Improvement of soil moisture and groundwater level estimations using a scale‐consistent river parameterization for the coupled ParFlow-CLM hydrological model: A case study of the Upper Rhine Basin
[Display omitted] •Scaling of Manning coefficient and permeability in hydrological models were proposed.•We investigate the impact of the scaling approach on results of ParFlow-CLM model.•The validity of the results is examined through an innovative application of FORM.•The average bias in soil mois...
Saved in:
Published in | Journal of hydrology (Amsterdam) Vol. 610; p. 127991 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.07.2022
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0022-1694 1879-2707 |
DOI | 10.1016/j.jhydrol.2022.127991 |
Cover
Abstract | [Display omitted]
•Scaling of Manning coefficient and permeability in hydrological models were proposed.•We investigate the impact of the scaling approach on results of ParFlow-CLM model.•The validity of the results is examined through an innovative application of FORM.•The average bias in soil moisture was decreased from 0. 17 mm3/mm3 to 0. 1 mm3/mm3.•The accuracy of simulations is more than 95 and 92 percent for Autumn and Summer.
Accurate implementation of river interactions with subsurface water is critical in large-scale hydrologic models with a constant horizontal grid resolution when models apply kinematic wave approximation for both hillslope and river channel flow. The size of rivers can vary greatly in the model domain, and the implemented grid resolution is too coarse to accurately account for river interactions. Consequently, the flow velocity is underestimated when the width of the rivers is much narrower than the selected grid size. This leads to inaccuracy and uncertainties in calculations of water quantities. In addition, the rate of exfiltration and infiltration between the river and the subsurface may be overestimated as the modeled area of water exchange between rivers and subsurface is larger than reality. Therefore, the present study tests the approximation of subscale channel flow by a scaled roughness coefficient in the kinematic wave equation. For this purpose, a relationship between grid cell size and river width is used to correct flow velocity, which follows a simplified modification of the Manning-Strickler equation. The rate of exfiltration and infiltration between the subsurface and river is also corrected across riverbeds by a scaled saturated hydraulic conductivity based on the grid resolution even though the grid size is relatively large. The scaling methodology is implemented in a hydrological model coupling ParFlow (PARallel FLOW) v3.5 and the Community Land Model (CLM) v4.5. The model is applied over the Upper Rhine Basin (between France and Germany) for a time period from 2012 to 2014 and at a spatial resolution of 0.055° (∼6 km). The validity of the results is examined with satellite and in situ data through an innovative application of the First Order Reliability Method (FORM). The scaling approach shows that soil moisture estimates have improved, particularly in the summer and autumn seasons when cross-validated with independent soil moisture observations provided by the Climate Change Initiative (CCI). The results underline the use of a simple scaling procedure of the Manning coefficient and saturated hydraulic conductivity to account for the real infiltration/exfiltration rate in large-scale hydrological models with constant horizontal grid resolution. The scaling procedure also shows overall improvements in groundwater level estimation, particularly where the groundwater level is shallow (less than 5 m from the surface). By using the scaling approach, the average bias in soil moisture for the study domain was decreased from 0.17 mm3/mm3 to 0.1 mm3/mm3. The FORM results show that the probability of a substantial divergence between the ParFlow-CLM-S soil moisture results and the CCI-SM observation, which is defined as more than 0.25% of the CCI-SM observation value, is less than 0.05, 0.11, 0.15, and 0.08 for autumn, winter, spring, and summer, respectively. |
---|---|
AbstractList | Accurate implementation of river interactions with subsurface water is critical in large-scale hydrologic models with a constant horizontal grid resolution when models apply kinematic wave approximation for both hillslope and river channel flow. The size of rivers can vary greatly in the model domain, and the implemented grid resolution is too coarse to accurately account for river interactions. Consequently, the flow velocity is underestimated when the width of the rivers is much narrower than the selected grid size. This leads to inaccuracy and uncertainties in calculations of water quantities. In addition, the rate of exfiltration and infiltration between the river and the subsurface may be overestimated as the modeled area of water exchange between rivers and subsurface is larger than reality. Therefore, the present study tests the approximation of subscale channel flow by a scaled roughness coefficient in the kinematic wave equation. For this purpose, a relationship between grid cell size and river width is used to correct flow velocity, which follows a simplified modification of the Manning-Strickler equation. The rate of exfiltration and infiltration between the subsurface and river is also corrected across riverbeds by a scaled saturated hydraulic conductivity based on the grid resolution even though the grid size is relatively large. The scaling methodology is implemented in a hydrological model coupling ParFlow (PARallel FLOW) v3.5 and the Community Land Model (CLM) v4.5. The model is applied over the Upper Rhine Basin (between France and Germany) for a time period from 2012 to 2014 and at a spatial resolution of 0.055° (∼6 km). The validity of the results is examined with satellite and in situ data through an innovative application of the First Order Reliability Method (FORM). The scaling approach shows that soil moisture estimates have improved, particularly in the summer and autumn seasons when cross-validated with independent soil moisture observations provided by the Climate Change Initiative (CCI). The results underline the use of a simple scaling procedure of the Manning coefficient and saturated hydraulic conductivity to account for the real infiltration/exfiltration rate in large-scale hydrological models with constant horizontal grid resolution. The scaling procedure also shows overall improvements in groundwater level estimation, particularly where the groundwater level is shallow (less than 5 m from the surface). By using the scaling approach, the average bias in soil moisture for the study domain was decreased from 0.17 mm³/mm³ to 0.1 mm³/mm³. The FORM results show that the probability of a substantial divergence between the ParFlow-CLM-S soil moisture results and the CCI-SM observation, which is defined as more than 0.25% of the CCI-SM observation value, is less than 0.05, 0.11, 0.15, and 0.08 for autumn, winter, spring, and summer, respectively. Accurate implementation of river interactions with subsurface water is critical in large-scale hydrologic models with a constant horizontal grid resolution when models apply kinematic wave approximation for both hillslope and river channel flow. The size of rivers can vary greatly in the model domain, and the implemented grid resolution is too coarse to accurately account for river interactions. Consequently, the flow velocity is underestimated when the width of the rivers is much narrower than the selected grid size. This leads to inaccuracy and uncertainties in calculations of water quantities. In addition, the rate of exfiltration and infiltration between the river and the subsurface may be overestimated as the modeled area of water exchange between rivers and subsurface is larger than reality. Therefore, the present study tests the approximation of subscale channel flow by a scaled roughness coefficient in the kinematic wave equation. For this purpose, a relationship between grid cell size and river width is used to