Microbial Electrosynthesis Using 3D Bioprinting of Sporomusa ovata on Copper, Stainless-Steel, and Titanium Cathodes for CO2 Reduction

Acetate can be produced from carbon dioxide (CO2) and electricity using bacteria at the cathode of microbial electrosynthesis (MES). This process relies on electrolytically-produced hydrogen (H2). However, the low solubility of H2 can limit the process. Using metal cathodes to generate H2 at a high...

Full description

Saved in:
Bibliographic Details
Published inFermentation (Basel) Vol. 10; no. 1; p. 34
Main Authors Bajracharya, Suman, Krige, Adolf, Matsakas, Leonidas, Rova, Ulrika, Christakopoulos, Paul
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Acetate can be produced from carbon dioxide (CO2) and electricity using bacteria at the cathode of microbial electrosynthesis (MES). This process relies on electrolytically-produced hydrogen (H2). However, the low solubility of H2 can limit the process. Using metal cathodes to generate H2 at a high rate can improve MES. Immobilizing bacteria on the metal cathode can further proliferate the H2 availability to the bacteria. In this study, we investigated the performances of 3D bioprinting of Sporomusa ovata on three metal meshes—copper (Cu), stainless steel (SS), and titanium (Ti), when used individually as a cathode in MES. Bacterial cells were immobilized on the metal using a 3D bioprinter with alginate hydrogel ink. The bioprinted Ti mesh exhibited higher acetate production (53 ± 19 g/m2/d) at −0.8 V vs. Ag/AgCl as compared to other metal cathodes. More than 9 g/L of acetate was achieved with bioprinted Ti, and the least amount was obtained with bioprinted Cu. Although all three metals are known for catalyzing H2 evolution, the lower biocompatibility and chemical stability of Cu hampered its performance. Stable and biocompatible Ti supported the bioprinted S. ovata effectively. Bioprinting of synthetic biofilm on H2-evolving metal cathodes can provide high-performing and robust biocathodes for further application of MES.
AbstractList Acetate can be produced from carbon dioxide (CO₂) and electricity using bacteria at the cathode of microbial electrosynthesis (MES). This process relies on electrolytically-produced hydrogen (H₂). However, the low solubility of H₂ can limit the process. Using metal cathodes to generate H₂ at a high rate can improve MES. Immobilizing bacteria on the metal cathode can further proliferate the H₂ availability to the bacteria. In this study, we investigated the performances of 3D bioprinting of Sporomusa ovata on three metal meshes—copper (Cu), stainless steel (SS), and titanium (Ti), when used individually as a cathode in MES. Bacterial cells were immobilized on the metal using a 3D bioprinter with alginate hydrogel ink. The bioprinted Ti mesh exhibited higher acetate production (53 ± 19 g/m²/d) at −0.8 V vs. Ag/AgCl as compared to other metal cathodes. More than 9 g/L of acetate was achieved with bioprinted Ti, and the least amount was obtained with bioprinted Cu. Although all three metals are known for catalyzing H₂ evolution, the lower biocompatibility and chemical stability of Cu hampered its performance. Stable and biocompatible Ti supported the bioprinted S. ovata effectively. Bioprinting of synthetic biofilm on H₂-evolving metal cathodes can provide high-performing and robust biocathodes for further application of MES.
Acetate can be produced from carbon dioxide (CO2) and electricity using bacteria at the cathode of microbial electrosynthesis (MES). This process relies on electrolytically-produced hydrogen (H2). However, the low solubility of H2 can limit the process. Using metal cathodes to generate H2 at a high rate can improve MES. Immobilizing bacteria on the metal cathode can further proliferate the H2 availability to the bacteria. In this study, we investigated the performances of 3D bioprinting of Sporomusa ovata on three metal meshes—copper (Cu), stainless steel (SS), and titanium (Ti), when used individually as a cathode in MES. Bacterial cells were immobilized on the metal using a 3D bioprinter with alginate hydrogel ink. The bioprinted Ti mesh exhibited higher acetate production (53 ± 19 g/m2/d) at −0.8 V vs. Ag/AgCl as compared to other metal cathodes. More than 9 g/L of acetate was achieved with bioprinted Ti, and the least amount was obtained with bioprinted Cu. Although all three metals are known for catalyzing H2 evolution, the lower biocompatibility and chemical stability of Cu hampered its performance. Stable and biocompatible Ti supported the bioprinted S. ovata effectively. Bioprinting of synthetic biofilm on H2-evolving metal cathodes can provide high-performing and robust biocathodes for further application of MES.
Author Krige, Adolf
Bajracharya, Suman
Matsakas, Leonidas
Christakopoulos, Paul
Rova, Ulrika
Author_xml – sequence: 1
  givenname: Suman
  orcidid: 0000-0003-1168-1430
  surname: Bajracharya
  fullname: Bajracharya, Suman
– sequence: 2
  givenname: Adolf
  surname: Krige
  fullname: Krige, Adolf
– sequence: 3
  givenname: Leonidas
  orcidid: 0000-0002-3687-6173
  surname: Matsakas
  fullname: Matsakas, Leonidas
– sequence: 4
  givenname: Ulrika
  orcidid: 0000-0001-7500-2367
  surname: Rova
  fullname: Rova, Ulrika
– sequence: 5
  givenname: Paul
  surname: Christakopoulos
  fullname: Christakopoulos, Paul
BookMark eNp9UdFqFTEQXaSCtfYPfAj44kNXs0k22fima9VCpeBtn8NsdtLmsptck2yhP-B3u9erIEWEMJkZzjnM4TyvjkIMWFUvG_qGc03fOkwzhgLFx9BQuj4unlTHjDdN3Uqujv7qn1WnOW8ppYwJSRt-XP346m2Kg4eJnE9oS4r5IZQ7zD6Tm-zDLeEfyQcfd8mHsh-jI5tdTHFeMpB4D2WtgfRxt8N0RjYFfJgw53pTEKczAmEk175A8MtMeih3ccRMXEykv2LkG46L3R_-onrqYMp4-vs_qW4-nV_3X-rLq88X_fvL2gomSs1aq11rO9tJPbbcCtWqrlWDVoMFpRxwxRTr2pFJjaJTg9NIpbaKMtUMivKT6uKgO0bYmtXUDOnBRPDm1yKmWwOpeDuhAd66kaIANowCkWknByFG65jqALBZtV4ftHYpfl8wFzP7bHGaIGBcsuFUUC65lnKFvnoE3cYlhdWpYbrppBJS8RX17oBaE8k5oTPWH3ItCfxkGmr2iZt_Jb6SxSPyH3f_pf0EeqK2ZQ
CitedBy_id crossref_primary_10_1016_j_biortech_2024_131381
crossref_primary_10_1007_s11783_025_1921_y
crossref_primary_10_1039_D4CB00099D
crossref_primary_10_1080_10643389_2024_2382498
Cites_doi 10.1016/j.bioelechem.2019.03.011
10.3390/catal9020166
10.3389/fmicb.2022.913311
10.1128/AEM.02642-10
10.1016/j.jece.2022.108067
10.1038/s41598-017-09841-7
10.1016/j.biortech.2022.127147
10.1002/cplu.202100119
10.1016/j.est.2021.102844
10.1007/s11696-019-00774-1
10.1039/C2EE23350A
10.1016/j.elecom.2009.11.017
10.1002/mawe.19910221007
10.1042/BST20120111
10.3389/fenrg.2018.00007
10.1016/S0013-4686(01)00899-4
10.1016/j.watres.2021.117306
10.1016/j.biteb.2019.100284
10.1016/j.electacta.2014.02.111
10.1016/j.copbio.2015.02.014
10.1002/elan.201600270
10.1016/j.bioflm.2022.100077
10.1016/j.apenergy.2020.115775
10.1038/nrmicro2422
10.1016/j.biortech.2018.02.129
10.1128/AEM.02766-10
10.1016/j.jece.2021.106189
10.1002/cctc.202000678
10.1039/C6TA02036D
10.3389/fmicb.2017.00756
10.1016/S0013-4686(02)00841-1
10.1016/j.ymben.2018.03.015
10.1016/j.joule.2020.03.001
10.1128/AEM.02401-12
10.1039/C8TA05322G
10.1016/j.electacta.2016.09.063
10.1016/j.copbio.2019.08.014
10.1039/C4TA03101F
10.1116/1.580010
10.1016/j.chemosphere.2021.132188
10.1007/10_2017_17
10.1016/j.jpowsour.2019.227306
10.3389/fenrg.2018.00072
10.1016/j.biomaterials.2012.01.007
10.1039/C5EE00866B
10.1128/mBio.00103-10
10.1038/srep16168
10.1039/C7FD00050B
10.1039/D1CY02151F
10.1016/j.watres.2019.04.053
10.1039/c3cp52697f
ContentType Journal Article
Copyright 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7S9
L.6
DOA
DOI 10.3390/fermentation10010034
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2311-5637
ExternalDocumentID oai_doaj_org_article_a35fd0e4a2bd4ee29f6b44dcf278aae1
10_3390_fermentation10010034
