A Neural Dynamic Architecture for Reaching and Grasping Integrates Perception and Movement Generation and Enables On-Line Updating
Reaching for objects and grasping them is a fundamental skill for any autonomous robot that interacts with its environment. Although this skill seems trivial to adults, who effortlessly pick up even objects they have never seen before, it is hard for other animals, for human infants, and for most au...
Saved in:
Published in | Frontiers in neurorobotics Vol. 11; p. 9 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Research Foundation
02.03.2017
Frontiers Media S.A |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Reaching for objects and grasping them is a fundamental skill for any autonomous robot that interacts with its environment. Although this skill seems trivial to adults, who effortlessly pick up even objects they have never seen before, it is hard for other animals, for human infants, and for most autonomous robots. Any time during movement preparation and execution, human reaching movement are updated if the visual scene changes (with a delay of about 100 ms). The capability for online updating highlights how tightly perception, movement planning, and movement generation are integrated in humans. Here, we report on an effort to reproduce this tight integration in a neural dynamic process model of reaching and grasping that covers the complete path from visual perception to movement generation within a unified modeling framework, Dynamic Field Theory. All requisite processes are realized as time-continuous dynamical systems that model the evolution in time of neural population activation. Population level neural processes bring about the attentional selection of objects, the estimation of object shape and pose, and the mapping of pose parameters to suitable movement parameters. Once a target object has been selected, its pose parameters couple into the neural dynamics of movement generation so that changes of pose are propagated through the architecture to update the performed movement online. Implementing the neural architecture on an anthropomorphic robot arm equipped with a Kinect sensor, we evaluate the model by grasping wooden objects. Their size, shape, and pose are estimated from a neural model of scene perception that is based on feature fields. The sequential organization of a reach and grasp act emerges from a sequence of dynamic instabilities within a neural dynamics of behavioral organization, that effectively switches the neural controllers from one phase of the action to the next. Trajectory formation itself is driven by a dynamical systems version of the potential field approach. We highlight the emergent capacity for online updating by showing that a shift or rotation of the object during the reaching phase leads to the online adaptation of the movement plan and successful completion of the grasp. |
---|---|
AbstractList | Reaching for objects and grasping them is a fundamental skill for any autonomous robot that interacts with its environment. Although this skill seems trivial to adults, who effortlessly pick up even objects they have never seen before, it is hard for other animals, for human infants, and for most autonomous robots. Any time during movement preparation and execution, human reaching movement are updated if the visual scene changes (with a delay of about 100 ms). The capability for online updating highlights how tightly perception, movement planning, and movement generation are integrated in humans. Here we report on an effort to reproduce this tight integration in a neural dynamic process model of reaching and grasping that covers the complete path