Improvement of soil moisture and groundwater level estimations using a scale‐consistent river parameterization for the coupled ParFlow-CLM hydrological model: A case study of the Upper Rhine Basin

[Display omitted] •Scaling of Manning coefficient and permeability in hydrological models were proposed.•We investigate the impact of the scaling approach on results of ParFlow-CLM model.•The validity of the results is examined through an innovative application of FORM.•The average bias in soil mois...

Full description

Saved in:
Bibliographic Details
Published inJournal of hydrology (Amsterdam) Vol. 610; p. 127991
Main Authors Soltani, Samira Sadat, Fahs, Marwan, Bitar, Ahmad Al, Ataie-Ashtiani, Behzad
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.07.2022
Elsevier
Subjects
Online AccessGet full text
ISSN0022-1694
1879-2707
DOI10.1016/j.jhydrol.2022.127991

Cover

Abstract [Display omitted] •Scaling of Manning coefficient and permeability in hydrological models were proposed.•We investigate the impact of the scaling approach on results of ParFlow-CLM model.•The validity of the results is examined through an innovative application of FORM.•The average bias in soil moisture was decreased from 0. 17 mm3/mm3 to 0. 1 mm3/mm3.•The accuracy of simulations is more than 95 and 92 percent for Autumn and Summer. Accurate implementation of river interactions with subsurface water is critical in large-scale hydrologic models with a constant horizontal grid resolution when models apply kinematic wave approximation for both hillslope and river channel flow. The size of rivers can vary greatly in the model domain, and the implemented grid resolution is too coarse to accurately account for river interactions. Consequently, the flow velocity is underestimated when the width of the rivers is much narrower than the selected grid size. This leads to inaccuracy and uncertainties in calculations of water quantities. In addition, the rate of exfiltration and infiltration between the river and the subsurface may be overestimated as the modeled area of water exchange between rivers and subsurface is larger than reality. Therefore, the present study tests the approximation of subscale channel flow by a scaled roughness coefficient in the kinematic wave equation. For this purpose, a relationship between grid cell size and river width is used to correct flow velocity, which follows a simplified modification of the Manning-Strickler equation. The rate of exfiltration and infiltration between the subsurface and river is also corrected across riverbeds by a scaled saturated hydraulic conductivity based on the grid resolution even though the grid size is relatively large. The scaling methodology is implemented in a hydrological model coupling ParFlow (PARallel FLOW) v3.5 and the Community Land Model (CLM) v4.5. The model is applied over the Upper Rhine Basin (between France and Germany) for a time period from 2012 to 2014 and at a spatial resolution of 0.055° (∼6 km). The validity of the results is examined with satellite and in situ data through an innovative application of the First Order Reliability Method (FORM). The scaling approach shows that soil moisture estimates have improved, particularly in the summer and autumn seasons when cross-validated with independent soil moisture observations provided by the Climate Change Initiative (CCI). The results underline the use of a simple scaling procedure of the Manning coefficient and saturated hydraulic conductivity to account for the real infiltration/exfiltration rate in large-scale hydrological models with constant horizontal grid resolution. The scaling procedure also shows overall improvements in groundwater level estimation, particularly where the groundwater level is shallow (less than 5 m from the surface). By using the scaling approach, the average bias in soil moisture for the study domain was decreased from 0.17 mm3/mm3 to 0.1 mm3/mm3. The FORM results show that the probability of a substantial divergence between the ParFlow-CLM-S soil moisture results and the CCI-SM observation, which is defined as more than 0.25% of the CCI-SM observation value, is less than 0.05, 0.11, 0.15, and 0.08 for autumn, winter, spring, and summer, respectively.
AbstractList Accurate implementation of river interactions with subsurface water is critical in large-scale hydrologic models with a constant horizontal grid resolution when models apply kinematic wave approximation for both hillslope and river channel flow. The size of rivers can vary greatly in the model domain, and the implemented grid resolution is too coarse to accurately account for river interactions. Consequently, the flow velocity is underestimated when the width of the rivers is much narrower than the selected grid size. This leads to inaccuracy and uncertainties in calculations of water quantities. In addition, the rate of exfiltration and infiltration between the river and the subsurface may be overestimated as the modeled area of water exchange between rivers and subsurface is larger than reality. Therefore, the present study tests the approximation of subscale channel flow by a scaled roughness coefficient in the kinematic wave equation. For this purpose, a relationship between grid cell size and river width is used to correct flow velocity, which follows a simplified modification of the Manning-Strickler equation. The rate of exfiltration and infiltration between the subsurface and river is also corrected across riverbeds by a scaled saturated hydraulic conductivity based on the grid resolution even though the grid size is relatively large. The scaling methodology is implemented in a hydrological model coupling ParFlow (PARallel FLOW) v3.5 and the Community Land Model (CLM) v4.5. The model is applied over the Upper Rhine Basin (between France and Germany) for a time period from 2012 to 2014 and at a spatial resolution of 0.055° (∼6 km). The validity of the results is examined with satellite and in situ data through an innovative application of the First Order Reliability Method (FORM). The scaling approach shows that soil moisture estimates have improved, particularly in the summer and autumn seasons when cross-validated with independent soil moisture observations provided by the Climate Change Initiative (CCI). The results underline the use of a simple scaling procedure of the Manning coefficient and saturated hydraulic conductivity to account for the real infiltration/exfiltration rate in large-scale hydrological models with constant horizontal grid resolution. The scaling procedure also shows overall improvements in groundwater level estimation, particularly where the groundwater level is shallow (less than 5 m from the surface). By using the scaling approach, the average bias in soil moisture for the study domain was decreased from 0.17 mm³/mm³ to 0.1 mm³/mm³. The FORM results show that the probability of a substantial divergence between the ParFlow-CLM-S soil moisture results and the CCI-SM observation, which is defined as more than 0.25% of the CCI-SM observation value, is less than 0.05, 0.11, 0.15, and 0.08 for autumn, winter, spring, and summer, respectively.
Accurate implementation of river interactions with subsurface water is critical in large-scale hydrologic models with a constant horizontal grid resolution when models apply kinematic wave approximation for both hillslope and river channel flow. The size of rivers can vary greatly in the model domain, and the implemented grid resolution is too coarse to accurately account for river interactions. Consequently, the flow velocity is underestimated when the width of the rivers is much narrower than the selected grid size. This leads to inaccuracy and uncertainties in calculations of water quantities. In addition, the rate of exfiltration and infiltration between the river and the subsurface may be overestimated as the modeled area of water exchange between rivers and subsurface is larger than reality. Therefore, the present study tests the approximation of subscale channel flow by a scaled roughness coefficient in the kinematic wave equation. For this purpose, a relationship between grid cell size and river width is used to correct flow velocity, which follows a simplified modification of the Manning-Strickler equation. The rate of exfiltration and infiltration between the subsurface and river is also corrected across riverbeds by a scaled saturated hydraulic conductivity based on the grid resolution even though the grid size is relatively large. The scaling methodology is implemented in a hydrological model coupling ParFlow (PARallel FLOW) v3.5 and the Community Land Model (CLM) v4.5. The model is applied over the Upper Rhine Basin (between France and Germany) for a time period from 2012 to 2014 and at a spatial resolution of 0.055° (∼6 km). The validity of the results is examined with satellite and in situ data through an innovative application of the First Order Reliability Method (FORM). The scaling approach shows that soil moisture estimates have improved, particularly in the summer and autumn seasons when cross-validated with independent soil moisture observations provided by the Climate Change Initiative (CCI). The results underline the use of a simple scaling procedure of the Manning coefficient and saturated hydraulic conductivity to account for the real infiltration/exfiltration rate in large-scale hydrological models with constant horizontal grid resolution. The scaling procedure also shows overall improvements in groundwater level estimation, particularly where the groundwater level is shallow (less than 5 m from the surface). By using the scaling approach, the average bias in soil moisture for the study domain was decreased from 0.17 mm3/mm3 to 0.1 mm3/mm3. The FORM results show that the probability of a substantial divergence between the ParFlow-CLM-S soil moisture results and the CCI-SM observation, which is defined as more than 0.25% of the CCI-SM observation value, is less than 0.05, 0.11, 0.15, and 0.08 for autumn, winter, spring, and summer, respectively.
