Imputing Missing Genotypes with Weighted k Nearest Neighbors
Missing values are a common problem in genetic association studies concerned with single-nucleotide polymorphisms (SNPs). Since many statistical methods cannot handle missing values, such values need to be removed prior to the actual analysis. Considering only complete observations, however, often l...
Saved in:
Published in | Journal of Toxicology and Environmental Health, Part A Vol. 75; no. 8-10; pp. 438 - 446 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
England
Taylor & Francis Group
15.04.2012
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 1528-7394 1087-2620 2381-3504 |
DOI | 10.1080/15287394.2012.674910 |
Cover
Abstract | Missing values are a common problem in genetic association studies concerned with single-nucleotide polymorphisms (SNPs). Since many statistical methods cannot handle missing values, such values need to be removed prior to the actual analysis. Considering only complete observations, however, often leads to an immense loss of information. Therefore, procedures are required that can be used to impute such missing values. In this study, an imputation procedure based on a weighted k nearest neighbors algorithm is presented. This approach, called KNNcatImpute, searches for the k SNPs that are most similar to the SNP whose missing values need to be replaced and uses these k SNPs to impute the missing values. Alternatively, KNNcatImpute can search for the k nearest subjects. In this situation, the missing values of an individual are imputed by considering subjects showing a DNA pattern similar to the one of this individual. In a comparison to other imputation approaches, KNNcatImpute shows the lowest rates of falsely imputed genotypes when applied to the SNP data from the GENICA study, a candidate SNP study dedicated to the identification of genetic and gene-environment interactions associated with sporadic breast cancer. Moreover, KNNcatImpute can also be applied to data from genome-wide association studies, as an application to a subset of the HapMap data demonstrates. |
---|---|
AbstractList | Missing values are a common problem in genetic association studies concerned with single-nucleotide polymorphisms (SNPs). Since many statistical methods cannot handle missing values, such values need to be removed prior to the actual analysis. Considering only complete observations, however, often leads to an immense loss of information. Therefore, procedures are required that can be used to impute such missing values. In this study, an imputation procedure based on a weighted k nearest neighbors algorithm is presented. This approach, called KNNcatImpute, searches for the k SNPs that are most similar to the SNP whose missing values need to be replaced and uses these k SNPs to impute the missing values. Alternatively, KNNcatImpute can search for the k nearest subjects. In this situation, the missing values of an individual are imputed by considering subjects showing a DNA pattern similar to the one of this individual. In a comparison to other imputation approaches, KNNcatImpute shows the lowest rates of falsely imputed genotypes when applied to the SNP data from the GENICA study, a candidate SNP study dedicated to the identification of genetic and gene-environment interactions associated with sporadic breast cancer. Moreover, KNNcatImpute can also be applied to data from genome-wide association studies, as an application to a subset of the HapMap data demonstrates. Missing values are a common problem in genetic association studies concerned with single-nucleotide polymorphisms (SNPs). Since many statistical methods cannot handle missing values, such values need to be removed prior to the actual analysis. Considering