correct flow velocity, which follows a simplified modification of the Manning-Strickler equation. The rate of exfiltration and infiltration between the subsurface and river is also corrected across riverbeds by a scaled saturated hydraulic conductivity based on the grid resolution even though the grid size is relatively large. The scaling methodology is implemented in a hydrological model coupling ParFlow (PARallel FLOW) v3.5 and the Community Land Model (CLM) v4.5. The model is applied over the Upper Rhine Basin (between France and Germany) for a time period from 2012 to 2014 and at a spatial resolution of 0.055° (∼6 km). The validity of the results is examined with satellite and in situ data through an innovative application of the First Order Reliability Method (FORM). The scaling approach shows that soil moisture estimates have improved, particularly in the summer and autumn seasons when cross-validated with independent soil moisture observations provided by the Climate Change Initiative (CCI). The results underline the use of a simple scaling procedure of the Manning coefficient and saturated hydraulic conductivity to account for the real infiltration/exfiltration rate in large-scale hydrological models with constant horizontal grid resolution. The scaling procedure also shows overall improvements in groundwater level estimation, particularly where the groundwater level is shallow (less than 5 m from the surface). By using the scaling approach, the average bias in soil moisture for the study domain was decreased from 0.17 mm3/mm3 to 0.1 mm3/mm3. The FORM results show that the probability of a substantial divergence between the ParFlow-CLM-S soil moisture results and the CCI-SM observation, which is defined as more than 0.25% of the CCI-SM observation value, is less than 0.05, 0.11, 0.15, and 0.08 for autumn, winter, spring, and summer, respectively. [Display omitted] •Scaling of Manning coefficient and permeability in hydrological models were proposed.•We investigate the impact of the scaling approach on results of ParFlow-CLM model.•The validity of the results is examined through an innovative application of FORM.•The average bias in soil moisture was decreased from 0. 17 mm3/mm3 to 0. 1 mm3/mm3.•The accuracy of simulations is more than 95 and 92 percent for Autumn and Summer. Accurate implementation of river interactions with subsurface water is critical in large-scale hydrologic models with a constant horizontal grid resolution when models apply kinematic wave approximation for both hillslope and river channel flow. The size of rivers can vary greatly in the model domain, and the implemented grid resolution is too coarse to accurately account for river interactions. Consequently, the flow velocity is underestimated when the width of the rivers is much narrower than the selected grid size. This leads to inaccuracy and uncertainties in calculations of water quantities. In addition, the rate of exfiltration and infiltration between the river and the subsurface may be overestimated as the modeled area of water exchange between rivers and subsurface is larger than reality. Therefore, the present study tests the approximation of subscale channel flow by a scaled roughness coefficient in the kinematic wave equation. For this purpose, a relationship between grid cell size and river width is used to correct flow velocity, which follows a simplified modification of the Manning-Strickler equation. The rate of exfiltration and infiltration between the subsurface and river is also corrected across riverbeds by a scaled saturated hydraulic conductivity based on the grid resolution even though the grid size is relatively large. The scaling methodology is implemented in a hydrological model coupling ParFlow (PARallel FLOW) v3.5 and the Community Land Model (CLM) v4.5. The model is applied over the Upper Rhine Basin (between France and Germany) for a time period from 2012 to 2014 and at a spatial resolution of 0.055° (∼6 km). The validity of the results is examined with satellite and in situ data through an innovative application of the First Order Reliability Method (FORM). The scaling approach shows that soil moisture estimates have improved, particularly in the summer and autumn seasons when cross-validated with independent soil moisture observations provided by the Climate Change Initiative (CCI). The results underline the use of a simple scaling procedure of the Manning coefficient and saturated hydraulic conductivity to account for the real infiltration/exfiltration rate in large-scale hydrological models with constant horizontal grid resolution. The scaling procedure also shows overall improvements in groundwater level estimation, particularly where the groundwater level is shallow (less than 5 m from the surface). By using the scaling approach, the average bias in soil moisture for the study domain was decreased from 0.17 mm3/mm3 to 0.1 mm3/mm3. The FORM results show that the probability of a substantial divergence between the ParFlow-CLM-S soil moisture results and the CCI-SM observation, which is defined as more than 0.25% of the CCI-SM observation value, is less than 0.05, 0.11, 0.15, and 0.08 for autumn, winter, spring, and summer, respectively. |
ArticleNumber | 127991 |
Author | Bitar, Ahmad Al Fahs, Marwan Soltani, Samira Sadat Ataie-Ashtiani, Behzad |
Author_xml | – sequence: 1 givenname: Samira Sadat surname: Soltani fullname: Soltani, Samira Sadat organization: Department of Civil Engineering, Sharif University of Technology, Tehran, Iran – sequence: 2 givenname: Marwan surname: Fahs fullname: Fahs, Marwan email: fahs@unistra.fr organization: Institut Terre et Environnement de Strasbourg, Université de Strasbourg, CNRS, ENGEES, UMR 7063, 67084 Strasbourg, France – sequence: 3 givenname: Ahmad Al surname: Bitar fullname: Bitar, Ahmad Al organization: CESBIO, Université de Toulouse, CNES, CNRS, IRD, INRAe, UPS, 18 avenue Edouard Belin, 31401 Toulouse, France – sequence: 4 givenname: Behzad surname: Ataie-Ashtiani fullname: Ataie-Ashtiani, Behzad organization: Department of Civil Engineering, Sharif University of Technology, Tehran, Iran |
BackLink | https://insu.hal.science/insu-03863708$$DView record in HAL |
BookMark | eNqFkU2O0zAcxSM0SHQGjoDkJUJK8UcSJ7BAnYr5kIpAiFlbrv1P68qxg510VFYcgVNxkDkJbjNs2Iw3kZz3e3p-7zw7c95Blr0meE4wqd7t5rvtQQdv5xRTOieUNw15ls1IzZuccszPshlOf3JSNcWL7DzGHU6HsWKW_bnt-uD30IEbkG9R9Maizps4jAGQdBptgh-dvpcDBGRhDxZBHEwnB-NdRGM0boMkikpaePj1W6XLBB_dgtknpJdBdpBg8_OEoNYHNGwBKT_2FjT6KsOV9ff5cvUZTc_wG5PcUgoN9j1aICUjoBRIH44Jj-xd3yfrb1vjAF3KFOFl9ryVNsKrx-9Fdnf16fvyJl99ub5dLla5Kmgx5KyqqVatWld1XdacEAZcNQXXrMGMYIY5NDTVV1UVk2zNtKokL0vGC0nrddJcZG8n3620og-phnAQXhpxs1gJ4-IoMKsrxnG9J0n8ZhKnhn-MqTXRmajAWunAj1FQTmrKmvLk-2GSquBjDNAKZYZTX0OQxgqCxXFqsROPU4vj1GKaOtHlf_S_aE9xHycOUmV7A0FEZcAp0CaAGoT25gmHv1CHzN0 |
CitedBy_id | crossref_primary_10_5194_hess_28_2661_2024 crossref_primary_10_1016_j_jhydrol_2024_131542 crossref_primary_10_1029_2023MS004023 crossref_primary_10_1111_geoj_12551 crossref_primary_10_1016_j_agwat_2025_109353 crossref_primary_10_1016_j_jhydrol_2024_131812 |
Cites_doi | 10.1063/1.1745010 10.1016/j.jhydrol.2011.12.028 10.1029/2003WR002721 10.1002/wrcr.20251 10.1007/978-3-642-14755-5_11 10.1007/s00382-011-1054-9 10.1175/BAMS-85-3-381 10.1029/2007JG000563 10.1016/S0098-3004(00)00132-1 10.1002/jame.20051 10.1002/2013WR013807 10.5194/hess-15-425-2011 10.5194/hess-15-2913-2011 10.5194/hess-21-1117-2017 10.5194/gmd-9-4087-2016 10.1111/j.1745-6584.2010.00750.x 10.1175/JHM422.1 10.1016/j.earscirev.2020.103487 10.1002/hyp.13448 10.1016/j.jhydrol.2020.124898 10.3390/w9040289 10.1127/0941-2948/2013/0399 10.1002/hyp.13327 10.1371/journal.pone.0169748 10.1016/j.advwatres.2004.02.016 10.1016/j.rse.2017.07.001 10.1007/s10584-016-1841-8 10.1016/S0309-1708(00)00075-0 10.1175/JHM-D-16-0159.1 10.3133/ofr20071441 10.1016/j.jhydrol.2015.12.002 10.1088/1748-9326/7/4/044022 10.1097/00010694-199810000-00001 10.1002/2013WR014258 10.1016/j.jhydrol.2017.01.048 10.5194/gmd-14-7223-2021 10.1029/2010WR010090 10.1051/lhb/20150014 10.1029/2012WR012514 10.1016/S0034-4257(02)00078-0 10.2136/sssaj1980.03615995004400050002x 10.1016/j.jhydrol.2016.04.066 10.1175/JAM2161.1 10.1175/BAMS-84-8-1013 10.1016/j.advwatres.2015.04.008 10.1016/j.advwatres.2005.08.006 10.5194/hess-19-2079-2015 10.1002/qj.2486 10.1061/(ASCE)0733-9445(1983)109:3(721) 10.5194/gmd-13-1373-2020 10.1016/S0022-1694(02)00283-4 10.1111/ejss.12192 10.1127/metz/2017/0824 10.1002/2014WR016371 10.1175/JHM-D-12-0177.1 10.1111/j.1475-2743.1997.tb00550.x 10.1002/2015WR017096 10.1029/2007WR006004 10.1175/BAMS-D-13-00227.1 10.3133/ofr20111073 10.1016/j.advwatres.2012.10.001 10.1016/j.jhydrol.2019.124309 10.13182/NSE96-A24230 10.1016/0022-1694(86)90115-0 10.5194/hess-19-4317-2015 10.5194/adgeo-49-197-2019 10.1029/WR014i005p00705 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. Attribution - NonCommercial |
