Formation of transition metal hydrides at high pressures

Silane (SiH 4) is found to (partially) decompose at pressures above 50 GPa at room temperature into pure Si and H 2. The released hydrogen reacts with surrounding metals in the diamond anvil cell to form metal hydrides. A formation of rhenium hydride is observed after the decomposition of silane and...

Full description

Saved in:
Bibliographic Details
Published inSolid state communications Vol. 149; no. 39; pp. 1583 - 1586
Main Authors Degtyareva, Olga, Proctor, John E., Guillaume, Christophe L., Gregoryanz, Eugene, Hanfland, Michael
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.10.2009
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Silane (SiH 4) is found to (partially) decompose at pressures above 50 GPa at room temperature into pure Si and H 2. The released hydrogen reacts with surrounding metals in the diamond anvil cell to form metal hydrides. A formation of rhenium hydride is observed after the decomposition of silane and reaction of hydrogen with Re gasket. From the data of a previous experimental report [M.I. Eremets, I.A. Trojan, S.A. Medvedev, J.S. Tse, Y. Yao, Science 319 (2008) 1506], the claimed high-pressure metallic and superconducting phase of silane is identified as platinum hydride, that forms after the decomposition of silane. These observations show the importance of taking into account possible chemical reactions that are often neglected in high-pressure experiments.
AbstractList Silane (SiH(4)) is found to (partially) decompose at pressures above 50 GPa at room temperature into pure Si and H(2). The released hydrogen reacts with surrounding metals in the diamond anvil cell to form metal hydrides. A formation of rhenium hydride is observed after the decomposition of silane and reaction of hydrogen with Re gasket. From the data of a previous experimental report [M.I. Eremets, I.A. Trojan, S.A. Medvedev, J.S. Tse, Y. Yao, Science 319 (2008) 1506], the claimed high-pressure metallic and superconducting phase of silane is identified as platinum hydride, that forms after the decomposition of silane. These observations show the importance of taking into account possible chemical reactions that are often neglected in high-pressure experiments.
Silane (SiH 4) is found to (partially) decompose at pressures above 50 GPa at room temperature into pure Si and H 2. The released hydrogen reacts with surrounding metals in the diamond anvil cell to form metal hydrides. A formation of rhenium hydride is observed after the decomposition of silane and reaction of hydrogen with Re gasket. From the data of a previous experimental report [M.I. Eremets, I.A. Trojan, S.A. Medvedev, J.S. Tse, Y. Yao, Science 319 (2008) 1506], the claimed high-pressure metallic and superconducting phase of silane is identified as platinum hydride, that forms after the decomposition of silane. These observations show the importance of taking into account possible chemical reactions that are often neglected in high-pressure experiments.
Author Proctor, John E.
Hanfland, Michael
Gregoryanz, Eugene
Guillaume, Christophe L.
Degtyareva, Olga
Author_xml – sequence: 1
  givenname: Olga
  surname: Degtyareva
  fullname: Degtyareva, Olga
  email: o.degtyareva@ed.ac.uk
  organization: School of Physics and Centre for Science at Extreme Conditions, University of Edinburgh, Edinburgh EH9 3JZ, UK
– sequence: 2
  givenname: John E.
  surname: Proctor
  fullname: Proctor, John E.
  organization: School of Physics and Centre for Science at Extreme Conditions, University of Edinburgh, Edinburgh EH9 3JZ, UK
– sequence: 3
  givenname: Christophe L.
  surname: Guillaume
  fullname: Guillaume, Christophe L.