only complete observations, however, often leads to an immense loss of information. Therefore, procedures are required that can be used to impute such missing values. In this study, an imputation procedure based on a weighted k nearest neighbors algorithm is presented. This approach, called KNNcatImpute, searches for the k SNPs that are most similar to the SNP whose missing values need to be replaced and uses these k SNPs to impute the missing values. Alternatively, KNNcatImpute can search for the k nearest subjects. In this situation, the missing values of an individual are imputed by considering subjects showing a DNA pattern similar to the one of this individual. In a comparison to other imputation approaches, KNNcatImpute shows the lowest rates of falsely imputed genotypes when applied to the SNP data from the GENICA study, a candidate SNP study dedicated to the identification of genetic and gene-environment interactions associated with sporadic breast cancer. Moreover, KNNcatImpute can also be applied to data from genome-wide association studies, as an application to a subset of the HapMap data demonstrates. [PUBLICATION ABSTRACT] Missing values are a common problem in genetic association studies concerned with single-nucleotide polymorphisms (SNPs). Since many statistical methods cannot handle missing values, such values need to be removed prior to the actual analysis. Considering only complete observations, however, often leads to an immense loss of information. Therefore, procedures are required that can be used to impute such missing values. In this study, an imputation procedure based on a weighted k nearest neighbors algorithm is presented. This approach, called KNNcatImpute, searches for the k SNPs that are most similar to the SNP whose missing values need to be replaced and uses these k SNPs to impute the missing values. Alternatively, KNNcatImpute can search for the k nearest subjects. In this situation, the missing values of an individual are imputed by considering subjects showing a DNA pattern similar to the one of this individual. In a comparison to other imputation approaches, KNNcatImpute shows the lowest rates of falsely imputed genotypes when applied to the SNP data from the GENICA study, a candidate SNP study dedicated to the identification of genetic and gene-environment interactions associated with sporadic breast cancer. Moreover, KNNcatImpute can also be applied to data from genome-wide association studies, as an application to a subset of the HapMap data demonstrates.Missing values are a common problem in genetic association studies concerned with single-nucleotide polymorphisms (SNPs). Since many statistical methods cannot handle missing values, such values need to be removed prior to the actual analysis. Considering only complete observations, however, often leads to an immense loss of information. Therefore, procedures are required that can be used to impute such missing values. In this study, an imputation procedure based on a weighted k nearest neighbors algorithm is presented. This approach, called KNNcatImpute, searches for the k SNPs that are most similar to the SNP whose missing values need to be replaced and uses these k SNPs to impute the missing values. Alternatively, KNNcatImpute can search for the k nearest subjects. In this situation, the missing values of an individual are imputed by considering subjects showing a DNA pattern similar to the one of this individual. In a comparison to other imputation approaches, KNNcatImpute shows the lowest rates of falsely imputed genotypes when applied to the SNP data from the GENICA study, a candidate SNP study dedicated to the identification of genetic and gene-environment interactions associated with sporadic breast cancer. Moreover, KNNcatImpute can also be applied to data from genome-wide association studies, as an application to a subset of the HapMap data demonstrates. |