Copyright_xml | – notice: 2022 Elsevier B.V. – notice: Attribution - NonCommercial |
DBID | AAYXX CITATION 7S9 L.6 1XC VOOES |
DOI | 10.1016/j.jhydrol.2022.127991 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 1879-2707 |
ExternalDocumentID | oai_HAL_insu_03863708v1 10_1016_j_jhydrol_2022_127991 S0022169422005662 |
GeographicLocations | France Germany |
GeographicLocations_xml | – name: France – name: Germany |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AATTM AAXKI AAXUO ABEFU ABFNM ABGRD ABJNI ABMAC ABQEM ABQYD ABTAH ABWVN ABXDB ACDAQ ACGFS ACIUM ACLVX ACNCT ACRLP ACRPL ACSBN ADBBV ADEZE ADMUD ADNMO ADQTV ADVLN AEBSH AEIPS AEKER AENEX AEQOU AFFNX AFJKZ AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 D-I DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMA HVGLF HZ~ H~9 IHE IMUCA J1W K-O KOM LW9 LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SCC SDF SDG SDP SEP SES SEW SPC SPCBC SPD SSA SSE SSH SSZ T5K TN5 UQL VOH WUQ Y6R ZCA ZMT ZY4 ~02 ~G- ~KM AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP CITATION 7S9 EFKBS EFLBG L.6 1XC VOOES |
ID | FETCH-LOGICAL-c424t-3682dcfcb688587113e7c947d390310307e922796663a3b3dc6a755374a28b903 |
IEDL.DBID | AIKHN |
ISSN | 0022-1694 |
IngestDate | Tue Sep 09 06:33:06 EDT 2025 Fri Sep 05 04:21:34 EDT 2025 Thu Apr 24 23:09:11 EDT 2025 Tue Jul 01 01:53:39 EDT 2025 Sun Apr 06 06:56:15 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Scaling River Parametrization the Upper Rhine Basin Hydrological Modeling First Order Reliability Method |
Language | English |
License | Attribution - NonCommercial: http://creativecommons.org/licenses/by-nc |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c424t-3682dcfcb688587113e7c947d390310307e922796663a3b3dc6a755374a28b903 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-0454-6476 |
OpenAccessLink | https://insu.hal.science/insu-03863708 |
PQID | 2718239590 |
PQPubID | 24069 |
ParticipantIDs | hal_primary_oai_HAL_insu_03863708v1 proquest_miscellaneous_2718239590 crossref_citationtrail_10_1016_j_jhydrol_2022_127991 crossref_primary_10_1016_j_jhydrol_2022_127991 elsevier_sciencedirect_doi_10_1016_j_jhydrol_2022_127991 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-01 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Journal of hydrology (Amsterdam) |
PublicationYear | 2022 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Sutanudjaja, E.H. et al., 2011. Large-scale groundwater modeling using global datasets: a test case for the Rhine-Meuse basin. 15(9): 2913-2935. Therrien, R., McLaren, R., Sudicky, E., Panday, S., 2010. A three-dimensional numerical model describing fully-integrated subsurface and surface flow and solute transport. User Guide. Loquin, K., Dubois, D., 2010. Kriging and epistemic uncertainty: a critical discussion, Methods for Handling Imperfect Spatial Information. Springer, pp. 269-305. Niedda, M.J.W.R.R., 2004. Upscaling hydraulic conductivity by means of entropy of terrain curvature representation. 40(4). Jones, Woodward (b0150) 2001; 24 Richards (b0295) 1931; 1 Bollmeyer, Keller, Ohlwein, Wahl, Crewell, Friederichs, Hense, Keune, Kneifel, Pscheidt, Redl, Steinke (b0045) 2015; 141 Engdahl, N.B., McCallum, J.L., Massoudieh, A.J.J.o.H., 2016. Transient age distributions in subsurface hydrologic systems. 543, 88-100. Maxwell, Miller (b0240) 2005; 6 Koch (b0155) 2016; 533 McDonald, M.G., Harbaugh, A.W., 1988. A modular three-dimensional finite-difference ground-water flow model. US Geological Survey. Dai, Zeng, Dickinson, Baker, Bonan, Bosilovich, Denning, Dirmeyer, Houser, Niu, Oleson, Schlosser, Yang (b0070) 2003; 84 Batjes (b0035) 1997; 13 Kuffour (b0185) 2020; 13 Wood (b0425) 2011; 47 Seck, Welty, Maxwell (b0310) 2015; 51 Abdelkhalak, Bouchaïb (b0015) 2013 Christiansen (b0050) 2007 Wahl (b0420) 2017; 26 Ren, D., Xue, M.J.J.o.A.M., 2004. A revised force–restore model for land surface modeling. 43(11): 1768-1782. Kollet, S.J., Maxwell, R.M.J.A.i.W.R., 2006. Integrated surface–groundwater flow modeling: a free-surface overland flow boundary condition in a parallel groundwater flow model. 29(7): 945-958. Nataf, A.J.C.R.d.l.A.d.S., 1962. Determination des distribution don t les marges sont donnees. 225: 42-43. Shi, Davis, Zhang, Duffy (b0325) 2014; 15 Foster, Maxwell (b0110) 2019; 33 Thierion, C. et al., 2012. Assessing the water balance of the Upper Rhine Graben hydrosystem. 424: 68-83. Clark, M.P. et al., 2015. Improving the representation of hydrologic processes in Earth System Models. 51(8): 5929-5956. Asante, K.O., Artan, G.A., Pervez, S., Bandaragoda, C., Verdin, J.P.J.W.W.W., 2008. Technical manual for the geospatial stream flow model (GeoSFM). 605: 594-6151. Gebler, Franssen, Kollet, Qu, Vereecken (b0120) 2017; 547 Condon, Hering, Maxwell (b0060) 2015; 82 Eagleson (b0095) 1978; 14 Van Dijk, A.I., Peña‐Arancibia, J.L., Wood, E.F., Sheffield, J., Beck, H.E.J.W.R.R., 2013. Global analysis of seasonal streamflow predictability using an ensemble prediction system and observations from 6192 small catchments worldwide. 49(5): 2729-2746. Döll, Kaspar, Lehner (b0090) 2003; 270 Wagner, W. et al., 2013. The ASCAT soil moisture product: A review of its specifications, validation results, and emerging applications. Dorigo, W. et al., 2017. ESA CCI Soil Moisture for improved Earth system understanding: state-of-the art and future directions. 203, 185-215. Van Genuchten (b0410) 1980; 44 Shinozuka, M.J.J.o.S.E., 1983. Basic analysis of structural safety. 109(3): 721-740. Soltani, S.S., Ataie-Ashtiani, B., Danesh-Yazdi, M., Simmons, C.T.J.J.o.H., 2020. A probabilistic framework for water budget estimation in low runoff regions: a case study of the central Basin of Iran. 586: 124898. Ferguson, I.M., Maxwell, R.M.J.E.R.L., 2012. Human impacts on terrestrial hydrology: climate change versus pumping and irrigation. 7(4), 044022. Naz (b0250) 2018; 1 Beisman, J., 2007. Development of a parallel reactive transport model with spatially variable nitrate reduction in a floodplain aquifer, A thesis submitted to the Faculty and the Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Master of Science (Hydrology). Oleson, K. et al., 2008. Improvements to the Community Land Model and their impact on the hydrological cycle. 113(G1). Tangdamrongsub, N. et al., 2015. Data assimilation of GRACE terrestrial water storage estimates into a regional hydrological model of the Rhine River basin. 19(4): 2079-2100. Soltani, S.S., Ataie-Ashtiani, B., Simmons, C.T.J.E.-S.R., 2021. Review of assimilating GRACE terrestrial water storage data into hydrological models: advances, challenges and opportunities. 213: 103487. Ajami, McCabe, Evans, Stisen (b0020) 2014; 50 Danielson, J.J., Gesch, D.B., 2011. Global multi-resolution terrain elevation data 2010 (GMTED2010). US Department of the Interior, US Geological Survey. Condon, Maxwell (b0065) 2017; 21 Liu (b0190) 2011; 15 Madsen, H.O., Krenk, S., Lind, N.C., 2006. Methods of structural safety. Courier Corporation. Kollet, Maxwell (b0165) 2008; 44 Simmons, C.T., Brunner, P., Therrien, R., Sudicky, E.A.J.J.o.H., 2020. Commemorating the 50th anniversary of the Freeze and Harlan (1969) Blueprint for a physically-based, digitaFilly-simulated hydrologic response model. 