GeographicLocations Germany
GeographicLocations_xml – name: Germany
GroupedDBID 8FE
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
ITC
LK8
M7P
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PROAC
ABUWG
AZQEC
DWQXO
GNUQQ
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c424t-25c9f5c8c869d53c4757857b97bca77fa3727285d269e487bf9e069c70271b703
IEDL.DBID BENPR
ISSN 2311-5637
IngestDate Wed Aug 27 01:30:57 EDT 2025
Fri Jul 11 03:57:57 EDT 2025
Fri Jul 25 10:39:58 EDT 2025
Thu Apr 24 23:01:29 EDT 2025
Tue Jul 01 01:06:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c424t-25c9f5c8c869d53c4757857b97bca77fa3727285d269e487bf9e069c70271b703
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1168-1430
0000-0002-3687-6173
0000-0001-7500-2367
OpenAccessLink https://www.proquest.com/docview/2918674673?pq-origsite=%requestingapplication%
PQID 2918674673
PQPubID 2055414
ParticipantIDs doaj_primary_oai_doaj_org_article_a35fd0e4a2bd4ee29f6b44dcf278aae1
proquest_miscellaneous_3040363966
proquest_journals_2918674673
crossref_citationtrail_10_3390_fermentation10010034
crossref_primary_10_3390_fermentation10010034
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Fermentation (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Aryal (ref_9) 2018; 6
Desloover (ref_37) 2012; 40
ref_14
ref_12
Nie (ref_19) 2013; 15
Lee (ref_27) 2018; 259
Tashiro (ref_51) 2018; 47
ref_17
Chatzipanagiotou (ref_23) 2021; 86
Liu (ref_41) 2021; 41
Khalil (ref_43) 1991; 22
Krige (ref_16) 2021; 9
Munoz (ref_42) 2010; 12
Ohmi (ref_46) 1998; 14
Wang (ref_44) 2019; 444
Bajracharya (ref_15) 2017; 202
ref_24
Zhang (ref_7) 2013; 6
Bian (ref_20) 2018; 6
Marshall (ref_10) 2012; 78
Su (ref_18) 2020; 4
ref_29
Chatzipanagiotou (ref_36) 2022; 12
Guo (ref_22) 2015; 33
Pawar (ref_38) 2012; 33
Busalmen (ref_49) 2002; 47
Tremblay (ref_6) 2015; 5
Rabaey (ref_3) 2020; 62
Grass (ref_34) 2011; 77
Olsson (ref_39) 2003; 48
Shakeel (ref_40) 2022; 10
Zeradjanin (ref_32) 2016; 28
ref_31
Chen (ref_26) 2016; 4
Nevin (ref_2) 2011; 77
Baudler (ref_48) 2015; 8
Nevin (ref_1) 2010; 1
Jourdin (ref_13) 2018; 6
Jiang (ref_50) 2019; 159
Aryal (ref_28) 2016; 217
Jourdin (ref_4) 2020; 279
Jourdin (ref_11) 2014; 2
Bajracharya (ref_21) 2022; 287
(ref_47) 2019; 73
Rosenbaum (ref_25) 2019; Volume 167
Aryal (ref_33) 2019; 128
Chatzipanagiotou (ref_35) 2020; 12
Aryal (ref_8) 2017; 7
Rabaey (ref_30) 2010; 8
Wood (ref_5) 2021; 201
Sharma (ref_45) 2014; 140
References_xml – volume: 128
  start-page: 83
  year: 2019
  ident: ref_33
  article-title: Increased carbon dioxide reduction to acetate in a microbial electrosynthesis reactor with a reduced graphene oxide-coated copper foam composite cathode
  publication-title: Bioelectrochemistry
  doi: 10.1016/j.bioelechem.2019.03.011
– ident: ref_31
  doi: 10.3390/catal9020166
– ident: ref_24
  doi: 10.3389/fmicb.2022.913311
– volume: 77
  start-page: 2882
  year: 2011
  ident: ref_2
  article-title: Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.02642-10