Author | Schwender, Holger |
Author_xml | – sequence: 1 givenname: Holger surname: Schwender fullname: Schwender, Holger email: holger.schwender@udo.edu organization: Faculty of Statistics , TU Dortmund University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22686303$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtLJDEUhYMoPucfiBS4cVNtXp1UiTAMMuMIPjbKLEOq6kajVUmbpGj635ui7Y2LcXVD8p1zc-85QNvOO0DomOAZwRU-J3NaSVbzGcWEzoTkNcFbaD-_yZIKirfzOSPlxOyhgxhfMcaE12IX7VEqKsEw20eXN8NiTNY9F3c2xqleg_NptYBYLG16Kf6BfX5J0BVvxT3oADHlmq8aH-IR2jG6j_Djsx6ipz-_H6_-lrcP1zdXv27LllOeSi5FLYgxjdamI7mtkaICKjEDQ7XQknWsoljqZt5JkNrMO16zpqMtNNwQYIfobO27CP59zF9Qg40t9L124Meo8px1TZlg9fcozuuqqjmuMnr6BX31Y3B5kImimEnGWaZOPqmxGaBTi2AHHVZqs8IMXKyBNvgYAxjV2qST9S4Fbfvspaa81CYvNeWl1nllMf8i3vh_I_u5lllnfBj00oe-U0mveh9M0K61UbH_OnwAht-pEw |
CitedBy_id | crossref_primary_10_1186_1471_2105_14_282 crossref_primary_10_1002_cpe_5521 crossref_primary_10_1093_bib_bbac202 crossref_primary_10_1016_j_compbiomed_2024_108407 crossref_primary_10_1186_s12874_024_02305_3 crossref_primary_10_1371_journal_pone_0173313 crossref_primary_10_1534_genetics_113_158014 crossref_primary_10_1080_09546634_2022_2079597 crossref_primary_10_1002_ece3_3846 crossref_primary_10_1007_s11295_023_01608_8 crossref_primary_10_1016_j_compbiomed_2021_104577 crossref_primary_10_3389_fgene_2022_1009589 crossref_primary_10_1016_j_cj_2018_01_006 crossref_primary_10_1534_g3_115_021667 crossref_primary_10_1016_j_ins_2022_01_056 crossref_primary_10_1093_g3journal_jkab235 crossref_primary_10_1093_g3journal_jkab368 crossref_primary_10_1371_journal_pone_0138223 crossref_primary_10_1016_j_clnu_2022_07_027 crossref_primary_10_2174_1574893613666180413151654 crossref_primary_10_1186_s12864_016_2429_4 crossref_primary_10_1038_s41598_021_90774_7 crossref_primary_10_2139_ssrn_4065215 crossref_primary_10_3389_fpls_2017_01434 crossref_primary_10_1007_s10994_024_06584_1 crossref_primary_10_1186_s12870_024_04927_7 crossref_primary_10_52547_rap_13_35_130 crossref_primary_10_3389_adar_2024_13449 crossref_primary_10_1007_s00204_013_1014_8 crossref_primary_10_1038_s41598_017_11635_w crossref_primary_10_3389_fpls_2015_01046 crossref_primary_10_1093_dnares_dsy043 |
Cites_doi | 10.1038/nature02168 10.1093/bioinformatics/17.6.520 10.1201/9780429258480 10.1023/A:1010933404324 10.1093/oxfordjournals.aje.a117592 10.1002/gepi.20180 10.1158/1055-9965.2059.13.12 10.1177/001316446002000104 |
ContentType | Journal Article |
Copyright | Copyright Taylor & Francis Group, LLC 2012 Copyright Taylor & Francis Ltd. 2012 |
Copyright_xml | – notice: Copyright Taylor & Francis Group, LLC 2012 – notice: Copyright Taylor & Francis Ltd. 2012 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QQ 7SC 7SE 7SP 7SR 7ST 7TA 7TB 7TK 7TV 7U5 7U7 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D SOI 7X8 |
DOI | 10.1080/15287394.2012.674910 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Environment Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Pollution Abstracts Solid State and Superconductivity Abstracts Toxicology Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Environment Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Pollution Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Toxicology Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Environment Abstracts MEDLINE - Academic |
DatabaseTitleList | Pollution Abstracts MEDLINE Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1087-2620 2381-3504 |
EndPage | 446 |