[Display omitted] •Scaling of Manning coefficient and permeability in hydrological models were proposed.•We investigate the impact of the scaling approach on results of ParFlow-CLM model.•The validity of the results is examined through an innovative application of FORM.•The average bias in soil moisture was decreased from 0. 17 mm3/mm3 to 0. 1 mm3/mm3.•The accuracy of simulations is more than 95 and 92 percent for Autumn and Summer. Accurate implementation of river interactions with subsurface water is critical in large-scale hydrologic models with a constant horizontal grid resolution when models apply kinematic wave approximation for both hillslope and river channel flow. The size of rivers can vary greatly in the model domain, and the implemented grid resolution is too coarse to accurately account for river interactions. Consequently, the flow velocity is underestimated when the width of the rivers is much narrower than the selected grid size. This leads to inaccuracy and uncertainties in calculations of water quantities. In addition, the rate of exfiltration and infiltration between the river and the subsurface may be overestimated as the modeled area of water exchange between rivers and subsurface is larger than reality. Therefore, the present study tests the approximation of subscale channel flow by a scaled roughness coefficient in the kinematic wave equation. For this purpose, a relationship between grid cell size and river width is used to correct flow velocity, which follows a simplified modification of the Manning-Strickler equation. The rate of exfiltration and infiltration between the subsurface and river is also corrected across riverbeds by a scaled saturated hydraulic conductivity based on the grid resolution even though the grid size is relatively large. The scaling methodology is implemented in a hydrological model coupling ParFlow (PARallel FLOW) v3.5 and the Community Land Model (CLM) v4.5. The model is applied over the Upper Rhine Basin (between France and Germany) for a time period from 2012 to 2014 and at a spatial resolution of 0.055° (∼6 km). The validity of the results is examined with satellite and in situ data through an innovative application of the First Order Reliability Method (FORM). The scaling approach shows that soil moisture estimates have improved, particularly in the summer and autumn seasons when cross-validated with independent soil moisture observations provided by the Climate Change Initiative (CCI). The results underline the use of a simple scaling procedure of the Manning coefficient and saturated hydraulic conductivity to account for the real infiltration/exfiltration rate in large-scale hydrological models with constant horizontal grid resolution. The scaling procedure also shows overall improvements in groundwater level estimation, particularly where the groundwater level is shallow (less than 5 m from the surface). By using the scaling approach, the average bias in soil moisture for the study domain was decreased from 0.17 mm3/mm3 to 0.1 mm3/mm3. The FORM results show that the probability of a substantial divergence between the ParFlow-CLM-S soil moisture results and the CCI-SM observation, which is defined as more than 0.25% of the CCI-SM observation value, is less than 0.05, 0.11, 0.15, and 0.08 for autumn, winter, spring, and summer, respectively.
ArticleNumber 127991
Author Bitar, Ahmad Al
Fahs, Marwan
Soltani, Samira Sadat
Ataie-Ashtiani, Behzad
Author_xml – sequence: 1
  givenname: Samira Sadat
  surname: Soltani
  fullname: Soltani, Samira Sadat
  organization: Department of Civil Engineering, Sharif University of Technology, Tehran, Iran
– sequence: 2
  givenname: Marwan
  surname: Fahs
  fullname: Fahs, Marwan
  email: fahs@unistra.fr
  organization: Institut Terre et Environnement de Strasbourg, Université de Strasbourg, CNRS, ENGEES, UMR 7063, 67084 Strasbourg, France
– sequence: 3
  givenname: Ahmad Al
  surname: Bitar
  fullname: Bitar, Ahmad Al
  organization: CESBIO, Université de Toulouse, CNES, CNRS, IRD, INRAe, UPS, 18 avenue Edouard Belin, 31401 Toulouse, France
– sequence: 4
  givenname: Behzad
  surname: Ataie-Ashtiani
  fullname: Ataie-Ashtiani, Behzad
  organization: Department of Civil Engineering, Sharif University of Technology, Tehran, Iran
BackLink https://insu.hal.science/insu-03863708$$DView record in HAL
BookMark eNqFkU2O0zAcxSM0SHQGjoDkJUJK8UcSJ7BAnYr5kIpAiFlbrv1P68qxg510VFYcgVNxkDkJbjNs2Iw3kZz3e3p-7zw7c95Blr0meE4wqd7t5rvtQQdv5xRTOieUNw15ls1IzZuccszPshlOf3JSNcWL7DzGHU6HsWKW_bnt-uD30IEbkG9R9Maizps4jAGQdBptgh-dvpcDBGRhDxZBHEwnB-NdRGM0boMkikpaePj1W6XLBB_dgtknpJdBdpBg8_OEoNYHNGwBKT_2FjT6KsOV9ff5cvUZTc_wG5PcUgoN9j1aICUjoBRIH44Jj-xd3yfrb1vjAF3KFOFl9ryVNsKrx-9Fdnf16fvyJl99ub5dLla5Kmgx5KyqqVatWld1XdacEAZcNQXXrMGMYIY5NDTVV1UVk2zNtKokL0vGC0nrddJcZG8n3620og-phnAQXhpxs1gJ4-IoMKsrxnG9J0n8ZhKnhn-MqTXRmajAWunAj1FQTmrKmvLk-2GSquBjDNAKZYZTX0OQxgqCxXFqsROPU4vj1GKaOtHlf_S_aE9xHycOUmV7A0FEZcAp0CaAGoT25gmHv1CHzN0
CitedBy_id crossref_primary_10_5194_hess_28_2661_2024
crossref_primary_10_1016_j_jhydrol_2024_131542
crossref_primary_10_1029_2023MS004023
crossref_primary_10_1111_geoj_12551
crossref_primary_10_1016_j_agwat_2025_109353
crossref_primary_10_1016_j_jhydrol_2024_131812
Cites_doi 10.1063/1.1745010
10.1016/j.jhydrol.2011.12.028
10.1029/2003WR002721
10.1002/wrcr.20251
10.1007/978-3-642-14755-5_11
10.1007/s00382-011-1054-9
10.1175/BAMS-85-3-381
10.1029/2007JG000563
10.1016/S0098-3004(00)00132-1
10.1002/jame.20051
10.1002/2013WR013807
10.5194/hess-15-425-2011
10.5194/hess-15-2913-2011
10.5194/hess-21-1117-2017
10.5194/gmd-9-4087-2016
10.1111/j.1745-6584.2010.00750.x
10.1175/JHM422.1
10.1016/j.earscirev.2020.103487
10.1002/hyp.13448
10.1016/j.jhydrol.2020.124898
10.3390/w9040289
10.1127/0941-2948/2013/0399
10.1002/hyp.13327
10.1371/journal.pone.0169748
10.1016/j.advwatres.2004.02.016
10.1016/j.rse.2017.07.001
10.1007/s10584-016-1841-8
10.1016/S0309-1708(00)00075-0
10.1175/JHM-D-16-0159.1
10.3133/ofr20071441
10.1016/j.jhydrol.2015.12.002
10.1088/1748-9326/7/4/044022
10.1097/00010694-199810000-00001
10.1002/2013WR014258
10.1016/j.jhydrol.2017.01.048
10.5194/gmd-14-7223-2021
10.1029/2010WR010090
10.1051/lhb/20150014
10.1029/2012WR012514
10.1016/S0034-4257(02)00078-0
10.2136/sssaj1980.03615995004400050002x
10.1016/j.jhydrol.2016.04.066
10.1175/JAM2161.1
10.1175/BAMS-84-8-1013
10.1016/j.advwatres.2015.04.008
10.1016/j.advwatres.2005.08.006
10.5194/hess-19-2079-2015
10.1002/qj.2486
10.1061/(ASCE)0733-9445(1983)109:3(721)
10.5194/gmd-13-1373-2020
10.1016/S0022-1694(02)00283-4
10.1111/ejss.12192
10.1127/metz/2017/0824
10.1002/2014WR016371
10.1175/JHM-D-12-0177.1
10.1111/j.1475-2743.1997.tb00550.x
10.1002/2015WR017096
10.1029/2007WR006004
10.1175/BAMS-D-13-00227.1
10.3133/ofr20111073
10.1016/j.advwatres.2012.10.001
10.1016/j.jhydrol.2019.124309
10.13182/NSE96-A24230
10.1016/0022-1694(86)90115-0
10.5194/hess-19-4317-2015
10.5194/adgeo-49-197-2019
10.1029/WR014i005p00705
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Attribution - NonCommercial
Copyright_xml – notice: 2022 Elsevier B.V.
– notice: Attribution - NonCommercial
DBID AAYXX
CITATION
7S9
L.6
1XC
VOOES
DOI 10.1016/j.jhydrol.2022.127991
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA


DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1879-2707
ExternalDocumentID oai_HAL_insu_03863708v1
10_1016_j_jhydrol_2022_127991
S0022169422005662
GeographicLocations France
Germany
GeographicLocations_xml – name: France
– name: Germany
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AATTM
AAXKI
AAXUO
ABEFU
ABFNM
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABTAH
ABWVN
ABXDB
ACDAQ
ACGFS
ACIUM
ACLVX
ACNCT
ACRLP
ACRPL
ACSBN
ADBBV
ADEZE
ADMUD
ADNMO
ADQTV
ADVLN
AEBSH
AEIPS
AEKER
AENEX
AEQOU
AFFNX
AFJKZ
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
D-I
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
K-O
KOM
LW9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SPD
SSA
SSE
SSH
SSZ
T5K
TN5
UQL
VOH
WUQ
Y6R
ZCA
ZMT
ZY4
~02
~G-
~KM
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
7S9
EFKBS
EFLBG
L.6
1XC
VOOES
ID FETCH-LOGICAL-c424t-3682dcfcb688587113e7c947d390310307e922796663a3b3dc6a755374a28b903
IEDL.DBID AIKHN
ISSN 0022-1694
IngestDate Tue Sep 09 06:33:06 EDT 2025
Fri Sep 05 04:21:34 EDT 2025
Thu Apr 24 23:09:11 EDT 2025
Tue Jul 01 01:53:39 EDT 2025
Sun Apr 06 06:56:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Scaling River Parametrization
the Upper Rhine Basin
Hydrological Modeling
First Order Reliability Method
Language English
License Attribution - NonCommercial: http://creativecommons.org/licenses/by-nc
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c424t-3682dcfcb688587113e7c947d390310307e922796663a3b3dc6a755374a28b903
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0454-6476
OpenAccessLink https://insu.hal.science/insu-03863708
PQID 2718239590
PQPubID 24069
ParticipantIDs hal_primary_oai_HAL_insu_03863708v1
proquest_miscellaneous_2718239590
crossref_citationtrail_10_1016_j_jhydrol_2022_127991
crossref_primary_10_1016_j_jhydrol_2022_127991
elsevier_sciencedirect_doi_10_1016_j_jhydrol_2022_127991
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of hydrology (Amsterdam)
PublicationYear 2022
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Sutanudjaja, E.H. et al., 2011. Large-scale groundwater modeling using global datasets: a test case for the Rhine-Meuse basin. 15(9): 2913-2935.
