A Neural Dynamic Architecture for Reaching and Grasping Integrates Perception and Movement Generation and Enables On-Line Updating

Reaching for objects and grasping them is a fundamental skill for any autonomous robot that interacts with its environment. Although this skill seems trivial to adults, who effortlessly pick up even objects they have never seen before, it is hard for other animals, for human infants, and for most au...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in neurorobotics Vol. 11; p. 9
Main Authors Knips, Guido, Zibner, Stephan K. U., Reimann, Hendrik, Schöner, Gregor
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Research Foundation 02.03.2017
Frontiers Media S.A
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Reaching for objects and grasping them is a fundamental skill for any autonomous robot that interacts with its environment. Although this skill seems trivial to adults, who effortlessly pick up even objects they have never seen before, it is hard for other animals, for human infants, and for most autonomous robots. Any time during movement preparation and execution, human reaching movement are updated if the visual scene changes (with a delay of about 100 ms). The capability for online updating highlights how tightly perception, movement planning, and movement generation are integrated in humans. Here, we report on an effort to reproduce this tight integration in a neural dynamic process model of reaching and grasping that covers the complete path from visual perception to movement generation within a unified modeling framework, Dynamic Field Theory. All requisite processes are realized as time-continuous dynamical systems that model the evolution in time of neural population activation. Population level neural processes bring about the attentional selection of objects, the estimation of object shape and pose, and the mapping of pose parameters to suitable movement parameters. Once a target object has been selected, its pose parameters couple into the neural dynamics of movement generation so that changes of pose are propagated through the architecture to update the performed movement online. Implementing the neural architecture on an anthropomorphic robot arm equipped with a Kinect sensor, we evaluate the model by grasping wooden objects. Their size, shape, and pose are estimated from a neural model of scene perception that is based on feature fields. The sequential organization of a reach and grasp act emerges from a sequence of dynamic instabilities within a neural dynamics of behavioral organization, that effectively switches the neural controllers from one phase of the action to the next. Trajectory formation itself is driven by a dynamical systems version of the potential field approach. We highlight the emergent capacity for online updating by showing that a shift or rotation of the object during the reaching phase leads to the online adaptation of the movement plan and successful completion of the grasp.
AbstractList Reaching for objects and grasping them is a fundamental skill for any autonomous robot that interacts with its environment. Although this skill seems trivial to adults, who effortlessly pick up even objects they have never seen before, it is hard for other animals, for human infants, and for most autonomous robots. Any time during movement preparation and execution, human reaching movement are updated if the visual scene changes (with a delay of about 100 ms). The capability for online updating highlights how tightly perception, movement planning, and movement generation are integrated in humans. Here we report on an effort to reproduce this tight integration in a neural dynamic process model of reaching and grasping that covers the complete path from visual perception to movement generation within a unified modeling framework, Dynamic Field Theory. All requisite processes are realized as time-continuous dynamical systems that model the evolution in time of neural population activation. Population level neural processes bring about the attentional selection of objects, the estimation of object shape and pose, and the mapping of pose parameters to suitable movement parameters. Once a target object has been selected, its pose parameters couple into the neural dynamics of movement generation so that changes of pose are propagated through the architecture to update the performed movement online. Implementing the neural architecture on an anthropomorphic robot arm equipped with a Kinect sensor, we evaluate the model by grasping wooden objects. Their size, shape, and pose are estimated from a neural model of scene perception that is based on feature fields. The sequential organization of a reach and grasp act emerges from a sequence of dynamic instabilities within a neural dynamics of behavioral organization, that effectively switches the neural controllers from one phase of the action to the next. Trajectory formation itself is driven by a dynamical systems version of the potential field approach. We highlight the emergent capacity for online updating by showing that a shift or rotation of the object during the reaching phase leads to the online adaptation of the movement plan and successful completion of the grasp.
Author Schöner, Gregor
Knips, Guido
Reimann, Hendrik
Zibner, Stephan K. U.
AuthorAffiliation 1 Institute for Neural Computation, Ruhr-University Bochum Bochum, Germany
2 Department of Kinesiology, Temple University Philadelphia, PA, USA
AuthorAffiliation_xml – name: 2 Department of Kinesiology, Temple University Philadelphia, PA, USA
– name: 1 Institute for Neural Computation, Ruhr-University Bochum Bochum, Germany
Author_xml – sequence: 1
  givenname: Guido
  surname: Knips
  fullname: Knips, Guido
– sequence: 2
  givenname: Stephan K. U.
  surname: Zibner
  fullname: Zibner, Stephan K. U.
– sequence: 3
  givenname: Hendrik
  surname: Reimann
  fullname: Reimann, Hendrik
– sequence: 4
  givenname: Gregor
  surname: Schöner
  fullname: Schöner, Gregor
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28303100$$D View this record in MEDLINE/PubMed
BookMark eNp1kk1v1DAQhi1URD_gzglZ4sIliz3O5wVp1ZZtpYUiVM6W40y2rhI72E6lXvnleLfdqlTCF9szz7x6x55jcmCdRULec7YQom4-97Z1cQGMVwuWVvOKHPGyhKwAXh88Ox-S4xBuGSuhLOo35BBqwQRn7Ij8WdLvOHs10LN7q0aj6dLrGxNRx9kj7Z2nP1GliN1QZTu68ipM28uljbjxKmKgP9BrnKJxdod8c3c4oo10hRYTsY-fW9UOCb-y2dpYpL-mLiXt5i153ash4LvH_YRcfz2_Pr3I1lery9PlOtM55DET2Je6Z9AIEEwJxjvdcuiwE7ysdMUw71AwKPoWOKqqrVTXtl1ecdC66HtxQr48yE5zO2Knk8PUtpy8GZW_l04Z-W_Gmhu5cXeyEELkTZEEPj0KePd7xhDlaILGYVAW3Rwkr6u6Bqhhi358gd662dvUnQRocsYBijxRH547erKy_50ElA-A9i4Ej73UJu4eNBk0g-RMbsdA7sZAbsdA7sYgFbIXhXvt_5b8BRxpuHo
CitedBy_id crossref_primary_10_3389_fnins_2018_00039
crossref_primary_10_1109_JMEMS_2018_2864175
crossref_primary_10_3389_fpsyg_2017_01774
crossref_primary_10_1111_cogs_13491
crossref_primary_10_3758_s13414_019_01847_9
crossref_primary_10_3389_fnbot_2019_00095
crossref_primary_10_3389_fnbot_2017_00061
Cites_doi 10.1016/j.newideapsych.2013.01.002
10.1007/BF00337259
10.1109/5254.867909
10.1037/0096-1523.22.5.1059
10.1016/j.robot.2015.09.008
10.1088/1741-2560/3/3/R02
10.3389/fpsyg.2012.00105
10.1016/j.neuron.2009.08.028
10.1109/34.730558
10.1007/s10514-013-9366-8
10.1109/TAMD.2011.2109714
10.1016/S1364-6613(00)01537-0
10.1016/j.plrev.2016.06.007
10.1016/j.neunet.2015.10.005
10.1016/j.neunet.2015.10.003
10.1016/j.neuron.2015.03.032
10.1109/DEVLRN.2011.6037360
10.1093/acprof:oso/9780199300563.001.0001
10.1007/s00221-002-1156-z
ContentType Journal Article
Copyright 2017. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2017 Knips, Zibner, Reimann and Schöner. 2017 Knips, Zibner, Reimann and Schöner
Copyright_xml – notice: 2017. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2017 Knips, Zibner, Reimann and Schöner. 2017 Knips, Zibner, Reimann and Schöner
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.3389/fnbot.2017.00009
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1662-5218
EndPage 9
ExternalDocumentID PMC5333495
28303100
10_3389_fnbot_2017_00009
Genre Journal Article
GrantInformation_xml – fundername: European Commission
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAKPC
AAYXX
ABUWG
ACGFS
ACXDI
ADBBV
ADDVE
ADMLS
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARCSS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
F5P
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
M~E
O5R
O5S
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RNS
RPM
TR2
C1A
IAO
IEA
IHR
IPNFZ
ISR
NPM
RIG
3V.