ExternalDocumentID | 2695673001 22686303 10_1080_15287394_2012_674910 674910 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | .7F .QJ 0BK 0R~ 29L 30N 36B 4.4 5GY 5VS AAAVZ AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACGOD ACIWK ACPRK ACTIO ADCVX ADGTB ADXPE AEISY AEOZL AFKVX AFRAH AGDLA AGMYJ AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CAG CCCUG CE4 CS3 DGEBU DKSSO EBS ECGQY EJD E~A E~B F5P GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM M4Z NA5 NX0 O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TEI TFL TFT TFW TQWBC TTHFI TUROJ TWF UT5 UU3 ZE2 ZGOLN ~S~ AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV CITATION .GJ 3O- 53G AAGME ABFMO ACDHJ ACZPZ ADOPC ADXHL AI. AURDB BFWEY CGR COF CUY CVF CWRZV ECM EIF LJTGL NPM PCLFJ TASJS VH1 YHZ ZCG ZGI ZXP 7QF 7QQ 7SC 7SE 7SP 7SR 7ST 7TA 7TB 7TK 7TV 7U5 7U7 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D SOI 7X8 |
ID | FETCH-LOGICAL-c424t-476961ffbaafd1303f768e2703ef2a6a73d38207ab5d7e7af5d493bd2ceb4f1e3 |
ISSN | 1528-7394 |
IngestDate | Tue Aug 05 11:36:19 EDT 2025 Fri Sep 05 07:06:11 EDT 2025 Mon Jul 14 07:28:16 EDT 2025 Mon Jul 21 06:01:01 EDT 2025 Tue Jul 01 04:35:07 EDT 2025 Thu Apr 24 23:11:47 EDT 2025 Wed Dec 25 08:59:27 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8-10 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c424t-476961ffbaafd1303f768e2703ef2a6a73d38207ab5d7e7af5d493bd2ceb4f1e3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 22686303 |
PQID | 1022037343 |
PQPubID | 52988 |
PageCount | 9 |
ParticipantIDs | informaworld_taylorfrancis_310_1080_15287394_2012_674910 proquest_miscellaneous_1529923639 proquest_journals_1022037343 proquest_miscellaneous_1020188508 pubmed_primary_22686303 crossref_citationtrail_10_1080_15287394_2012_674910 crossref_primary_10_1080_15287394_2012_674910 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-04-15 |
PublicationDateYYYYMMDD | 2012-04-15 |
PublicationDate_xml | – month: 04 year: 2012 text: 2012-04-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Philadelphia |
PublicationTitle | Journal of Toxicology and Environmental Health, Part A |
PublicationTitleAlternate | J Toxicol Environ Health A |
PublicationYear | 2012 |
Publisher | Taylor & Francis Group Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis Group – name: Taylor & Francis Ltd |
References | Breiman L. (CIT0002) 1984 Greenland S. (CIT0007) 1995; 142 CIT0001 CIT0012 CIT0003 Little R. J. A. (CIT0010) 1987 CIT0004 Justenhoven C. (CIT0009) 2004; 13 Louis T. A. (CIT0011) 2010; 9 Fix E. (CIT0005) 1951 Gelman A. (CIT0006) 2003 CIT0008 |
References_xml | – volume-title: Classification and regression trees year: 1984 ident: CIT0002 – ident: CIT0008 doi: 10.1038/nature02168 – ident: CIT0012 doi: 10.1093/bioinformatics/17.6.520 – volume-title: Technical report year: 1951 ident: CIT0005 – volume-title: Bayesian data analysis year: 2003 ident: CIT0006 doi: 10.1201/9780429258480 – ident: CIT0001 doi: 10.1023/A:1010933404324 – volume: 142 start-page: 1255 year: 1995 ident: CIT0007 publication-title: Am. J. Epidemiol. doi: 10.1093/oxfordjournals.aje.a117592 – volume-title: Statistical analysis with missing data year: 1987 ident: CIT0010 – ident: CIT0004 doi: 10.1002/gepi.20180 – volume: 13 start-page: 2059 year: 2004 ident: CIT0009 publication-title: Cancer Epidemiol. Biomarkers Prev. doi: 10.1158/1055-9965.2059.13.12 – volume: 9 start-page: 393 volume-title: Bayesian STatistics year: 2010 ident: CIT0011 – ident: CIT0003 doi: 10.1177/001316446002000104 |
SSID | ssj0001496 ssj0001687 |
Score | 2.1521313 |
Snippet | Missing values are a common problem in genetic association studies concerned with single-nucleotide polymorphisms (SNPs). Since many statistical methods cannot... |
SourceID | proquest pubmed crossref informaworld |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 438 |