584: 124309. Maxwell (b0230) 2009; 1 Ababou, Alastal, Astruc, Al-Bitar, Marcoux, Wang (b0005) 2015; 101 Decharme, Alkama, Papa, Faroux, Douville, Prigent (b0080) 2012; 38 Hengl, T. et al., 2017. SoilGrids250m: Global gridded soil information based on machine learning. 12(2), e0169748. Krige, D.G.J.J.o.t.S.A.I.o.M., Metallurgy, 1951. A statistical approach to some basic mine valuation problems on the Witwatersrand. 52(6): 119-139. Panday, Huyakorn (b0285) 2004; 27 Tóth, B. et al., 2015. New generation of hydraulic pedotransfer functions for Europe. 66(1): 226-238. Lloyd, C., Atkinson, P.M.J.C., Geosciences, 2001. Assessing uncertainty in estimates with ordinary and indicator kriging. 27(8): 929-937. Abbott, Bathurst, Cunge, O'connell, Rasmussen (b0010) 1986; 87 Kuffour (b0180) 2019 Jones (b0145) 1999; 127 Springer, A., Eicker, A., Bettge, A., Kusche, J., Hense, A.J.W., 2017. Evaluation of the water cycle in the European COSMO-REA6 reanalysis using GRACE. 9(4): 289. Ashby, Falgout (b0030) 1996; 124 Schellekens, J., 2014. OpenStreams wflow documentation release 1.0 RC1. Deltares. Sulis (b0375) 2017; 18 Majdalani, S., Ackerer, P.J.G., 2011. Identification of groundwater parameters using an adaptative multiscale method. 49(4): 548-559. Schaap, Leij (b0305) 1998; 163 Van Beek, L., Bierkens, M., 2009. The global hydrological model PCR-GLOBWB: conceptualization, parameterization and verification. Utrecht University, Utrecht, The Netherlands, 1: 25-26. O'Neill, Tijerina, Condon, Maxwell (b0280) 2021; 14 Koltzer, Scheck-Wenderoth, Cacace, Frick, Bott (b0170) 2019; 49 Sutanudjaja, E., Van Beek, L., De Jong, S., Van Geer, F., Bierkens, M.J.W.R.R., 2014. Calibrating a large‐extent high‐resolution coupled groundwater‐land surface model using soil moisture and discharge data. 50(1): 687-705. Schalge, Haefliger, Kollet, Simmer (b0315) 2019; 33 Friedl, McIver, Hodges, Zhang, Muchoney, Strahler, Woodcock, Gopal, Schneider, Cooper, Baccini, Gao, Schaaf (b0115) 2002; 83 Gutowski Jr., Giorgi, Timbal, Frigon, Jacob, Kang, Raghavan, Lee, Lennard, Nikulin, O'Rourke, Rixen, Solman, Stephenson, Tangang (b0130) 2016; 9 Zhang, Y., Der Kiureghian, A., 1997. Finite element reliability methods for inelastic structures. Department of Civil and Environmental Engineering, University of California. Maxwell (b0220) 2013; 53 Simmer, C. et al., 2016. Herz: The german hans-ertel centre for weather research. 97(6): 1057-1068. Rodell, M. et al., 2004. The global land data assimilation system. 85(3): 381-394. Williams III, J.L., Maxwell, R.M., Monache, L.D.J.J.o.A.i.M.E.S., 2013. Development and verification of a new wind speed forecasting system using an ensemble Kalman filter data assimilation technique in a fully coupled hydrologic and atmospheric model. 5(4): 785-800. Huang, Kumar, Flörke, Yang, Hundecha, Kraft, Gao, Gelfan, Liersch, Lobanova, Strauch, van Ogtrop, Reinhardt, Haberlandt, Krysanova (b0140) 2017; 141 Oleson, K. et al., 2013. Technical Description of version 4.5 of the Community Land Model (CLM) (NCAR Technical Note No. NCAR/TN-503+ STR). Citeseer. National Center for Atmospheric Research, PO Box, 3000: 555. Shrestha, Sulis, Simmer, Kollet, Sciences (b0335) 2015; 19 Graham, Butts (b0125) 2005 Neal, J., Schumann, G., Bates, P.D.J.W.R.R., 2012. A simple model for simulating river hydraulics and floodplain inundation over large and data sparse areas. 48. 10.1016/j.jhydrol.2022.127991_b0430 10.1016/j.jhydrol.2022.127991_b0395 10.1016/j.jhydrol.2022.127991_b0075 10.1016/j.jhydrol.2022.127991_b0350 Foster (10.1016/j.jhydrol.2022.127991_b0110) 2019; 33 Friedl (10.1016/j.jhydrol.2022.127991_b0115) 2002; 83 10.1016/j.jhydrol.2022.127991_b0195 10.1016/j.jhydrol.2022.127991_b0270 Sulis (10.1016/j.jhydrol.2022.127991_b0375) 2017; 18 10.1016/j.jhydrol.2022.127991_b0390 Abbott (10.1016/j.jhydrol.2022.127991_b0010) 1986; 87 10.1016/j.jhydrol.2022.127991_b0435 Panday (10.1016/j.jhydrol.2022.127991_b0285) 2004; 27 10.1016/j.jhydrol.2022.127991_b0355 Naz (10.1016/j.jhydrol.2022.127991_b0250) 2018; 1 Jones (10.1016/j.jhydrol.2022.127991_b0150) 2001; 24 Abdelkhalak (10.1016/j.jhydrol.2022.127991_b0015) 2013 10.1016/j.jhydrol.2022.127991_b0100 10.1016/j.jhydrol.2022.127991_b0265 10.1016/j.jhydrol.2022.127991_b0385 10.1016/j.jhydrol.2022.127991_b0340 Decharme (10.1016/j.jhydrol.2022.127991_b0080) 2012; 38 Liu (10.1016/j.jhydrol.2022.127991_b0190) 2011; 15 Schalge (10.1016/j.jhydrol.2022.127991_b0315) 2019; 33 10.1016/j.jhydrol.2022.127991_b0260 10.1016/j.jhydrol.2022.127991_b0380 Maxwell (10.1016/j.jhydrol.2022.127991_b0230) 2009; 1 10.1016/j.jhydrol.2022.127991_b0105 10.1016/j.jhydrol.2022.127991_b0345 10.1016/j.jhydrol.2022.127991_b0025 10.1016/j.jhydrol.2022.127991_b0300 Shi (10.1016/j.jhydrol.2022.127991_b0325) 2014; 15 Wood (10.1016/j.jhydrol.2022.127991_b0425) 2011; 47 Bollmeyer (10.1016/j.jhydrol.2022.127991_b0045) 2015; 141 Wahl (10.1016/j.jhydrol.2022.127991_b0420) 2017; 26 Kollet (10.1016/j.jhydrol.2022.127991_b0165) 2008; 44 Batjes (10.1016/j.jhydrol.2022.127991_b0035) 1997; 13 Döll (10.1016/j.jhydrol.2022.127991_b0090) 2003; 270 10.1016/j.jhydrol.2022.127991_b0210 Richards (10.1016/j.jhydrol.2022.127991_b0295) 1931; 1 10.1016/j.jhydrol.2022.127991_b0055 10.1016/j.jhydrol.2022.127991_b0330 Gutowski Jr. (10.1016/j.jhydrol.2022.127991_b0130) 2016; 9 10.1016/j.jhydrol.2022.127991_b0175 Dai (10.1016/j.jhydrol.2022.127991_b0070) 2003; 84 10.1016/j.jhydrol.2022.127991_b0370 Eagleson (10.1016/j.jhydrol.2022.127991_b0095) 1978; 14 10.1016/j.jhydrol.2022.127991_b0415 Condon (10.1016/j.jhydrol.2022.127991_b0065) 2017; 21 Maxwell (10.1016/j.jhydrol.2022.127991_b0240) 2005; 6 10.1016/j.jhydrol.2022.127991_b0215 Van Genuchten (10.1016/j.jhydrol.2022.127991_b0410) 1980; 44 10.1016/j.jhydrol.2022.127991_b0135 Ajami (10.1016/j.jhydrol.2022.127991_b0020) 2014; 50 10.1016/j.jhydrol.2022.127991_b0255 Kuffour (10.1016/j.jhydrol.2022.127991_b0185) 2020; 13 Koch (10.1016/j.jhydrol.2022.127991_b0155) 2016; 533 Ababou (10.1016/j.jhydrol.2022.127991_b0005) 2015; 101 O'Neill (10.1016/j.jhydrol.2022.127991_b0280) 2021; 14 Schaap (10.1016/j.jhydrol.2022.127991_b0305) 1998; 163 10.1016/j.jhydrol.2022.127991_b0320 Koltzer (10.1016/j.jhydrol.2022.127991_b0170) 2019; 49 10.1016/j.jhydrol.2022.127991_b0085 10.1016/j.jhydrol.2022.127991_b0360 10.1016/j.jhydrol.2022.127991_b0040 Gebler (10.1016/j.jhydrol.2022.127991_b0120) 2017; 547 10.1016/j.jhydrol.2022.127991_b0160 Maxwell (10.1016/j.jhydrol.2022.127991_b0220) 2013; 53 Shrestha (10.1016/j.jhydrol.2022.127991_b0335) 2015; 19 Kuffour (10.1016/j.jhydrol.2022.127991_b0180) 2019 10.1016/j.jhydrol.2022.127991_b0405 Christiansen (10.1016/j.jhydrol.2022.127991_b0050) 2007 10.1016/j.jhydrol.2022.127991_b0205 Jones (10.1016/j.jhydrol.2022.127991_b0145) 1999; 127 10.1016/j.jhydrol.2022.127991_b0400 10.1016/j.jhydrol.2022.127991_b0245 10.1016/j.jhydrol.2022.127991_b0200 10.1016/j.jhydrol.2022.127991_b0365 Seck (10.1016/j.jhydrol.2022.127991_b0310) 2015; 51 Condon (10.1016/j.jhydrol.2022.127991_b0060) 2015; 82 Graham (10.1016/j.jhydrol.2022.127991_b0125) 2005 10.1016/j.jhydrol.2022.127991_b0290 Huang (10.1016/j.jhydrol.2022.127991_b0140) 2017; 141 Ashby (10.1016/j.jhydrol.2022.127991_b0030) 1996; 124 |
References_xml | – reference: Nataf, A.J.C.R.d.l.A.d.S., 1962. Determination des distribution don t les marges sont donnees. 225: 42-43. – year: 2007 ident: b0050 article-title: Local to regional hydrological model calibration for the Okavango River basin from in-situ and space borne gravity observations publication-title: Proceedings of 2nd Space for Hydrology Workshop – volume: 26 start-page: 345 year: 2017 end-page: 361 ident: b0420 article-title: A novel convective-scale regional reanalysis COSMO-REA2: improving the representation of precipitation publication-title: Meteorologische Zeitschrift – reference: Soltani, S.S., Ataie-Ashtiani, B., Simmons, C.T.J.E.-S.R., 2021. Review of assimilating GRACE terrestrial water storage data into hydrological models: advances, challenges and opportunities. 213: 103487. – reference: Dorigo, W. et al., 2017. ESA CCI Soil Moisture for improved Earth system understanding: state-of-the art and future directions. 203, 185-215. – reference: Danielson, J.J., Gesch, D.B., 2011. Global multi-resolution terrain elevation data 2010 (GMTED2010). US Department of the Interior, US Geological Survey. – volume: 33 start-page: 332 year: 2019 end-page: 349 ident: b0110 article-title: Sensitivity analysis of hydraulic conductivity and Manning’s n parameters lead to new method to scale effective hydraulic conductivity across model resolutions publication-title: Hydrol. Processes – reference: Simmer, C. et al., 2016. Herz: The german hans-ertel centre for weather research. 97(6): 1057-1068. – reference: Krige, D.G.J.J.o.t.S.A.I.o.M., Metallurgy, 1951. A statistical approach to some basic mine valuation problems on the Witwatersrand. 52(6): 119-139. – volume: 51 start-page: 2188 year: 2015 end-page: 2210 ident: b0310 article-title: Spin-up behavior and effects of initial conditions for an integrated hydrologic model publication-title: Water Resourc. Res. – reference: Soltani, S.S., Ataie-Ashtiani, B., Danesh-Yazdi, M., Simmons, C.T.J.J.o.H., 2020. A probabilistic framework for water budget estimation in low runoff regions: a case study of the central Basin of Iran. 586: 124898. – reference: Rodell, M. et al., 2004. The global land data assimilation system. 85(3): 381-394. – reference: Springer, A., Eicker, A., Bettge, A., Kusche, J., Hense, A.J.W., 2017. Evaluation of the water cycle in the European COSMO-REA6 reanalysis using GRACE. 9(4): 289. – volume: 49 start-page: 197 year: 2019 end-page: 206 ident: b0170 article-title: Regional hydraulic model of the Upper Rhine Graben publication-title: Adv. Geosci. – reference: Zhang, Y., Der Kiureghian, A., 1997. Finite element reliability methods for inelastic structures. Department of Civil and Environmental Engineering, University of California. – volume: 13 start-page: 9 year: 1997 end-page: 16 ident: b0035 article-title: A world dataset of derived soil properties by FAO–UNESCO soil unit for global modelling publication-title: Soil Use Manage. – reference: Kollet, S.J., Maxwell, R.M.J.A.i.W.R., 2006. Integrated surface–groundwater flow modeling: a free-surface overland flow boundary condition in a parallel groundwater flow model. 29(7): 945-958. – reference: Oleson, K. et al., 2008. Improvements to the Community Land Model and their impact on the hydrological cycle. 113(G1). – reference: Ferguson, I.M., Maxwell, R.M.J.E.R.L., 2012. Human impacts on terrestrial hydrology: climate change versus pumping and irrigation. 7(4), 044022. – volume: 33 start-page: 2006 year: 2019 end-page: 2019 ident: b0315 article-title: Improvement of surface run-off in the hydrological model ParFlow by a scale-consistent river parameterization publication-title: Hydrol. Processes – reference: Sutanudjaja, E., Van Beek, L., De Jong, S., Van Geer, F., Bierkens, M.J.W.R.R., 2014. Calibrating a large‐extent high‐resolution coupled groundwater‐land surface model using soil moisture and discharge data. 50(1): 687-705. – volume: 18 start-page: 1489 year: 2017 end-page: 1511 ident: b0375 article-title: Coupling groundwater, vegetation, and atmospheric processes: a comparison of two integrated models publication-title: J. Hydrometeorol. – volume: 547 start-page: 309 year: 2017 end-page: 331 ident: b0120 article-title: High resolution modelling of soil moisture patterns with TerrSysMP: A comparison with sensor network data publication-title: J. Hydrol. – volume: 19 start-page: 4317 year: 2015 end-page: 4326 ident: b0335 article-title: Impacts of grid resolution on surface energy fluxes simulated with an integrated surface-groundwater flow model publication-title: Hydrol. Earth Syst. Sci. – volume: 101 start-page: 9 year: 2015 end-page: 24 ident: b0005 article-title: Model coupling for environmental flows, with applications in hydrology and coastal hydrodynamics publication-title: La Houille Blanche – reference: Madsen, H.O., Krenk, S., Lind, N.C., 2006. Methods of structural safety. Courier Corporation. – volume: 533 start-page: 234 year: 2016 end-page: 249 ident: b0155 article-title: Inter-comparison of three distributed hydrological models with respect to seasonal variability of soil moisture patterns at a small forested catchment publication-title: J. Hydrol. – volume: 82 start-page: 106 year: 2015 end-page: 123 ident: b0060 article-title: Quantitative assessment of groundwater controls across major US river basins using a multi-model regression algorithm publication-title: Adv. Water Resourc. – volume: 6 start-page: 233 year: 2005 end-page: 247 ident: b0240 article-title: Development of a coupled land surface and groundwater model publication-title: J. Hydrometeorol. – reference: Thierion, C. et al., 2012. Assessing the water balance of the Upper Rhine Graben hydrosystem. 424: 68-83. – reference: Engdahl, N.B., McCallum, J.L., Massoudieh, A.J.J.o.H., 2016. Transient age distributions in subsurface hydrologic systems. 543, 88-100. – volume: 38 start-page: 1389 year: 2012 end-page: 1412 ident: b0080 article-title: Global off-line evaluation of the ISBA-TRIP flood model publication-title: Clim. Dyn. – volume: 127 start-page: 2204 year: 1999 end-page: 2210 ident: b0145 article-title: First- and second-order conservative remapping schemes for grids in spherical coordinates publication-title: Environ. Sci. – volume: 21 start-page: 1117 year: 2017 end-page: 1135 ident: b0065 article-title: Systematic shifts in Budyko relationships caused by groundwater storage changes publication-title: Hydrol. Earth Syst. Sci. – reference: Lloyd, C., Atkinson, P.M.J.C., Geosciences, 2001. Assessing uncertainty in estimates with ordinary and indicator kriging. 27(8): 929-937. – reference: Asante, K.O., Artan, G.A., Pervez, S., Bandaragoda, C., Verdin, J.P.J.W.W.W., 2008. Technical manual for the geospatial stream flow model (GeoSFM). 605: 594-6151. – reference: Tangdamrongsub, N. et al., 2015. Data assimilation of GRACE terrestrial water storage estimates into a regional hydrological model of the Rhine River basin. 19(4): 2079-2100. – volume: 1 start-page: 1 year: 2018 end-page: 32 ident: b0250 article-title: Improving soil moisture and runoff simulations over Europe using a high-resolution data-assimilation modeling framework publication-title: Hydrol. Earth Syst. Sci. Discuss. – volume: 47 year: 2011 ident: b0425 article-title: Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth’s terrestrial water publication-title: Water Resourc. Res. – volume: 44 year: 2008 ident: b0165 article-title: Capturing the influence of groundwater dynamics on land surface processes using an integrated, distributed watershed model publication-title: Water Resourc. Res. – volume: 24 start-page: 763 year: 2001 end-page: 774 ident: b0150 article-title: Newton–Krylov-multigrid solvers for large-scale, highly heterogeneous, variably saturated flow problems publication-title: Adv. Water Resourc. – reference: Sutanudjaja, E.H. et al., 2011. Large-scale groundwater modeling using global datasets: a test case for the Rhine-Meuse basin. 15(9): 2913-2935. – volume: 15 start-page: 425 year: 2011 end-page: 436 ident: b0190 article-title: Developing an improved soil moisture dataset by blending passive and active microwave satellite-based retrievals publication-title: Hydrol. Earth Syst. Sci. – volume: 53 start-page: 109 year: 2013 end-page: 117 ident: b0220 article-title: A terrain-following grid transform and preconditioner for parallel, large-scale, integrated hydrologic modeling publication-title: Adv. Water Resour. – volume: 1 start-page: 129 year: 2009 ident: b0230 publication-title: ParFlow user’s manual – reference: Clark, M.P. et al., 2015. Improving the representation of hydrologic processes in Earth System Models. 51(8): 5929-5956. – reference: Hengl, T. et al., 2017. SoilGrids250m: Global gridded soil information based on machine learning. 12(2), e0169748. – volume: 84 start-page: 1013 year: 2003 end-page: 1024 ident: b0070 article-title: Oleson., KW, Schlosser, CA, and Yang, Z.: the common land model publication-title: Bull. Am. Meteorol. Soc – volume: 9 start-page: 4087 year: 2016 end-page: 4095 ident: b0130 article-title: WCRP coordinated regional downscaling experiment (CORDEX): a diagnostic MIP for CMIP6 publication-title: Geosci. Model Dev. – reference: Majdalani, S., Ackerer, P.J.G., 2011. Identification of groundwater parameters using an adaptative multiscale method. 49(4): 548-559. – volume: 27 start-page: 361 year: 2004 end-page: 382 ident: b0285 article-title: A fully coupled physically-based spatially-distributed model for evaluating surface/subsurface flow publication-title: Adv. Water Resourc. – reference: Loquin, K., Dubois, D., 2010. Kriging and epistemic uncertainty: a critical discussion, Methods for Handling Imperfect Spatial Information. Springer, pp. 269-305. – reference: McDonald, M.G., Harbaugh, A.W., 1988. A modular three-dimensional finite-difference ground-water flow model. US Geological Survey. – volume: 124 start-page: 145 year: 1996 end-page: 159 ident: b0030 article-title: A parallel multigrid preconditioned conjugate gradient algorithm for groundwater flow simulations publication-title: Nucl. Sci. Eng. – reference: Simmons, C.T., Brunner, P., Therrien, R., Sudicky, E.A.J.J.o.H., 2020. Commemorating the 50th anniversary of the Freeze and Harlan (1969) Blueprint for a physically-based, digitaFilly-simulated hydrologic response model. 584: 124309. – reference: Williams III, J.L., Maxwell, R.M., Monache, L.D.J.J.o.A.i.M.E.S., 2013. Development and verification of a new wind speed forecasting system using an ensemble Kalman filter data assimilation technique in a fully coupled hydrologic and atmospheric model. 5(4): 785-800. – volume: 14 start-page: 7223 year: 2021 end-page: 7254 ident: b0280 article-title: Assessment of the ParFlow–CLM CONUS 1.0 integrated hydrologic model: evaluation of hyper-resolution water balance components across the contiguous United States publication-title: Geosci. Model Dev. – volume: 44 start-page: 892 year: 1980 end-page: 898 ident: b0410 article-title: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils publication-title: Soil Sci. Soc. Am. J. – reference: Tóth, B. et al., 2015. New generation of hydraulic pedotransfer functions for Europe. 66(1): 226-238. – reference: Therrien, R., McLaren, R., Sudicky, E., Panday, S., 2010. A three-dimensional numerical model describing fully-integrated subsurface and surface flow and solute transport. User Guide. – volume: 141 start-page: 1 year: 2015 end-page: 15 ident: b0045 article-title: Towards a high‐resolution regional reanalysis for the European CORDEX domain publication-title: Q. J. R. Meteorol. Soc. – reference: Beisman, J., 2007. Development of a parallel reactive transport model with spatially variable nitrate reduction in a floodplain aquifer, A thesis submitted to the Faculty and the Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Master of Science (Hydrology). – year: 2013 ident: b0015 article-title: Incertitudes, optimisation et fiabilité des structures publication-title: Lavoisier – reference: Niedda, M.J.W.R.R., 2004. Upscaling hydraulic conductivity by means of entropy of terrain curvature representation. 40(4). – volume: 270 start-page: 105 year: 2003 end-page: 134 ident: b0090 article-title: A global hydrological model for deriving water availability indicators: model tuning and validation publication-title: J. Hydrol. – volume: 141 start-page: 381 year: 2017 end-page: 397 ident: b0140 article-title: Evaluation of an ensemble of regional hydrological models in 12 large-scale river basins worldwide publication-title: Clim. Change – volume: 1 start-page: 318 year: 1931 end-page: 333 ident: b0295 article-title: Capillary conduction of liquids through porous mediums publication-title: Physics – reference: Shinozuka, M.J.J.o.S.E., 1983. Basic analysis of structural safety. 109(3): 721-740. – reference: Van Beek, L., Bierkens, M., 2009. The global hydrological model PCR-GLOBWB: conceptualization, parameterization and verification. Utrecht University, Utrecht, The Netherlands, 1: 25-26. – reference: Ren, D., Xue, M.J.J.o.A.M., 2004. A revised force–restore model for land surface modeling. 43(11): 1768-1782. – volume: 83 start-page: 287 year: 2002 end-page: 302 ident: b0115 article-title: Global land cover mapping from MODIS: algorithms and early results publication-title: Remote Sens. Environ. – volume: 50 start-page: 2636 year: 2014 end-page: 2656 ident: b0020 article-title: Assessing the impact of model spin-up on surface water-groundwater interactions using an integrated hydrologic model publication-title: Water Resour. Res. – volume: 14 start-page: 705 year: 1978 end-page: 712 ident: b0095 article-title: Climate, soil, and vegetation: 1. Introduction to water balance dynamics publication-title: Water Resourc. Res. – reference: Oleson, K. et al., 2013. Technical Description of version 4.5 of the Community Land Model (CLM) (NCAR Technical Note No. NCAR/TN-503+ STR). Citeseer. National Center for Atmospheric Research, PO Box, 3000: 555. – reference: Schellekens, J., 2014. OpenStreams wflow documentation release 1.0 RC1. Deltares. – start-page: 245 year: 2005 end-page: 272 ident: b0125 article-title: Flexible, integrated watershed modelling with MIKE SHE publication-title: Watershed Models – reference: Neal, J., Schumann, G., Bates, P.D.J.W.R.R., 2012. A simple model for simulating river hydraulics and floodplain inundation over large and data sparse areas. 48. – volume: 163 start-page: 765 year: 1998 end-page: 779 ident: b0305 article-title: Database-related accuracy and uncertainty of pedotransfer functions publication-title: Soil Sci – volume: 13 start-page: 1373 year: 2020 end-page: 1397 ident: b0185 article-title: Simulating coupled surface–subsurface flows with ParFlow v3. 5.0: capabilities, applications, and ongoing development of an open-source, massively parallel, integrated hydrologic model publication-title: Geosci. Model Dev. – reference: Van Dijk, A.I., Peña‐Arancibia, J.L., Wood, E.F., Sheffield, J., Beck, H.E.J.W.R.R., 2013. Global analysis of seasonal streamflow predictability using an ensemble prediction system and observations from 6192 small catchments worldwide. 49(5): 2729-2746. – volume: 15 start-page: 279 year: 2014 end-page: 299 ident: b0325 article-title: Evaluation of the parameter sensitivities of a coupled land surface hydrologic model at a critical zone observatory publication-title: J. Hydrometeorol. – year: 2019 ident: b0180 article-title: Parflow-350/parflow: ParFlow Version 3.5.0 publication-title: Zenodo – volume: 87 start-page: 61 year: 1986 end-page: 77 ident: b0010 article-title: An introduction to the European Hydrological System—Systeme Hydrologique Europeen, “SHE”, 2: structure of a physically-based, distributed modelling system publication-title: J. Hydrol. – reference: Wagner, W. et al., 2013. The ASCAT soil moisture product: A review of its specifications, validation results, and emerging applications. – volume: 1 start-page: 318 issue: 5 year: 1931 ident: 10.1016/j.jhydrol.2022.127991_b0295 article-title: Capillary conduction of liquids through porous mediums publication-title: Physics doi: 10.1063/1.1745010 – ident: 10.1016/j.jhydrol.2022.127991_b0390 doi: 10.1016/j.jhydrol.2011.12.028 – ident: 10.1016/j.jhydrol.2022.127991_b0260 doi: 10.1029/2003WR002721 – ident: 10.1016/j.jhydrol.2022.127991_b0405 doi: 10.1002/wrcr.20251 – ident: 10.1016/j.jhydrol.2022.127991_b0200 doi: 10.1007/978-3-642-14755-5_11 – start-page: 245 year: 2005 ident: 10.1016/j.jhydrol.2022.127991_b0125 article-title: Flexible, integrated watershed modelling with MIKE SHE publication-title: Watershed Models – ident: 10.1016/j.jhydrol.2022.127991_b0435 – year: 2007 ident: 10.1016/j.jhydrol.2022.127991_b0050 article-title: Local to regional hydrological model calibration for the Okavango River basin from in-situ and space borne gravity observations – volume: 38 start-page: 1389 issue: 7-8 year: 2012 ident: 10.1016/j.jhydrol.2022.127991_b0080 article-title: Global off-line evaluation of the ISBA-TRIP flood model publication-title: Clim. Dyn. doi: 10.1007/s00382-011-1054-9 – ident: 10.1016/j.jhydrol.2022.127991_b0300 doi: 10.1175/BAMS-85-3-381 – ident: 10.1016/j.jhydrol.2022.127991_b0265 doi: 10.1029/2007JG000563 – ident: 10.1016/j.jhydrol.2022.127991_b0195 doi: 10.1016/S0098-3004(00)00132-1 – ident: 10.1016/j.jhydrol.2022.127991_b0430 doi: 10.1002/jame.20051 – ident: 10.1016/j.jhydrol.2022.127991_b0175 – ident: 10.1016/j.jhydrol.2022.127991_b0370 doi: 10.1002/2013WR013807 – volume: 15 start-page: 425 issue: 2 year: 2011 ident: 10.1016/j.jhydrol.2022.127991_b0190 article-title: Developing an improved soil moisture dataset by blending passive and active microwave satellite-based retrievals publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-15-425-2011 – year: 2013 ident: 10.1016/j.jhydrol.2022.127991_b0015 article-title: Incertitudes, optimisation et fiabilité des structures publication-title: Lavoisier – ident: 10.1016/j.jhydrol.2022.127991_b0365 doi: 10.5194/hess-15-2913-2011 – volume: 21 start-page: 1117 issue: 2 year: 2017 ident: 10.1016/j.jhydrol.2022.127991_b0065 article-title: Systematic shifts in Budyko relationships caused by groundwater storage changes publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-21-1117-2017 – volume: 9 start-page: 4087 issue: 11 year: 2016 ident: 10.1016/j.jhydrol.2022.127991_b0130 article-title: WCRP coordinated regional downscaling experiment (CORDEX): a diagnostic MIP for CMIP6 publication-title: Geosci. Model Dev. doi: 10.5194/gmd-9-4087-2016 – ident: 10.1016/j.jhydrol.2022.127991_b0215 doi: 10.1111/j.1745-6584.2010.00750.x – volume: 6 start-page: 233 year: 2005 ident: 10.1016/j.jhydrol.2022.127991_b0240 article-title: Development of a coupled land surface and groundwater model publication-title: J. Hydrometeorol. doi: 10.1175/JHM422.1 – ident: 10.1016/j.jhydrol.2022.127991_b0355 doi: 10.1016/j.earscirev.2020.103487 – volume: 33 start-page: 2006 issue: 14 year: 2019 ident: 10.1016/j.jhydrol.2022.127991_b0315 article-title: Improvement of surface run-off in the hydrological model ParFlow by a scale-consistent river parameterization publication-title: Hydrol. Processes doi: 10.1002/hyp.13448 – ident: 10.1016/j.jhydrol.2022.127991_b0350 doi: 10.1016/j.jhydrol.2020.124898 – ident: 10.1016/j.jhydrol.2022.127991_b0360 doi: 10.3390/w9040289 – ident: 10.1016/j.jhydrol.2022.127991_b0415 doi: 10.1127/0941-2948/2013/0399 – volume: 33 start-page: 332 issue: 3 year: 2019 ident: 10.1016/j.jhydrol.2022.127991_b0110 article-title: Sensitivity analysis of hydraulic conductivity and Manning’s n parameters lead to new method to scale effective hydraulic conductivity across model resolutions publication-title: Hydrol. Processes doi: 10.1002/hyp.13327 – ident: 10.1016/j.jhydrol.2022.127991_b0135 doi: 10.1371/journal.pone.0169748 – volume: 27 start-page: 361 issue: 4 year: 2004 ident: 10.1016/j.jhydrol.2022.127991_b0285 article-title: A fully coupled physically-based spatially-distributed model for evaluating surface/subsurface flow publication-title: Adv. Water Resourc. doi: 10.1016/j.advwatres.2004.02.016 – ident: 10.1016/j.jhydrol.2022.127991_b0270 – ident: 10.1016/j.jhydrol.2022.127991_b0085 doi: 10.1016/j.rse.2017.07.001 – volume: 141 start-page: 381 issue: 3 year: 2017 ident: 10.1016/j.jhydrol.2022.127991_b0140 article-title: Evaluation of an ensemble of regional hydrological models in 12 large-scale river basins worldwide publication-title: Clim. Change doi: 10.1007/s10584-016-1841-8 – volume: 24 start-page: 763 issue: 7 year: 2001 ident: 10.1016/j.jhydrol.2022.127991_b0150 article-title: Newton–Krylov-multigrid solvers for large-scale, highly heterogeneous, variably saturated flow problems publication-title: Adv. Water Resourc. doi: 10.1016/S0309-1708(00)00075-0 – ident: 10.1016/j.jhydrol.2022.127991_b0205 – volume: 18 start-page: 1489 issue: 5 year: 2017 ident: 10.1016/j.jhydrol.2022.127991_b0375 article-title: Coupling groundwater, vegetation, and atmospheric processes: a comparison of two integrated models publication-title: J. Hydrometeorol. doi: 10.1175/JHM-D-16-0159.1 – ident: 10.1016/j.jhydrol.2022.127991_b0025 doi: 10.3133/ofr20071441 – volume: 533 start-page: 234 year: 2016 ident: 10.1016/j.jhydrol.2022.127991_b0155 article-title: Inter-comparison of three distributed hydrological models with respect to seasonal variability of soil moisture patterns at a small forested catchment publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2015.12.002 – ident: 10.1016/j.jhydrol.2022.127991_b0105 doi: 10.1088/1748-9326/7/4/044022 – volume: 127 start-page: 2204 issue: 9 year: 1999 ident: 10.1016/j.jhydrol.2022.127991_b0145 article-title: First- and second-order conservative remapping schemes for grids in spherical coordinates publication-title: Environ. Sci. – volume: 163 start-page: 765 issue: 10 year: 1998 ident: 10.1016/j.jhydrol.2022.127991_b0305 article-title: Database-related accuracy and uncertainty of pedotransfer functions publication-title: Soil Sci doi: 10.1097/00010694-199810000-00001 – volume: 50 start-page: 2636 issue: 3 year: 2014 ident: 10.1016/j.jhydrol.2022.127991_b0020 article-title: Assessing the impact of model spin-up on surface water-groundwater interactions using an integrated hydrologic model publication-title: Water Resour. Res. doi: 10.1002/2013WR014258 – volume: 547 start-page: 309 year: 2017 ident: 10.1016/j.jhydrol.2022.127991_b0120 article-title: High resolution modelling of soil moisture patterns with TerrSysMP: A comparison with sensor network data publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2017.01.048 – volume: 1 start-page: 1 issue: FZJ-2018-03144 year: 2018 ident: 10.1016/j.jhydrol.2022.127991_b0250 article-title: Improving soil moisture and runoff simulations over Europe using a high-resolution data-assimilation modeling framework publication-title: Hydrol. Earth Syst. Sci. Discuss. – volume: 14 start-page: 7223 issue: 12 year: 2021 ident: 10.1016/j.jhydrol.2022.127991_b0280 article-title: Assessment of the ParFlow–CLM CONUS 1.0 integrated hydrologic model: evaluation of hyper-resolution water balance components across the contiguous United States publication-title: Geosci. Model Dev. doi: 10.5194/gmd-14-7223-2021 – volume: 47 issue: 5 year: 2011 ident: 10.1016/j.jhydrol.2022.127991_b0425 article-title: Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth’s terrestrial water publication-title: Water Resourc. Res. doi: 10.1029/2010WR010090 – volume: 101 start-page: 9 issue: 2 year: 2015 ident: 10.1016/j.jhydrol.2022.127991_b0005 article-title: Model coupling for environmental flows, with applications in hydrology and coastal hydrodynamics publication-title: La Houille Blanche doi: 10.1051/lhb/20150014 – ident: 10.1016/j.jhydrol.2022.127991_b0255 doi: 10.1029/2012WR012514 – volume: 83 start-page: 287 issue: 1-2 year: 2002 ident: 10.1016/j.jhydrol.2022.127991_b0115 article-title: Global land cover mapping from MODIS: algorithms and early results publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(02)00078-0 – volume: 44 start-page: 892 issue: 5 year: 1980 ident: 10.1016/j.jhydrol.2022.127991_b0410 article-title: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1980.03615995004400050002x – ident: 10.1016/j.jhydrol.2022.127991_b0100 doi: 10.1016/j.jhydrol.2016.04.066 – ident: 10.1016/j.jhydrol.2022.127991_b0290 doi: 10.1175/JAM2161.1 – volume: 84 start-page: 1013 issue: 8 year: 2003 ident: 10.1016/j.jhydrol.2022.127991_b0070 article-title: Oleson., KW, Schlosser, CA, and Yang, Z.: the common land model publication-title: Bull. Am. Meteorol. Soc doi: 10.1175/BAMS-84-8-1013 – ident: 10.1016/j.jhydrol.2022.127991_b0320 – volume: 82 start-page: 106 year: 2015 ident: 10.1016/j.jhydrol.2022.127991_b0060 article-title: Quantitative assessment of groundwater controls across major US river basins using a multi-model regression algorithm publication-title: Adv. Water Resourc. doi: 10.1016/j.advwatres.2015.04.008 – ident: 10.1016/j.jhydrol.2022.127991_b0160 doi: 10.1016/j.advwatres.2005.08.006 – ident: 10.1016/j.jhydrol.2022.127991_b0400 – ident: 10.1016/j.jhydrol.2022.127991_b0380 doi: 10.5194/hess-19-2079-2015 – ident: 10.1016/j.jhydrol.2022.127991_b0385 – volume: 141 start-page: 1 issue: 686 year: 2015 ident: 10.1016/j.jhydrol.2022.127991_b0045 article-title: Towards a high‐resolution regional reanalysis for the European CORDEX domain publication-title: Q. J. R. Meteorol. Soc. doi: 10.1002/qj.2486 – ident: 10.1016/j.jhydrol.2022.127991_b0330 doi: 10.1061/(ASCE)0733-9445(1983)109:3(721) – volume: 13 start-page: 1373 issue: 3 year: 2020 ident: 10.1016/j.jhydrol.2022.127991_b0185 article-title: Simulating coupled surface–subsurface flows with ParFlow v3. 5.0: capabilities, applications, and ongoing development of an open-source, massively parallel, integrated hydrologic model publication-title: Geosci. Model Dev. doi: 10.5194/gmd-13-1373-2020 – year: 2019 ident: 10.1016/j.jhydrol.2022.127991_b0180 article-title: Parflow-350/parflow: ParFlow Version 3.5.0 publication-title: Zenodo – volume: 270 start-page: 105 issue: 1-2 year: 2003 ident: 10.1016/j.jhydrol.2022.127991_b0090 article-title: A global hydrological model for deriving water availability indicators: model tuning and validation publication-title: J. Hydrol. doi: 10.1016/S0022-1694(02)00283-4 – ident: 10.1016/j.jhydrol.2022.127991_b0395 doi: 10.1111/ejss.12192 – volume: 26 start-page: 345 issue: 4 year: 2017 ident: 10.1016/j.jhydrol.2022.127991_b0420 article-title: A novel convective-scale regional reanalysis COSMO-REA2: improving the representation of precipitation publication-title: Meteorologische Zeitschrift doi: 10.1127/metz/2017/0824 – volume: 51 start-page: 2188 issue: 4 year: 2015 ident: 10.1016/j.jhydrol.2022.127991_b0310 article-title: Spin-up behavior and effects of initial conditions for an integrated hydrologic model publication-title: Water Resourc. Res. doi: 10.1002/2014WR016371 – volume: 15 start-page: 279 issue: 1 year: 2014 ident: 10.1016/j.jhydrol.2022.127991_b0325 article-title: Evaluation of the parameter sensitivities of a coupled land surface hydrologic model at a critical zone observatory publication-title: J. Hydrometeorol. doi: 10.1175/JHM-D-12-0177.1 – volume: 13 start-page: 9 issue: 1 year: 1997 ident: 10.1016/j.jhydrol.2022.127991_b0035 article-title: A world dataset of derived soil properties by FAO–UNESCO soil unit for global modelling publication-title: Soil Use Manage. doi: 10.1111/j.1475-2743.1997.tb00550.x – ident: 10.1016/j.jhydrol.2022.127991_b0210 – volume: 1 start-page: 129 issue: 2009 year: 2009 ident: 10.1016/j.jhydrol.2022.127991_b0230 publication-title: ParFlow user’s manual – ident: 10.1016/j.jhydrol.2022.127991_b0055 doi: 10.1002/2015WR017096 – volume: 44 issue: 2 year: 2008 ident: 10.1016/j.jhydrol.2022.127991_b0165 article-title: Capturing the influence of groundwater dynamics on land surface processes using an integrated, distributed watershed model publication-title: Water Resourc. Res. doi: 10.1029/2007WR006004 – ident: 10.1016/j.jhydrol.2022.127991_b0340 doi: 10.1175/BAMS-D-13-00227.1 – ident: 10.1016/j.jhydrol.2022.127991_b0075 doi: 10.3133/ofr20111073 – volume: 53 start-page: 109 year: 2013 ident: 10.1016/j.jhydrol.2022.127991_b0220 article-title: A terrain-following grid transform and preconditioner for parallel, large-scale, integrated hydrologic modeling publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2012.10.001 – ident: 10.1016/j.jhydrol.2022.127991_b0345 doi: 10.1016/j.jhydrol.2019.124309 – volume: 124 start-page: 145 issue: 1 year: 1996 ident: 10.1016/j.jhydrol.2022.127991_b0030 article-title: A parallel multigrid preconditioned conjugate gradient algorithm for groundwater flow simulations publication-title: Nucl. Sci. Eng. doi: 10.13182/NSE96-A24230 – ident: 10.1016/j.jhydrol.2022.127991_b0040 – volume: 87 start-page: 61 issue: 1–2 year: 1986 ident: 10.1016/j.jhydrol.2022.127991_b0010 article-title: An introduction to the European Hydrological System—Systeme Hydrologique Europeen, “SHE”, 2: structure of a physically-based, distributed modelling system publication-title: J. Hydrol. doi: 10.1016/0022-1694(86)90115-0 – volume: 19 start-page: 4317 issue: 10 year: 2015 ident: 10.1016/j.jhydrol.2022.127991_b0335 article-title: Impacts of grid resolution on surface energy fluxes simulated with an integrated surface-groundwater flow model publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-19-4317-2015 – volume: 49 start-page: 197 year: 2019 ident: 10.1016/j.jhydrol.2022.127991_b0170 article-title: Regional hydraulic model of the Upper Rhine Graben publication-title: Adv. Geosci. doi: 10.5194/adgeo-49-197-2019 – volume: 14 start-page: 705 issue: 5 year: 1978 ident: 10.1016/j.jhydrol.2022.127991_b0095 article-title: Climate, soil, and vegetation: 1. Introduction to water balance dynamics publication-title: Water Resourc. Res. doi: 10.1029/WR014i005p00705 – ident: 10.1016/j.jhydrol.2022.127991_b0245 |
SSID | ssj0000334 |
Score | 2.430415 |
Snippet | [Display omitted]
•Scaling of Manning coefficient and permeability in hydrological models were proposed.•We investigate the impact of the scaling approach on... Accurate implementation of river interactions with subsurface water is critical in large-scale hydrologic models with a constant horizontal grid resolution... |
SourceID | hal proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 127991 |
SubjectTerms | autumn basins case studies climate change equations First Order Reliability Method France Germany hydrologic models Hydrological Modeling rivers roughness satellites saturated hydraulic conductivity Scaling River Parametrization Sciences of the Universe soil water spring summer the Upper Rhine Basin topographic slope water table winter |
Title | Improvement of soil moisture and groundwater level estimations using a scale‐consistent river parameterization for the coupled ParFlow-CLM hydrological model: A case study of the Upper Rhine Basin |
URI | https://dx.doi.org/10.1016/j.jhydrol.2022.127991 https://www.proquest.com/docview/2718239590 https://insu.hal.science/insu-03863708 |
Volume | 610 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEF616QEuiF9RfqpBcHUS765319xCRBSgVAgRqbeVvV43iVI7chKqXhCPwFPxIDwJM_5pBRKqxDGRx1lnxjOf1998w9irVPHcyTwJsHz4QKYqDYxRUYBgQnOnojz0Ncv3RE1n8v1pdLrHxl0vDNEq29zf5PQ6W7ffDNp_c7BeLKjHl_NQxZLTxoiiPHzARayiHjsYvfswPblOyELITjScDK4beQbL_nJ-mVUlvYTgvB9yHcfhv0rU_py4kn-l7LoOTe6yOy2AhFGzxntszxf32a12lvn88gH72ewT1Nt-UOawKRcrOC_RnbvKQ1JkQJ0cRXaBKLOCFZGGgKQ2mh7GDRAT_gwS2KD3_K_vPxxRaDEW8GwVkTiA1MLPiUXTtnAC4l5AHAmu3K1XPoNPSTVZlRfB-PgjNNfd5Feox-68hhE4rJ1QK9vSCsl2tl7jqT_PEfTCmwSX8JDNJm-_jKdBO60hcJLLbSCU4ZnLXaqMifAxLBReu1jqTMTDepiZ9jHJFeLzkkhEKjKnEh1FQsuEmxSPecR6RVn4xww0qcLnKRdCeJkZbRCnOLRMfGp0LvUhk52DrGulzGmixsp2nLWlbf1qya-28esh61-ZrRstj5sMTOd9-0dQWqw3N5m-xGi5-hkS8Z6Oji01GNihMEroofmKR73oosnibU3vapLCl7uN5YgZMJqjePjk_xfxlN2mTw27-Bnrbaudf44Yapsesf3-t_CovVN-A1PbHwE |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bjtMwELWW5WF5QVzFch0Er-nFdmyHt1JRFeiuENpK-2YljkNbdZMobVntC-IT-Co-hC9hJpddgYRW4jX1JE7HmTlxzpxh7HWieOZkFgeYPnwgE5UExqgwQDChuVNhNvQ1y_dYTefyw2l4usfGXS0M0Srb2N_E9Dpat0f67b_ZL5dLqvHlfKgiyWljRFEcvilDoYnX1_t2xfMYCCE7yXAaflXG01_1VouLtCroEwTnvSHXUTT8V4K6sSCm5F8Bu85CkzvsdgsfYdTM8C7b8_k9dtB2Ml9c3Gc_m12CetMPigw2xXINZwU6c1d5iPMUqI4jT88RY1awJsoQkNBGU8G4AeLBf4EYNug7_-v7D0cEWlwJeLaKKBxAWuFnxKFpCzgBUS8gigRX7Mq1T-FTXE3WxXkwnh1Bc99NdIW66c4bGIHDzAm1ri3NkGznZYmn_rxAyAtvY5zCAzafvDsZT4O2V0PgJJfbQCjDU5e5RBkT4kvYUHjtIqlTEQ3qVmbaRyRWiG9LIhaJSJ2KdYjukjE3CY55yPbzIvePGGjShM8SLoTwMjXaIEpxaBn7xOhM6kMmOwdZ1wqZUz-Nte0Yayvb-tWSX23j10PWuzQrGyWP6wxM5337x5K0mG2uM32Fq-XyMiThPR3NLJUX2IEwSuiB-YqjXnaryeJDTV9q4twXu43liBi4iMJo8Pj_J_GCHUxPjmZ29v744xN2i35peMZP2f622vlniKa2yfP6afkNzYwfzA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improvement+of+soil+moisture+and+groundwater+level+estimations+using+a+scale%E2%80%91consistent+river+parameterization+for+the+coupled+ParFlow-CLM+hydrological+model%3A+A+case+study+of+the+Upper+Rhine+Basin&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Soltani%2C+Samira+Sadat&rft.au=Fahs%2C+Marwan&rft.au=Bitar%2C+Ahmad+Al&rft.au=Ataie-Ashtiani%2C+Behzad&rft.date=2022-07-01&rft.pub=Elsevier&rft.issn=0022-1694&rft.eissn=1879-2707&rft.volume=610&rft_id=info:doi/10.1016%2Fj.jhydrol.2022.127991&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_insu_03863708v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon |