Imputing Missing Genotypes with Weighted k Nearest Neighbors

Missing values are a common problem in genetic association studies concerned with single-nucleotide polymorphisms (SNPs). Since many statistical methods cannot handle missing values, such values need to be removed prior to the actual analysis. Considering only complete observations, however, often l...

Full description

Saved in:
Bibliographic Details
Published inJournal of Toxicology and Environmental Health, Part A Vol. 75; no. 8-10; pp. 438 - 446
Main Author Schwender, Holger
Format Journal Article
LanguageEnglish
Published England Taylor & Francis Group 15.04.2012
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN1528-7394
1087-2620
2381-3504
DOI10.1080/15287394.2012.674910

Cover

Abstract Missing values are a common problem in genetic association studies concerned with single-nucleotide polymorphisms (SNPs). Since many statistical methods cannot handle missing values, such values need to be removed prior to the actual analysis. Considering only complete observations, however, often leads to an immense loss of information. Therefore, procedures are required that can be used to impute such missing values. In this study, an imputation procedure based on a weighted k nearest neighbors algorithm is presented. This approach, called KNNcatImpute, searches for the k SNPs that are most similar to the SNP whose missing values need to be replaced and uses these k SNPs to impute the missing values. Alternatively, KNNcatImpute can search for the k nearest subjects. In this situation, the missing values of an individual are imputed by considering subjects showing a DNA pattern similar to the one of this individual. In a comparison to other imputation approaches, KNNcatImpute shows the lowest rates of falsely imputed genotypes when applied to the SNP data from the GENICA study, a candidate SNP study dedicated to the identification of genetic and gene-environment interactions associated with sporadic breast cancer. Moreover, KNNcatImpute can also be applied to data from genome-wide association studies, as an application to a subset of the HapMap data demonstrates.
AbstractList Missing values are a common problem in genetic association studies concerned with single-nucleotide polymorphisms (SNPs). Since many statistical methods cannot handle missing values, such values need to be removed prior to the actual analysis. Considering only complete observations, however, often leads to an immense loss of information. Therefore, procedures are required that can be used to impute such missing values. In this study, an imputation procedure based on a weighted k nearest neighbors algorithm is presented. This approach, called KNNcatImpute, searches for the k SNPs that are most similar to the SNP whose missing values need to be replaced and uses these k SNPs to impute the missing values. Alternatively, KNNcatImpute can search for the k nearest subjects. In this situation, the missing values of an individual are imputed by considering subjects showing a DNA pattern similar to the one of this individual. In a comparison to other imputation approaches, KNNcatImpute shows the lowest rates of falsely imputed genotypes when applied to the SNP data from the GENICA study, a candidate SNP study dedicated to the identification of genetic and gene-environment interactions associated with sporadic breast cancer. Moreover, KNNcatImpute can also be applied to data from genome-wide association studies, as an application to a subset of the HapMap data demonstrates.
Missing values are a common problem in genetic association studies concerned with single-nucleotide polymorphisms (SNPs). Since many statistical methods cannot handle missing values, such values need to be removed prior to the actual analysis. Considering only complete observations, however, often leads to an immense loss of information. Therefore, procedures are required that can be used to impute such missing values. In this study, an imputation procedure based on a weighted k nearest neighbors algorithm is presented. This approach, called KNNcatImpute, searches for the k SNPs that are most similar to the SNP whose missing values need to be replaced and uses these k SNPs to impute the missing values. Alternatively, KNNcatImpute can search for the k nearest subjects. In this situation, the missing values of an individual are imputed by considering subjects showing a DNA pattern similar to the one of this individual. In a comparison to other imputation approaches, KNNcatImpute shows the lowest rates of falsely imputed genotypes when applied to the SNP data from the GENICA study, a candidate SNP study dedicated to the identification of genetic and gene-environment interactions associated with sporadic breast cancer. Moreover, KNNcatImpute can also be applied to data from genome-wide association studies, as an application to a subset of the HapMap data demonstrates. [PUBLICATION ABSTRACT]
Missing values are a common problem in genetic association studies concerned with single-nucleotide polymorphisms (SNPs). Since many statistical methods cannot handle missing values, such values need to be removed prior to the actual analysis. Considering only complete observations, however, often leads to an immense loss of information. Therefore, procedures are required that can be used to impute such missing values. In this study, an imputation procedure based on a weighted k nearest neighbors algorithm is presented. This approach, called KNNcatImpute, searches for the k SNPs that are most similar to the SNP whose missing values need to be replaced and uses these k SNPs to impute the missing values. Alternatively, KNNcatImpute can search for the k nearest subjects. In this situation, the missing values of an individual are imputed by considering subjects showing a DNA pattern similar to the one of this individual. In a comparison to other imputation approaches, KNNcatImpute shows the lowest rates of falsely imputed genotypes when applied to the SNP data from the GENICA study, a candidate SNP study dedicated to the identification of genetic and gene-environment interactions associated with sporadic breast cancer. Moreover, KNNcatImpute can also be applied to data from genome-wide association studies, as an application to a subset of the HapMap data demonstrates.Missing values are a common problem in genetic association studies concerned with single-nucleotide polymorphisms (SNPs). Since many statistical methods cannot handle missing values, such values need to be removed prior to the actual analysis. Considering only complete observations, however, often leads to an immense loss of information. Therefore, procedures are required that can be used to impute such missing values. In this study, an imputation procedure based on a weighted k nearest neighbors algorithm is presented. This approach, called KNNcatImpute, searches for the k SNPs that are most similar to the SNP whose missing values need to be replaced and uses these k SNPs to impute the missing values. Alternatively, KNNcatImpute can search for the k nearest subjects. In this situation, the missing values of an individual are imputed by considering subjects showing a DNA pattern similar to the one of this individual. In a comparison to other imputation approaches, KNNcatImpute shows the lowest rates of falsely imputed genotypes when applied to the SNP data from the GENICA study, a candidate SNP study dedicated to the identification of genetic and gene-environment interactions associated with sporadic breast cancer. Moreover, KNNcatImpute can also be applied to data from genome-wide association studies, as an application to a subset of the HapMap data demonstrates.
Author Schwender, Holger
Author_xml – sequence: 1
  givenname: Holger
  surname: Schwender
  fullname: Schwender, Holger
  email: holger.schwender@udo.edu
  organization: Faculty of Statistics , TU Dortmund University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22686303$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtLJDEUhYMoPucfiBS4cVNtXp1UiTAMMuMIPjbKLEOq6kajVUmbpGj635ui7Y2LcXVD8p1zc-85QNvOO0DomOAZwRU-J3NaSVbzGcWEzoTkNcFbaD-_yZIKirfzOSPlxOyhgxhfMcaE12IX7VEqKsEw20eXN8NiTNY9F3c2xqleg_NptYBYLG16Kf6BfX5J0BVvxT3oADHlmq8aH-IR2jG6j_Djsx6ipz-_H6_-lrcP1zdXv27LllOeSi5FLYgxjdamI7mtkaICKjEDQ7XQknWsoljqZt5JkNrMO16zpqMtNNwQYIfobO27CP59zF9Qg40t9L124Meo8px1TZlg9fcozuuqqjmuMnr6BX31Y3B5kImimEnGWaZOPqmxGaBTi2AHHVZqs8IMXKyBNvgYAxjV2qST9S4Fbfvspaa81CYvNeWl1nllMf8i3vh_I_u5lllnfBj00oe-U0mveh9M0K61UbH_OnwAht-pEw
CitedBy_id crossref_primary_10_1186_1471_2105_14_282
crossref_primary_10_1002_cpe_5521
crossref_primary_10_1093_bib_bbac202
crossref_primary_10_1016_j_compbiomed_2024_108407
crossref_primary_10_1186_s12874_024_02305_3
crossref_primary_10_1371_journal_pone_0173313
crossref_primary_10_1534_genetics_113_158014
crossref_primary_10_1080_09546634_2022_2079597
crossref_primary_10_1002_ece3_3846
crossref_primary_10_1007_s11295_023_01608_8
crossref_primary_10_1016_j_compbiomed_2021_104577
crossref_primary_10_3389_fgene_2022_1009589
crossref_primary_10_1016_j_cj_2018_01_006
crossref_primary_10_1534_g3_115_021667
crossref_primary_10_1016_j_ins_2022_01_056
crossref_primary_10_1093_g3journal_jkab235
crossref_primary_10_1093_g3journal_jkab368
crossref_primary_10_1371_journal_pone_0138223
crossref_primary_10_1016_j_clnu_2022_07_027
crossref_primary_10_2174_1574893613666180413151654
crossref_primary_10_1186_s12864_016_2429_4
crossref_primary_10_1038_s41598_021_90774_7
crossref_primary_10_2139_ssrn_4065215
crossref_primary_10_3389_fpls_2017_01434
crossref_primary_10_1007_s10994_024_06584_1
crossref_primary_10_1186_s12870_024_04927_7
crossref_primary_10_52547_rap_13_35_130
crossref_primary_10_3389_adar_2024_13449
crossref_primary_10_1007_s00204_013_1014_8
crossref_primary_10_1038_s41598_017_11635_w
crossref_primary_10_3389_fpls_2015_01046
crossref_primary_10_1093_dnares_dsy043
Cites_doi 10.1038/nature02168
10.1093/bioinformatics/17.6.520
10.1201/9780429258480
10.1023/A:1010933404324
10.1093/oxfordjournals.aje.a117592
10.1002/gepi.20180
10.1158/1055-9965.2059.13.12
10.1177/001316446002000104
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 2012
Copyright Taylor & Francis Ltd. 2012
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 2012
– notice: Copyright Taylor & Francis Ltd. 2012
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QQ
7SC
7SE
7SP
7SR
7ST
7TA
7TB
7TK
7TV
7U5
7U7
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
SOI
7X8
DOI 10.1080/15287394.2012.674910
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Environment Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Pollution Abstracts
Solid State and Superconductivity Abstracts
Toxicology Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Environment Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Pollution Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Toxicology Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Environment Abstracts
MEDLINE - Academic
DatabaseTitleList Pollution Abstracts

MEDLINE
Materials Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Pharmacy, Therapeutics, & Pharmacology
EISSN 1087-2620
2381-3504
EndPage 446
ExternalDocumentID 2695673001
22686303
10_1080_15287394_2012_674910
674910
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID .7F
.QJ
0BK
0R~
29L
30N
36B
4.4
5GY
5VS
AAAVZ
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACGOD
ACIWK
ACPRK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AEOZL
AFKVX
AFRAH
AGDLA
AGMYJ
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CAG
CCCUG
CE4
CS3
DGEBU
DKSSO
EBS
ECGQY
EJD
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
M4Z
NA5
NX0
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TEI
TFL
TFT
TFW
TQWBC
TTHFI
TUROJ
TWF
UT5
UU3
ZE2
ZGOLN
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
CITATION
.GJ
3O-
53G
AAGME
ABFMO
ACDHJ
ACZPZ
ADOPC
ADXHL
AI.
AURDB
BFWEY
CGR
COF
CUY
CVF
CWRZV
ECM
EIF
LJTGL
NPM
PCLFJ
TASJS
VH1
YHZ
ZCG
ZGI
ZXP
7QF
7QQ
7SC
7SE
7SP
7SR
7ST
7TA
7TB
7TK
7TV
7U5
7U7
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
SOI
7X8
ID FETCH-LOGICAL-c424t-476961ffbaafd1303f768e2703ef2a6a73d38207ab5d7e7af5d493bd2ceb4f1e3
ISSN 1528-7394
IngestDate Tue Aug 05 11:36:19 EDT 2025
Fri Sep 05 07:06:11 EDT 2025
Mon Jul 14 07:28:16 EDT 2025
Mon Jul 21 06:01:01 EDT 2025
Tue Jul 01 04:35:07 EDT 2025
Thu Apr 24 23:11:47 EDT 2025
Wed Dec 25 08:59:27 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 8-10
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c424t-476961ffbaafd1303f768e2703ef2a6a73d38207ab5d7e7af5d493bd2ceb4f1e3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 22686303
PQID 1022037343
PQPubID 52988
PageCount 9
ParticipantIDs informaworld_taylorfrancis_310_1080_15287394_2012_674910
proquest_miscellaneous_1529923639
proquest_journals_1022037343
proquest_miscellaneous_1020188508
pubmed_primary_22686303
crossref_citationtrail_10_1080_15287394_2012_674910
crossref_primary_10_1080_15287394_2012_674910
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-04-15
PublicationDateYYYYMMDD 2012-04-15
PublicationDate_xml – month: 04
  year: 2012
  text: 2012-04-15
  day: 15
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Philadelphia
PublicationTitle Journal of Toxicology and Environmental Health, Part A
PublicationTitleAlternate J Toxicol Environ Health A
PublicationYear 2012
Publisher Taylor & Francis Group
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis Group
– name: Taylor & Francis Ltd
References Breiman L. (CIT0002) 1984
Greenland S. (CIT0007) 1995; 142
CIT0001
CIT0012
CIT0003
Little R. J. A. (CIT0010) 1987
CIT0004
Justenhoven C. (CIT0009) 2004; 13
Louis T. A. (CIT0011) 2010; 9
Fix E. (CIT0005) 1951
Gelman A. (CIT0006) 2003
CIT0008
References_xml – volume-title: Classification and regression trees
  year: 1984
  ident: CIT0002
– ident: CIT0008
  doi: 10.1038/nature02168
– ident: CIT0012
  doi: 10.1093/bioinformatics/17.6.520
– volume-title: Technical report
  year: 1951
  ident: CIT0005
– volume-title: Bayesian data analysis
  year: 2003
  ident: CIT0006
  doi: 10.1201/9780429258480
– ident: CIT0001
  doi: 10.1023/A:1010933404324
– volume: 142
  start-page: 1255
  year: 1995
  ident: CIT0007
  publication-title: Am. J. Epidemiol.
  doi: 10.1093/oxfordjournals.aje.a117592
– volume-title: Statistical analysis with missing data
  year: 1987
  ident: CIT0010
– ident: CIT0004
  doi: 10.1002/gepi.20180
– volume: 13
  start-page: 2059
  year: 2004
  ident: CIT0009
  publication-title: Cancer Epidemiol. Biomarkers Prev.
  doi: 10.1158/1055-9965.2059.13.12
– volume: 9
  start-page: 393
  volume-title: Bayesian STatistics
  year: 2010
  ident: CIT0011
– ident: CIT0003
  doi: 10.1177/001316446002000104
SSID ssj0001496
ssj0001687
Score 2.1521313
Snippet Missing values are a common problem in genetic association studies concerned with single-nucleotide polymorphisms (SNPs). Since many statistical methods cannot...
SourceID proquest
pubmed
crossref
informaworld
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 438
SubjectTerms Algorithms
Breast cancer
Breast Neoplasms - genetics
Case-Control Studies
Data Interpretation, Statistical
Databases, Genetic
DNA - genetics
False Positive Reactions
Female
Gene-Environment Interaction
Genetics
Genetics - statistics & numerical data
Genome-Wide Association Study
Genomics
Genotype
Genotype & phenotype
Humans
Polymorphism
Polymorphism, Single Nucleotide - genetics
Toxicology
Title Imputing Missing Genotypes with Weighted k Nearest Neighbors
URI https://www.tandfonline.com/doi/abs/10.1080/15287394.2012.674910
https://www.ncbi.nlm.nih.gov/pubmed/22686303
https://www.proquest.com/docview/1022037343
https://www.proquest.com/docview/1020188508
https://www.proquest.com/docview/1529923639
Volume 75
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbQeEFCCMatMJCR0J7mkthOnEi8ILRpoK1MIhV9s3JxADElaM0E49dzju0krbaVy0vbOElz-b7Y55z4fIeQl2hU53EpWFDlCZOpDFjOZQKLQcHj2khVYWjgeBYfzuX7RbQY5QlsdklXTMtfV-aV_A-q0Aa4YpbsPyA7_Ck0wG_AFz4BYfj8K4zfYUUG9PWP4fbZSJJpWgyq-py1TzbuCSYlpjNgolEH39AEuC-vsUq79ufXctRlWsmDG5Imp2B2nnVjEPRj-eWHLUhnh7H29LOf8OtjCTgpQzKXTWnRzy6V9ViZW2R7R54wJVxV4qmxbTjkMxG5GsJ9l-qKoXjqoHzsShcpnZrLpa7bzXXEQ-ARcNIdn8ZKpn7nNaXs2Qd9MD860tn-Iltfa0dmHoPXh0L84Bbf5ErZ9_cimA1DdBjbyonD9fQ5lUnw6qoTWLNZ1hRtr_dLrH2S3SV3PIT0jWPJPXLDNNtk98Qpk1_s0WxMtFvu0V16MmqWX2yT2y58S11W2n3yuqcW9dSiA7UoUov21KLfqKcWHaj1gMwP9rO3h8wX2mCl5LJjUsVpHNZ1ked1hUZNDU6o4TAYmBqe5FyJSoClqPIiqpRReR1VMhVFxUtTyDo04iHZatrGPCY0D2CxApctTkPUokvBhAQrXxTg16eVqSdE9LdSl16FHouhnOrQi9X2AGgEQDsAJoQNe313Kix_2D5ZRUl3lti147QWm3fd6RHV_lFfagyLBEIJKSbkxbAaOmJ8u5Y3pj232wRhkoDDs2GbCKw_LsArmJBHji3D9YAflMRw759sPoGn5Nb45O6Qre7s3DwDu7grnluO_wYl869Y
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hcgAJ8SivhQJGQj012yR27ETighBlC91VD1vBzbJj-1KURSR7KL-emTjZpUgtEpwix3YU22PPN2P7G4A3BKqNrHmSOlMmohJpYnJRYjK1uQxeKEeugflCzs7Ep6_FeJqwHY5Vkg0dIlFEv1bT5CZn9Hgk7hB1Tql4RS6RLJ9KJSq6ZHWzQOhOQs7TxWYxRgNAbhOyD5hH1ROqP16lu-KTl1TVJSLTq-For5aO7oEdGxRPo5xP152d1j__4Hr8rxbfh7sDaGXvopQ9gBu-2YX908h6fXHAlttLXO0B22enWz7si124E12DLN54eghvjymQBKpMNsdRp-dH36zIF9wycguzL7271jt2zhZEsdt2-MRXKK7tIzg7-rB8P0uGIA5JLXLRJULJSmYhWGOCI4UZ0MDxOS40PqCUGMUdRxSijC2c8sqEwomKW5fX3oqQef4YdppV458CMykmHZoDssqI56xCeIIIklu0GSvnwwT4OF66HhjOKdDGN50NRKhjN2rqRh27cQLJptb3yPDxl_Ll76Kgu96zEmIYFM2vr7o3io0elopWk8mdcsUFn8DrTTZOctq5MY1frfsyaVaWCKavKVMgssg5Is4JPIkiuWkPYuxSYt8_-_d_fwW3Zsv5iT45Xnx-DrcphzbVsmIPdrofa_8CsVlnX_az7xeFsCZr
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hIqFKiEcLdGkBI6GemiWJHTuRuCBg6YOu9tCK3iwnti-tshXJHsqv70yc7LZILRKcIsd2FDtjzzcTzzcAHwhUG1nxKLYmj0Qh4sikIsdiXKbSO6EsuQaOp3L_VByeZWc3ovjpWCXZ0D4QRXR7NS3uS-uHE3EfUeXkihfkEUnSsVSioBirhxLRCR3q4_F0uRcj_perguzy5VH3iPoPkXR3PPKWprrFY3o3Gu200uQpmGE84TDK-XjRluPq9x9Uj_8z4GfwpIes7HOQsefwwNUbsDsLnNdXe-xkFcLV7LFdNluxYV9twOPgGGQh3mkTPh1QGglUmOwYvzldv7t6Tp7ghpFTmP3snLXOsnM2JYLdpsUr3kJhbV7A6eTbyZf9qE_hEFUiFW0klCxk4n1pjLekLj2aNy7FbcZ5lBGjuOWIQZQpM6ucMj6zouClTStXCp84_hLW6nnttoCZGIsWjQFZJMRyViA4QfzIS7QYC-v8CPjwuXTV85tTmo0LnfQ0qMM0appGHaZxBNGy12Xg9_hL-_ymJOi286v4kARF8_u77gxSo_uNotFkcMdcccFH8H5ZjUuc_tuY2s0XXZs4yXOE0ve0yRBXpBzx5gheBYlcjgcRdi5x7l__-7u_g0ezrxP942B6tA3rVEF_1JJsB9baXwv3BoFZW77t1t41s8glDw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Imputing+Missing+Genotypes+with+Weighted+k+Nearest+Neighbors&rft.jtitle=Journal+of+toxicology+and+environmental+health.+Part+A&rft.au=Schwender%2C+Holger&rft.date=2012-04-15&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=1528-7394&rft.eissn=2381-3504&rft.volume=75&rft.issue=8-10&rft.spage=438&rft_id=info:doi/10.1080%2F15287394.2012.674910&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2695673001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1528-7394&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1528-7394&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1528-7394&client=summon