– volume: 10
  start-page: 108067
  year: 2022
  ident: ref_40
  article-title: Enhanced production and utilization of biosynthesized acetate using a packed-fluidized bed cathode based MES system
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2022.108067
– volume: 7
  start-page: 9107
  year: 2017
  ident: ref_8
  article-title: Freestanding and flexible graphene papers as bioelectrochemical cathode for selective and efficient CO2 conversion
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-09841-7
– ident: ref_17
  doi: 10.1016/j.biortech.2022.127147
– volume: 86
  start-page: 763
  year: 2021
  ident: ref_23
  article-title: Catalytic Cooperation between a Copper Oxide Electrocatalyst and a Microbial Community for Microbial Electrosynthesis
  publication-title: Chempluschem
  doi: 10.1002/cplu.202100119
– volume: 41
  start-page: 102844
  year: 2021
  ident: ref_41
  article-title: Industrial stainless steel meshes for efficient electrocatalytic hydrogen evolution
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2021.102844
– volume: 73
  start-page: 2103
  year: 2019
  ident: ref_47
  article-title: New trends in corrosion protection of copper
  publication-title: Chem. Pap.
  doi: 10.1007/s11696-019-00774-1
– volume: 6
  start-page: 217
  year: 2013
  ident: ref_7
  article-title: Improved cathode materials for microbial electrosynthesis
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C2EE23350A
– volume: 12
  start-page: 183
  year: 2010
  ident: ref_42
  article-title: Combining phosphate species and stainless steel cathode to enhance hydrogen evolution in microbial electrolysis cell (MEC)
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2009.11.017
– volume: 22
  start-page: 390
  year: 1991
  ident: ref_43
  article-title: Hydrogen evolution reaction on Titanium and oxide-covered titanium electrodes
  publication-title: Materwiss. Werksttech.
  doi: 10.1002/mawe.19910221007
– volume: 40
  start-page: 1233
  year: 2012
  ident: ref_37
  article-title: Operational and technical considerations for microbial electrosynthesis
  publication-title: Biochem. Soc. Trans.
  doi: 10.1042/BST20120111
– volume: 6
  start-page: 7
  year: 2018
  ident: ref_13
  article-title: Critical Biofilm Growth throughout Unmodified Carbon Felts Allows Continuous Bioelectrochemical Chain Elongation from CO2 up to Caproate at High Current Density
  publication-title: Front. Energy Res.
  doi: 10.3389/fenrg.2018.00007
– volume: 47
  start-page: 1857
  year: 2002
  ident: ref_49
  article-title: New evidences on the catalase mechanism of microbial corrosion
  publication-title: Electrochim. Acta
  doi: 10.1016/S0013-4686(01)00899-4
– volume: 201
  start-page: 117306
  year: 2021
  ident: ref_5
  article-title: Strategies to improve viability of a circular carbon bioeconomy—A techno-economic review of microbial electrosynthesis and gas fermentation
  publication-title: Water Res.
  doi: 10.1016/j.watres.2021.117306
– ident: ref_12
  doi: 10.1016/j.biteb.2019.100284
– volume: 140
  start-page: 191
  year: 2014
  ident: ref_45
  article-title: A critical revisit of the key parameters used to describe microbial electrochemical systems
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2014.02.111
– volume: 33
  start-page: 149
  year: 2015
  ident: ref_22
  article-title: Engineering electrodes for microbial electrocatalysis
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2015.02.014
– volume: 28
  start-page: 2256
  year: 2016
  ident: ref_32
  article-title: A Critical Review on Hydrogen Evolution Electrocatalysis: Re-exploring the Volcano-relationship
  publication-title: Electroanalysis
  doi: 10.1002/elan.201600270
– ident: ref_29
  doi: 10.1016/j.bioflm.2022.100077
– volume: 279
  start-page: 115775
  year: 2020
  ident: ref_4
  article-title: Techno-economic assessment of microbial electrosynthesis from CO2 and/or organics: An interdisciplinary roadmap towards future research and application
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2020.115775
– volume: 8
  start-page: 706
  year: 2010
  ident: ref_30
  article-title: Microbial electrosynthesis—Revisiting the electrical route for microbial production.pdf
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro2422
– volume: 259
  start-page: 128
  year: 2018
  ident: ref_27
  article-title: Co-culture-based biological carbon monoxide conversion by Citrobacter amalonaticus Y19 and Sporomusa ovata via a reducing-equivalent transfer mediator
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2018.02.129
– volume: 77
  start-page: 1541
  year: 2011
  ident: ref_34
  article-title: Metallic Copper as an Antimicrobial Surface
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.02766-10
– volume: 9
  start-page: 106189
  year: 2021
  ident: ref_16
  article-title: 3D bioprinting on cathodes in microbial electrosynthesis for increased acetate production rate using Sporomusa ovata
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2021.106189
– volume: 12
  start-page: 3900
  year: 2020
  ident: ref_35
  article-title: CO2 Conversion by Combining a Copper Electrocatalyst and Wild-type Microorganisms
  publication-title: ChemCatChem
  doi: 10.1002/cctc.202000678
– volume: 4
  start-page: 8395
  year: 2016
  ident: ref_26
  article-title: Electrosynthesis of acetate from CO2 by a highly structured biofilm assembled with reduced graphene oxide–tetraethylene pentamine
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA02036D
– ident: ref_14
  doi: 10.3389/fmicb.2017.00756
– volume: 48
  start-page: 1093
  year: 2003
  ident: ref_39
  article-title: Passive films on stainless steels—Chemistry, structure and growth
  publication-title: Electrochim. Acta
  doi: 10.1016/S0013-4686(02)00841-1
– volume: 47
  start-page: 211
  year: 2018
  ident: ref_51
  article-title: Electrical-biological hybrid system for CO2 reduction
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2018.03.015
– volume: 4
  start-page: 800
  year: 2020
  ident: ref_18
  article-title: Close-Packed Nanowire-Bacteria Hybrids for Efficient Solar-Driven CO2 Fixation
  publication-title: Joule
  doi: 10.1016/j.joule.2020.03.001
– volume: 78
  start-page: 8412
  year: 2012
  ident: ref_10
  article-title: Electrosynthesis of commodity chemicals by an autotrophic microbial community
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.02401-12
– volume: 6
  start-page: 17201
  year: 2018
  ident: ref_20
  article-title: Porous Nickel Hollow Fiber Cathodes Coated with CNTs for Efficient Microbial Electrosynthesis of Acetate from CO2 using Sporomusa ovata
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA05322G
– volume: 217
  start-page: 117
  year: 2016
  ident: ref_28
  article-title: Enhanced microbial electrosynthesis with three-dimensional graphene functionalized cathodes fabricated via solvothermal synthesis
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.09.063
– volume: 62
  start-page: 48
  year: 2020
  ident: ref_3
  article-title: Microbial electrosynthesis from CO2: Forever a promise?
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2019.08.014
– volume: 2
  start-page: 13093
  year: 2014
  ident: ref_11
  article-title: A novel carbon nanotube modified scaffold as an efficient biocathode material for improved microbial electrosynthesis
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA03101F
– volume: 14
  start-page: 2505
  year: 1998
  ident: ref_46
  article-title: Formation of chromium oxide on 316L austenitic stainless steel
  publication-title: J. Vac. Sci. Technol. A Vac. Surf. Film.
  doi: 10.1116/1.580010
– volume: 287
  start-page: 132188
  year: 2022
  ident: ref_21
  article-title: Dual cathode configuration and headspace gas recirculation for enhancing microbial electrosynthesis using Sporomusa ovata
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.132188
– volume: Volume 167
  start-page: 181
  year: 2019
  ident: ref_25
  article-title: Microbial electrosynthesis I: Pure and defined mixed culture engineering
  publication-title: Advances in Biochemical Engineering/Biotechnology
  doi: 10.1007/10_2017_17
– volume: 444
  start-page: 227306
  year: 2019
  ident: ref_44
  article-title: Microbial community development on different cathode metals in a bioelectrolysis enhanced methane production system
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2019.227306
– volume: 6
  start-page: 72
  year: 2018
  ident: ref_9
  article-title: Highly Conductive Poly(3,4-ethylenedioxythiophene) Polystyrene Sulfonate Polymer Coated Cathode for the Microbial Electrosynthesis of Acetate from Carbon Dioxide
  publication-title: Front. Energy Res.
  doi: 10.3389/fenrg.2018.00072
– volume: 33
  start-page: 3279
  year: 2012
  ident: ref_38
  article-title: Alginate derivatization: A review of chemistry, properties and applications
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2012.01.007
– volume: 8
  start-page: 2048
  year: 2015
  ident: ref_48
  article-title: Does it have to be carbon? Metal anodes in microbial fuel cells and related bioelectrochemical systems
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE00866B
– volume: 1
  start-page: e00103-10
  year: 2010
  ident: ref_1
  article-title: Microbial Electrosynthesis: Feeding Microbes Electricity to Convert Carbon Dioxide and Water to Multicarbon Extracellular Organic
  publication-title: MBio
  doi: 10.1128/mBio.00103-10
– volume: 5
  start-page: 16168
  year: 2015
  ident: ref_6
  article-title: Adaptation of the autotrophic acetogen Sporomusa ovata to methanol accelerates the conversion of CO2 to organic products
  publication-title: Sci. Rep.
  doi: 10.1038/srep16168
– volume: 202
  start-page: 433
  year: 2017
  ident: ref_15
  article-title: Bioelectrochemical conversion of CO2 to chemicals: CO2 as a next generation feedstock for electricity-driven bioproduction in batch and continuous modes
  publication-title: Faraday Discuss.
  doi: 10.1039/C7FD00050B
– volume: 12
  start-page: 2500
  year: 2022
  ident: ref_36
  article-title: Concentration-dependent effects of nickel doping on activated carbon biocathodes
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/D1CY02151F
– volume: 159
  start-page: 87
  year: 2019
  ident: ref_50
  article-title: Zinc: A promising material for electrocatalyst-assisted microbial electrosynthesis of carboxylic acids from carbon dioxide
  publication-title: Water Res.
  doi: 10.1016/j.watres.2019.04.053
– volume: 15
  start-page: 14290
  year: 2013
  ident: ref_19
  article-title: Improved cathode for high efficient microbial-catalyzed reduction in microbial electrosynthesis cells
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c3cp52697f
SSID ssj0002246013
Score 2.3182878
Snippet Acetate can be produced from carbon dioxide (CO2) and electricity using bacteria at the cathode of microbial electrosynthesis (MES). This process relies on...
Acetate can be produced from carbon dioxide (CO₂) and electricity using bacteria at the cathode of microbial electrosynthesis (MES). This process relies on...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 34
SubjectTerms 3-D printers
acetates
Acetic acid
alginates
Alginic acid
Bacteria
biocathodes
Biocompatibility
biofilm
Biofilms
bioprinting
Carbon dioxide
Cathodes
CO2 reduction
Copper
corrosion-resistance
electricity
Electrodes
Electrons
electrosynthesis
fermentation
Gases
Heavy metals
hydrogels
Hydrogen
hydrogen evolution
metal-biocathode
microbial electrosynthesis
Microorganisms
Productivity
Reactors
Silver chloride
solubility
Sporomusa ovata
Stainless steel
Titanium
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlp_ZQ-qTbJEWFHiOy1tM-JtuEUEgLTQK5GT1G4LKxl3j30D_Q390Z21m2tJBLLz7YI2NrRjPf6PENY5-SKfIc5lkkY7PQUSXhizIIhzkzhmtncqIDzpdf7cWN_nJrbndKfdGesJEeeOy4Y69QfA7ay5A0gKyyDVqnmKUrvYch8cGYt5NM_RhIXTRmGmo8K6cwrz_O6Oim0zwt8Q4RMcsfsWig7P_LIw9h5vwFez7hQ34yftdL9gTaV-zZDmvga_brshnYk1DsbCxi0_9sEcf1Tc-HHQBcfeanTUdTdrSpmXeZUzHz7m7Te041UPHa8kW3WsH9Eb-iyYElOjxxtQZYHnHfJn7dIGhsNnecTgh2CXqO4JYvvkn-nbhe6ffesJvzs-vFhZjKKYiopV4LaWKVTSxjaatkVNREZW9cqFyI3rnsFS3KliZJWwHmMSFXMLdVdJi5FgE9w1u213YtvGPc29JhWEN4BlHHmIO3RSw0ZHwbtgozph46to4T1ziVvFjWmHOQOup_qWPGxLbVauTaeET-lHS2lSWm7OEG2k892U_9mP3M2MGDxutp-Pa1rIjnD2OImrGP28c48Gg1xbfQbfpaoftTiO-sff8_vmOfPZWIl8bZnQO2t77fwCHinXX4MJj2b0CoA-8
  priority: 102
  providerName: Directory of Open Access Journals
Title Microbial Electrosynthesis Using 3D Bioprinting of Sporomusa ovata on Copper, Stainless-Steel, and Titanium Cathodes for CO2 Reduction
URI https://www.proquest.com/docview/2918674673
https://www.proquest.com/docview/3040363966
https://doaj.org/article/a35fd0e4a2bd4ee29f6b44dcf278aae1
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9NAEF5BeoED4ilCS7VIHLtqvC_bJ0RCqgqpBfUh9WbtE1lK7TRODv0D_G5m7E0AgeDig71ryZ6dmW9md74h5L1XWZyESWRe6cikE56ZrLAsh5gZ3HWuoscC57NzfXotP9-om5Rw69Kxyq1N7A21bx3myI95idRroNbiw_KOYdco3F1NLTQekj0wwUUxInvT-fnXi12WBenSAOQMNXMC4vvjCAYvVfU0yD-EBC2_-aSeuv8Py9y7m5On5EnCifTjINhn5EFonpPHv7AHviDfz-qeRQmGzYdmNt19A3iuqzvanwSg4hOd1i2m7vBwM20jxabm7e2mMxR7ocK1obN2uQyrI3qJSYIFGD52uQ5hcURN4-lVDeCx3txSrBRsfegogFw6-8LpBXK-4ue9JNcn86vZKUttFZiTXK4ZV66MyhWu0KVXwkmktFe5LXPrTJ5HI3BztlCe6zJAPGNjGSa6dDlEsJkFC_GKjJq2Ca8JNbrIwb0BTAtOOhet0ZnLZIjwNphlx0Rsf2zlEuc4tr5YVBB7oDiqv4ljTNhu1nLg3PjP-CnKbDcWGbP7G-3qW5UUsDIClt0kSMOtlyHwMmorpXeR54UxIRuTg63Eq6TGXfVz0Y3Ju91jUEDcVTFNaDddJcAMCsB5Wr_59yv2ySMOiGjI3xyQ0Xq1CW8B0aztYVq2h31G4Aexfvvp