SubjectTerms | Algorithms Breast cancer Breast Neoplasms - genetics Case-Control Studies Data Interpretation, Statistical Databases, Genetic DNA - genetics False Positive Reactions Female Gene-Environment Interaction Genetics Genetics - statistics & numerical data Genome-Wide Association Study Genomics Genotype Genotype & phenotype Humans Polymorphism Polymorphism, Single Nucleotide - genetics Toxicology |
Title | Imputing Missing Genotypes with Weighted k Nearest Neighbors |
URI | https://www.tandfonline.com/doi/abs/10.1080/15287394.2012.674910 https://www.ncbi.nlm.nih.gov/pubmed/22686303 https://www.proquest.com/docview/1022037343 https://www.proquest.com/docview/1020188508 https://www.proquest.com/docview/1529923639 |
Volume | 75 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbQeEFCCMatMJCR0J7mkthOnEi8ILRpoK1MIhV9s3JxADElaM0E49dzju0krbaVy0vbOElz-b7Y55z4fIeQl2hU53EpWFDlCZOpDFjOZQKLQcHj2khVYWjgeBYfzuX7RbQY5QlsdklXTMtfV-aV_A-q0Aa4YpbsPyA7_Ck0wG_AFz4BYfj8K4zfYUUG9PWP4fbZSJJpWgyq-py1TzbuCSYlpjNgolEH39AEuC-vsUq79ufXctRlWsmDG5Imp2B2nnVjEPRj-eWHLUhnh7H29LOf8OtjCTgpQzKXTWnRzy6V9ViZW2R7R54wJVxV4qmxbTjkMxG5GsJ9l-qKoXjqoHzsShcpnZrLpa7bzXXEQ-ARcNIdn8ZKpn7nNaXs2Qd9MD860tn-Iltfa0dmHoPXh0L84Bbf5ErZ9_cimA1DdBjbyonD9fQ5lUnw6qoTWLNZ1hRtr_dLrH2S3SV3PIT0jWPJPXLDNNtk98Qpk1_s0WxMtFvu0V16MmqWX2yT2y58S11W2n3yuqcW9dSiA7UoUov21KLfqKcWHaj1gMwP9rO3h8wX2mCl5LJjUsVpHNZ1ked1hUZNDU6o4TAYmBqe5FyJSoClqPIiqpRReR1VMhVFxUtTyDo04iHZatrGPCY0D2CxApctTkPUokvBhAQrXxTg16eVqSdE9LdSl16FHouhnOrQi9X2AGgEQDsAJoQNe313Kix_2D5ZRUl3lti147QWm3fd6RHV_lFfagyLBEIJKSbkxbAaOmJ8u5Y3pj232wRhkoDDs2GbCKw_LsArmJBHji3D9YAflMRw759sPoGn5Nb45O6Qre7s3DwDu7grnluO_wYl869Y |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hcgAJ8SivhQJGQj012yR27ETighBlC91VD1vBzbJj-1KURSR7KL-emTjZpUgtEpwix3YU22PPN2P7G4A3BKqNrHmSOlMmohJpYnJRYjK1uQxeKEeugflCzs7Ep6_FeJqwHY5Vkg0dIlFEv1bT5CZn9Hgk7hB1Tql4RS6RLJ9KJSq6ZHWzQOhOQs7TxWYxRgNAbhOyD5hH1ROqP16lu-KTl1TVJSLTq-For5aO7oEdGxRPo5xP152d1j__4Hr8rxbfh7sDaGXvopQ9gBu-2YX908h6fXHAlttLXO0B22enWz7si124E12DLN54eghvjymQBKpMNsdRp-dH36zIF9wycguzL7271jt2zhZEsdt2-MRXKK7tIzg7-rB8P0uGIA5JLXLRJULJSmYhWGOCI4UZ0MDxOS40PqCUGMUdRxSijC2c8sqEwomKW5fX3oqQef4YdppV458CMykmHZoDssqI56xCeIIIklu0GSvnwwT4OF66HhjOKdDGN50NRKhjN2rqRh27cQLJptb3yPDxl_Ll76Kgu96zEmIYFM2vr7o3io0elopWk8mdcsUFn8DrTTZOctq5MY1frfsyaVaWCKavKVMgssg5Is4JPIkiuWkPYuxSYt8_-_d_fwW3Zsv5iT45Xnx-DrcphzbVsmIPdrofa_8CsVlnX_az7xeFsCZr |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hIqFKiEcLdGkBI6GemiWJHTuRuCBg6YOu9tCK3iwnti-tshXJHsqv70yc7LZILRKcIsd2FDtjzzcTzzcAHwhUG1nxKLYmj0Qh4sikIsdiXKbSO6EsuQaOp3L_VByeZWc3ovjpWCXZ0D4QRXR7NS3uS-uHE3EfUeXkihfkEUnSsVSioBirhxLRCR3q4_F0uRcj_perguzy5VH3iPoPkXR3PPKWprrFY3o3Gu200uQpmGE84TDK-XjRluPq9x9Uj_8z4GfwpIes7HOQsefwwNUbsDsLnNdXe-xkFcLV7LFdNluxYV9twOPgGGQh3mkTPh1QGglUmOwYvzldv7t6Tp7ghpFTmP3snLXOsnM2JYLdpsUr3kJhbV7A6eTbyZf9qE_hEFUiFW0klCxk4n1pjLekLj2aNy7FbcZ5lBGjuOWIQZQpM6ucMj6zouClTStXCp84_hLW6nnttoCZGIsWjQFZJMRyViA4QfzIS7QYC-v8CPjwuXTV85tTmo0LnfQ0qMM0appGHaZxBNGy12Xg9_hL-_ymJOi286v4kARF8_u77gxSo_uNotFkcMdcccFH8H5ZjUuc_tuY2s0XXZs4yXOE0ve0yRBXpBzx5gheBYlcjgcRdi5x7l__-7u_g0ezrxP942B6tA3rVEF_1JJsB9baXwv3BoFZW77t1t41s8glDw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Imputing+Missing+Genotypes+with+Weighted+k+Nearest+Neighbors&rft.jtitle=Journal+of+toxicology+and+environmental+health.+Part+A&rft.au=Schwender%2C+Holger&rft.date=2012-04-15&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=1528-7394&rft.eissn=2381-3504&rft.volume=75&rft.issue=8-10&rft.spage=438&rft_id=info:doi/10.1080%2F15287394.2012.674910&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2695673001 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1528-7394&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1528-7394&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1528-7394&client=summon |