  organization: School of Physics and Centre for Science at Extreme Conditions, University of Edinburgh, Edinburgh EH9 3JZ, UK
– sequence: 4
  givenname: Eugene
  surname: Gregoryanz
  fullname: Gregoryanz, Eugene
  organization: School of Physics and Centre for Science at Extreme Conditions, University of Edinburgh, Edinburgh EH9 3JZ, UK
– sequence: 5
  givenname: Michael
  surname: Hanfland
  fullname: Hanfland, Michael
  organization: ESRF, BP 220, Grenoble, France
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21955516$$DView record in Pascal Francis
BookMark eNp9kD1PwzAQQC1UJFrgB7BlgS3hnNiOIyZUUUCqxAKz5doX6ipNii9F6r8n_RADA4tPlt476d6EjdquRcZuOGQcuLpfZUQuywGqDMoM8vyMjbkuqzQvlRqxMUChUw6VvmATohUAlLrkY6ZnXVzbPnRt0tVJH21L4fBbY2-bZLnzMXikxPbJMnwuk01Eou3wXLHz2jaE16d5yT5mT-_Tl3T-9vw6fZynTuSiTwvLfV36HESdo8NKLBC0FnKBviiAy9orj4J776SQzopCcesrhUrXXAoni0t2d9y7id3XFqk360AOm8a22G3JFEIrrYs9eHsCLTnb1MMpLpDZxLC2cWdyXkkpuRo4fuRc7Igi1r8IB7NvaVZmaGn2LQ2UZmg5OOUfx4X-UG0oFpp_zYejiUOj74DRkAvYOvQhouuN78I_9g9syZCs
CODEN SSCOA4
CitedBy_id crossref_primary_10_1063_1_3652863
crossref_primary_10_1039_C6CP05702K
crossref_primary_10_1088_0953_8984_24_3_035701
crossref_primary_10_1002_chem_201705321
crossref_primary_10_1103_PhysRevB_86_184110
crossref_primary_10_1063_1_4866179
crossref_primary_10_1103_PhysRevB_111_014110
crossref_primary_10_1209_0295_5075_90_66006
crossref_primary_10_1002_ange_201704364
crossref_primary_10_1103_PhysRevB_103_174520
crossref_primary_10_1016_j_physb_2016_05_013
crossref_primary_10_1038_s41598_017_07145_4
crossref_primary_10_1016_j_physrep_2020_02_003
crossref_primary_10_1063_1_4869735
crossref_primary_10_1073_pnas_1005242107
crossref_primary_10_7498_aps_70_20202189
crossref_primary_10_1103_PhysRevB_83_144102
crossref_primary_10_1103_PhysRevB_84_054543
crossref_primary_10_1038_nmat3490
crossref_primary_10_1103_PhysRevB_99_024508
crossref_primary_10_1088_1674_1137_37_9_098001
crossref_primary_10_1103_PhysRevB_87_184117
crossref_primary_10_1021_acs_accounts_8b00143
crossref_primary_10_1016_j_ssc_2013_12_036
crossref_primary_10_1063_1_4861966
crossref_primary_10_1103_PhysRevB_99_144511
crossref_primary_10_1073_pnas_1118168109
crossref_primary_10_1103_PhysRevLett_107_117002
crossref_primary_10_1039_C7CP05027E
crossref_primary_10_3367_UFNe_2017_02_038077
crossref_primary_10_1016_j_ssc_2012_02_012
crossref_primary_10_1063_1_3529454
crossref_primary_10_1021_acs_chemmater_5b04638
crossref_primary_10_1103_PhysRevB_103_035131
crossref_primary_10_1103_PhysRevLett_106_095503
crossref_primary_10_3367_UFNr_2017_02_038077
crossref_primary_10_1039_C5RA27037E
crossref_primary_10_1038_srep13039
crossref_primary_10_1088_0953_2048_27_11_115012
crossref_primary_10_1088_1742_6596_377_1_012093
crossref_primary_10_4131_jshpreview_21_190
crossref_primary_10_1038_natrevmats_2017_5
crossref_primary_10_1073_pnas_1300718110
crossref_primary_10_1088_1674_1056_25_2_026104
crossref_primary_10_1016_j_matlet_2019_04_037
crossref_primary_10_1016_j_physleta_2018_11_048
crossref_primary_10_1103_PhysRevB_84_064118
crossref_primary_10_1140_epjb_e2018_90185_6
crossref_primary_10_1002_jrs_5328
crossref_primary_10_1021_acs_jpcc_5b03791
crossref_primary_10_1016_j_physc_2015_02_017
crossref_primary_10_1103_PhysRevB_83_214106
crossref_primary_10_1021_acs_jpca_7b05194
crossref_primary_10_1093_nsr_nww029
crossref_primary_10_1039_C5RA20428C
crossref_primary_10_1063_1_4798640
crossref_primary_10_1103_PhysRevB_84_104111
crossref_primary_10_1088_0953_8984_23_5_053201
crossref_primary_10_1021_jp210780m
crossref_primary_10_1103_PhysRevB_89_064302
crossref_primary_10_1016_j_commatsci_2014_02_045
crossref_primary_10_1063_1_4949361
crossref_primary_10_1063_1_4774022
crossref_primary_10_1140_epjb_e2014_50300_5
crossref_primary_10_1088_0256_307X_37_6_066201
crossref_primary_10_1021_jp204925w
crossref_primary_10_1063_5_0104968
crossref_primary_10_1103_PhysRevB_93_020508
crossref_primary_10_1016_j_physleta_2019_126189
crossref_primary_10_1039_C5CP03807C
crossref_primary_10_1038_s41598_018_30391_z
crossref_primary_10_1002_anie_201704364
crossref_primary_10_1021_jp211051r
crossref_primary_10_1002_wcms_1330
crossref_primary_10_1016_j_physb_2017_10_107
crossref_primary_10_1021_acsearthspacechem_2c00343
crossref_primary_10_1103_PhysRevB_102_184103
crossref_primary_10_1016_j_eng_2019_03_001
crossref_primary_10_1063_1_3505299
crossref_primary_10_1039_C4CP04445B
crossref_primary_10_1088_0256_307X_36_10_106101
crossref_primary_10_1073_pnas_1007354107
crossref_primary_10_1016_j_jallcom_2011_08_094
crossref_primary_10_12693_APhysPolA_119_895
crossref_primary_10_1103_PhysRevB_86_064108
crossref_primary_10_1140_epjb_e2016_70078_6
crossref_primary_10_1038_s41598_020_65910_4
crossref_primary_10_1073_pnas_0908342107
crossref_primary_10_1107_S2053229613028337
crossref_primary_10_1016_j_mtphys_2021_100596
crossref_primary_10_1103_PhysRevB_91_224513
crossref_primary_10_1140_epjb_e2016_70020_0
crossref_primary_10_4131_jshpreview_28_268
crossref_primary_10_1016_j_ijhydene_2016_08_147
crossref_primary_10_1016_j_jnucmat_2019_07_012
crossref_primary_10_1088_0953_2048_28_8_085018
crossref_primary_10_1103_PhysRevLett_108_117004
Cites_doi 10.1103/PhysRevLett.102.015506
10.1103/PhysRevLett.58.775
10.1126/science.1153282
10.1103/PhysRevB.76.064123
10.1080/08957950701546956
10.1103/PhysRevLett.92.187002
10.1007/BF01398191
10.1103/PhysRevLett.73.1640
10.1038/nmat1115
10.1038/nmat716
10.1103/PhysRevLett.96.017006
10.1016/j.ssc.2004.09.048
10.1080/08957959608201408
10.1029/JB091iB05p04673
10.1016/j.ssc.2004.01.021
10.4131/jshpreview.7.301
10.1103/PhysRevLett.101.077002
10.1103/PhysRevLett.97.045504
10.1073/pnas.0804148105
10.1103/PhysRevLett.102.087005
10.1063/1.335417
10.1103/PhysRevLett.96.155501
10.1103/PhysRevB.70.094112
10.1103/PhysRevLett.96.055504
10.1080/08957958908201683
10.1039/b517778m
10.1073/pnas.0710473105
10.1006/jssc.1995.1348
ContentType Journal Article
Copyright 2009 Elsevier Ltd
2009 INIST-CNRS
Copyright_xml – notice: 2009 Elsevier Ltd
– notice: 2009 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7QQ
7U5
8FD
JG9
L7M
DOI 10.1016/j.ssc.2009.07.022
DatabaseName CrossRef
Pascal-Francis
Ceramic Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Solid State and Superconductivity Abstracts
Ceramic Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1879-2766
EndPage 1586
ExternalDocumentID 21955516
10_1016_j_ssc_2009_07_022
S0038109809004414
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
3O-
4.4
457
4G.