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6V9AAcUHmJQCmLBLdatXfXa_uAEElTpbQJqE2l3sx6H8hSaoc4Eeof4OfwG5nxI4BAcOrFB3u9kj2vb2d3viHklQkD51vfeSaUzhOaG08FceZFsGaGcB2FzmCB82Qqxxfi_WV4uUW-d7UweKyy84m1ozalxhz5AUuQeg3Mmr9dfPGwaxTurnYtNBq1OLHXX2HJVr05PgT5vmbsaDQbjr22q4CnBRMrj4U6caGOdSwTE3ItkNE9jLIkyrSKIqc47k3GoWEysQDnM5dYXyY6ggVckIGBwLy3yLbg0mc9sj0YTT-ebbI6SM8GoKqp0eM88Q8cONi2iqhAviMkhPktBtatAv6IBHV4O9oh91pcSt81inSfbNniAbn7C1vhQ_JtktesTTBs1DTPqa4LwI9VXtH65AHlh3SQl5gqxMPUtHQUm6iXV-tKUey9CteCDsvFwi736TkmJebgaL3zlbXzfaoKQ2c5gNV8fUWxMrE0tqIAqunwA6NnyDGLn_eIXNzID39MekVZ2CeEKhlHEE4BFlottHaZkoEOhHUwG7yV9QnvfmyqW45zbLUxT2Gtg-JI_yaOPvE2by0ajo__jB-gzDZjkaG7vlEuP6etwaeKg5r7ViiWGWEtS5zMhDDasShWygZ9sttJPG3dRpX-VPI-ebl5DAaPuziqsOW6Sjm4XQ64Usqn_57iBbk9nk1O09Pj6ckzcocBGmtyR7ukt1qu7XNAU6tsr1VhSj7dtNX8ANGONi4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbhNBEG0FR0JwQGEThhAaCW4Zeaa7ZzsghDclhJgoi5Tb0CsayZkxHlsoP8BH8XVUzWJAIDjl4oPd05KntlfVXa8IeWXCwPnWd54JI-cJzY0ng0R5MeTMEK7j0BlscD6eRQcX4v1leLlFvne9MHitsvOJtaM2pcYa-YClSL0GZs0Hrr0WcTKevl188XCCFJ60duM0GhU5stdfIX2r3hyOQdavGZtOzkcHXjthwNOCiZXHQp26UCc6iVITci2Q3T2MVRorLePYSY7nlEloWJRagPbKpdaPUh1DMhcoMBbY9xbZjjEr6pHt4WR2crqp8CBVGwCspl-P89QfOHC2bUdRgdxHSA7zWzysxwb8ERXqUDfdIfdajErfNUp1n2zZ4gG5-wtz4UPy7TivGZxg2aQZpFNdF4Alq7yi9S0Eysd0mJdYNsSL1bR0FAeql1frSlKcwwqfBR2Vi4Vd7tMzLFDMwel6Zytr5_tUFoae5wBc8_UVxS7F0tiKAsCmo4-MniLfLP69R-TiRl74Y9IrysI-IVRGSQyhFSCi1UJrp2QU6EBYB7vBU6pPePdiM93ynePYjXkGeQ-KI_ubOPrE2zy1aPg-_rN-iDLbrEW27vqLcvk5a40_kxxU3rdCMmWEtSx1kRLCaMfiREob9MluJ_GsdSFV9lPh--Tl5mcwfjzRkYUt11XGwQVzwJhR9PTfW7wgt8Fasg-Hs6Nn5A4DYNaUkXZJb7Vc2-cArFZqr9VgSj7dtNH8APZrOmM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microbial+Electrosynthesis+Using+3D+Bioprinting+of+Sporomusa+ovata+on+Copper%2C+Stainless-Steel%2C+and+Titanium+Cathodes+for+CO2+Reduction&rft.jtitle=Fermentation+%28Basel%29&rft.au=Bajracharya%2C+Suman&rft.au=Krige%2C+Adolf&rft.au=Matsakas%2C+Leonidas&rft.au=Rova%2C+Ulrika&rft.date=2024-01-01&rft.issn=2311-5637&rft.eissn=2311-5637&rft.volume=10&rft.issue=1&rft.spage=34&rft_id=info:doi/10.3390%2Ffermentation10010034&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_fermentation10010034
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2311-5637&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2311-5637&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2311-5637&client=summon