7XB
8FK
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c424t-3ef6cf0293230a301dcb12ded3167c70e4de3025fb21ea7b7adbbd4712cc5ff3
IEDL.DBID M48
ISSN 1662-5218
IngestDate Thu Aug 21 14:32:00 EDT 2025
Fri Jul 11 08:38:01 EDT 2025
Fri Jul 25 11:51:23 EDT 2025
Wed Feb 19 02:06:47 EST 2025
Thu Apr 24 23:03:29 EDT 2025
Tue Jul 01 02:32:16 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords neural dynamics
autonomous grasping
autonomous reaching
dynamic field theory
online updating
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c424t-3ef6cf0293230a301dcb12ded3167c70e4de3025fb21ea7b7adbbd4712cc5ff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Reviewed by: Florentin Wörgötter, University of Göttingen, Germany; Thomas Wennekers, Plymouth University, UK
Edited by: Christian Tetzlaff, Max Planck Institute for Dynamics and Self Organization (MPG), Germany
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fnbot.2017.00009
PMID 28303100
PQID 2294012254
PQPubID 4424403
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5333495
proquest_miscellaneous_1878822825
proquest_journals_2294012254
pubmed_primary_28303100
crossref_citationtrail_10_3389_fnbot_2017_00009
crossref_primary_10_3389_fnbot_2017_00009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-03-02
PublicationDateYYYYMMDD 2017-03-02
PublicationDate_xml – month: 03
  year: 2017
  text: 2017-03-02
  day: 02
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in neurorobotics
PublicationTitleAlternate Front Neurorobot
PublicationYear 2017
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Cowley (B5) 2013
Erlhagen (B8) 2006; 3
(B4) 2013
Herzog (B11) 2012
Lisman (B16) 2015; 86
Itti (B14) 1998; 20
Zibner (B31) 2011a; 3
Schöner (B27) 2015
Fard (B9) 2015; 72
Sandamirskaya (B23) 2013; 31
Thelen (B30) 1996; 22
Faubel (B10) 2009
Schöner (B26) 2008
Li (B15) 2016; 75
Schneiberg (B25) 2002; 146
Rusu (B22) 2011
Santello (B24) 2016; 17
Zibner (B32) 2011b
Amari (B2) 1977; 27
Curtis (B6) 2008
Strauss (B28) 2012; 3
Herzog (B12) 2014; 36
Madry (B17) 2012
Adams (B1) 2000; 15
Andersen (B3) 2009; 63
Reimann (B20) 2011
Platt (B19) 2006
Strauss (B29) 2015; 72
Desmurget (B7) 2000; 4
Richter (B21) 2012
Huang (B13) 2013
Petsch (B18) 2010
References_xml – volume: 31
  start-page: 322
  year: 2013
  ident: B23
  article-title: Using dynamic field theory to extend the embodiment stance toward higher cognition
  publication-title: New Ideas Psychol.
  doi: 10.1016/j.newideapsych.2013.01.002
– volume: 27
  start-page: 77
  year: 1977
  ident: B2
  article-title: Dynamics of pattern formation in lateral-inhibition type neural fields
  publication-title: Biol. Cybernet.
  doi: 10.1007/BF00337259
– start-page: 2379
  volume-title: IEEE International Conference on Robotics and Automation (ICRA)
  year: 2012
  ident: B11
  article-title: Template-based learning of grasp selection
– start-page: 5470
  volume-title: IEEE International Conference on Robotics and Automation (ICRA)
  year: 2011
  ident: B20
  article-title: Autonomous movement generation for manipulators with multiple simultaneous constraints using the attractor dynamics approach
– start-page: 2252
  volume-title: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
  year: 2008
  ident: B6
  article-title: Efficient and effective grasping of novel objects through learning and adapting a knowledge base
– volume: 15
  start-page: 25
  year: 2000
  ident: B1
  article-title: Humanoid robots: a new kind of tool
  publication-title: IEEE Intell. Syst. Appl.
  doi: 10.1109/5254.867909
– volume: 22
  start-page: 1059
  year: 1996
  ident: B30
  article-title: The development of reaching during the first year: the role of movement speed
  publication-title: J. Exp. Psychol. Hum. Percept. Perform.
  doi: 10.1037/0096-1523.22.5.1059
– volume: 75
  start-page: 352
  year: 2016
  ident: B15
  article-title: Dexterous grasping under shape uncertainty
  publication-title: Robot. Auton. Syst.
  doi: 10.1016/j.robot.2015.09.008
– start-page: 192
  volume-title: IEEE International Conference on Robotics and Automation (ICRA)
  year: 2010
  ident: B18
  article-title: Estimation of spatio-temporal object properties for manipulation tasks from observation of humans
– volume-title: Grasping in Robotics, Vol. 10
  year: 2013
  ident: B4
– volume: 3
  start-page: R36
  year: 2006
  ident: B8
  article-title: The dynamic neural field approach to cognitive robotics
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/3/3/R02
– start-page: 504
  volume-title: 6th IEEE-RAS International Conference on Humanoid Robots
  year: 2006
  ident: B19
  article-title: Learning grasp context distinctions that generalize
– volume: 3
  start-page: 105
  year: 2012
  ident: B28
  article-title: A Robotics-based approach to modeling of choice reaching experiments on visual attention
  publication-title: Front. Psychol.
  doi: 10.3389/fpsyg.2012.00105
– start-page: 3162
  volume-title: A neuro-dynamic architecture for one shot learning of objects that uses both bottom-up recognition and top-down prediction
  year: 2009
  ident: B10
  article-title: A neuro-dynamic architecture for one shot learning of objects that uses both bottom-up recognition and top-down prediction
– volume: 63
  start-page: 568
  year: 2009
  ident: B3
  article-title: Intention, action planning, and decision making in parietal-frontal circuits
  publication-title: Neuron
  doi: 10.1016/j.neuron.2009.08.028
– start-page: 1716
  volume-title: IEEE International Conference on Robotics and Automation (ICRA)
  year: 2012
  ident: B17
  article-title: From object categories to grasp transfer using probabilistic reasoning
– start-page: 816
  volume-title: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
  year: 2013
  ident: B5
  article-title: Perception and motion planning for pick-and-place of dynamic objects
– volume: 20
  start-page: 1254
  year: 1998
  ident: B14
  article-title: A model of saliency-based visual attention for rapid scene analysis
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.730558
– volume: 36
  start-page: 51
  year: 2014
  ident: B12
  article-title: Learning of grasp selection based on shape-templates
  publication-title: Auton. Robots
  doi: 10.1007/s10514-013-9366-8
– volume: 3
  start-page: 74
  year: 2011a
  ident: B31
  article-title: Dynamic neural fields as building blocks for a cortex-inspired architecture of robotic scene representation
  publication-title: IEEE Trans. Auton. Ment. Dev.
  doi: 10.1109/TAMD.2011.2109714
– volume: 4
  start-page: 423
  year: 2000
  ident: B7
  article-title: Forward modeling allows feedback control for fast reaching movements
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/S1364-6613(00)01537-0
– start-page: 1
  volume-title: IEEE International Conference on Robotics and Automation (ICRA)
  year: 2011
  ident: B22
  article-title: 3D is here: point cloud library (PCL)
– start-page: 593
  volume-title: IEEE International Conference on Robotics and Automation (ICRA)
  year: 2013
  ident: B13
  article-title: Learning a real time grasping strategy
– volume: 17
  start-page: 54
  year: 2016
  ident: B24
  article-title: Hand synergies: integration of robotics and neuroscience for understanding the control of biological and artificial hands
  publication-title: Phys. Life Rev.
  doi: 10.1016/j.plrev.2016.06.007
– volume: 72
  start-page: 3
  year: 2015
  ident: B29
  article-title: Choice reaching with a LEGO arm robot (CoRLEGO): the motor system guides visual attention to movement-relevant information
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2015.10.005
– volume: 72
  start-page: 13
  year: 2015
  ident: B9
  article-title: Modeling human target reaching with an adaptive observer implemented with dynamic neural fields
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2015.10.003
– volume: 86
  start-page: 864
  year: 2015
  ident: B16
  article-title: The challenge of understanding the brain: where we stand in 2015
  publication-title: Neuron
  doi: 10.1016/j.neuron.2015.03.032
– volume-title: Proceedings of the First Joint IEEE International Conference on Development and Learning and on Epigentic Robotics, ICDL-EPIROB
  year: 2011b
  ident: B32
  article-title: Making a robotic scene representation accessible to feature and label queries
  doi: 10.1109/DEVLRN.2011.6037360
– start-page: 101
  volume-title: Cambridge Handbook of Computational Cognitive Modeling
  year: 2008
  ident: B26
  article-title: Dynamical systems approaches to cognition
– volume-title: Dynamic Thinking: A Primer on Dynamic Field Theory
  year: 2015
  ident: B27
  doi: 10.1093/acprof:oso/9780199300563.001.0001
– start-page: 2457
  volume-title: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
  year: 2012
  ident: B21
  article-title: A robotic architecture for action selection and behavioral organization inspired by human cognition
– volume: 146
  start-page: 142
  year: 2002
  ident: B25
  article-title: The development of coordination for reach-to-grasp movements in children
  publication-title: Exp. Brain Res.
  doi: 10.1007/s00221-002-1156-z
SSID ssj0062658
Score 2.127102
Snippet Reaching for objects and grasping them is a fundamental skill for any autonomous robot that interacts with its environment. Although this skill seems trivial...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 9
SubjectTerms Arm
Automation
Cognition & reasoning
Grasping
Infants
International conferences
Internet
Motion detection
Neuroscience
Neurosciences
Robotics
Robots
Theory
Visual perception
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB61y6U9oL4bSitX6qWHaDeO8zpV23YpIEERAolbFL_aSshZyPIH-OXMOE66CxLXxFYeY89845n5BuCLTIvENqaM84JLdFAyG5dpU8XS5iLXiSy55-k-Os73z8XhRXYRDty6kFY56ESvqHWr6Ix8ynklKAyUiW_Lq5i6RlF0NbTQeApbqILLcgJb3xfHJ6eDLka0npV9cBJdsWpqnWwpgTLpeQurTWP0AGHeT5Rcszx7L2A7QEY272X8Ep4Y9wqerxEJvobbOSOWDRz1s-8wz-ZrAQKGwJSdhrRJ1jjNfl03HRVKsYOBLaJjJ2OKix9y1Hom8RXrianH6wtfbNWx3y5GP9aw8yUVSLg_b-Bsb3H2Yz8O3RViJbhYxamxubIzNPfohTS4z7WSCddGU228KmZGaJMiIrKSJ6YpZNFoKTXaMq5UZm36FiaudeY9MK5mRU5-lhSlsDqTGaLEysqEwCFOiGA6_OVaBeZxaoBxWaMHQnKpvVxqkkvt5RLB13HGsmfdeGTs7iC4Ouy_rv6_WiL4PN7GnUPhkMaZ9qarkxLdf061uxG86-U8Poxo0Sj0EUGxsQLGAcTKvXnH_fvr2bkRP6fode48_lof4Bl9gs9m47swWV3fmI8Ib1byU1jDd4sH_fE
  priority: 102
  providerName: ProQuest
Title A Neural Dynamic Architecture for Reaching and Grasping Integrates Perception and Movement Generation and Enables On-Line Updating
URI https://www.ncbi.nlm.nih.gov/pubmed/28303100
https://www.proquest.com/docview/2294012254
https://www.proquest.com/docview/1878822825
https://pubmed.ncbi.nlm.nih.gov/PMC5333495
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9swED629mV7KN1vb11QYS978BrJsuU8jJFtabtBulIayJuxLKkrFKWLU1hf95fvTna8pC2Dvhhsyzb2Sdz3-e6-A3inE8VdafM4U0IjQUldnCflINYuk5nhOhdBp3t8lB1O5PdpOv1XHt1-wPpOakf9pCbziw-_f11_wgX_kRgn-ts95_WM0iJ5o0Y4eAib6JcU9TMYyy6mgMg9dOvkWUb0i-dN0PLOO6w7qVvI82YC5YpH2t-GrRZKsmFj-yfwwPqn8HhFYPAZ_BkyUt_AUV-bzvNsuBI4YAhY2UmbTslKb9jBvKypgIp9W6pI1Oy4S30JQ8azoDC-YI1gdXd8FIqwavbDx8hvLZtcUuGEP3sOp_uj0y-Hcdt1Ia6kkIs4sS6rXB9hALKTEte_qTQXxhqqma9U30pjE0RKTgtuS6VVabQ26ONEVaXOJS9gw8-8fQVMVH2VEf_SMpfOpDpF9DhwmhNoxAsi2Ft-5aJqFcmpMcZFgcyE7FIEuxRklyLYJYL33RWXjRrHf8buLA1XLKdVIcRAUjAxlRHsdqdxRVGYpPR2dlUXPFdIO6imN4KXjZ27h5FcGoVEIlBrM6AbQGrd62f8-c-g2o24OkE2-voer_AGHtFOSHkTO7CxmF_Zt4iBFroHm59HR8cnvfAPAbcHU94L0_0vM0QJuQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9AAcEG8MBRYJDhysxOv164BQoCkJbUJVpVJvK693F5CQHepUiCv_h__IzPpBAlJvvdq7ieOZ3f2-zMw3AC9VmAQ2N6kfJ1whQYmsn4Z55isbi1gHKuVOp3u-iKen4uNZdLYDv7taGEqr7PZEt1HrqqD_yIecZ4LCQJF4u_ruU9coiq52LTQatzg0P38gZavfzPbRvq84P5gs30_9tquAXwgu1n5obFzYER5ziL5z9G9dqIBro6kmvEhGRmgTIhKwigcmT1SSa6U07uG8KCJrQ_zYa7ArwnjEB7D7brI4Pum2fiQHUdrEQpH5ZUNbqoryNYNGJjHbPvv-A7T_5mVuHHQHt-FWi1DZuHGpO7Bjyrtwc0O38B78GjMS9cBR-01DezbeiEcwxMHspM3SZHmp2YfzvKa6LDbrxClqdtxn1Lgh88oJl69Zo4PdX5-42q6afSp9pM2Gna6oHqP8fB-WV_HaH8CgrErzCBgvRklMtE6JVFgdqQhBaWZVQFgUJ3gw7N6yLFqhc-q38U0i4SG7SGcXSXaRzi4evO5nrBqRj0vG7nWGk-1yr-Vf5_TgRX8bFypFX_LSVBe1DNIE2QyVCnvwsLFz_2WkwkaRFg-SLQ_oB5AI-Pad8usXJwaOcD1Ekvv48sd6Dteny_mRPJotDp_ADfo5LpGO78FgfX5hniKyWqtnrT8zkFe8gv4ANtE7ww
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEB2VVEJwQHwWQ4FFggMHK_F67bUPCAWS0FAaoqqVelt5vbuAhOxQp0Jc-Vf8O2b8RQJSb73au4njmd19LzPzBuCFDmXgMpv4seQaCUrk_CTMUl-7WMQm0AmvdbqPFvHBqfhwFp3twO-uFobSKrs9sd6oTZnTf-RDzlNBYaBIDF2bFrGczN6svvvUQYoirV07jcZFDu3PH0jfqtfzCdr6Jeez6cm7A7_tMODngou1H1oX526ERx4i8Qx93eQ64MYaqg_P5cgKY0NEBU7zwGZSy8xobXA_53keORfix16DXUmkaAC7b6eL5XF3DCBRiJImLoosMB26QpeUuxk0konp9jn4H7j9N0dz49Cb3YZbLVpl48a97sCOLe7CzQ0Nw3vwa8xI4ANHTZrm9my8EZtgiInZcZuxybLCsPfnWUU1WmzeCVVUbNln19RDjspaxHzNGk3s_vq0rvOq2KfCRwpt2emKajOKz_fh5Cpe-wMYFGVhHwLj-UjGRPG0SIQzkY4QoKZOB4RLcYIHw-4tq7wVPafeG98Ukh-yi6rtosguqraLB6_6GatG8OOSsfud4VS79Cv111E9eN7fxkVLkZissOVFpYJEIrOhsmEP9ho7919GimwUdfFAbnlAP4AEwbfvFF-_1MLgCN1DJLyPLn-sZ3AdV476OF8cPoYb9GvqnDq-D4P1-YV9giBrrZ-27sxAXfEC-gOEiT_4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Neural+Dynamic+Architecture+for+Reaching+and+Grasping+Integrates+Perception+and+Movement+Generation+and+Enables+On-Line+Updating&rft.jtitle=Frontiers+in+neurorobotics&rft.au=Knips%2C+Guido&rft.au=Zibner%2C+Stephan+K.+U.&rft.au=Reimann%2C+Hendrik&rft.au=Sch%C3%B6ner%2C+Gregor&rft.date=2017-03-02&rft.issn=1662-5218&rft.eissn=1662-5218&rft.volume=11&rft_id=info:doi/10.3389%2Ffnbot.2017.00009&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fnbot_2017_00009
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5218&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5218&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5218&client=summon