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABTAH
ABXDB
ABXRA
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACNCT
ACNNM
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFFNX
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMV
HVGLF
HZ~
H~9
IHE
J1W
KOM
M24
M38
M41
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SPD
SPG
SSM
SSQ
SSZ
T5K
TN5
UQL
WUQ
XFK
XPP
XSW
ZMT
ZY4
~02
~G-
~S-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
7QQ
7U5
8FD
JG9
L7M
ID FETCH-LOGICAL-c424t-3a1df7d204f2ece94be08845bed33015fd6de41ddc545ca4361ad96e68f154c53
IEDL.DBID .~1
ISSN 0038-1098
IngestDate Fri Jul 11 07:26:50 EDT 2025
Mon Jul 21 09:14:01 EDT 2025
Tue Jul 01 03:57:37 EDT 2025
Thu Apr 24 23:05:03 EDT 2025
Fri Feb 23 02:31:03 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 39
Keywords 62.50.+p
61.50.Ks
B. Synthesis
E. Synchrotron x-ray diffraction
A. Metals
E. High pressure
Metals Hydrides
Chemical decomposition
XRD
Synchrotron radiation
High pressure
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c424t-3a1df7d204f2ece94be08845bed33015fd6de41ddc545ca4361ad96e68f154c53
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 34868835
PQPubID 23500
PageCount 4
ParticipantIDs proquest_miscellaneous_34868835
pascalfrancis_primary_21955516
crossref_primary_10_1016_j_ssc_2009_07_022
crossref_citationtrail_10_1016_j_ssc_2009_07_022
elsevier_sciencedirect_doi_10_1016_j_ssc_2009_07_022
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-10-01
PublicationDateYYYYMMDD 2009-10-01
PublicationDate_xml – month: 10
  year: 2009
  text: 2009-10-01
  day: 01
PublicationDecade 2000
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Solid state communications
PublicationYear 2009
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Ponyatovskii, Degtyareva (b9) 1989; 1
Kawamura, Harada, Akahama, Takemura (b34) 2004; 130
Horvath-Bordon, Riedel, Zerr, McMillan, Auffermann, Prots, Bronger, Kniep, Kroll (b5) 2006; 35
Solozhenko, Kurakevych, Andrault, Le Godec, Mezouar (b3) 2009; 102
Gregoryanz, Sanloup, Somayazulu, Badro, Fiquet, Mao, Hemley, Young, Sanloup, Gregoryanz, Scandolo, Hemley, Mao (b4) 2004; 3
Feng, Grochala, Jaron, Hoffmann, Bergara, Ashcroft (b11) 2006; 96
angles and at pressure of approx. 113 GPa would overlap with those in Fig. 1(a)
is very weak, which apparently was missed in the experiment of Ref.
Fukai (b26) 2000
Baranowski, Tkacz, Majchrzak (b27) 1991
Brazhkin (b2) 2007; 27
Kim, Scheicher, Lebégue, Prasongkit, Arnaud, Alouani, Ahuja (b16) 2008; 105
where instead a stronger diffraction signal from crystalline PtH was measured. We note that even a very small amount of PtH in the sample chamber (∼5 μm) will give a much stronger x-ray diffraction than the amorphous silane sample
Stritzker, Buckel (b28) 1972; 257
It has since been shown that the true structure of Re hydride is a superstructure of hcp with a anti- CdI
Ashcroft (b10) 2004; 92
The spectra of the claimed “metallic phase of silane” and PtH ( Fig. 1(a), (b)) are identical apart from the diffraction lines in Fig. 1(a) being shifted to higher 2-
Ono, Kikegawa, Ohishi (b36) 2005; 133
Duclos, Vohra, Ruoff (b29) 1987; 58
Martinez-Canales, Oganov, Ma, Yan, Lyakhov, Bergara (b18) 2009; 102
Goncharov, Crowhurst (b8) 2006; 96
N. Hirao, H. Fujihisa, Y. Ohishi, K. Takemura, T. Kikegawa, International Symposium on Metal-Hydrogen Systems, Reykjavik, Iceland, 2008; See also Acta Cryst. A 64 (2008) C609–C610
C.L. Guillaume, J.E. Proctor, O. Degtyareva, E. Gregoryanz, M. Hanfland (in preparation)
Atou, Badding (b32) 1995; 118
Chen, Wang, Struzhkin, Mao, Hemley, Lin (b17) 2008; 101
Degtyareva, Martinez-Canales, Bergara, Chen, Struzhkin, Mao, Hemley (b20) 2007; 76
Chen, Struzhkin, Song, Goncharov, Ahart, Liu, Mao, Hemley (b13) 2008; 105
Besedin, Jephcoat (b35) 1998; 7
McMillan (b7) 2002; 1
Stanley (b15) 1987
Hanfland, Syassen (b21) 1985; 57
Mao, Xu, Bell (b22) 1986; 91
structure
Eremets, Trojan, Medvedev, Tse, Yao (b12) 2008; 319
Hammersley, Svensson, Hanfland, Fitch, Hausermann (b23) 1996; 14
T.A. Strobel, M. Somayazulu, R.J. Hemley, Phys. Rev. Lett. (2009) (in press)
Antonov (b1) 2002; 110
Fukai, Okuma (b6) 1994; 73
The amorphous x-ray diffraction signal from the silane sample observed in our work
angles in comparison to Fig. 1(b). This is due to the difference in pressures at which these spectra were measured. Taking into account the compressibility of PtH which is close to that of Pt ( Fig. 2), the positions of diffraction lines of PtH in Fig. 1(b) would shift to higher 2-
Pickard, Needs (b14) 2006; 97
Dewaele, Loubeyre, Mezouar (b24) 2004; 70
Young (10.1016/j.ssc.2009.07.022_b4_2) 2006; 96
10.1016/j.ssc.2009.07.022_b25
Brazhkin (10.1016/j.ssc.2009.07.022_b2) 2007; 27
Solozhenko (10.1016/j.ssc.2009.07.022_b3) 2009; 102
Chen (10.1016/j.ssc.2009.07.022_b13) 2008; 105
Hanfland (10.1016/j.ssc.2009.07.022_b21) 1985; 57
Atou (10.1016/j.ssc.2009.07.022_b32) 1995; 118
Stritzker (10.1016/j.ssc.2009.07.022_b28) 1972; 257
Degtyareva (10.1016/j.ssc.2009.07.022_b20) 2007; 76
Eremets (10.1016/j.ssc.2009.07.022_b12) 2008; 319
Hammersley (10.1016/j.ssc.2009.07.022_b23) 1996; 14
Feng (10.1016/j.ssc.2009.07.022_b11) 2006; 96
Kim (10.1016/j.ssc.2009.07.022_b16) 2008; 105
Baranowski (10.1016/j.ssc.2009.07.022_b27) 1991
Kawamura (10.1016/j.ssc.2009.07.022_b34) 2004; 130
Ponyatovskii (10.1016/j.ssc.2009.07.022_b9) 1989; 1
Gregoryanz (10.1016/j.ssc.2009.07.022_b4_1) 2004; 3
Antonov (10.1016/j.ssc.2009.07.022_b1) 2002; 110
Horvath-Bordon (10.1016/j.ssc.2009.07.022_b5) 2006; 35
Dewaele (10.1016/j.ssc.2009.07.022_b24) 2004; 70
Ashcroft (10.1016/j.ssc.2009.07.022_b10) 2004; 92
Pickard (10.1016/j.ssc.2009.07.022_b14) 2006; 97
10.1016/j.ssc.2009.07.022_b33
Stanley (10.1016/j.ssc.2009.07.022_b15) 1987
McMillan (10.1016/j.ssc.2009.07.022_b7) 2002; 1
10.1016/j.ssc.2009.07.022_b37
Ono (10.1016/j.ssc.2009.07.022_b36) 2005; 133
10.1016/j.ssc.2009.07.022_b30
Fukai (10.1016/j.ssc.2009.07.022_b26) 2000
10.1016/j.ssc.2009.07.022_b31
Besedin (10.1016/j.ssc.2009.07.022_b35) 1998; 7
Fukai (10.1016/j.ssc.2009.07.022_b6) 1994; 73
Duclos (10.1016/j.ssc.2009.07.022_b29) 1987; 58
Goncharov (10.1016/j.ssc.2009.07.022_b8) 2006; 96
Chen (10.1016/j.ssc.2009.07.022_b17) 2008; 101
10.1016/j.ssc.2009.07.022_b19
Mao (10.1016/j.ssc.2009.07.022_b22) 1986; 91
Martinez-Canales (10.1016/j.ssc.2009.07.022_b18) 2009; 102
References_xml – volume: 133
  start-page: 55
  year: 2005
  ident: b36
  publication-title: Solid State Commun.
– reference: angles and at pressure of approx. 113 GPa would overlap with those in Fig. 1(a)
– volume: 130
  start-page: 59
  year: 2004
  ident: b34
  publication-title: Solid State Commun.
– reference: is very weak, which apparently was missed in the experiment of Ref. 
– volume: 97
  start-page: 045504
  year: 2006
  ident: b14
  publication-title: Phys. Rev. Lett.
– reference: The spectra of the claimed “metallic phase of silane” and PtH ( Fig. 1(a), (b)) are identical apart from the diffraction lines in Fig. 1(a) being shifted to higher 2-
– reference: T.A. Strobel, M. Somayazulu, R.J. Hemley, Phys. Rev. Lett. (2009) (in press)
– reference: angles in comparison to Fig. 1(b). This is due to the difference in pressures at which these spectra were measured. Taking into account the compressibility of PtH which is close to that of Pt ( Fig. 2), the positions of diffraction lines of PtH in Fig. 1(b) would shift to higher 2-
– volume: 110
  start-page: 330
  year: 2002
  ident: b1
  publication-title: J. Alloys Comp.
– volume: 14
  start-page: 235
  year: 1996
  ident: b23
  publication-title: High Press. Res.
– year: 1987
  ident: b15
  article-title: Introduction to Phase Transitions and Critical Phenomena
– reference: , where instead a stronger diffraction signal from crystalline PtH was measured. We note that even a very small amount of PtH in the sample chamber (∼5 μm) will give a much stronger x-ray diffraction than the amorphous silane sample
– volume: 92
  start-page: 187002
  year: 2004
  ident: b10
  publication-title: Phys. Rev. Lett.
– volume: 102
  start-page: 087005
  year: 2009
  ident: b18
  publication-title: Phys. Rev. Lett.
– volume: 27
  start-page: 333
  year: 2007
  ident: b2
  publication-title: High Press. Res.
– volume: 35
  start-page: 987
  year: 2006
  ident: b5
  publication-title: Chem. Soc. Rev.
– volume: 319
  start-page: 1506
  year: 2008
  ident: b12
  publication-title: Science
– reference: C.L. Guillaume, J.E. Proctor, O. Degtyareva, E. Gregoryanz, M. Hanfland (in preparation)
– volume: 257
  start-page: 1
  year: 1972
  ident: b28
  publication-title: Z. Phys.
– volume: 118
  start-page: 299
  year: 1995
  ident: b32
  publication-title: J. Solid State Chem.
– volume: 96
  start-page: 055504
  year: 2006
  ident: b8
  publication-title: Phys. Rev. Lett.
– volume: 3
  start-page: 294
  year: 2004
  ident: b4
  publication-title: Nat. Mater.
– volume: 70
  start-page: 094112
  year: 2004
  ident: b24
  publication-title: Phys. Rev. B
– reference: N. Hirao, H. Fujihisa, Y. Ohishi, K. Takemura, T. Kikegawa, International Symposium on Metal-Hydrogen Systems, Reykjavik, Iceland, 2008; See also Acta Cryst. A 64 (2008) C609–C610
– volume: 1
  start-page: 19
  year: 2002
  ident: b7
  publication-title: Nat. Mater.
– reference: structure 
– year: 2000
  ident: b26
  article-title: The Metal Hydrogen System
– volume: 96
  start-page: 017006
  year: 2006
  ident: b11
  publication-title: Phys. Rev. Lett.
– volume: 58
  start-page: 775
  year: 1987
  ident: b29
  publication-title: Phys. Rev. Lett.
– reference: It has since been shown that the true structure of Re hydride is a superstructure of hcp with a anti- CdI
– volume: 101
  start-page: 077002
  year: 2008
  ident: b17
  publication-title: Phys. Rev. Lett.
– volume: 73
  start-page: 1640
  year: 1994
  ident: b6
  publication-title: Phys. Rev. Lett.
– volume: 105
  start-page: 16454
  year: 2008
  ident: b16
  publication-title: PNAS
– reference: The amorphous x-ray diffraction signal from the silane sample observed in our work 
– volume: 76
  start-page: 064123
  year: 2007
  ident: b20
  publication-title: Phys. Rev. B
– volume: 105
  start-page: 20
  year: 2008
  ident: b13
  publication-title: PNAS
– volume: 57
  start-page: 2752
  year: 1985
  ident: b21
  publication-title: J. Appl. Phys.
– volume: 91
  start-page: 4673
  year: 1986
  ident: b22
  publication-title: J. Geophys. Res.
– start-page: 139
  year: 1991
  ident: b27
  publication-title: Molecular Systems Under High Pressure
– volume: 7
  start-page: 301
  year: 1998
  ident: b35
  publication-title: Rev. High Pressure Sci. Technol.
– volume: 1
  start-page: 163
  year: 1989
  ident: b9
  publication-title: High Press. Res.
– volume: 102
  start-page: 015506
  year: 2009
  ident: b3
  publication-title: Phys. Rev. Lett.
– volume: 102
  start-page: 015506
  year: 2009
  ident: 10.1016/j.ssc.2009.07.022_b3
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.015506
– volume: 110
  start-page: 330
  year: 2002
  ident: 10.1016/j.ssc.2009.07.022_b1
  publication-title: J. Alloys Comp.
– volume: 58
  start-page: 775
  year: 1987
  ident: 10.1016/j.ssc.2009.07.022_b29
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.58.775
– ident: 10.1016/j.ssc.2009.07.022_b37
– ident: 10.1016/j.ssc.2009.07.022_b31
– ident: 10.1016/j.ssc.2009.07.022_b33
– year: 1987
  ident: 10.1016/j.ssc.2009.07.022_b15
– volume: 319
  start-page: 1506
  year: 2008
  ident: 10.1016/j.ssc.2009.07.022_b12
  publication-title: Science
  doi: 10.1126/science.1153282
– year: 2000
  ident: 10.1016/j.ssc.2009.07.022_b26
– volume: 76
  start-page: 064123
  year: 2007
  ident: 10.1016/j.ssc.2009.07.022_b20
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.76.064123
– volume: 27
  start-page: 333
  year: 2007
  ident: 10.1016/j.ssc.2009.07.022_b2
  publication-title: High Press. Res.
  doi: 10.1080/08957950701546956
– volume: 92
  start-page: 187002
  year: 2004
  ident: 10.1016/j.ssc.2009.07.022_b10
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.92.187002
– volume: 257
  start-page: 1
  year: 1972
  ident: 10.1016/j.ssc.2009.07.022_b28
  publication-title: Z. Phys.
  doi: 10.1007/BF01398191
– volume: 73
  start-page: 1640
  year: 1994
  ident: 10.1016/j.ssc.2009.07.022_b6
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.73.1640
– volume: 3
  start-page: 294
  year: 2004
  ident: 10.1016/j.ssc.2009.07.022_b4_1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1115
– volume: 1
  start-page: 19
  year: 2002
  ident: 10.1016/j.ssc.2009.07.022_b7
  publication-title: Nat. Mater.
  doi: 10.1038/nmat716
– volume: 96
  start-page: 017006
  year: 2006
  ident: 10.1016/j.ssc.2009.07.022_b11
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.017006
– volume: 133
  start-page: 55
  year: 2005
  ident: 10.1016/j.ssc.2009.07.022_b36
  publication-title: Solid State Commun.
  doi: 10.1016/j.ssc.2004.09.048
– volume: 14
  start-page: 235
  year: 1996
  ident: 10.1016/j.ssc.2009.07.022_b23
  publication-title: High Press. Res.
  doi: 10.1080/08957959608201408
– volume: 91
  start-page: 4673
  year: 1986
  ident: 10.1016/j.ssc.2009.07.022_b22
  publication-title: J. Geophys. Res.
  doi: 10.1029/JB091iB05p04673
– volume: 130
  start-page: 59
  year: 2004
  ident: 10.1016/j.ssc.2009.07.022_b34
  publication-title: Solid State Commun.
  doi: 10.1016/j.ssc.2004.01.021
– volume: 7
  start-page: 301
  year: 1998
  ident: 10.1016/j.ssc.2009.07.022_b35
  publication-title: Rev. High Pressure Sci. Technol.
  doi: 10.4131/jshpreview.7.301
– volume: 101
  start-page: 077002
  year: 2008
  ident: 10.1016/j.ssc.2009.07.022_b17
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.077002
– volume: 97
  start-page: 045504
  year: 2006
  ident: 10.1016/j.ssc.2009.07.022_b14
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.97.045504
– start-page: 139
  year: 1991
  ident: 10.1016/j.ssc.2009.07.022_b27
– volume: 105
  start-page: 16454
  year: 2008
  ident: 10.1016/j.ssc.2009.07.022_b16
  publication-title: PNAS
  doi: 10.1073/pnas.0804148105
– volume: 102
  start-page: 087005
  year: 2009
  ident: 10.1016/j.ssc.2009.07.022_b18
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.087005
– ident: 10.1016/j.ssc.2009.07.022_b25
– volume: 57
  start-page: 2752
  year: 1985
  ident: 10.1016/j.ssc.2009.07.022_b21
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.335417
– volume: 96
  start-page: 155501
  year: 2006
  ident: 10.1016/j.ssc.2009.07.022_b4_2
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.155501
– ident: 10.1016/j.ssc.2009.07.022_b19
– volume: 70
  start-page: 094112
  year: 2004
  ident: 10.1016/j.ssc.2009.07.022_b24
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.70.094112
– volume: 96
  start-page: 055504
  year: 2006
  ident: 10.1016/j.ssc.2009.07.022_b8
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.055504
– volume: 1
  start-page: 163
  year: 1989
  ident: 10.1016/j.ssc.2009.07.022_b9
  publication-title: High Press. Res.
  doi: 10.1080/08957958908201683
– ident: 10.1016/j.ssc.2009.07.022_b30
– volume: 35
  start-page: 987
  year: 2006
  ident: 10.1016/j.ssc.2009.07.022_b5
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b517778m
– volume: 105
  start-page: 20
  year: 2008
  ident: 10.1016/j.ssc.2009.07.022_b13
  publication-title: PNAS
  doi: 10.1073/pnas.0710473105
– volume: 118
  start-page: 299
  year: 1995
  ident: 10.1016/j.ssc.2009.07.022_b32
  publication-title: J. Solid State Chem.
  doi: 10.1006/jssc.1995.1348
SSID ssj0007871
Score 2.2679124
Snippet Silane (SiH 4) is found to (partially) decompose at pressures above 50 GPa at room temperature into pure Si and H 2. The released hydrogen reacts with...
Silane (SiH(4)) is found to (partially) decompose at pressures above 50 GPa at room temperature into pure Si and H(2). The released hydrogen reacts with...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1583
SubjectTerms A. Metals
B. Synthesis
Cross-disciplinary physics: materials science; rheology
E. High pressure
E. Synchrotron x-ray diffraction
Exact sciences and technology
Materials science
Materials synthesis; materials processing
Physics
Title Formation of transition metal hydrides at high pressures
URI https://dx.doi.org/10.1016/j.ssc.2009.07.022
https://www.proquest.com/docview/34868835
Volume 149
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5EEQURn7g-1hw8CdU2SR85yuKyKnpS8BbSPFDR3cV2D1787U7SVhHRg5ceSkPCZDL5ynwzH8ARTUrKXCkijXgi4mWsohJ_RCJjKXVlzFye-9rh65tsdMcv79P7ORh0tTCeVtnG_iamh2jdvjltrXk6fXz0Nb6-O5UoYuGzkkHMmvPce_nJ-xfNAx2yUc1jvo2pKLrMZuB4VZVuW1bmJzGlv91NK1NVocVcI3XxI2qHq2i4BqsthiRnzTLXYc6ON2Bp0Em3bcBi4HXqahOKYVecSCaO1P5iChwt8mIRdZOHN6-ubiuiauIbF5NAi53hYwvuhue3g1HUiiVEmlNeR0wlxuWGxtxRq63gpcUAwtPSGoaHOHUmM5YnxmjETFpxliXKiMxmhUMUpVO2DfPjydjuABHGWY6wKU8U4gudFSqUnyaiYCZWPO1B3JlJ6raTuBe0eJYdZexJomW9wqWQcS7Rsj04_hwybdpo_PUx72wvv_mCxDD_17D-t336nAhXnvp8YA8Ou42TuCE-M6LGdjKrJONFViAW3f3fzHuwHJJMgeO3D_P168weIFapy35wxj4snF1cjW4-AN4N55c
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5EEQURn7g-c_AkVNskfeQoi8v6PCl4C2keqOjuYrsHL_52J2mriOjBSw-lIWEmmXxlvpkP4JAmJWWuFJFGPBHxMlZRiT8ikbGUujJmLs997fD1TTa84xf36f0M9LtaGE-rbGN_E9NDtG7fnLTWPJk8PvoaX9-dShSx8FlJL2Y9x_H4ehmD4_cvngfuyEY2j_k-pqLoUpuB5FVVuu1ZmR_HlP52OS1NVIUmc43WxY-wHe6iwQostyCSnDbrXIUZO1qDhX6n3bYG84HYqat1KAZddSIZO1L7mymQtMiLRdhNHt68vLqtiKqJ71xMAi92io8NuBuc3faHUauWEGlOeR0xlRiXGxpzR622gpcWIwhPS2sYnuLUmcxYnhijETRpxVmWKCMymxUOYZRO2SbMjsYjuwVEGGc54qY8UQgwdFaoUH-aiIKZWPG0B3FnJqnbVuJe0eJZdpyxJ4mW9RKXQsa5RMv24OhzyKTpo_HXx7yzvfy2GSTG-b-G7X_z0-dEuPLUJwR7cNA5TqJDfGpEjex4WknGi6xAMLr9v5kPYGF4e30lr85vLndgMWScAuFvF2br16ndQ-BSl_thY34AOYTpJQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Formation+of+transition+metal+hydrides+at+high+pressures&rft.jtitle=Solid+state+communications&rft.au=Degtyareva%2C+Olga&rft.au=Proctor%2C+John+E&rft.au=Guillaume%2C+Christophe+L&rft.au=Gregoryanz%2C+Eugene&rft.date=2009-10-01&rft.issn=0038-1098&rft.volume=149&rft.issue=39-40&rft.spage=1583&rft.epage=1586&rft_id=info:doi/10.1016%2Fj.ssc.2009.07.022&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-1098&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-1098&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-1098&client=summon