Therrien, R., McLaren, R., Sudicky, E., Panday, S., 2010. A three-dimensional numerical model describing fully-integrated subsurface and surface flow and solute transport. User Guide.
Loquin, K., Dubois, D., 2010. Kriging and epistemic uncertainty: a critical discussion, Methods for Handling Imperfect Spatial Information. Springer, pp. 269-305.
Niedda, M.J.W.R.R., 2004. Upscaling hydraulic conductivity by means of entropy of terrain curvature representation. 40(4).
Jones, Woodward (b0150) 2001; 24
Richards (b0295) 1931; 1
Bollmeyer, Keller, Ohlwein, Wahl, Crewell, Friederichs, Hense, Keune, Kneifel, Pscheidt, Redl, Steinke (b0045) 2015; 141
Engdahl, N.B., McCallum, J.L., Massoudieh, A.J.J.o.H., 2016. Transient age distributions in subsurface hydrologic systems. 543, 88-100.
Maxwell, Miller (b0240) 2005; 6
Koch (b0155) 2016; 533
McDonald, M.G., Harbaugh, A.W., 1988. A modular three-dimensional finite-difference ground-water flow model. US Geological Survey.
Dai, Zeng, Dickinson, Baker, Bonan, Bosilovich, Denning, Dirmeyer, Houser, Niu, Oleson, Schlosser, Yang (b0070) 2003; 84
Batjes (b0035) 1997; 13
Kuffour (b0185) 2020; 13
Wood (b0425) 2011; 47
Seck, Welty, Maxwell (b0310) 2015; 51
Abdelkhalak, Bouchaïb (b0015) 2013
Christiansen (b0050) 2007
Wahl (b0420) 2017; 26
Ren, D., Xue, M.J.J.o.A.M., 2004. A revised force–restore model for land surface modeling. 43(11): 1768-1782.
Kollet, S.J., Maxwell, R.M.J.A.i.W.R., 2006. Integrated surface–groundwater flow modeling: a free-surface overland flow boundary condition in a parallel groundwater flow model. 29(7): 945-958.
Nataf, A.J.C.R.d.l.A.d.S., 1962. Determination des distribution don t les marges sont donnees. 225: 42-43.
Shi, Davis, Zhang, Duffy (b0325) 2014; 15
Foster, Maxwell (b0110) 2019; 33
Thierion, C. et al., 2012. Assessing the water balance of the Upper Rhine Graben hydrosystem. 424: 68-83.
Clark, M.P. et al., 2015. Improving the representation of hydrologic processes in Earth System Models. 51(8): 5929-5956.
Asante, K.O., Artan, G.A., Pervez, S., Bandaragoda, C., Verdin, J.P.J.W.W.W., 2008. Technical manual for the geospatial stream flow model (GeoSFM). 605: 594-6151.
Gebler, Franssen, Kollet, Qu, Vereecken (b0120) 2017; 547
Condon, Hering, Maxwell (b0060) 2015; 82
Eagleson (b0095) 1978; 14
Van Dijk, A.I., Peña‐Arancibia, J.L., Wood, E.F., Sheffield, J., Beck, H.E.J.W.R.R., 2013. Global analysis of seasonal streamflow predictability using an ensemble prediction system and observations from 6192 small catchments worldwide. 49(5): 2729-2746.
Döll, Kaspar, Lehner (b0090) 2003; 270
Wagner, W. et al., 2013. The ASCAT soil moisture product: A review of its specifications, validation results, and emerging applications.
Dorigo, W. et al., 2017. ESA CCI Soil Moisture for improved Earth system understanding: state-of-the art and future directions. 203, 185-215.
Van Genuchten (b0410) 1980; 44
Shinozuka, M.J.J.o.S.E., 1983. Basic analysis of structural safety. 109(3): 721-740.
Soltani, S.S., Ataie-Ashtiani, B., Danesh-Yazdi, M., Simmons, C.T.J.J.o.H., 2020. A probabilistic framework for water budget estimation in low runoff regions: a case study of the central Basin of Iran. 586: 124898.
Ferguson, I.M., Maxwell, R.M.J.E.R.L., 2012. Human impacts on terrestrial hydrology: climate change versus pumping and irrigation. 7(4), 044022.
Naz (b0250) 2018; 1
Beisman, J., 2007. Development of a parallel reactive transport model with spatially variable nitrate reduction in a floodplain aquifer, A thesis submitted to the Faculty and the Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Master of Science (Hydrology).
Oleson, K. et al., 2008. Improvements to the Community Land Model and their impact on the hydrological cycle. 113(G1).
Tangdamrongsub, N. et al., 2015. Data assimilation of GRACE terrestrial water storage estimates into a regional hydrological model of the Rhine River basin. 19(4): 2079-2100.
Soltani, S.S., Ataie-Ashtiani, B., Simmons, C.T.J.E.-S.R., 2021. Review of assimilating GRACE terrestrial water storage data into hydrological models: advances, challenges and opportunities. 213: 103487.
Ajami, McCabe, Evans, Stisen (b0020) 2014; 50
Danielson, J.J., Gesch, D.B., 2011. Global multi-resolution terrain elevation data 2010 (GMTED2010). US Department of the Interior, US Geological Survey.
Condon, Maxwell (b0065) 2017; 21
Liu (b0190) 2011; 15
Madsen, H.O., Krenk, S., Lind, N.C., 2006. Methods of structural safety. Courier Corporation.
Kollet, Maxwell (b0165) 2008; 44
Simmons, C.T., Brunner, P., Therrien, R., Sudicky, E.A.J.J.o.H., 2020. Commemorating the 50th anniversary of the Freeze and Harlan (1969) Blueprint for a physically-based, digitaFilly-simulated hydrologic response model. 584: 124309.
Maxwell (b0230) 2009; 1
Ababou, Alastal, Astruc, Al-Bitar, Marcoux, Wang (b0005) 2015; 101
Decharme, Alkama, Papa, Faroux, Douville, Prigent (b0080) 2012; 38
Hengl, T. et al., 2017. SoilGrids250m: Global gridded soil information based on machine learning. 12(2), e0169748.
Krige, D.G.J.J.o.t.S.A.I.o.M., Metallurgy, 1951. A statistical approach to some basic mine valuation problems on the Witwatersrand. 52(6): 119-139.
Panday, Huyakorn (b0285) 2004; 27
Tóth, B. et al., 2015. New generation of hydraulic pedotransfer functions for Europe. 66(1): 226-238.
Lloyd, C., Atkinson, P.M.J.C., Geosciences, 2001. Assessing uncertainty in estimates with ordinary and indicator kriging. 27(8): 929-937.
Abbott, Bathurst, Cunge, O'connell, Rasmussen (b0010) 1986; 87
Kuffour (b0180) 2019
Jones (b0145) 1999; 127
Springer, A., Eicker, A., Bettge, A., Kusche, J., Hense, A.J.W., 2017. Evaluation of the water cycle in the European COSMO-REA6 reanalysis using GRACE. 9(4): 289.
Ashby, Falgout (b0030) 1996; 124
Schellekens, J., 2014. OpenStreams wflow documentation release 1.0 RC1. Deltares.
Sulis (b0375) 2017; 18
Majdalani, S., Ackerer, P.J.G., 2011. Identification of groundwater parameters using an adaptative multiscale method. 49(4): 548-559.
Schaap, Leij (b0305) 1998; 163
Van Beek, L., Bierkens, M., 2009. The global hydrological model PCR-GLOBWB: conceptualization, parameterization and verification. Utrecht University, Utrecht, The Netherlands, 1: 25-26.
O'Neill, Tijerina, Condon, Maxwell (b0280) 2021; 14
Koltzer, Scheck-Wenderoth, Cacace, Frick, Bott (b0170) 2019; 49
Sutanudjaja, E., Van Beek, L., De Jong, S., Van Geer, F., Bierkens, M.J.W.R.R., 2014. Calibrating a large‐extent high‐resolution coupled groundwater‐land surface model using soil moisture and discharge data. 50(1): 687-705.
Schalge, Haefliger, Kollet, Simmer (b0315) 2019; 33
Friedl, McIver, Hodges, Zhang, Muchoney, Strahler, Woodcock, Gopal, Schneider, Cooper, Baccini, Gao, Schaaf (b0115) 2002; 83
Gutowski Jr., Giorgi, Timbal, Frigon, Jacob, Kang, Raghavan, Lee, Lennard, Nikulin, O'Rourke, Rixen, Solman, Stephenson, Tangang (b0130) 2016; 9
Zhang, Y., Der Kiureghian, A., 1997. Finite element reliability methods for inelastic structures. Department of Civil and Environmental Engineering, University of California.
Maxwell (b0220) 2013; 53
Simmer, C. et al., 2016. Herz: The german hans-ertel centre for weather research. 97(6): 1057-1068.
Rodell, M. et al., 2004. The global land data assimilation system. 85(3): 381-394.
Williams III, J.L., Maxwell, R.M., Monache, L.D.J.J.o.A.i.M.E.S., 2013. Development and verification of a new wind speed forecasting system using an ensemble Kalman filter data assimilation technique in a fully coupled hydrologic and atmospheric model. 5(4): 785-800.
Huang, Kumar, Flörke, Yang, Hundecha, Kraft, Gao, Gelfan, Liersch, Lobanova, Strauch, van Ogtrop, Reinhardt, Haberlandt, Krysanova (b0140) 2017; 141
Oleson, K. et al., 2013. Technical Description of version 4.5 of the Community Land Model (CLM) (NCAR Technical Note No. NCAR/TN-503+ STR). Citeseer. National Center for Atmospheric Research, PO Box, 3000: 555.
Shrestha, Sulis, Simmer, Kollet, Sciences (b0335) 2015; 19
Graham, Butts (b0125) 2005
Neal, J., Schumann, G., Bates, P.D.J.W.R.R., 2012. A simple model for simulating river hydraulics and floodplain inundation over large and data sparse areas. 48.
10.1016/j.jhydrol.2022.127991_b0430
10.1016/j.jhydrol.2022.127991_b0395
10.1016/j.jhydrol.2022.127991_b0075
10.1016/j.jhydrol.2022.127991_b0350
Foster (10.1016/j.jhydrol.2022.127991_b0110) 2019; 33
Friedl (10.1016/j.jhydrol.2022.127991_b0115) 2002; 83
10.1016/j.jhydrol.2022.127991_b0195
10.1016/j.jhydrol.2022.127991_b0270
Sulis (10.1016/j.jhydrol.2022.127991_b0375) 2017; 18
10.1016/j.jhydrol.2022.127991_b0390
Abbott (10.1016/j.jhydrol.2022.127991_b0010) 1986; 87
10.1016/j.jhydrol.2022.127991_b0435
Panday (10.1016/j.jhydrol.2022.127991_b0285) 2004; 27
10.1016/j.jhydrol.2022.127991_b0355
Naz (10.1016/j.jhydrol.2022.127991_b0250) 2018; 1
Jones (10.1016/j.jhydrol.2022.127991_b0150) 2001; 24
Abdelkhalak (10.1016/j.jhydrol.2022.127991_b0015) 2013
10.1016/j.jhydrol.2022.127991_b0100
10.1016/j.jhydrol.2022.127991_b0265
10.1016/j.jhydrol.2022.127991_b0385
10.1016/j.jhydrol.2022.127991_b0340
Decharme (10.1016/j.jhydrol.2022.127991_b0080) 2012; 38
Liu (10.1016/j.jhydrol.2022.127991_b0190) 2011; 15
Schalge (10.1016/j.jhydrol.2022.127991_b0315) 2019; 33
10.1016/j.jhydrol.2022.127991_b0260
10.1016/j.jhydrol.2022.127991_b0380
Maxwell (10.1016/j.jhydrol.2022.127991_b0230) 2009; 1
10.1016/j.jhydrol.2022.127991_b0105
10.1016/j.jhydrol.2022.127991_b0345
10.1016/j.jhydrol.2022.127991_b0025
10.1016/j.jhydrol.2022.127991_b0300
Shi (10.1016/j.jhydrol.2022.127991_b0325) 2014; 15
Wood (10.1016/j.jhydrol.2022.127991_b0425) 2011; 47
Bollmeyer (10.1016/j.jhydrol.2022.127991_b0045) 2015; 141
Wahl (10.1016/j.jhydrol.2022.127991_b0420) 2017; 26
Kollet (10.1016/j.jhydrol.2022.127991_b0165) 2008; 44
Batjes (10.1016/j.jhydrol.2022.127991_b0035) 1997; 13
Döll (10.1016/j.jhydrol.2022.127991_b0090) 2003; 270
10.1016/j.jhydrol.2022.127991_b0210
Richards (10.1016/j.jhydrol.2022.127991_b0295) 1931; 1
10.1016/j.jhydrol.2022.127991_b0055
10.1016/j.jhydrol.2022.127991_b0330
Gutowski Jr. (10.1016/j.jhydrol.2022.127991_b0130) 2016; 9
10.1016/j.jhydrol.2022.127991_b0175
Dai (10.1016/j.jhydrol.2022.127991_b0070) 2003; 84
10.1016/j.jhydrol.2022.127991_b0370
Eagleson (10.1016/j.jhydrol.2022.127991_b0095) 1978; 14
10.1016/j.jhydrol.2022.127991_b0415
Condon (10.1016/j.jhydrol.2022.127991_b0065) 2017; 21
Maxwell (10.1016/j.jhydrol.2022.127991_b0240) 2005; 6
10.1016/j.jhydrol.2022.127991_b0215
Van Genuchten (10.1016/j.jhydrol.2022.127991_b0410) 1980; 44
10.1016/j.jhydrol.2022.127991_b0135
Ajami (10.1016/j.jhydrol.2022.127991_b0020) 2014; 50
10.1016/j.jhydrol.2022.127991_b0255
Kuffour (10.1016/j.jhydrol.2022.127991_b0185) 2020; 13
Koch (10.1016/j.jhydrol.2022.127991_b0155) 2016; 533
Ababou (10.1016/j.jhydrol.2022.127991_b0005) 2015; 101
O'Neill (10.1016/j.jhydrol.2022.127991_b0280) 2021; 14
Schaap (10.1016/j.jhydrol.2022.127991_b0305) 1998; 163
10.1016/j.jhydrol.2022.127991_b0320
Koltzer (10.1016/j.jhydrol.2022.127991_b0170) 2019; 49
10.1016/j.jhydrol.2022.127991_b0085
10.1016/j.jhydrol.2022.127991_b0360
10.1016/j.jhydrol.2022.127991_b0040
Gebler (10.1016/j.jhydrol.2022.127991_b0120) 2017; 547
10.1016/j.jhydrol.2022.127991_b0160
Maxwell (10.1016/j.jhydrol.2022.127991_b0220) 2013; 53
Shrestha (10.1016/j.jhydrol.2022.127991_b0335) 2015; 19
Kuffour (10.1016/j.jhydrol.2022.127991_b0180) 2019
10.1016/j.jhydrol.2022.127991_b0405
Christiansen (10.1016/j.jhydrol.2022.127991_b0050) 2007
10.1016/j.jhydrol.2022.127991_b0205
Jones (10.1016/j.jhydrol.2022.127991_b0145) 1999; 127
10.1016/j.jhydrol.2022.127991_b0400
10.1016/j.jhydrol.2022.127991_b0245
10.1016/j.jhydrol.2022.127991_b0200
10.1016/j.jhydrol.2022.127991_b0365
Seck (10.1016/j.jhydrol.2022.127991_b0310) 2015; 51
Condon (10.1016/j.jhydrol.2022.127991_b0060) 2015; 82
Graham (10.1016/j.jhydrol.2022.127991_b0125) 2005
10.1016/j.jhydrol.2022.127991_b0290
Huang (10.1016/j.jhydrol.2022.127991_b0140) 2017; 141
Ashby (10.1016/j.jhydrol.2022.127991_b0030) 1996; 124
References_xml – reference: Nataf, A.J.C.R.d.l.A.d.S., 1962. Determination des distribution don t les marges sont donnees. 225: 42-43.
– year: 2007
  ident: b0050
  article-title: Local to regional hydrological model calibration for the Okavango River basin from in-situ and space borne gravity observations
  publication-title: Proceedings of 2nd Space for Hydrology Workshop
– volume: 26
  start-page: 345
  year: 2017
  end-page: 361
  ident: b0420
  article-title: A novel convective-scale regional reanalysis COSMO-REA2: improving the representation of precipitation
  publication-title: Meteorologische Zeitschrift
– reference: Soltani, S.S., Ataie-Ashtiani, B., Simmons, C.T.J.E.-S.R., 2021. Review of assimilating GRACE terrestrial water storage data into hydrological models: advances, challenges and opportunities. 213: 103487.
– reference: Dorigo, W. et al., 2017. ESA CCI Soil Moisture for improved Earth system understanding: state-of-the art and future directions. 203, 185-215.
– reference: Danielson, J.J., Gesch, D.B., 2011. Global multi-resolution terrain elevation data 2010 (GMTED2010). US Department of the Interior, US Geological Survey.
– volume: 33
  start-page: 332
  year: 2019
  end-page: 349
  ident: b0110
  article-title: Sensitivity analysis of hydraulic conductivity and Manning’s n parameters lead to new method to scale effective hydraulic conductivity across model resolutions
  publication-title: Hydrol. Processes
– reference: Simmer, C. et al., 2016. Herz: The german hans-ertel centre for weather research. 97(6): 1057-1068.
– reference: Krige, D.G.J.J.o.t.S.A.I.o.M., Metallurgy, 1951. A statistical approach to some basic mine valuation problems on the Witwatersrand. 52(6): 119-139.
– volume: 51
  start-page: 2188
  year: 2015
  end-page: 2210
  ident: b0310
  article-title: Spin-up behavior and effects of initial conditions for an integrated hydrologic model
  publication-title: Water Resourc. Res.
– reference: Soltani, S.S., Ataie-Ashtiani, B., Danesh-Yazdi, M., Simmons, C.T.J.J.o.H., 2020. A probabilistic framework for water budget estimation in low runoff regions: a case study of the central Basin of Iran. 586: 124898.
– reference: Rodell, M. et al., 2004. The global land data assimilation system. 85(3): 381-394.
– reference: Springer, A., Eicker, A., Bettge, A., Kusche, J., Hense, A.J.W., 2017. Evaluation of the water cycle in the European COSMO-REA6 reanalysis using GRACE. 9(4): 289.
– volume: 49
  start-page: 197
  year: 2019
  end-page: 206
  ident: b0170
  article-title: Regional hydraulic model of the Upper Rhine Graben
  publication-title: Adv. Geosci.
– reference: Zhang, Y., Der Kiureghian, A., 1997. Finite element reliability methods for inelastic structures. Department of Civil and Environmental Engineering, University of California.
– volume: 13
  start-page: 9
  year: 1997
  end-page: 16
  ident: b0035
  article-title: A world dataset of derived soil properties by FAO–UNESCO soil unit for global modelling
  publication-title: Soil Use Manage.
– reference: Kollet, S.J., Maxwell, R.M.J.A.i.W.R., 2006. Integrated surface–groundwater flow modeling: a free-surface overland flow boundary condition in a parallel groundwater flow model. 29(7): 945-958.
– reference: Oleson, K. et al., 2008. Improvements to the Community Land Model and their impact on the hydrological cycle. 113(G1).
– reference: Ferguson, I.M., Maxwell, R.M.J.E.R.L., 2012. Human impacts on terrestrial hydrology: climate change versus pumping and irrigation. 7(4), 044022.
– volume: 33
  start-page: 2006
  year: 2019
  end-page: 2019
  ident: b0315
  article-title: Improvement of surface run-off in the hydrological model ParFlow by a scale-consistent river parameterization
  publication-title: Hydrol. Processes
– reference: Sutanudjaja, E., Van Beek, L., De Jong, S., Van Geer, F., Bierkens, M.J.W.R.R., 2014. Calibrating a large‐extent high‐resolution coupled groundwater‐land surface model using soil moisture and discharge data. 50(1): 687-705.
– volume: 18
  start-page: 1489
  year: 2017
  end-page: 1511
  ident: b0375
  article-title: Coupling groundwater, vegetation, and atmospheric processes: a comparison of two integrated models
  publication-title: J. Hydrometeorol.
– volume: 547
  start-page: 309
  year: 2017
  end-page: 331
  ident: b0120
  article-title: High resolution modelling of soil moisture patterns with TerrSysMP: A comparison with sensor network data
  publication-title: J. Hydrol.
– volume: 19
  start-page: 4317
  year: 2015
  end-page: 4326
  ident: b0335
  article-title: Impacts of grid resolution on surface energy fluxes simulated with an integrated surface-groundwater flow model
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 101
  start-page: 9
  year: 2015
  end-page: 24
  ident: b0005
  article-title: Model coupling for environmental flows, with applications in hydrology and coastal hydrodynamics
  publication-title: La Houille Blanche
– reference: Madsen, H.O., Krenk, S., Lind, N.C., 2006. Methods of structural safety. Courier Corporation.
– volume: 533
  start-page: 234
  year: 2016
  end-page: 249
  ident: b0155
  article-title: Inter-comparison of three distributed hydrological models with respect to seasonal variability of soil moisture patterns at a small forested catchment
  publication-title: J. Hydrol.
– volume: 82
  start-page: 106
  year: 2015
  end-page: 123
  ident: b0060
  article-title: Quantitative assessment of groundwater controls across major US river basins using a multi-model regression algorithm
  publication-title: Adv. Water Resourc.
– volume: 6
  start-page: 233
  year: 2005
  end-page: 247
  ident: b0240
  article-title: Development of a coupled land surface and groundwater model
  publication-title: J. Hydrometeorol.
– reference: Thierion, C. et al., 2012. Assessing the water balance of the Upper Rhine Graben hydrosystem. 424: 68-83.
– reference: Engdahl, N.B., McCallum, J.L., Massoudieh, A.J.J.o.H., 2016. Transient age distributions in subsurface hydrologic systems. 543, 88-100.
– volume: 38
  start-page: 1389
  year: 2012
  end-page: 1412
  ident: b0080
  article-title: Global off-line evaluation of the ISBA-TRIP flood model
  publication-title: Clim. Dyn.
– volume: 127
  start-page: 2204
  year: 1999
  end-page: 2210
  ident: b0145
  article-title: First- and second-order conservative remapping schemes for grids in spherical coordinates
  publication-title: Environ. Sci.
– volume: 21
  start-page: 1117
  year: 2017
  end-page: 1135
  ident: b0065
  article-title: Systematic shifts in Budyko relationships caused by groundwater storage changes
  publication-title: Hydrol. Earth Syst. Sci.
– reference: Lloyd, C., Atkinson, P.M.J.C., Geosciences, 2001. Assessing uncertainty in estimates with ordinary and indicator kriging. 27(8): 929-937.
– reference: Asante, K.O., Artan, G.A., Pervez, S., Bandaragoda, C., Verdin, J.P.J.W.W.W., 2008. Technical manual for the geospatial stream flow model (GeoSFM). 605: 594-6151.
– reference: Tangdamrongsub, N. et al., 2015. Data assimilation of GRACE terrestrial water storage estimates into a regional hydrological model of the Rhine River basin. 19(4): 2079-2100.
– volume: 1
  start-page: 1
  year: 2018
  end-page: 32
  ident: b0250
  article-title: Improving soil moisture and runoff simulations over Europe using a high-resolution data-assimilation modeling framework
  publication-title: Hydrol. Earth Syst. Sci. Discuss.
– volume: 47
  year: 2011
  ident: b0425
  article-title: Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth’s terrestrial water
  publication-title: Water Resourc. Res.
– volume: 44
  year: 2008
  ident: b0165
  article-title: Capturing the influence of groundwater dynamics on land surface processes using an integrated, distributed watershed model
  publication-title: Water Resourc. Res.
– volume: 24
  start-page: 763
  year: 2001
  end-page: 774
  ident: b0150
  article-title: Newton–Krylov-multigrid solvers for large-scale, highly heterogeneous, variably saturated flow problems
  publication-title: Adv. Water Resourc.
– reference: Sutanudjaja, E.H. et al., 2011. Large-scale groundwater modeling using global datasets: a test case for the Rhine-Meuse basin. 15(9): 2913-2935.
– volume: 15
  start-page: 425
  year: 2011
  end-page: 436
  ident: b0190
  article-title: Developing an improved soil moisture dataset by blending passive and active microwave satellite-based retrievals
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 53
  start-page: 109
  year: 2013
  end-page: 117
  ident: b0220
  article-title: A terrain-following grid transform and preconditioner for parallel, large-scale, integrated hydrologic modeling
  publication-title: Adv. Water Resour.
– volume: 1
  start-page: 129
  year: 2009
  ident: b0230
  publication-title: ParFlow user’s manual
– reference: Clark, M.P. et al., 2015. Improving the representation of hydrologic processes in Earth System Models. 51(8): 5929-5956.
– reference: Hengl, T. et al., 2017. SoilGrids250m: Global gridded soil information based on machine learning. 12(2), e0169748.
– volume: 84
  start-page: 1013
  year: 2003
  end-page: 1024
  ident: b0070
  article-title: Oleson., KW, Schlosser, CA, and Yang, Z.: the common land model
  publication-title: Bull. Am. Meteorol. Soc
– volume: 9
  start-page: 4087
  year: 2016
  end-page: 4095
  ident: b0130
  article-title: WCRP coordinated regional downscaling experiment (CORDEX): a diagnostic MIP for CMIP6
  publication-title: Geosci. Model Dev.
– reference: Majdalani, S., Ackerer, P.J.G., 2011. Identification of groundwater parameters using an adaptative multiscale method. 49(4): 548-559.
– volume: 27
  start-page: 361
  year: 2004
  end-page: 382
  ident: b0285
  article-title: A fully coupled physically-based spatially-distributed model for evaluating surface/subsurface flow
  publication-title: Adv. Water Resourc.
– reference: Loquin, K., Dubois, D., 2010. Kriging and epistemic uncertainty: a critical discussion, Methods for Handling Imperfect Spatial Information. Springer, pp. 269-305.
– reference: McDonald, M.G., Harbaugh, A.W., 1988. A modular three-dimensional finite-difference ground-water flow model. US Geological Survey.
– volume: 124
  start-page: 145
  year: 1996
  end-page: 159
  ident: b0030
  article-title: A parallel multigrid preconditioned conjugate gradient algorithm for groundwater flow simulations
  publication-title: Nucl. Sci. Eng.
– reference: Simmons, C.T., Brunner, P., Therrien, R., Sudicky, E.A.J.J.o.H., 2020. Commemorating the 50th anniversary of the Freeze and Harlan (1969) Blueprint for a physically-based, digitaFilly-simulated hydrologic response model. 584: 124309.
– reference: Williams III, J.L., Maxwell, R.M., Monache, L.D.J.J.o.A.i.M.E.S., 2013. Development and verification of a new wind speed forecasting system using an ensemble Kalman filter data assimilation technique in a fully coupled hydrologic and atmospheric model. 5(4): 785-800.
– volume: 14
  start-page: 7223
  year: 2021
  end-page: 7254
  ident: b0280
  article-title: Assessment of the ParFlow–CLM CONUS 1.0 integrated hydrologic model: evaluation of hyper-resolution water balance components across the contiguous United States
  publication-title: Geosci. Model Dev.
– volume: 44
  start-page: 892
  year: 1980
  end-page: 898
  ident: b0410
  article-title: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils
  publication-title: Soil Sci. Soc. Am. J.
– reference: Tóth, B. et al., 2015. New generation of hydraulic pedotransfer functions for Europe. 66(1): 226-238.
– reference: Therrien, R., McLaren, R., Sudicky, E., Panday, S., 2010. A three-dimensional numerical model describing fully-integrated subsurface and surface flow and solute transport. User Guide.
– volume: 141
  start-page: 1
  year: 2015
  end-page: 15
  ident: b0045
  article-title: Towards a high‐resolution regional reanalysis for the European CORDEX domain
  publication-title: Q. J. R. Meteorol. Soc.
– reference: Beisman, J., 2007. Development of a parallel reactive transport model with spatially variable nitrate reduction in a floodplain aquifer, A thesis submitted to the Faculty and the Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Master of Science (Hydrology).
– year: 2013
  ident: b0015
  article-title: Incertitudes, optimisation et fiabilité des structures
  publication-title: Lavoisier
– reference: Niedda, M.J.W.R.R., 2004. Upscaling hydraulic conductivity by means of entropy of terrain curvature representation. 40(4).
– volume: 270
  start-page: 105
  year: 2003
  end-page: 134
  ident: b0090
  article-title: A global hydrological model for deriving water availability indicators: model tuning and validation
  publication-title: J. Hydrol.
– volume: 141
  start-page: 381
  year: 2017
  end-page: 397
  ident: b0140
  article-title: Evaluation of an ensemble of regional hydrological models in 12 large-scale river basins worldwide
  publication-title: Clim. Change
– volume: 1
  start-page: 318
  year: 1931
  end-page: 333
  ident: b0295
  article-title: Capillary conduction of liquids through porous mediums
  publication-title: Physics
– reference: Shinozuka, M.J.J.o.S.E., 1983. Basic analysis of structural safety. 109(3): 721-740.
– reference: Van Beek, L., Bierkens, M., 2009. The global hydrological model PCR-GLOBWB: conceptualization, parameterization and verification. Utrecht University, Utrecht, The Netherlands, 1: 25-26.
– reference: Ren, D., Xue, M.J.J.o.A.M., 2004. A revised force–restore model for land surface modeling. 43(11): 1768-1782.
– volume: 83
  start-page: 287
  year: 2002
  end-page: 302
  ident: b0115
  article-title: Global land cover mapping from MODIS: algorithms and early results
  publication-title: Remote Sens. Environ.
– volume: 50
  start-page: 2636
  year: 2014
  end-page: 2656
  ident: b0020
  article-title: Assessing the impact of model spin-up on surface water-groundwater interactions using an integrated hydrologic model
  publication-title: Water Resour. Res.
– volume: 14
  start-page: 705
  year: 1978
  end-page: 712
  ident: b0095
  article-title: Climate, soil, and vegetation: 1. Introduction to water balance dynamics
  publication-title: Water Resourc. Res.
– reference: Oleson, K. et al., 2013. Technical Description of version 4.5 of the Community Land Model (CLM) (NCAR Technical Note No. NCAR/TN-503+ STR). Citeseer. National Center for Atmospheric Research, PO Box, 3000: 555.
– reference: Schellekens, J., 2014. OpenStreams wflow documentation release 1.0 RC1. Deltares.
– start-page: 245
  year: 2005
  end-page: 272
  ident: b0125
  article-title: Flexible, integrated watershed modelling with MIKE SHE
  publication-title: Watershed Models
– reference: Neal, J., Schumann, G., Bates, P.D.J.W.R.R., 2012. A simple model for simulating river hydraulics and floodplain inundation over large and data sparse areas. 48.
– volume: 163
  start-page: 765
  year: 1998
  end-page: 779
  ident: b0305
  article-title: Database-related accuracy and uncertainty of pedotransfer functions
  publication-title: Soil Sci
– volume: 13
  start-page: 1373
  year: 2020
  end-page: 1397
  ident: b0185
  article-title: Simulating coupled surface–subsurface flows with ParFlow v3. 5.0: capabilities, applications, and ongoing development of an open-source, massively parallel, integrated hydrologic model
  publication-title: Geosci. Model Dev.
– reference: Van Dijk, A.I., Peña‐Arancibia, J.L., Wood, E.F., Sheffield, J., Beck, H.E.J.W.R.R., 2013. Global analysis of seasonal streamflow predictability using an ensemble prediction system and observations from 6192 small catchments worldwide. 49(5): 2729-2746.
– volume: 15
  start-page: 279
  year: 2014
  end-page: 299
  ident: b0325
  article-title: Evaluation of the parameter sensitivities of a coupled land surface hydrologic model at a critical zone observatory
  publication-title: J. Hydrometeorol.
– year: 2019
  ident: b0180
  article-title: Parflow-350/parflow: ParFlow Version 3.5.0
  publication-title: Zenodo
– volume: 87
  start-page: 61
  year: 1986
  end-page: 77
  ident: b0010
  article-title: An introduction to the European Hydrological System—Systeme Hydrologique Europeen, “SHE”, 2: structure of a physically-based, distributed modelling system
  publication-title: J. Hydrol.
– reference: Wagner, W. et al., 2013. The ASCAT soil moisture product: A review of its specifications, validation results, and emerging applications.
– volume: 1
  start-page: 318
  issue: 5
  year: 1931
  ident: 10.1016/j.jhydrol.2022.127991_b0295
  article-title: Capillary conduction of liquids through porous mediums
  publication-title: Physics
  doi: 10.1063/1.1745010
– ident: 10.1016/j.jhydrol.2022.127991_b0390
  doi: 10.1016/j.jhydrol.2011.12.028
– ident: 10.1016/j.jhydrol.2022.127991_b0260
  doi: 10.1029/2003WR002721
– ident: 10.1016/j.jhydrol.2022.127991_b0405
  doi: 10.1002/wrcr.20251
– ident: 10.1016/j.jhydrol.2022.127991_b0200
  doi: 10.1007/978-3-642-14755-5_11
– start-page: 245
  year: 2005
  ident: 10.1016/j.jhydrol.2022.127991_b0125
  article-title: Flexible, integrated watershed modelling with MIKE SHE
  publication-title: Watershed Models
– ident: 10.1016/j.jhydrol.2022.127991_b0435
– year: 2007
  ident: 10.1016/j.jhydrol.2022.127991_b0050
  article-title: Local to regional hydrological model calibration for the Okavango River basin from in-situ and space borne gravity observations
– volume: 38
  start-page: 1389
  issue: 7-8
  year: 2012
  ident: 10.1016/j.jhydrol.2022.127991_b0080
  article-title: Global off-line evaluation of the ISBA-TRIP flood model
  publication-title: Clim. Dyn.
  doi: 10.1007/s00382-011-1054-9
– ident: 10.1016/j.jhydrol.2022.127991_b0300
  doi: 10.1175/BAMS-85-3-381
– ident: 10.1016/j.jhydrol.2022.127991_b0265
  doi: 10.1029/2007JG000563
– ident: 10.1016/j.jhydrol.2022.127991_b0195
  doi: 10.1016/S0098-3004(00)00132-1
– ident: 10.1016/j.jhydrol.2022.127991_b0430
  doi: 10.1002/jame.20051
– ident: 10.1016/j.jhydrol.2022.127991_b0175
– ident: 10.1016/j.jhydrol.2022.127991_b0370
  doi: 10.1002/2013WR013807
– volume: 15
  start-page: 425
  issue: 2
  year: 2011
  ident: 10.1016/j.jhydrol.2022.127991_b0190
  article-title: Developing an improved soil moisture dataset by blending passive and active microwave satellite-based retrievals
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-15-425-2011
– year: 2013
  ident: 10.1016/j.jhydrol.2022.127991_b0015
  article-title: Incertitudes, optimisation et fiabilité des structures
  publication-title: Lavoisier
– ident: 10.1016/j.jhydrol.2022.127991_b0365
  doi: 10.5194/hess-15-2913-2011
– volume: 21
  start-page: 1117
  issue: 2
  year: 2017
  ident: 10.1016/j.jhydrol.2022.127991_b0065
  article-title: Systematic shifts in Budyko relationships caused by groundwater storage changes
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-21-1117-2017
– volume: 9
  start-page: 4087
  issue: 11
  year: 2016
  ident: 10.1016/j.jhydrol.2022.127991_b0130
  article-title: WCRP coordinated regional downscaling experiment (CORDEX): a diagnostic MIP for CMIP6
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-9-4087-2016
– ident: 10.1016/j.jhydrol.2022.127991_b0215
  doi: 10.1111/j.1745-6584.2010.00750.x
– volume: 6
  start-page: 233
  year: 2005
  ident: 10.1016/j.jhydrol.2022.127991_b0240
  article-title: Development of a coupled land surface and groundwater model
  publication-title: J. Hydrometeorol.
  doi: 10.1175/JHM422.1
– ident: 10.1016/j.jhydrol.2022.127991_b0355
  doi: 10.1016/j.earscirev.2020.103487
– volume: 33
  start-page: 2006
  issue: 14
  year: 2019
  ident: 10.1016/j.jhydrol.2022.127991_b0315
  article-title: Improvement of surface run-off in the hydrological model ParFlow by a scale-consistent river parameterization
  publication-title: Hydrol. Processes
  doi: 10.1002/hyp.13448
– ident: 10.1016/j.jhydrol.2022.127991_b0350
  doi: 10.1016/j.jhydrol.2020.124898
– ident: 10.1016/j.jhydrol.2022.127991_b0360
  doi: 10.3390/w9040289
– ident: 10.1016/j.jhydrol.2022.127991_b0415
  doi: 10.1127/0941-2948/2013/0399
– volume: 33
  start-page: 332
  issue: 3
  year: 2019
  ident: 10.1016/j.jhydrol.2022.127991_b0110
  article-title: Sensitivity analysis of hydraulic conductivity and Manning’s n parameters lead to new method to scale effective hydraulic conductivity across model resolutions
  publication-title: Hydrol. Processes
  doi: 10.1002/hyp.13327
– ident: 10.1016/j.jhydrol.2022.127991_b0135
  doi: 10.1371/journal.pone.0169748
– volume: 27
  start-page: 361
  issue: 4
  year: 2004
  ident: 10.1016/j.jhydrol.2022.127991_b0285
  article-title: A fully coupled physically-based spatially-distributed model for evaluating surface/subsurface flow
  publication-title: Adv. Water Resourc.
  doi: 10.1016/j.advwatres.2004.02.016
– ident: 10.1016/j.jhydrol.2022.127991_b0270
– ident: 10.1016/j.jhydrol.2022.127991_b0085
  doi: 10.1016/j.rse.2017.07.001
– volume: 141
  start-page: 381
  issue: 3
  year: 2017
  ident: 10.1016/j.jhydrol.2022.127991_b0140
  article-title: Evaluation of an ensemble of regional hydrological models in 12 large-scale river basins worldwide
  publication-title: Clim. Change
  doi: 10.1007/s10584-016-1841-8
– volume: 24
  start-page: 763
  issue: 7
  year: 2001
  ident: 10.1016/j.jhydrol.2022.127991_b0150
  article-title: Newton–Krylov-multigrid solvers for large-scale, highly heterogeneous, variably saturated flow problems
  publication-title: Adv. Water Resourc.
  doi: 10.1016/S0309-1708(00)00075-0
– ident: 10.1016/j.jhydrol.2022.127991_b0205
– volume: 18
  start-page: 1489
  issue: 5
  year: 2017
  ident: 10.1016/j.jhydrol.2022.127991_b0375
  article-title: Coupling groundwater, vegetation, and atmospheric processes: a comparison of two integrated models
  publication-title: J. Hydrometeorol.
  doi: 10.1175/JHM-D-16-0159.1
– ident: 10.1016/j.jhydrol.2022.127991_b0025
  doi: 10.3133/ofr20071441
– volume: 533
  start-page: 234
  year: 2016
  ident: 10.1016/j.jhydrol.2022.127991_b0155
  article-title: Inter-comparison of three distributed hydrological models with respect to seasonal variability of soil moisture patterns at a small forested catchment
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2015.12.002
– ident: 10.1016/j.jhydrol.2022.127991_b0105
  doi: 10.1088/1748-9326/7/4/044022
– volume: 127
  start-page: 2204
  issue: 9
  year: 1999
  ident: 10.1016/j.jhydrol.2022.127991_b0145
  article-title: First- and second-order conservative remapping schemes for grids in spherical coordinates
  publication-title: Environ. Sci.
– volume: 163
  start-page: 765
  issue: 10
  year: 1998
  ident: 10.1016/j.jhydrol.2022.127991_b0305
  article-title: Database-related accuracy and uncertainty of pedotransfer functions
  publication-title: Soil Sci
  doi: 10.1097/00010694-199810000-00001
– volume: 50
  start-page: 2636
  issue: 3
  year: 2014
  ident: 10.1016/j.jhydrol.2022.127991_b0020
  article-title: Assessing the impact of model spin-up on surface water-groundwater interactions using an integrated hydrologic model
  publication-title: Water Resour. Res.
  doi: 10.1002/2013WR014258
– volume: 547
  start-page: 309
  year: 2017
  ident: 10.1016/j.jhydrol.2022.127991_b0120
  article-title: High resolution modelling of soil moisture patterns with TerrSysMP: A comparison with sensor network data
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2017.01.048
– volume: 1
  start-page: 1
  issue: FZJ-2018-03144
  year: 2018
  ident: 10.1016/j.jhydrol.2022.127991_b0250
  article-title: Improving soil moisture and runoff simulations over Europe using a high-resolution data-assimilation modeling framework
  publication-title: Hydrol. Earth Syst. Sci. Discuss.
– volume: 14
  start-page: 7223
  issue: 12
  year: 2021
  ident: 10.1016/j.jhydrol.2022.127991_b0280
  article-title: Assessment of the ParFlow–CLM CONUS 1.0 integrated hydrologic model: evaluation of hyper-resolution water balance components across the contiguous United States
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-14-7223-2021
– volume: 47
  issue: 5
  year: 2011
  ident: 10.1016/j.jhydrol.2022.127991_b0425
  article-title: Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth’s terrestrial water
  publication-title: Water Resourc. Res.
  doi: 10.1029/2010WR010090
– volume: 101
  start-page: 9
  issue: 2
  year: 2015
  ident: 10.1016/j.jhydrol.2022.127991_b0005
  article-title: Model coupling for environmental flows, with applications in hydrology and coastal hydrodynamics
  publication-title: La Houille Blanche
  doi: 10.1051/lhb/20150014
– ident: 10.1016/j.jhydrol.2022.127991_b0255
  doi: 10.1029/2012WR012514
– volume: 83
  start-page: 287
  issue: 1-2
  year: 2002
  ident: 10.1016/j.jhydrol.2022.127991_b0115
  article-title: Global land cover mapping from MODIS: algorithms and early results
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(02)00078-0
– volume: 44
  start-page: 892
  issue: 5
  year: 1980
  ident: 10.1016/j.jhydrol.2022.127991_b0410
  article-title: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1980.03615995004400050002x
– ident: 10.1016/j.jhydrol.2022.127991_b0100
  doi: 10.1016/j.jhydrol.2016.04.066
– ident: 10.1016/j.jhydrol.2022.127991_b0290
  doi: 10.1175/JAM2161.1
– volume: 84
  start-page: 1013
  issue: 8
  year: 2003
  ident: 10.1016/j.jhydrol.2022.127991_b0070
  article-title: Oleson., KW, Schlosser, CA, and Yang, Z.: the common land model
  publication-title: Bull. Am. Meteorol. Soc
  doi: 10.1175/BAMS-84-8-1013
– ident: 10.1016/j.jhydrol.2022.127991_b0320
– volume: 82
  start-page: 106
  year: 2015
  ident: 10.1016/j.jhydrol.2022.127991_b0060
  article-title: Quantitative assessment of groundwater controls across major US river basins using a multi-model regression algorithm
  publication-title: Adv. Water Resourc.
  doi: 10.1016/j.advwatres.2015.04.008
– ident: 10.1016/j.jhydrol.2022.127991_b0160
  doi: 10.1016/j.advwatres.2005.08.006
– ident: 10.1016/j.jhydrol.2022.127991_b0400
– ident: 10.1016/j.jhydrol.2022.127991_b0380
  doi: 10.5194/hess-19-2079-2015
– ident: 10.1016/j.jhydrol.2022.127991_b0385
– volume: 141
  start-page: 1
  issue: 686
  year: 2015
  ident: 10.1016/j.jhydrol.2022.127991_b0045
  article-title: Towards a high‐resolution regional reanalysis for the European CORDEX domain
  publication-title: Q. J. R. Meteorol. Soc.
  doi: 10.1002/qj.2486
– ident: 10.1016/j.jhydrol.2022.127991_b0330
  doi: 10.1061/(ASCE)0733-9445(1983)109:3(721)
– volume: 13
  start-page: 1373
  issue: 3
  year: 2020
  ident: 10.1016/j.jhydrol.2022.127991_b0185
  article-title: Simulating coupled surface–subsurface flows with ParFlow v3. 5.0: capabilities, applications, and ongoing development of an open-source, massively parallel, integrated hydrologic model
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-13-1373-2020
– year: 2019
  ident: 10.1016/j.jhydrol.2022.127991_b0180
  article-title: Parflow-350/parflow: ParFlow Version 3.5.0
  publication-title: Zenodo
– volume: 270
  start-page: 105
  issue: 1-2
  year: 2003
  ident: 10.1016/j.jhydrol.2022.127991_b0090
  article-title: A global hydrological model for deriving water availability indicators: model tuning and validation
  publication-title: J. Hydrol.
  doi: 10.1016/S0022-1694(02)00283-4
– ident: 10.1016/j.jhydrol.2022.127991_b0395
  doi: 10.1111/ejss.12192
– volume: 26
  start-page: 345
  issue: 4
  year: 2017
  ident: 10.1016/j.jhydrol.2022.127991_b0420
  article-title: A novel convective-scale regional reanalysis COSMO-REA2: improving the representation of precipitation
  publication-title: Meteorologische Zeitschrift
  doi: 10.1127/metz/2017/0824
– volume: 51
  start-page: 2188
  issue: 4
  year: 2015
  ident: 10.1016/j.jhydrol.2022.127991_b0310
  article-title: Spin-up behavior and effects of initial conditions for an integrated hydrologic model
  publication-title: Water Resourc. Res.
