nph.13613
10.1007/s11104-008-9885-9
10.1104/pp.111.174581
10.1111/nph.12778
10.1007/s11104-010-0623-8
10.1104/pp.106.3.1179
10.1093/jxb/eru135
10.1007/s11104-018-3888-y
10.1007/s11104-011-0903-y
10.1023/A:1013324727040
10.1023/A:1004727201568
10.1016/j.envexpbot.2008.05.002
10.1016/j.fcr.2011.06.006
10.1104/pp.109.1.7
10.1104/pp.112.1.31
10.1007/s11104-004-1096-4
10.1046/j.1365-2389.1998.4930447.x
10.1111/j.1365-2745.2006.01204.x
10.1007/s11104-006-9099-y
10.1111/nph.14967
10.1104/pp.111.175232
10.1007/BF00155523
10.1007/s11104-019-03972-8
10.1111/nph.15200
10.1038/srep18663
10.1093/pcp/pci094
10.1007/s00374-006-0139-9
10.1007/s11427-012-4396-6
10.1046/j.1469-8137.2003.00695.x
10.1007/s00374-009-0411-x
10.1016/j.fcr.2009.04.009
10.1111/pce.12117
10.1093/aob/mch140
10.1016/j.soilbio.2011.11.015
10.1016/0038-0717(94)00178-4
10.1023/A:1022371130939
10.1016/S0038-0717(01)00207-3
10.1016/j.rhisph.2018.06.004
10.1104/pp.18.00234
10.1007/s11104-005-3936-2
10.1104/pp.111.175414
10.1104/pp.111.175331
10.1023/A:1004380832118
10.1111/j.1365-3040.2009.01926.x
10.1007/s11104-011-0935-3
10.1073/pnas.0704591104
10.1104/pp.85.2.315
10.1104/pp.116.2.447
10.1046/j.1365-2389.1999.00251.x
ContentType Journal Article
Copyright Springer Nature Switzerland AG 2019
COPYRIGHT 2020 Springer
Plant and Soil is a copyright of Springer, (2019). All Rights Reserved.
Copyright_xml – notice: Springer Nature Switzerland AG 2019
– notice: COPYRIGHT 2020 Springer
– notice: Plant and Soil is a copyright of Springer, (2019). All Rights Reserved.
DBID AAYXX
CITATION
3V.
7SN
7ST
7T7
7X2
88A
8FD
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
LK8
M0K
M7P
P64
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
RC3
SOI
DOI 10.1007/s11104-019-04110-0
DatabaseName CrossRef
ProQuest Central (Corporate)
Ecology Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Agricultural Science Collection
Biology Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Agricultural Science Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Genetics Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Agricultural Science Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Genetics Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
Biological Science Database
ProQuest SciTech Collection
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList

Agricultural Science Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Ecology
Botany
EISSN 1573-5036
EndPage 133
ExternalDocumentID A616937311
10_1007_s11104_019_04110_0
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: National Key Basic Research Program of China
  grantid: 2016YFC0500703
– fundername: National Natural Science Foundation of China
  grantid: 31670446, 31870436, 31270444, U1803110
– fundername: Major State Basic Research Development Program of China
  grantid: 2015CB150801
– fundername: China Postdoctoral Science Foundation
  grantid: 2018M630220
  funderid: http://dx.doi.org/10.13039/501100002858
– fundername: Jilin Special Program for Key Science and Technology Research
  grantid: Y8D1161001
– fundername: National Natural Science Foundation of China
  grantid: 31800378
GroupedDBID -4W
-56
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06C
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29O
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2XV
2~F
2~H
30V
3SX
3V.
4.4
406
408
409
40D
40E
53G
5QI
5VS
67N
67Z
6NX
78A
7X2
88A
8FE
8FH
8TC
8UJ
95-
95.
95~
96X
A8Z
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXTN
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBHK
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ABXSQ
ACAOD
ACBXY
ACDTI
ACGFS
ACHIC
ACHSB
ACHXU
ACKIV
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACUHS
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADULT
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEEJZ
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUPB
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIDBO
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
APEBS
AQVQM
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AZFZN
B-.
B0M
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGNMA
BHPHI
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DATOO
DDRTE
DL5
DNIVK
DPUIP
EAD
EAP
EBD
EBLON
EBS
ECGQY
EDH
EIOEI
EJD
EMK
EN4
EPAXT
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAG
IAO
IEP
IHE
IJ-
IKXTQ
IPSME
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JAAYA
JBMMH
JBSCW
JCJTX
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
JZLTJ
KDC
KOV
KOW
KPH
LAK
LK8
LLZTM
M0K
M0L
M4Y
M7P
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P0-
P19
PF0
PQQKQ
PROAC
PT4
PT5
Q2X
QF4
QM4
QN7
QO4
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SA0
SAP
SBL
SBY
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WJK
WK6
WK8
XOL
Y6R
YLTOR
Z45
Z5O
Z7U
Z7V
Z7W
Z7Y
Z83
Z86
Z8O
Z8P
Z8Q
Z8S
Z8W
Z92
ZCG
ZMTXR
ZOVNA
~02
~8M
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
AEIIB
PMFND
7SN
7ST
7T7
8FD
8FK
ABRTQ
AZQEC
C1K
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQGLB
PQUKI
RC3
SOI
ID FETCH-LOGICAL-c424t-615bc5243a9338149411756b0e679e0920d51ee8dde9868dafb1ad358c2820e13
IEDL.DBID BENPR
ISSN 0032-079X
IngestDate Tue Jul 29 03:41:01 EDT 2025
Tue Jun 10 20:33:10 EDT 2025
Thu Apr 24 23:06:40 EDT 2025
Tue Jul 01 01:47:05 EDT 2025
Fri Feb 21 02:33:34 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords Phosphorus uptake
Rhizosphere phosphorus mobilization
Mycorrhizal colonization rate
Root exudates
Root architecture
Polyculture
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c424t-615bc5243a9338149411756b0e679e0920d51ee8dde9868dafb1ad358c2820e13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2221562760
PQPubID 54098
PageCount 17
ParticipantIDs proquest_journals_2221562760
gale_infotracacademiconefile_A616937311
crossref_citationtrail_10_1007_s11104_019_04110_0
crossref_primary_10_1007_s11104_019_04110_0
springer_journals_10_1007_s11104_019_04110_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-01
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Dordrecht
PublicationSubtitle An International Journal on Plant-Soil Relationships
PublicationTitle Plant and soil
PublicationTitleAbbrev Plant Soil
PublicationYear 2020
Publisher Springer International Publishing
Springer
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer
– name: Springer Nature B.V
References Zhu, Yan, Zorb, Schubert (CR67) 2005; 46
Rose, Hardiputra, Rengel (CR47) 2010; 326
Hinsinger, Bengough, Vetterlein, Young (CR20) 2009; 321
Lynch (CR35) 1995; 109
Wang, Krogstad, Clarke, Øgaard, Clarke (CR62) 2017; 9
Brundrett, Bougher, Dell, Grove, Malajczuk (CR6) 1996; 32
Giehl, von Wiren (CR15) 2014; 166
CR39
Smith, Jakobsen, Grønlund, Smith (CR51) 2011; 156
Vu, Tang, Amstrong (CR59) 2008; 304
Badri, Vivanco (CR2) 2009; 32
Shen, Yuan, Zhang, Li, Bai, Chen, Zhang, Zhang (CR49) 2011; 156
Pang, Bansal, Zhao, Bohuon, Lambers, Ryan, Ranathunge, Siddique (CR43) 2018; 219
Zhang, Yang, Dong (CR63) 2011; 124
Lynch (CR36) 2011; 156
Neumann, Römheld (CR40) 1999; 211
Lynch, Ho (CR38) 2005; 269
Raven, Lambers, Smith, Westoby (CR45) 2018; 217
Lynch, Brown (CR37) 2001; 237
Zhang, Chen, Li, Chen, Liu, Zhou, Yuan, Zhang, Mi (CR64) 2012; 55
Desnos (CR9) 2008; 11
Li, Shen, Zhang, Clairotte, Drevon, Le Cadre, Hinsinger (CR30) 2008; 312
Hinsinger, Plassard, Tang, Jaillard (CR19) 2003; 248
Schachtman, Reid, Ayling (CR48) 1998; 116
Johnson, Vance, Allan (CR23) 1996; 112
Vance, Uhde-Stone, Allan (CR58) 2003; 157
Baziramakenga, Simard, Leroux (CR4) 1995; 27
Aulakh, Wassmann, Bueno, Kreuzwieser, Rennenberg (CR1) 2001; 3
Betencourt, Duputel, Colomb, Desclaux, Hinsinger (CR5) 2012; 46
Devau, Le Cadre, Hinsinger, Gérard (CR10) 2010; 105
Lambers, Teste (CR26) 2013; 36
Nuruzzaman, Lambers, Bolland, Veneklaas (CR41) 2006; 281
Li, Dong, Li, Shen, Zhang (CR33) 2016; 6
Cheng, Tang, Vance, White, Zhang, Shen (CR8) 2014; 65
Jones, Darrah (CR25) 1995; 173
Hauggaard-Nielsen, Gooding, Ambus, Corre-Hellou, Crozat, Dahlmann, Diebet, von Fragstein, Pristeri, Monti, Jensen (CR16) 2009; 113
George, Richardson, Simpson (CR13) 2005; 37
Song, Zhang, Marschner, Fan, Gao, Bao, Sun, Li (CR52) 2007; 43
Hinsinger, Betencourt, Bernard, Brauman, Plassard, Shen, Tang, Zhang (CR21) 2011; 156
Hinsinger, Brauman, Devau, Gérard, Jourdan, Laclau, Le Cadre, Jaillard, Plassard (CR22) 2011; 348
Shen, Li, Mi, Li, Yuan, Jiang, Zhang (CR50) 2013; 64
Oburger, Joones (CR42) 2018; 6
Zhu, Kaeppler, Lynch (CR66) 2005; 32
Hinsinger (CR18) 2001; 237
Hess, De Kroon (CR17) 2007; 95
George, Gregory, Hocking, Richardson (CR14) 2008; 64
Jones, Brassington (CR24) 1998; 49
Lipton, Blanchar, Blevins (CR34) 1987; 85
Chen, Condron, Davis, Sherlok (CR7) 2002; 34
Sun, Gao, Yang, Zhang, Li (CR54) 2018; 439
Li, Shen, Zhang, Marschner, Cawthray, Rengel (CR31) 2010; 46
Sun, Gao, Lynch (CR53) 2018; 177
Geelhoed, Van Riemsdijk, Findenegg (CR12) 1999; 50
Devau, Hinsinger, Le Cadre, Gérard (CR11) 2011; 348
Trachsel, Kaeppler, Brown, Lynch (CR56) 2011; 341
Li, Tilman, Lambers, Zhang (CR32) 2014; 203
Pearse, Veneklaas, Cawthray, Bolland, Lambers (CR44) 2006; 288
Rivoal, Hanson (CR46) 1994; 106
Trouvelot, Kough, Gianinazzi-Pearson, Gianinazzi-Pearson, Gianinazzi (CR57) 1986
CR60
Li, Li, Zhang, Tang (CR28) 2004; 94
Barber (CR3) 1995
Zhang, Zhang, Tang, Li, Zhang, Rengel, Whalley, Davies, Shen (CR65) 2016; 209
Lambers, Shane, Cramer, Pearse, Veneklaas (CR27) 2006; 98
Tabatabai, Bremner (CR55) 1969; 1
Li, Li, Sun, Zhou, Bao, Zhang, Zhang (CR29) 2007; 104
Wang, Shen, Zhang, Zhang, Neumann (CR61) 2007; 176
BR Sun (4110_CR53) 2018; 177
H Li (4110_CR30) 2008; 312
E Oburger (4110_CR42) 2018; 6
JB Shen (4110_CR50) 2013; 64
JP Lynch (4110_CR35) 1995; 109
NY Song (4110_CR52) 2007; 43
R Baziramakenga (4110_CR4) 1995; 27
SJ Pearse (4110_CR44) 2006; 288
SA Barber (4110_CR3) 1995
CR Chen (4110_CR7) 2002; 34
JY Pang (4110_CR43) 2018; 219
H Lambers (4110_CR26) 2013; 36
DS Zhang (4110_CR65) 2016; 209
DS Lipton (4110_CR34) 1987; 85
JB Shen (4110_CR49) 2011; 156
S Trachsel (4110_CR56) 2011; 341
DV Badri (4110_CR2) 2009; 32
TJ Rose (4110_CR47) 2010; 326
J Zhu (4110_CR66) 2005; 32
SM Li (4110_CR28) 2004; 94
DL Jones (4110_CR24) 1998; 49
TS George (4110_CR13) 2005; 37
JP Lynch (4110_CR38) 2005; 269
4110_CR60
A Trouvelot (4110_CR57) 1986
SE Smith (4110_CR51) 2011; 156
P Hinsinger (4110_CR19) 2003; 248
T Desnos (4110_CR9) 2008; 11
MS Aulakh (4110_CR1) 2001; 3
N Devau (4110_CR11) 2011; 348
J Rivoal (4110_CR46) 1994; 106
CP Vance (4110_CR58) 2003; 157
L Li (4110_CR32) 2014; 203
CJ Li (4110_CR33) 2016; 6
E Betencourt (4110_CR5) 2012; 46
N Devau (4110_CR10) 2010; 105
P Hinsinger (4110_CR21) 2011; 156
G Zhang (4110_CR63) 2011; 124
JS Geelhoed (4110_CR12) 1999; 50
Y Zhu (4110_CR67) 2005; 46
H Hauggaard-Nielsen (4110_CR16) 2009; 113
P Hinsinger (4110_CR22) 2011; 348
4110_CR39
DP Schachtman (4110_CR48) 1998; 116
DT Vu (4110_CR59) 2008; 304
M Nuruzzaman (4110_CR41) 2006; 281
RF Giehl (4110_CR15) 2014; 166
G Neumann (4110_CR40) 1999; 211
L Cheng (4110_CR8) 2014; 65
MA Tabatabai (4110_CR55) 1969; 1
Baoru Sun (4110_CR54) 2018; 439
P Hinsinger (4110_CR20) 2009; 321
YL Wang (4110_CR62) 2017; 9
HG Li (4110_CR31) 2010; 46
P Hinsinger (4110_CR18) 2001; 237
BL Wang (4110_CR61) 2007; 176
L Li (4110_CR29) 2007; 104
TS George (4110_CR14) 2008; 64
JP Lynch (4110_CR36) 2011; 156
H Lambers (4110_CR27) 2006; 98
DL Jones (4110_CR25) 1995; 173
M Brundrett (4110_CR6) 1996; 32
JF Johnson (4110_CR23) 1996; 112
JA Raven (4110_CR45) 2018; 217
L Hess (4110_CR17) 2007; 95
YK Zhang (4110_CR64) 2012; 55
JP Lynch (4110_CR37) 2001; 237
References_xml – ident: CR39
– volume: 288
  start-page: 127
  year: 2006
  end-page: 139
  ident: CR44
  article-title: Carboxylate release of wheat, canola and 11 grain legume species as affected by phosphorus status
  publication-title: Plant Soil
– volume: 341
  start-page: 75
  year: 2011
  end-page: 87
  ident: CR56
  article-title: Shovelomics: high throughput phenotyping of maize ( L.) root architecture in the field
  publication-title: Plant Soil
– volume: 46
  start-page: 181
  year: 2012
  end-page: 190
  ident: CR5
  article-title: Intercropping promotes the ability of durum wheat and chickpea to increase rhizosphere phosphorus availability in a low P soil
  publication-title: Soil Biol Biochem
– volume: 43
  start-page: 565
  year: 2007
  end-page: 574
  ident: CR52
  article-title: Effect of intercropping on crop yield and chemical and microbiological properties in rhizosphere of wheat ( L.), maize ( L.), and faba bean ( L.)
  publication-title: Biol Fertil Soils
– volume: 1
  start-page: 301
  year: 1969
  end-page: 307
  ident: CR55
  article-title: Use of p-nitrophenyl phosphate for assay of soil phosphatase activity
  publication-title: Soil Biol Biochem
– volume: 94
  start-page: 297
  year: 2004
  end-page: 303
  ident: CR28
  article-title: Acid phosphatase role in chickpea/maize intercropping
  publication-title: Ann Bot
– year: 1995
  ident: CR3
  publication-title: Soil nutrient bioavailability: a mechanistic approach
– volume: 46
  start-page: 79
  year: 2010
  end-page: 91
  ident: CR31
  article-title: Phosphorus uptake and rhizosphere properties of intercropped and monocropped maize, faba bean, and white lupin in acidic soil
  publication-title: Biol Fertil Soils
– volume: 46
  start-page: 892
  year: 2005
  end-page: 901
  ident: CR67
  article-title: A link between citrate and proton release by proteoid roots of white lupin ( L.) grown under phosphorus-deficient conditions?
  publication-title: Plant Cell Physiol
– volume: 49
  start-page: 447
  year: 1998
  end-page: 455
  ident: CR24
  article-title: Sorption of organic acids in acid soils and its implications in the rhizosphere
  publication-title: Eur J Soil Sci
– volume: 124
  start-page: 66
  year: 2011
  end-page: 73
  ident: CR63
  article-title: Interspecific competitiveness affects the total biomass yield in an alfalfa and corn intercropping system
  publication-title: Field Crop Res
– volume: 65
  start-page: 2995
  year: 2014
  end-page: 3003
  ident: CR8
  article-title: Interactions between light intensity and phosphorus nutrition affect the phosphate-mining capacity of white lupin ( L.)
  publication-title: J Exp Bot
– volume: 211
  start-page: 121
  year: 1999
  end-page: 130
  ident: CR40
  article-title: Root excretion of carboxylic acids and protons in phosphorus-deficient plants
  publication-title: Plant Soil
– volume: 106
  start-page: 1179
  year: 1994
  end-page: 1185
  ident: CR46
  article-title: Metabolic control of anaerobic glycolysis – overexpression of lactate dehydrogenase in transgenic tomato roots supports the Davies–Roberts hypothesis and points to a critical role for lactate secretion
  publication-title: Plant Physiol
– volume: 36
  start-page: 1911
  year: 2013
  end-page: 1915
  ident: CR26
  article-title: Interactions between arbuscular mycorrhizal and non-mycorrhizal plants: do non-mycorrhizal species at both extremes of nutrient availability play the same game?
  publication-title: Plant Cell Environ
– volume: 439
  start-page: 145
  issue: 1-2
  year: 2018
  end-page: 161
  ident: CR54
  article-title: Performance of alfalfa rather than maize stimulates system phosphorus uptake and overyielding of maize/alfalfa intercropping via changes in soil water balance and root morphology and distribution in a light chernozemic soil
  publication-title: Plant and Soil
– volume: 269
  start-page: 45
  year: 2005
  end-page: 56
  ident: CR38
  article-title: Rhizoeconomics: carbon costs of phosphorus acquisition
  publication-title: Plant Soil
– volume: 304
  start-page: 21
  year: 2008
  end-page: 33
  ident: CR59
  article-title: Changes and availability of P fractions following 65 years of P application to a calcareous soil in a Mediterranean climate
  publication-title: Plant Soil
– volume: 281
  start-page: 109
  year: 2006
  end-page: 120
  ident: CR41
  article-title: Distribution of carboxylates and acid phosphatase and depletion of different phosphorus fractions in the rhizosphere of a cereal and three grain legumes
  publication-title: Plant Soil
– volume: 3
  start-page: 139
  year: 2001
  end-page: 148
  ident: CR1
  article-title: Characterization of root exudates at different growth stages of ten rice ( L.) cultivars
  publication-title: Plant Biol
– volume: 9
  start-page: plx008
  year: 2017
  ident: CR62
  article-title: Impact of phosphorus on rhizosphere organic anions of wheat at different growth stages under field conditions
  publication-title: AoB Plants
– volume: 32
  start-page: 666
  year: 2009
  end-page: 681
  ident: CR2
  article-title: Regulation and function of root exudates
  publication-title: Plant Cell Environ
– volume: 219
  start-page: 518
  year: 2018
  end-page: 529
  ident: CR43
  article-title: The carboxylate-releasing phosphorus-mobilizing strategy can be proxied by foliar manganese concentration in a large set of chickpea germplasm under low phosphorus supply
  publication-title: New Phytol
– volume: 156
  start-page: 1041
  year: 2011
  end-page: 1049
  ident: CR36
  article-title: Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops
  publication-title: Plant Physiol
– ident: CR60
– volume: 105
  start-page: 1183
  year: 2010
  end-page: 1197
  ident: CR10
  article-title: A mechanistic model for understanding root-induced chemical changes controlling phosphorus availability
  publication-title: Ann Bot
– volume: 85
  start-page: 315
  year: 1987
  end-page: 317
  ident: CR34
  article-title: Citrate, malate, and succinate concentration in exudates from P-sufficient and P-stressed L. seedlings
  publication-title: Plant Physiol
– volume: 156
  start-page: 1078
  year: 2011
  end-page: 1086
  ident: CR21
  article-title: P for two, sharing a scarce resource: soil phosphorus acquisition in the rhizosphere of intercropped species
  publication-title: Plant Physiol
– volume: 156
  start-page: 997
  year: 2011
  end-page: 1005
  ident: CR49
  article-title: Phosphorus dynamics: from soil to plant
  publication-title: Plant Physiol
– volume: 348
  start-page: 29
  year: 2011
  end-page: 61
  ident: CR22
  article-title: Acquisition of phosphorus and other poorly mobile nutrients by roots. Where do plant nutrition models fail?
  publication-title: Plant Soil
– volume: 112
  start-page: 31
  year: 1996
  end-page: 41
  ident: CR23
  article-title: Phosphorus deficiency in (altered lateral root development and enhanced expression of phosphoenolpyruvate carboxylase)
  publication-title: Plant Physiol
– volume: 109
  start-page: 7
  year: 1995
  end-page: 13
  ident: CR35
  article-title: Root architecture and plant productivity
  publication-title: Plant Physiol
– volume: 217
  start-page: 1420
  year: 2018
  end-page: 1427
  ident: CR45
  article-title: Costs of acquiring phosphorus by vascular land plants: patterns and implications for plant coexistence
  publication-title: New Phytol
– volume: 312
  start-page: 139
  year: 2008
  end-page: 150
  ident: CR30
  article-title: Dynamics of phosphorus fractions in the rhizosphere of common bean ( L.) and durum wheat ( L.) grown in monocropping and intercropping systems
  publication-title: Plant Soil
– volume: 176
  start-page: 581
  year: 2007
  end-page: 589
  ident: CR61
  article-title: Citrate exudation from white lupin induced by phosphorus deficiency differs from that induced by aluminum
  publication-title: New Phytol
– volume: 321
  start-page: 117
  year: 2009
  end-page: 152
  ident: CR20
  article-title: Rhizosphere: biophysics, biogeochemistry and ecological relevance
  publication-title: Plant Soil
– volume: 27
  start-page: 349
  year: 1995
  end-page: 356
  ident: CR4
  article-title: Determination of organic acids in soil extracts by ion chromatography
  publication-title: Soil Biol Biochem
– volume: 348
  start-page: 203
  year: 2011
  end-page: 218
  ident: CR11
  article-title: Root-induced processes controlling phosphate availability in soils with contrasted P-fertilized treatments
  publication-title: Plant Soil
– volume: 50
  start-page: 379
  year: 1999
  end-page: 390
  ident: CR12
  article-title: Simulation of the effect of citrate exudation from roots on the plant availability of phosphate adsorbed on goethite
  publication-title: Eur J Soil Sci
– volume: 203
  start-page: 63
  year: 2014
  end-page: 69
  ident: CR32
  article-title: Plant diversity and overyielding: insights from belowground facilitation of intercropping in agriculture
  publication-title: New Phytol
– volume: 156
  start-page: 1050
  year: 2011
  end-page: 1057
  ident: CR51
  article-title: Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition
  publication-title: Plant Physiol
– volume: 32
  start-page: 749
  year: 2005
  end-page: 762
  ident: CR66
  article-title: Topsoil foraging and phosphorus acquisition efficiency in maize ( )
  publication-title: Funct Plant Biol
– volume: 32
  start-page: 374
  year: 1996
  ident: CR6
  article-title: Working with mycorrhizas in forestry and agriculture
  publication-title: ACIAR Monogr
– start-page: 217
  year: 1986
  end-page: 221
  ident: CR57
  article-title: Mesure du taux de mycorhization VA d’un système radiculaire. Recherche des méthodes d’estimation ayant une signification fonctionnelle
  publication-title: Physiological and genetic aspects of mycorrhizae
– volume: 248
  start-page: 43
  year: 2003
  end-page: 59
  ident: CR19
  article-title: Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: a review
  publication-title: Plant Soil
– volume: 173
  start-page: 103
  year: 1995
  end-page: 109
  ident: CR25
  article-title: Influx and efflux of organic acids across the soil-root interface of L. and its implications in rhizosphere C flow
  publication-title: Plant Soil
– volume: 34
  start-page: 489
  year: 2002
  end-page: 499
  ident: CR7
  article-title: Phosphorus dynamics in the rhizosphere of perennial rye grass ( L.) and radiata pine ( D. Don.)
  publication-title: Soil Biol Biochem
– volume: 64
  start-page: 1181
  year: 2013
  end-page: 1192
  ident: CR50
  article-title: Maximizing root/rhizosphere efficiency to improve crop productivity and nutrient use efficiency in intensive agriculture of China
  publication-title: J Exp Bot
– volume: 113
  start-page: 64
  year: 2009
  end-page: 71
  ident: CR16
  article-title: Pea-barley intercropping for efficient symbiotic N -fixation, soil N acquisition and use of other nutrients in European organic cropping systems
  publication-title: Field Crop Res
– volume: 209
  start-page: 823
  year: 2016
  end-page: 831
  ident: CR65
  article-title: Increased soil phosphorus availability induced by faba bean root exudation stimulates root growth and phosphorus uptake in neighbouring maize
  publication-title: New Phytol
– volume: 237
  start-page: 225
  year: 2001
  end-page: 237
  ident: CR37
  article-title: Topsoil foraging – an architectural adaptation of plants to low phosphorus availability
  publication-title: Plant Soil
– volume: 166
  start-page: 509
  year: 2014
  end-page: 517
  ident: CR15
  article-title: Root nutrient foraging
  publication-title: Plant Physiol
– volume: 237
  start-page: 173
  year: 2001
  end-page: 195
  ident: CR18
  article-title: Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review
  publication-title: Plant Soil
– volume: 37
  start-page: 977
  year: 2005
  end-page: 988
  ident: CR13
  article-title: Behaviour of plant-derived extracellular phytase upon addition to soil
  publication-title: Soil Biol Biochem
– volume: 11
  start-page: 82
  year: 2008
  end-page: 87
  ident: CR9
  article-title: Root branching responses to phosphate and nitrate
  publication-title: Curr Opin Plant Biol
– volume: 104
  start-page: 11192
  year: 2007
  end-page: 11196
  ident: CR29
  article-title: Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils
  publication-title: Proc Natl Acad Sci
– volume: 157
  start-page: 423
  year: 2003
  end-page: 447
  ident: CR58
  article-title: Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource
  publication-title: New Phytol
– volume: 98
  start-page: 693
  year: 2006
  end-page: 713
  ident: CR27
  article-title: Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits
  publication-title: Ann Bot
– volume: 55
  start-page: 993
  year: 2012
  end-page: 1001
  ident: CR64
  article-title: The role of maize root size in phosphorus uptake and productivity of maize/faba bean and maize/wheat intercropping systems
  publication-title: Sci China Life Sci
– volume: 6
  start-page: 116
  year: 2018
  end-page: 133
  ident: CR42
  article-title: Sampling root exudates – mission impossible?
  publication-title: Rhizosphere
– volume: 64
  start-page: 239
  year: 2008
  end-page: 249
  ident: CR14
  article-title: Variation in root-associated phosphatase activities in wheat contributes to the utilization of organic P substrates in vitro, but does not explain differences in the P-nutrition of plants when grown in soils
  publication-title: Environ Exp Bot
– volume: 177
  start-page: 90
  year: 2018
  end-page: 104
  ident: CR53
  article-title: Large crown root number improves topsoil foraging and phosphorus acquisition
  publication-title: Plant Physiol
– volume: 6
  year: 2016
  ident: CR33
  article-title: Shift from complementarity to facilitation on P uptake by intercropped wheat neighboring with faba bean when available soil P is depleted
  publication-title: Sci Rep
– volume: 116
  start-page: 447
  year: 1998
  end-page: 453
  ident: CR48
  article-title: Phosphorus uptake by plants: from soil to cell
  publication-title: Plant Physiol
– volume: 326
  start-page: 159
  year: 2010
  end-page: 170
  ident: CR47
  article-title: Wheat, canola and grain legume access to soil phosphorus fractions differs in soils with contrasting phosphorus dynamics
  publication-title: Plant Soil
– volume: 95
  start-page: 241
  year: 2007
  end-page: 251
  ident: CR17
  article-title: Effects of rooting volume and nutrient availability as an alternative explanation for root self/non-self discrimination
  publication-title: J Ecol
– volume: 9
  start-page: plx008
  year: 2017
  ident: 4110_CR62
  publication-title: AoB Plants
– volume: 3
  start-page: 139
  year: 2001
  ident: 4110_CR1
  publication-title: Plant Biol
  doi: 10.1055/s-2001-12905
– volume: 105
  start-page: 1183
  year: 2010
  ident: 4110_CR10
  publication-title: Ann Bot
  doi: 10.1093/aob/mcq098
– volume: 37
  start-page: 977
  year: 2005
  ident: 4110_CR13
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2004.10.016
– volume: 64
  start-page: 1181
  year: 2013
  ident: 4110_CR50
  publication-title: J Exp Bot
  doi: 10.1093/jxb/ers342
– volume: 1
  start-page: 301
  year: 1969
  ident: 4110_CR55
  publication-title: Soil Biol Biochem
  doi: 10.1016/0038-0717(69)90012-1
– volume: 237
  start-page: 173
  year: 2001
  ident: 4110_CR18
  publication-title: Plant Soil
  doi: 10.1023/A:1013351617532
– volume: 166
  start-page: 509
  year: 2014
  ident: 4110_CR15
  publication-title: Plant Physiol
  doi: 10.1104/pp.114.245225
– volume: 326
  start-page: 159
  year: 2010
  ident: 4110_CR47
  publication-title: Plant Soil
  doi: 10.1007/s11104-009-9990-4
– volume: 11
  start-page: 82
  year: 2008
  ident: 4110_CR9
  publication-title: Curr Opin Plant Biol
  doi: 10.1016/j.pbi.2007.10.003
– volume: 98
  start-page: 693
  year: 2006
  ident: 4110_CR27
  publication-title: Ann Bot
  doi: 10.1093/aob/mcl114
– volume: 32
  start-page: 749
  year: 2005
  ident: 4110_CR66
  publication-title: Funct Plant Biol
  doi: 10.1071/FP05005
– volume: 312
  start-page: 139
  year: 2008
  ident: 4110_CR30
  publication-title: Plant Soil
  doi: 10.1007/s11104-007-9512-1
– volume: 304
  start-page: 21
  year: 2008
  ident: 4110_CR59
  publication-title: Plant Soil
  doi: 10.1007/s11104-007-9516-x
– volume: 176
  start-page: 581
  year: 2007
  ident: 4110_CR61
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2007.02206.x
– volume: 209
  start-page: 823
  year: 2016
  ident: 4110_CR65
  publication-title: New Phytol
  doi: 10.1111/nph.13613
– volume: 321
  start-page: 117
  year: 2009
  ident: 4110_CR20
  publication-title: Plant Soil
  doi: 10.1007/s11104-008-9885-9
– volume: 156
  start-page: 1050
  year: 2011
  ident: 4110_CR51
  publication-title: Plant Physiol
  doi: 10.1104/pp.111.174581
– volume: 203
  start-page: 63
  year: 2014
  ident: 4110_CR32
  publication-title: New Phytol
  doi: 10.1111/nph.12778
– volume: 341
  start-page: 75
  year: 2011
  ident: 4110_CR56
  publication-title: Plant Soil
  doi: 10.1007/s11104-010-0623-8
– start-page: 217
  volume-title: Physiological and genetic aspects of mycorrhizae
  year: 1986
  ident: 4110_CR57
– volume: 106
  start-page: 1179
  year: 1994
  ident: 4110_CR46
  publication-title: Plant Physiol
  doi: 10.1104/pp.106.3.1179
– volume: 65
  start-page: 2995
  year: 2014
  ident: 4110_CR8
  publication-title: J Exp Bot
  doi: 10.1093/jxb/eru135
– volume: 439
  start-page: 145
  issue: 1-2
  year: 2018
  ident: 4110_CR54
  publication-title: Plant and Soil
  doi: 10.1007/s11104-018-3888-y
– volume: 348
  start-page: 29
  year: 2011
  ident: 4110_CR22
  publication-title: Plant Soil
  doi: 10.1007/s11104-011-0903-y
– volume: 237
  start-page: 225
  year: 2001
  ident: 4110_CR37
  publication-title: Plant Soil
  doi: 10.1023/A:1013324727040
– ident: 4110_CR39
  doi: 10.1023/A:1004727201568
– volume: 64
  start-page: 239
  year: 2008
  ident: 4110_CR14
  publication-title: Environ Exp Bot
  doi: 10.1016/j.envexpbot.2008.05.002
– volume: 124
  start-page: 66
  year: 2011
  ident: 4110_CR63
  publication-title: Field Crop Res
  doi: 10.1016/j.fcr.2011.06.006
– volume: 109
  start-page: 7
  year: 1995
  ident: 4110_CR35
  publication-title: Plant Physiol
  doi: 10.1104/pp.109.1.7
– volume: 112
  start-page: 31
  year: 1996
  ident: 4110_CR23
  publication-title: Plant Physiol
  doi: 10.1104/pp.112.1.31
– volume: 269
  start-page: 45
  year: 2005
  ident: 4110_CR38
  publication-title: Plant Soil
  doi: 10.1007/s11104-004-1096-4
– volume: 49
  start-page: 447
  year: 1998
  ident: 4110_CR24
  publication-title: Eur J Soil Sci
  doi: 10.1046/j.1365-2389.1998.4930447.x
– volume: 95
  start-page: 241
  year: 2007
  ident: 4110_CR17
  publication-title: J Ecol
  doi: 10.1111/j.1365-2745.2006.01204.x
– volume: 288
  start-page: 127
  year: 2006
  ident: 4110_CR44
  publication-title: Plant Soil
  doi: 10.1007/s11104-006-9099-y
– volume-title: Soil nutrient bioavailability: a mechanistic approach
  year: 1995
  ident: 4110_CR3
– volume: 217
  start-page: 1420
  year: 2018
  ident: 4110_CR45
  publication-title: New Phytol
  doi: 10.1111/nph.14967
– volume: 156
  start-page: 997
  year: 2011
  ident: 4110_CR49
  publication-title: Plant Physiol
  doi: 10.1104/pp.111.175232
– volume: 173
  start-page: 103
  year: 1995
  ident: 4110_CR25
  publication-title: Plant Soil
  doi: 10.1007/BF00155523
– ident: 4110_CR60
  doi: 10.1007/s11104-019-03972-8
– volume: 219
  start-page: 518
  year: 2018
  ident: 4110_CR43
  publication-title: New Phytol
  doi: 10.1111/nph.15200
– volume: 6
  year: 2016
  ident: 4110_CR33
  publication-title: Sci Rep
  doi: 10.1038/srep18663
– volume: 46
  start-page: 892
  year: 2005
  ident: 4110_CR67
  publication-title: Plant Cell Physiol
  doi: 10.1093/pcp/pci094
– volume: 43
  start-page: 565
  year: 2007
  ident: 4110_CR52
  publication-title: Biol Fertil Soils
  doi: 10.1007/s00374-006-0139-9
– volume: 55
  start-page: 993
  year: 2012
  ident: 4110_CR64
  publication-title: Sci China Life Sci
  doi: 10.1007/s11427-012-4396-6
– volume: 157
  start-page: 423
  year: 2003
  ident: 4110_CR58
  publication-title: New Phytol
  doi: 10.1046/j.1469-8137.2003.00695.x
– volume: 46
  start-page: 79
  year: 2010
  ident: 4110_CR31
  publication-title: Biol Fertil Soils
  doi: 10.1007/s00374-009-0411-x
– volume: 113
  start-page: 64
  year: 2009
  ident: 4110_CR16
  publication-title: Field Crop Res
  doi: 10.1016/j.fcr.2009.04.009
– volume: 36
  start-page: 1911
  year: 2013
  ident: 4110_CR26
  publication-title: Plant Cell Environ
  doi: 10.1111/pce.12117
– volume: 94
  start-page: 297
  year: 2004
  ident: 4110_CR28
  publication-title: Ann Bot
  doi: 10.1093/aob/mch140
– volume: 46
  start-page: 181
  year: 2012
  ident: 4110_CR5
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2011.11.015
– volume: 27
  start-page: 349
  year: 1995
  ident: 4110_CR4
  publication-title: Soil Biol Biochem
  doi: 10.1016/0038-0717(94)00178-4
– volume: 248
  start-page: 43
  year: 2003
  ident: 4110_CR19
  publication-title: Plant Soil
  doi: 10.1023/A:1022371130939
– volume: 34
  start-page: 489
  year: 2002
  ident: 4110_CR7
  publication-title: Soil Biol Biochem
  doi: 10.1016/S0038-0717(01)00207-3
– volume: 6
  start-page: 116
  year: 2018
  ident: 4110_CR42
  publication-title: Rhizosphere
  doi: 10.1016/j.rhisph.2018.06.004
– volume: 177
  start-page: 90
  year: 2018
  ident: 4110_CR53
  publication-title: Plant Physiol
  doi: 10.1104/pp.18.00234
– volume: 281
  start-page: 109
  year: 2006
  ident: 4110_CR41
  publication-title: Plant Soil
  doi: 10.1007/s11104-005-3936-2
– volume: 156
  start-page: 1041
  year: 2011
  ident: 4110_CR36
  publication-title: Plant Physiol
  doi: 10.1104/pp.111.175414
– volume: 156
  start-page: 1078
  year: 2011
  ident: 4110_CR21
  publication-title: Plant Physiol
  doi: 10.1104/pp.111.175331
– volume: 211
  start-page: 121
  year: 1999
  ident: 4110_CR40
  publication-title: Plant Soil
  doi: 10.1023/A:1004380832118
– volume: 32
  start-page: 666
  year: 2009
  ident: 4110_CR2
  publication-title: Plant Cell Environ
  doi: 10.1111/j.1365-3040.2009.01926.x
– volume: 32
  start-page: 374
  year: 1996
  ident: 4110_CR6
  publication-title: ACIAR Monogr
– volume: 348
  start-page: 203
  year: 2011
  ident: 4110_CR11
  publication-title: Plant Soil
  doi: 10.1007/s11104-011-0935-3
– volume: 104
  start-page: 11192
  year: 2007
  ident: 4110_CR29
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.0704591104
– volume: 85
  start-page: 315
  year: 1987
  ident: 4110_CR34
  publication-title: Plant Physiol
  doi: 10.1104/pp.85.2.315
– volume: 116
  start-page: 447
  year: 1998
  ident: 4110_CR48
  publication-title: Plant Physiol
  doi: 10.1104/pp.116.2.447
– volume: 50
  start-page: 379
  year: 1999
  ident: 4110_CR12
  publication-title: Eur J Soil Sci
  doi: 10.1046/j.1365-2389.1999.00251.x
SSID ssj0003216
Score 2.5838192
Snippet Aims To investigate the relative contributions of pH, organic anions concentration, and phosphatase activity to rhizosphere soil phosphorus availability and...
Aims To investigate the relative contributions of pH, organic anions concentration, and phosphatase activity to rhizosphere soil phosphorus availability and...
AimsTo investigate the relative contributions of pH, organic anions concentration, and phosphatase activity to rhizosphere soil phosphorus availability and...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 117
SubjectTerms Acid phosphatase
Alfalfa
Anions
Bile
Biomedical and Life Sciences
Corn
Crops
Ecology
Exudates
Hydrogen-ion concentration
Life Sciences
Monoculture
Organic phosphorus
pH effects
Phosphatase
Phosphatases
Phosphorus
Phosphorus content
Plant Physiology
Plant Sciences
Polyculture
Regular Article
Rhizosphere
Soil Science & Conservation
Soils
Surface area
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA96KuiD6Kq4ekoeBB_cYpM2afq4yh2LoE8u7FtI2tRb3NuUbVdY_x__T2fS9NZvEEpbmo8GJs3Mr5n5DSEvammVKCxPal7LJC9UloASZkmRV6BMMlkqgzu67z_IxTJ_txKrGBTWjd7u45ZkWKmPwW6gqdBjAn_mM9zCvU5uCMDu6Mi15POr9TfjIeEp3iRpUa5iqMyf-_hJHf26KP-2OxqUzvk9cjdai3Q-iPc-uea2E3Jn_mkXGTPchNx848G-O0zIrbNAQH14QL6B7OkQpPLF0eCMHrNaddQ3tF3M6JDMqaJwgqczuNa0vfBde2F60Gu093SH3ngdsg442vn1Jpb73b6jlx59aocIztAWE4H9WGHf9uazo-stvTTrr-612TR40NZvDnHoD8ny_Ozj20US0zEkVc7zHkCmsJXgeWZKwLWArHKk-ZQ2dbIoXVrytBbMOQULZqmkqk1jmakzoSqAdalj2SNysvVb95hQxrlLheUNA7QGANNiSL4SliknZC2aKWGjVHQVucoxZcZGH1mWUZIaJKmDJHU6Ja-u2rQDU8c_a79EYWv8jKHnysRoBBgfEmLpuUSWmiJjbEpOx_mg4_fdabCqAPjyQkJHs3GOHIv__t4n_1f9KbnNEeAHN_FTctLv9u4ZWEG9fR4m_XfCHfzL
  priority: 102
  providerName: Springer Nature
Title The relative contributions of pH, organic anions, and phosphatase to rhizosphere soil phosphorus mobilization and crop phosphorus uptake in maize/alfalfa polyculture
URI https://link.springer.com/article/10.1007/s11104-019-04110-0
https://www.proquest.com/docview/2221562760
Volume 447
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwEB6xLQc4IFhAFJbKByQONNrYiR3nhFpoqUCsEKJSOUV5OGxFtw5NirT8H_4nM4m75SFWipIofsTS2DMez-MDeFaoTMsoE14hCuWFkQ48FMLci8IchUmgYp2SRff9mZovwrdLuXQHbrVzq9zzxJZRFzanM_JTlGOoaohI-S-rbx6hRpF11UFoHEEfWbDWPehPpmcfPl7x4kC04Kf04vlRvHRhM13wHEo-8sAg4wAnk_AfoulvBv2PpbQVQLO7cMftHNm4I_U9uGE2x3B7_GXrsmeYY7g5sbjXu7wPP5H6rAtT-W5Y647ucK1qZktWzUesg3PKGd7w6wifBavObV2dpw1KNtZYtiV_vJryDhhW29XaldvtrmYXlrxquxjOti1Bgf1eYVc16VfDVht2ka5-mNN0XdLFKru-dAN-AIvZ9NOruecAGbw8FGGDaqbMcinCII1Rs0XdKqREnyrzjYpi48fCLyQ3RiPLjLXSRVpmPC0CqXNU7HzDg4fQ29iNeQSMC2F8mYmSo76GKmZGQflaZlwbqQpZDoDvaZHkLls5gWask0OeZaJfgvRLWvol_gBeXLWpulwd19Z-TiROaCFjz3nq4hFwfJQSKxkrylMTBZwP4GQ_CxK3wuvkMB8HMNrPjEPx___7-PrensAtQSp96xh-Ar1muzNPcd_TZEPojyevJzN6vvn8bjp0k30IRwsx_gXLOQJy
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NDgl4QDBAdAzwA4gHGi12Esd9QKiDTR3bKoQ2qW9ZPhxWratDk4LK_8MrfyN3ibPyIfY2KUqiJHYc3eXO57v7HcCLTCYqCBPhZCKTjh8qz0ElzJ3QT1GZeLKvYvLoHo3k8MT_MA7Ga_CzzYWhsMpWJtaCOjMprZFvox5DU0OE0n1bfHGoahR5V9sSGg1bHOjlNzTZyjf775G-L4XY2z1-N3RsVQEn9YVfoa0UJGkgfC9GW16hgeATWqVMXC3Dvnb7ws0CrrXC_76vpMriPOFx5gUqRevE1dzDfm_AOn6HKzqwvrM7-vjpUvZ7oi62SieOG_bHNk2nSdZDTUsRH-SM4OSC_kMV_q0Q_vHM1gpv7x7ctTNVNmhY6z6s6dkG3Bl8nlu0Dr0BN3cMzi2XD-AHchtr0mK-alaHv9s6WiUzOSuGPdaUj0oZ7vBqD48ZK85MWZzFFWpSVhk2p_i_knAONCvNZGrvm_miZBeGonibnNG6LZUe-_2BRVHF55pNZuwinnzX2_E0p40VZrq0A34IJ9dCqkfQmZmZfgyMC6HdIBE5R_sQTdqEQABUkHClA5kFeRd4S4sotejoVKRjGq1wnYl-EdIvqukXuV14fdmmaLBBrnz6FZE4IsGBPaexzX_A8REEVzSQhIsTepx3YavlgshKlDJa8X8Xei1nrG7__72bV_f2HG4Nj48Oo8P90cETuC1oOaEOSt-CTjVf6Kc456qSZ5bRGZxe97_1CzBMOaw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VFCE4ICggAgX2AOJArHjXXts5IJTSRimFqEJUym3xY00j0qyJHVD4P_wJfh0z9rrhIXqrFCVW7F1bmtn59vO8AJ5mQRLJMBFOJrLA8cPIcxCEuRP6KYKJFwyimDy67ybB-MR_M5XTLfjZ5sJQWGVrE2tDnZmU3pH3EceQaogwcPu5DYs43h-9Kr441EGKPK1tO41GRY70-hvSt_Ll4T7K-pkQo4MPr8eO7TDgpL7wK-RNMkml8L0YeX2EZMGnypVB4uogHGh3INxMcq0jtAGDKIiyOE94nHkySpGpuJp7OO8V2A6JFXVge-9gcvz-HAc8UTdepQPHDQdTm7LTJO4h6lL0BzkmOLmj_4DFv8HhHy9tDX6jW3DT7lrZsFGz27ClFztwY_hpaSt36B24umdwn7m-Az9Q81iTIvNVszoU3vbUKpnJWTHusaaVVMrwC__t4W_GilNTFqdxhajKKsOWFAtYUs0DzUozm9vzZrkq2ZmhiN4mf7QeS23Ifr9gVVTxZ81mC3YWz77rfjzP6cMKM1_bB74LJ5ciqnvQWZiFvg-MC6FdmYicI1dEeptQQYBIJjzSMshk3gXeykKltlI6NeyYq02NZ5KfQvmpWn7K7cKL8zFFUyfkwqufk4gVGRGcOY1tLgQ-H5XjUsOAauSEHudd2G21QFnrUqrNWuhCr9WMzen_3_fBxbM9gWu4ptTbw8nRQ7gu6M1CHZ--C51qudKPcPtVJY-tnjP4eNlL6xfxrT3h
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+relative+contributions+of+pH%2C+organic+anions%2C+and+phosphatase+to+rhizosphere+soil+phosphorus+mobilization+and+crop+phosphorus+uptake+in+maize%2Falfalfa+polyculture&rft.jtitle=Plant+and+soil&rft.au=Sun+Baoru&rft.au=Gao+Yingzhi&rft.au=Wu%2C+Xue&rft.au=Ma%2C+Huimin&rft.date=2020-02-01&rft.pub=Springer+Nature+B.V&rft.issn=0032-079X&rft.eissn=1573-5036&rft.volume=447&rft.issue=1-2&rft.spage=117&rft.epage=133&rft_id=info:doi/10.1007%2Fs11104-019-04110-0&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-079X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-079X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-079X&client=summon