from visual perception to movement generation within a unified modeling framework, Dynamic Field Theory. All requisite processes are realized as time-continuous dynamical systems that model the evolution in time of neural population activation. Population level neural processes bring about the attentional selection of objects, the estimation of object shape and pose, and the mapping of pose parameters to suitable movement parameters. Once a target object has been selected, its pose parameters couple into the neural dynamics of movement generation so that changes of pose are propagated through the architecture to update the performed movement online. Implementing the neural architecture on an anthropomorphic robot arm equipped with a Kinect sensor, we evaluate the model by grasping wooden objects. Their size, shape, and pose are estimated from a neural model of scene perception that is based on feature fields. The sequential organization of a reach and grasp act emerges from a sequence of dynamic instabilities within a neural dynamics of behavioral organization, that effectively switches the neural controllers from one phase of the action to the next. Trajectory formation itself is driven by a dynamical systems version of the potential field approach. We highlight the emergent capacity for online updating by showing that a shift or rotation of the object during the reaching phase leads to the online adaptation of the movement plan and successful completion of the grasp. |
Author | Schöner, Gregor Knips, Guido Reimann, Hendrik Zibner, Stephan K. U. |
AuthorAffiliation | 1 Institute for Neural Computation, Ruhr-University Bochum Bochum, Germany 2 Department of Kinesiology, Temple University Philadelphia, PA, USA |
AuthorAffiliation_xml | – name: 2 Department of Kinesiology, Temple University Philadelphia, PA, USA – name: 1 Institute for Neural Computation, Ruhr-University Bochum Bochum, Germany |
Author_xml | – sequence: 1 givenname: Guido surname: Knips fullname: Knips, Guido – sequence: 2 givenname: Stephan K. U. surname: Zibner fullname: Zibner, Stephan K. U. – sequence: 3 givenname: Hendrik surname: Reimann fullname: Reimann, Hendrik – sequence: 4 givenname: Gregor surname: Schöner fullname: Schöner, Gregor |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28303100$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kk1v1DAQhi1URD_gzglZ4sIliz3O5wVp1ZZtpYUiVM6W40y2rhI72E6lXvnleLfdqlTCF9szz7x6x55jcmCdRULec7YQom4-97Z1cQGMVwuWVvOKHPGyhKwAXh88Ox-S4xBuGSuhLOo35BBqwQRn7Ij8WdLvOHs10LN7q0aj6dLrGxNRx9kj7Z2nP1GliN1QZTu68ipM28uljbjxKmKgP9BrnKJxdod8c3c4oo10hRYTsY-fW9UOCb-y2dpYpL-mLiXt5i153ash4LvH_YRcfz2_Pr3I1lery9PlOtM55DET2Je6Z9AIEEwJxjvdcuiwE7ysdMUw71AwKPoWOKqqrVTXtl1ecdC66HtxQr48yE5zO2Knk8PUtpy8GZW_l04Z-W_Gmhu5cXeyEELkTZEEPj0KePd7xhDlaILGYVAW3Rwkr6u6Bqhhi358gd662dvUnQRocsYBijxRH547erKy_50ElA-A9i4Ej73UJu4eNBk0g-RMbsdA7sZAbsdA7sYgFbIXhXvt_5b8BRxpuHo |
CitedBy_id | crossref_primary_10_3389_fnins_2018_00039 crossref_primary_10_1109_JMEMS_2018_2864175 crossref_primary_10_3389_fpsyg_2017_01774 crossref_primary_10_1111_cogs_13491 crossref_primary_10_3758_s13414_019_01847_9 crossref_primary_10_3389_fnbot_2019_00095 crossref_primary_10_3389_fnbot_2017_00061 |
Cites_doi | 10.1016/j.newideapsych.2013.01.002 10.1007/BF00337259 10.1109/5254.867909 10.1037/0096-1523.22.5.1059 10.1016/j.robot.2015.09.008 10.1088/1741-2560/3/3/R02 10.3389/fpsyg.2012.00105 10.1016/j.neuron.2009.08.028 10.1109/34.730558 10.1007/s10514-013-9366-8 10.1109/TAMD.2011.2109714 10.1016/S1364-6613(00)01537-0 10.1016/j.plrev.2016.06.007 10.1016/j.neunet.2015.10.005 10.1016/j.neunet.2015.10.003 10.1016/j.neuron.2015.03.032 10.1109/DEVLRN.2011.6037360 10.1093/acprof:oso/9780199300563.001.0001 10.1007/s00221-002-1156-z |
ContentType | Journal Article |
Copyright | 2017. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2017 Knips, Zibner, Reimann and Schöner. 2017 Knips, Zibner, Reimann and Schöner |
Copyright_xml | – notice: 2017. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2017 Knips, Zibner, Reimann and Schöner. 2017 Knips, Zibner, Reimann and Schöner |
DBID | AAYXX CITATION NPM 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.3389/fnbot.2017.00009 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection Biological Sciences Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1662-5218 |
EndPage | 9 |
ExternalDocumentID | PMC5333495 28303100 10_3389_fnbot_2017_00009 |
Genre | Journal Article |
GrantInformation_xml | – fundername: European Commission |
GroupedDBID | --- 29H 2WC 53G 5GY 5VS 88I 8FE 8FH 9T4 AAFWJ AAKPC AAYXX ABUWG ACGFS ACXDI ADBBV ADDVE ADMLS ADRAZ AEGXH AENEX AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS ARCSS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ CCPQU CITATION CS3 DIK DWQXO E3Z F5P GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE KQ8 LK8 M2P M48 M7P M~E O5R O5S OK1 OVT PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RNS RPM TR2 C1A IAO IEA IHR IPNFZ ISR NPM RIG 3V. 7XB 8FK PKEHL PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c424t-3ef6cf0293230a301dcb12ded3167c70e4de3025fb21ea7b7adbbd4712cc5ff3 |
IEDL.DBID | M48 |
ISSN | 1662-5218 |
IngestDate | Thu Aug 21 14:32:00 EDT 2025 Fri Jul 11 08:38:01 EDT 2025 Fri Jul 25 11:51:23 EDT 2025 Wed Feb 19 02:06:47 EST 2025 Thu Apr 24 23:03:29 EDT 2025 Tue Jul 01 02:32:16 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | neural dynamics autonomous grasping autonomous reaching dynamic field theory online updating |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c424t-3ef6cf0293230a301dcb12ded3167c70e4de3025fb21ea7b7adbbd4712cc5ff3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Reviewed by: Florentin Wörgötter, University of Göttingen, Germany; Thomas Wennekers, Plymouth University, UK Edited by: Christian Tetzlaff, Max Planck Institute for Dynamics and Self Organization (MPG), Germany |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fnbot.2017.00009 |
PMID | 28303100 |
PQID | 2294012254 |
PQPubID | 4424403 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5333495 proquest_miscellaneous_1878822825 proquest_journals_2294012254 pubmed_primary_28303100 crossref_citationtrail_10_3389_fnbot_2017_00009 crossref_primary_10_3389_fnbot_2017_00009 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-03-02 |
PublicationDateYYYYMMDD | 2017-03-02 |
PublicationDate_xml | – month: 03 year: 2017 text: 2017-03-02 day: 02 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Lausanne |
PublicationTitle | Frontiers in neurorobotics |
PublicationTitleAlternate | Front Neurorobot |
PublicationYear | 2017 |
Publisher | Frontiers Research Foundation Frontiers Media S.A |
Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A |
References | Cowley (B5) 2013 Erlhagen (B8) 2006; 3 (B4) 2013 Herzog (B11) 2012 Lisman (B16) 2015; 86 Itti (B14) 1998; 20 Zibner (B31) 2011a; 3 Schöner (B27) 2015 Fard (B9) 2015; 72 Sandamirskaya (B23) 2013; 31 Thelen (B30) 1996; 22 Faubel (B10) 2009 Schöner (B26) 2008 Li (B15) 2016; 75 Schneiberg (B25) 2002; 146 Rusu (B22) 2011 Santello (B24) 2016; 17 Zibner (B32) 2011b Amari (B2) 1977; 27 Curtis (B6) 2008 Strauss (B28) 2012; 3 Herzog (B12) 2014; 36 Madry (B17) 2012 Adams (B1) 2000; 15 Andersen (B3) 2009; 63 Reimann (B20) 2011 Platt (B19) 2006 Strauss (B29) 2015; 72 Desmurget (B7) 2000; 4 Richter (B21) 2012 Huang (B13) 2013 Petsch (B18) 2010 |
References_xml | – volume: 31 start-page: 322 year: 2013 ident: B23 article-title: Using dynamic field theory to extend the embodiment stance toward higher cognition publication-title: New Ideas Psychol. doi: 10.1016/j.newideapsych.2013.01.002 – volume: 27 start-page: 77 year: 1977 ident: B2 article-title: Dynamics of pattern formation in lateral-inhibition type neural fields publication-title: Biol. Cybernet. doi: 10.1007/BF00337259 – start-page: 2379 volume-title: IEEE International Conference on Robotics and Automation (ICRA) year: 2012 ident: B11 article-title: Template-based learning of grasp selection – start-page: 5470 volume-title: IEEE International Conference on Robotics and Automation (ICRA) year: 2011 ident: B20 article-title: Autonomous movement generation for manipulators with multiple simultaneous constraints using the attractor dynamics approach – start-page: 2252 volume-title: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) year: 2008 ident: B6 article-title: Efficient and effective grasping of novel objects through learning and adapting a knowledge base – volume: 15 start-page: 25 year: 2000 ident: B1 article-title: Humanoid robots: a new kind of tool publication-title: IEEE Intell. Syst. Appl. doi: 10.1109/5254.867909 – volume: 22 start-page: 1059 year: 1996 ident: B30 article-title: The development of reaching during the first year: the role of movement speed publication-title: J. Exp. Psychol. Hum. Percept. Perform. doi: 10.1037/0096-1523.22.5.1059 – volume: 75 start-page: 352 year: 2016 ident: B15 article-title: Dexterous grasping under shape uncertainty publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2015.09.008 – start-page: 192 volume-title: IEEE International Conference on Robotics and Automation (ICRA) year: 2010 ident: B18 article-title: Estimation of spatio-temporal object properties for manipulation tasks from observation of humans – volume-title: Grasping in Robotics, Vol. 10 year: 2013 ident: B4 – volume: 3 start-page: R36 year: 2006 ident: B8 article-title: The dynamic neural field approach to cognitive robotics publication-title: J. Neural Eng. doi: 10.1088/1741-2560/3/3/R02 – start-page: 504 volume-title: 6th IEEE-RAS International Conference on Humanoid Robots year: 2006 ident: B19 article-title: Learning grasp context distinctions that generalize – volume: 3 start-page: 105 year: 2012 ident: B28 article-title: A Robotics-based approach to modeling of choice reaching experiments on visual attention publication-title: Front. Psychol. doi: 10.3389/fpsyg.2012.00105 – start-page: 3162 volume-title: A neuro-dynamic architecture for one shot learning of objects that uses both bottom-up recognition and top-down prediction year: 2009 ident: B10 article-title: A neuro-dynamic architecture for one shot learning of objects that uses both bottom-up recognition and top-down prediction – volume: 63 start-page: 568 year: 2009 ident: B3 article-title: Intention, action planning, and decision making in parietal-frontal circuits publication-title: Neuron doi: 10.1016/j.neuron.2009.08.028 – start-page: 1716 volume-title: IEEE International Conference on Robotics and Automation (ICRA) year: 2012 ident: B17 article-title: From object categories to grasp transfer using probabilistic reasoning – start-page: 816 volume-title: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) year: 2013 ident: B5 article-title: Perception and motion planning for pick-and-place of dynamic objects – volume: 20 start-page: 1254 year: 1998 ident: B14 article-title: A model of saliency-based visual attention for rapid scene analysis publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.730558 – volume: 36 start-page: 51 year: 2014 ident: B12 article-title: Learning of grasp selection based on shape-templates publication-title: Auton. Robots doi: 10.1007/s10514-013-9366-8 – volume: 3 start-page: 74 year: 2011a ident: B31 article-title: Dynamic neural fields as building blocks for a cortex-inspired architecture of robotic scene representation publication-title: IEEE Trans. Auton. Ment. Dev. doi: 10.1109/TAMD.2011.2109714 – volume: 4 start-page: 423 year: 2000 ident: B7 article-title: Forward modeling allows feedback control for fast reaching movements publication-title: Trends Cogn. Sci. doi: 10.1016/S1364-6613(00)01537-0 – start-page: 1 volume-title: IEEE International Conference on Robotics and Automation (ICRA) year: 2011 ident: B22 article-title: 3D is here: point cloud library (PCL) – start-page: 593 volume-title: IEEE International Conference on Robotics and Automation (ICRA) year: 2013 ident: B13 article-title: Learning a real time grasping strategy – volume: 17 start-page: 54 year: 2016 ident: B24 article-title: Hand synergies: integration of robotics and neuroscience for understanding the control of biological and artificial hands publication-title: Phys. Life Rev. doi: 10.1016/j.plrev.2016.06.007 – volume: 72 start-page: 3 year: 2015 ident: B29 article-title: Choice reaching with a LEGO arm robot (CoRLEGO): the motor system guides visual attention to movement-relevant information publication-title: Neural Netw. doi: 10.1016/j.neunet.2015.10.005 – volume: 72 start-page: 13 year: 2015 ident: B9 article-title: Modeling human target reaching with an adaptive observer implemented with dynamic neural fields publication-title: Neural Netw. doi: 10.1016/j.neunet.2015.10.003 – volume: 86 start-page: 864 year: 2015 ident: B16 article-title: The challenge of understanding the brain: where we stand in 2015 publication-title: Neuron doi: 10.1016/j.neuron.2015.03.032 – volume-title: Proceedings of the First Joint IEEE International Conference on Development and Learning and on Epigentic Robotics, ICDL-EPIROB year: 2011b ident: B32 article-title: Making a robotic scene representation accessible to feature and label queries doi: 10.1109/DEVLRN.2011.6037360 – start-page: 101 volume-title: Cambridge Handbook of Computational Cognitive Modeling year: 2008 ident: B26 article-title: Dynamical systems approaches to cognition – volume-title: Dynamic Thinking: A Primer on Dynamic Field Theory year: 2015 ident: B27 doi: 10.1093/acprof:oso/9780199300563.001.0001 – start-page: 2457 volume-title: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) year: 2012 ident: B21 article-title: A robotic architecture for action selection and behavioral organization inspired by human cognition – volume: 146 start-page: 142 year: 2002 ident: B25 article-title: The development of coordination for reach-to-grasp movements in children publication-title: Exp. Brain Res. doi: 10.1007/s00221-002-1156-z |
SSID | ssj0062658 |
Score | 2.127102 |
Snippet | Reaching for objects and grasping them is a fundamental skill for any autonomous robot that interacts with its environment. Although this skill seems trivial... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 9 |
SubjectTerms | Arm Automation Cognition & reasoning Grasping Infants International conferences Internet Motion detection Neuroscience Neurosciences Robotics Robots Theory Visual perception |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB61y6U9oL4bSitX6qWHaDeO8zpV23YpIEERAolbFL_aSshZyPIH-OXMOE66CxLXxFYeY89845n5BuCLTIvENqaM84JLdFAyG5dpU8XS5iLXiSy55-k-Os73z8XhRXYRDty6kFY56ESvqHWr6Ix8ynklKAyUiW_Lq5i6RlF0NbTQeApbqILLcgJb3xfHJ6eDLka0npV9cBJdsWpqnWwpgTLpeQurTWP0AGHeT5Rcszx7L2A7QEY272X8Ep4Y9wqerxEJvobbOSOWDRz1s-8wz-ZrAQKGwJSdhrRJ1jjNfl03HRVKsYOBLaJjJ2OKix9y1Hom8RXrianH6wtfbNWx3y5GP9aw8yUVSLg_b-Bsb3H2Yz8O3RViJbhYxamxubIzNPfohTS4z7WSCddGU228KmZGaJMiIrKSJ6YpZNFoKTXaMq5UZm36FiaudeY9MK5mRU5-lhSlsDqTGaLEysqEwCFOiGA6_OVaBeZxaoBxWaMHQnKpvVxqkkvt5RLB13HGsmfdeGTs7iC4Ouy_rv6_WiL4PN7GnUPhkMaZ9qarkxLdf061uxG86-U8Poxo0Sj0EUGxsQLGAcTKvXnH_fvr2bkRP6fode48_lof4Bl9gs9m47swWV3fmI8Ib1byU1jDd4sH_fE priority: 102 providerName: ProQuest |
Title | A Neural Dynamic Architecture for Reaching and Grasping Integrates Perception and Movement Generation and Enables On-Line Updating |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28303100 https://www.proquest.com/docview/2294012254 https://www.proquest.com/docview/1878822825 https://pubmed.ncbi.nlm.nih.gov/PMC5333495 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9swED629mV7KN1vb11QYS978BrJsuU8jJFtabtBulIayJuxLKkrFKWLU1hf95fvTna8pC2Dvhhsyzb2Sdz3-e6-A3inE8VdafM4U0IjQUldnCflINYuk5nhOhdBp3t8lB1O5PdpOv1XHt1-wPpOakf9pCbziw-_f11_wgX_kRgn-ts95_WM0iJ5o0Y4eAib6JcU9TMYyy6mgMg9dOvkWUb0i-dN0PLOO6w7qVvI82YC5YpH2t-GrRZKsmFj-yfwwPqn8HhFYPAZ_BkyUt_AUV-bzvNsuBI4YAhY2UmbTslKb9jBvKypgIp9W6pI1Oy4S30JQ8azoDC-YI1gdXd8FIqwavbDx8hvLZtcUuGEP3sOp_uj0y-Hcdt1Ia6kkIs4sS6rXB9hALKTEte_qTQXxhqqma9U30pjE0RKTgtuS6VVabQ26ONEVaXOJS9gw8-8fQVMVH2VEf_SMpfOpDpF9DhwmhNoxAsi2Ft-5aJqFcmpMcZFgcyE7FIEuxRklyLYJYL33RWXjRrHf8buLA1XLKdVIcRAUjAxlRHsdqdxRVGYpPR2dlUXPFdIO6imN4KXjZ27h5FcGoVEIlBrM6AbQGrd62f8-c-g2o24OkE2-voer_AGHtFOSHkTO7CxmF_Zt4iBFroHm59HR8cnvfAPAbcHU94L0_0vM0QJuQ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9AAcEG8MBRYJDhysxOv164BQoCkJbUJVpVJvK693F5CQHepUiCv_h__IzPpBAlJvvdq7ieOZ3f2-zMw3AC9VmAQ2N6kfJ1whQYmsn4Z55isbi1gHKuVOp3u-iKen4uNZdLYDv7taGEqr7PZEt1HrqqD_yIecZ4LCQJF4u_ruU9coiq52LTQatzg0P38gZavfzPbRvq84P5gs30_9tquAXwgu1n5obFzYER5ziL5z9G9dqIBro6kmvEhGRmgTIhKwigcmT1SSa6U07uG8KCJrQ_zYa7ArwnjEB7D7brI4Pum2fiQHUdrEQpH5ZUNbqoryNYNGJjHbPvv-A7T_5mVuHHQHt-FWi1DZuHGpO7Bjyrtwc0O38B78GjMS9cBR-01DezbeiEcwxMHspM3SZHmp2YfzvKa6LDbrxClqdtxn1Lgh88oJl69Zo4PdX5-42q6afSp9pM2Gna6oHqP8fB-WV_HaH8CgrErzCBgvRklMtE6JVFgdqQhBaWZVQFgUJ3gw7N6yLFqhc-q38U0i4SG7SGcXSXaRzi4evO5nrBqRj0vG7nWGk-1yr-Vf5_TgRX8bFypFX_LSVBe1DNIE2QyVCnvwsLFz_2WkwkaRFg-SLQ_oB5AI-Pad8usXJwaOcD1Ekvv48sd6Dteny_mRPJotDp_ADfo5LpGO78FgfX5hniKyWqtnrT8zkFe8gv4ANtE7ww |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEB2VVEJwQHwWQ4FFggMHK_F67bUPCAWS0FAaoqqVelt5vbuAhOxQp0Jc-Vf8O2b8RQJSb73au4njmd19LzPzBuCFDmXgMpv4seQaCUrk_CTMUl-7WMQm0AmvdbqPFvHBqfhwFp3twO-uFobSKrs9sd6oTZnTf-RDzlNBYaBIDF2bFrGczN6svvvUQYoirV07jcZFDu3PH0jfqtfzCdr6Jeez6cm7A7_tMODngou1H1oX526ERx4i8Qx93eQ64MYaqg_P5cgKY0NEBU7zwGZSy8xobXA_53keORfix16DXUmkaAC7b6eL5XF3DCBRiJImLoosMB26QpeUuxk0konp9jn4H7j9N0dz49Cb3YZbLVpl48a97sCOLe7CzQ0Nw3vwa8xI4ANHTZrm9my8EZtgiInZcZuxybLCsPfnWUU1WmzeCVVUbNln19RDjspaxHzNGk3s_vq0rvOq2KfCRwpt2emKajOKz_fh5Cpe-wMYFGVhHwLj-UjGRPG0SIQzkY4QoKZOB4RLcYIHw-4tq7wVPafeG98Ukh-yi6rtosguqraLB6_6GatG8OOSsfud4VS79Cv111E9eN7fxkVLkZissOVFpYJEIrOhsmEP9ho7919GimwUdfFAbnlAP4AEwbfvFF-_1MLgCN1DJLyPLn-sZ3AdV476OF8cPoYb9GvqnDq-D4P1-YV9giBrrZ-27sxAXfEC-gOEiT_4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Neural+Dynamic+Architecture+for+Reaching+and+Grasping+Integrates+Perception+and+Movement+Generation+and+Enables+On-Line+Updating&rft.jtitle=Frontiers+in+neurorobotics&rft.au=Knips%2C+Guido&rft.au=Zibner%2C+Stephan+K.+U.&rft.au=Reimann%2C+Hendrik&rft.au=Sch%C3%B6ner%2C+Gregor&rft.date=2017-03-02&rft.issn=1662-5218&rft.eissn=1662-5218&rft.volume=11&rft_id=info:doi/10.3389%2Ffnbot.2017.00009&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fnbot_2017_00009 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5218&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5218&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5218&client=summon |