  doi: 10.1002/2014WR016371
– volume: 15
  start-page: 279
  issue: 1
  year: 2014
  ident: 10.1016/j.jhydrol.2022.127991_b0325
  article-title: Evaluation of the parameter sensitivities of a coupled land surface hydrologic model at a critical zone observatory
  publication-title: J. Hydrometeorol.
  doi: 10.1175/JHM-D-12-0177.1
– volume: 13
  start-page: 9
  issue: 1
  year: 1997
  ident: 10.1016/j.jhydrol.2022.127991_b0035
  article-title: A world dataset of derived soil properties by FAO–UNESCO soil unit for global modelling
  publication-title: Soil Use Manage.
  doi: 10.1111/j.1475-2743.1997.tb00550.x
– ident: 10.1016/j.jhydrol.2022.127991_b0210
– volume: 1
  start-page: 129
  issue: 2009
  year: 2009
  ident: 10.1016/j.jhydrol.2022.127991_b0230
  publication-title: ParFlow user’s manual
– ident: 10.1016/j.jhydrol.2022.127991_b0055
  doi: 10.1002/2015WR017096
– volume: 44
  issue: 2
  year: 2008
  ident: 10.1016/j.jhydrol.2022.127991_b0165
  article-title: Capturing the influence of groundwater dynamics on land surface processes using an integrated, distributed watershed model
  publication-title: Water Resourc. Res.
  doi: 10.1029/2007WR006004
– ident: 10.1016/j.jhydrol.2022.127991_b0340
  doi: 10.1175/BAMS-D-13-00227.1
– ident: 10.1016/j.jhydrol.2022.127991_b0075
  doi: 10.3133/ofr20111073
– volume: 53
  start-page: 109
  year: 2013
  ident: 10.1016/j.jhydrol.2022.127991_b0220
  article-title: A terrain-following grid transform and preconditioner for parallel, large-scale, integrated hydrologic modeling
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2012.10.001
– ident: 10.1016/j.jhydrol.2022.127991_b0345
  doi: 10.1016/j.jhydrol.2019.124309
– volume: 124
  start-page: 145
  issue: 1
  year: 1996
  ident: 10.1016/j.jhydrol.2022.127991_b0030
  article-title: A parallel multigrid preconditioned conjugate gradient algorithm for groundwater flow simulations
  publication-title: Nucl. Sci. Eng.
  doi: 10.13182/NSE96-A24230
– ident: 10.1016/j.jhydrol.2022.127991_b0040
– volume: 87
  start-page: 61
  issue: 1–2
  year: 1986
  ident: 10.1016/j.jhydrol.2022.127991_b0010
  article-title: An introduction to the European Hydrological System—Systeme Hydrologique Europeen, “SHE”, 2: structure of a physically-based, distributed modelling system
  publication-title: J. Hydrol.
  doi: 10.1016/0022-1694(86)90115-0
– volume: 19
  start-page: 4317
  issue: 10
  year: 2015
  ident: 10.1016/j.jhydrol.2022.127991_b0335
  article-title: Impacts of grid resolution on surface energy fluxes simulated with an integrated surface-groundwater flow model
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-19-4317-2015
– volume: 49
  start-page: 197
  year: 2019
  ident: 10.1016/j.jhydrol.2022.127991_b0170
  article-title: Regional hydraulic model of the Upper Rhine Graben
  publication-title: Adv. Geosci.
  doi: 10.5194/adgeo-49-197-2019
– volume: 14
  start-page: 705
  issue: 5
  year: 1978
  ident: 10.1016/j.jhydrol.2022.127991_b0095
  article-title: Climate, soil, and vegetation: 1. Introduction to water balance dynamics
  publication-title: Water Resourc. Res.
  doi: 10.1029/WR014i005p00705
– ident: 10.1016/j.jhydrol.2022.127991_b0245
SSID ssj0000334
Score 2.430415
Snippet [Display omitted] •Scaling of Manning coefficient and permeability in hydrological models were proposed.•We investigate the impact of the scaling approach on...
Accurate implementation of river interactions with subsurface water is critical in large-scale hydrologic models with a constant horizontal grid resolution...
SourceID hal
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 127991
SubjectTerms autumn
basins
case studies
climate change
equations
First Order Reliability Method
France
Germany
hydrologic models
Hydrological Modeling
rivers
roughness
satellites
saturated hydraulic conductivity
Scaling River Parametrization
Sciences of the Universe
soil water
spring
summer
the Upper Rhine Basin
topographic slope
water table
winter
Title Improvement of soil moisture and groundwater level estimations using a scale‐consistent river parameterization for the coupled ParFlow-CLM hydrological model: A case study of the Upper Rhine Basin
URI https://dx.doi.org/10.1016/j.jhydrol.2022.127991
https://www.proquest.com/docview/2718239590
https://insu.hal.science/insu-03863708
Volume 610
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEF616QEuiF9RfqpBcHUS765319xCRBSgVAgRqbeVvV43iVI7chKqXhCPwFPxIDwJM_5pBRKqxDGRx1lnxjOf1998w9irVPHcyTwJsHz4QKYqDYxRUYBgQnOnojz0Ncv3RE1n8v1pdLrHxl0vDNEq29zf5PQ6W7ffDNp_c7BeLKjHl_NQxZLTxoiiPHzARayiHjsYvfswPblOyELITjScDK4beQbL_nJ-mVUlvYTgvB9yHcfhv0rU_py4kn-l7LoOTe6yOy2AhFGzxntszxf32a12lvn88gH72ewT1Nt-UOawKRcrOC_RnbvKQ1JkQJ0cRXaBKLOCFZGGgKQ2mh7GDRAT_gwS2KD3_K_vPxxRaDEW8GwVkTiA1MLPiUXTtnAC4l5AHAmu3K1XPoNPSTVZlRfB-PgjNNfd5Feox-68hhE4rJ1QK9vSCsl2tl7jqT_PEfTCmwSX8JDNJm-_jKdBO60hcJLLbSCU4ZnLXaqMifAxLBReu1jqTMTDepiZ9jHJFeLzkkhEKjKnEh1FQsuEmxSPecR6RVn4xww0qcLnKRdCeJkZbRCnOLRMfGp0LvUhk52DrGulzGmixsp2nLWlbf1qya-28esh61-ZrRstj5sMTOd9-0dQWqw3N5m-xGi5-hkS8Z6Oji01GNihMEroofmKR73oosnibU3vapLCl7uN5YgZMJqjePjk_xfxlN2mTw27-Bnrbaudf44Yapsesf3-t_CovVN-A1PbHwE
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bjtMwELWW5WF5QVzFch0Er-nFdmyHt1JRFeiuENpK-2YljkNbdZMobVntC-IT-Co-hC9hJpddgYRW4jX1JE7HmTlxzpxh7HWieOZkFgeYPnwgE5UExqgwQDChuVNhNvQ1y_dYTefyw2l4usfGXS0M0Srb2N_E9Dpat0f67b_ZL5dLqvHlfKgiyWljRFEcvilDoYnX1_t2xfMYCCE7yXAaflXG01_1VouLtCroEwTnvSHXUTT8V4K6sSCm5F8Bu85CkzvsdgsfYdTM8C7b8_k9dtB2Ml9c3Gc_m12CetMPigw2xXINZwU6c1d5iPMUqI4jT88RY1awJsoQkNBGU8G4AeLBf4EYNug7_-v7D0cEWlwJeLaKKBxAWuFnxKFpCzgBUS8gigRX7Mq1T-FTXE3WxXkwnh1Bc99NdIW66c4bGIHDzAm1ri3NkGznZYmn_rxAyAtvY5zCAzafvDsZT4O2V0PgJJfbQCjDU5e5RBkT4kvYUHjtIqlTEQ3qVmbaRyRWiG9LIhaJSJ2KdYjukjE3CY55yPbzIvePGGjShM8SLoTwMjXaIEpxaBn7xOhM6kMmOwdZ1wqZUz-Nte0Yayvb-tWSX23j10PWuzQrGyWP6wxM5337x5K0mG2uM32Fq-XyMiThPR3NLJUX2IEwSuiB-YqjXnaryeJDTV9q4twXu43liBi4iMJo8Pj_J_GCHUxPjmZ29v744xN2i35peMZP2f622vlniKa2yfP6afkNzYwfzA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improvement+of+soil+moisture+and+groundwater+level+estimations+using+a+scale%E2%80%91consistent+river+parameterization+for+the+coupled+ParFlow-CLM+hydrological+model%3A+A+case+study+of+the+Upper+Rhine+Basin&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Soltani%2C+Samira+Sadat&rft.au=Fahs%2C+Marwan&rft.au=Bitar%2C+Ahmad+Al&rft.au=Ataie-Ashtiani%2C+Behzad&rft.date=2022-07-01&rft.pub=Elsevier&rft.issn=0022-1694&rft.eissn=1879-2707&rft.volume=610&rft_id=info:doi/10.1016%2Fj.jhydrol.2022.127991&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_insu_03863708v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon