Microbial Electrosynthesis Using 3D Bioprinting of Sporomusa ovata on Copper, Stainless-Steel, and Titanium Cathodes for CO2 Reduction
Acetate can be produced from carbon dioxide (CO2) and electricity using bacteria at the cathode of microbial electrosynthesis (MES). This process relies on electrolytically-produced hydrogen (H2). However, the low solubility of H2 can limit the process. Using metal cathodes to generate H2 at a high...
Saved in:
Published in | Fermentation (Basel) Vol. 10; no. 1; p. 34 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.01.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Acetate can be produced from carbon dioxide (CO2) and electricity using bacteria at the cathode of microbial electrosynthesis (MES). This process relies on electrolytically-produced hydrogen (H2). However, the low solubility of H2 can limit the process. Using metal cathodes to generate H2 at a high rate can improve MES. Immobilizing bacteria on the metal cathode can further proliferate the H2 availability to the bacteria. In this study, we investigated the performances of 3D bioprinting of Sporomusa ovata on three metal meshes—copper (Cu), stainless steel (SS), and titanium (Ti), when used individually as a cathode in MES. Bacterial cells were immobilized on the metal using a 3D bioprinter with alginate hydrogel ink. The bioprinted Ti mesh exhibited higher acetate production (53 ± 19 g/m2/d) at −0.8 V vs. Ag/AgCl as compared to other metal cathodes. More than 9 g/L of acetate was achieved with bioprinted Ti, and the least amount was obtained with bioprinted Cu. Although all three metals are known for catalyzing H2 evolution, the lower biocompatibility and chemical stability of Cu hampered its performance. Stable and biocompatible Ti supported the bioprinted S. ovata effectively. Bioprinting of synthetic biofilm on H2-evolving metal cathodes can provide high-performing and robust biocathodes for further application of MES. |
---|---|
AbstractList | Acetate can be produced from carbon dioxide (CO₂) and electricity using bacteria at the cathode of microbial electrosynthesis (MES). This process relies on electrolytically-produced hydrogen (H₂). However, the low solubility of H₂ can limit the process. Using metal cathodes to generate H₂ at a high rate can improve MES. Immobilizing bacteria on the metal cathode can further proliferate the H₂ availability to the bacteria. In this study, we investigated the performances of 3D bioprinting of Sporomusa ovata on three metal meshes—copper (Cu), stainless steel (SS), and titanium (Ti), when used individually as a cathode in MES. Bacterial cells were immobilized on the metal using a 3D bioprinter with alginate hydrogel ink. The bioprinted Ti mesh exhibited higher acetate production (53 ± 19 g/m²/d) at −0.8 V vs. Ag/AgCl as compared to other metal cathodes. More than 9 g/L of acetate was achieved with bioprinted Ti, and the least amount was obtained with bioprinted Cu. Although all three metals are known for catalyzing H₂ evolution, the lower biocompatibility and chemical stability of Cu hampered its performance. Stable and biocompatible Ti supported the bioprinted S. ovata effectively. Bioprinting of synthetic biofilm on H₂-evolving metal cathodes can provide high-performing and robust biocathodes for further application of MES. Acetate can be produced from carbon dioxide (CO2) and electricity using bacteria at the cathode of microbial electrosynthesis (MES). This process relies on electrolytically-produced hydrogen (H2). However, the low solubility of H2 can limit the process. Using metal cathodes to generate H2 at a high rate can improve MES. Immobilizing bacteria on the metal cathode can further proliferate the H2 availability to the bacteria. In this study, we investigated the performances of 3D bioprinting of Sporomusa ovata on three metal meshes—copper (Cu), stainless steel (SS), and titanium (Ti), when used individually as a cathode in MES. Bacterial cells were immobilized on the metal using a 3D bioprinter with alginate hydrogel ink. The bioprinted Ti mesh exhibited higher acetate production (53 ± 19 g/m2/d) at −0.8 V vs. Ag/AgCl as compared to other metal cathodes. More than 9 g/L of acetate was achieved with bioprinted Ti, and the least amount was obtained with bioprinted Cu. Although all three metals are known for catalyzing H2 evolution, the lower biocompatibility and chemical stability of Cu hampered its performance. Stable and biocompatible Ti supported the bioprinted S. ovata effectively. Bioprinting of synthetic biofilm on H2-evolving metal cathodes can provide high-performing and robust biocathodes for further application of MES. |
Author | Krige, Adolf Bajracharya, Suman Matsakas, Leonidas Christakopoulos, Paul Rova, Ulrika |
Author_xml | – sequence: 1 givenname: Suman orcidid: 0000-0003-1168-1430 surname: Bajracharya fullname: Bajracharya, Suman – sequence: 2 givenname: Adolf surname: Krige fullname: Krige, Adolf – sequence: 3 givenname: Leonidas orcidid: 0000-0002-3687-6173 surname: Matsakas fullname: Matsakas, Leonidas – sequence: 4 givenname: Ulrika orcidid: 0000-0001-7500-2367 surname: Rova fullname: Rova, Ulrika – sequence: 5 givenname: Paul surname: Christakopoulos fullname: Christakopoulos, Paul |
BookMark | eNp9UdFqFTEQXaSCtfYPfAj44kNXs0k22fima9VCpeBtn8NsdtLmsptck2yhP-B3u9erIEWEMJkZzjnM4TyvjkIMWFUvG_qGc03fOkwzhgLFx9BQuj4unlTHjDdN3Uqujv7qn1WnOW8ppYwJSRt-XP346m2Kg4eJnE9oS4r5IZQ7zD6Tm-zDLeEfyQcfd8mHsh-jI5tdTHFeMpB4D2WtgfRxt8N0RjYFfJgw53pTEKczAmEk175A8MtMeih3ccRMXEykv2LkG46L3R_-onrqYMp4-vs_qW4-nV_3X-rLq88X_fvL2gomSs1aq11rO9tJPbbcCtWqrlWDVoMFpRxwxRTr2pFJjaJTg9NIpbaKMtUMivKT6uKgO0bYmtXUDOnBRPDm1yKmWwOpeDuhAd66kaIANowCkWknByFG65jqALBZtV4ftHYpfl8wFzP7bHGaIGBcsuFUUC65lnKFvnoE3cYlhdWpYbrppBJS8RX17oBaE8k5oTPWH3ItCfxkGmr2iZt_Jb6SxSPyH3f_pf0EeqK2ZQ |
CitedBy_id | crossref_primary_10_1016_j_biortech_2024_131381 crossref_primary_10_1007_s11783_025_1921_y crossref_primary_10_1039_D4CB00099D crossref_primary_10_1080_10643389_2024_2382498 |
Cites_doi | 10.1016/j.bioelechem.2019.03.011 10.3390/catal9020166 10.3389/fmicb.2022.913311 10.1128/AEM.02642-10 10.1016/j.jece.2022.108067 10.1038/s41598-017-09841-7 10.1016/j.biortech.2022.127147 10.1002/cplu.202100119 10.1016/j.est.2021.102844 10.1007/s11696-019-00774-1 10.1039/C2EE23350A 10.1016/j.elecom.2009.11.017 10.1002/mawe.19910221007 10.1042/BST20120111 10.3389/fenrg.2018.00007 10.1016/S0013-4686(01)00899-4 10.1016/j.watres.2021.117306 10.1016/j.biteb.2019.100284 10.1016/j.electacta.2014.02.111 10.1016/j.copbio.2015.02.014 10.1002/elan.201600270 10.1016/j.bioflm.2022.100077 10.1016/j.apenergy.2020.115775 10.1038/nrmicro2422 10.1016/j.biortech.2018.02.129 10.1128/AEM.02766-10 10.1016/j.jece.2021.106189 10.1002/cctc.202000678 10.1039/C6TA02036D 10.3389/fmicb.2017.00756 10.1016/S0013-4686(02)00841-1 10.1016/j.ymben.2018.03.015 10.1016/j.joule.2020.03.001 10.1128/AEM.02401-12 10.1039/C8TA05322G 10.1016/j.electacta.2016.09.063 10.1016/j.copbio.2019.08.014 10.1039/C4TA03101F 10.1116/1.580010 10.1016/j.chemosphere.2021.132188 10.1007/10_2017_17 10.1016/j.jpowsour.2019.227306 10.3389/fenrg.2018.00072 10.1016/j.biomaterials.2012.01.007 10.1039/C5EE00866B 10.1128/mBio.00103-10 10.1038/srep16168 10.1039/C7FD00050B 10.1039/D1CY02151F 10.1016/j.watres.2019.04.053 10.1039/c3cp52697f |
ContentType | Journal Article |
Copyright | 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7S9 L.6 DOA |
DOI | 10.3390/fermentation10010034 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Biological Sciences Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2311-5637 |
ExternalDocumentID | oai_doaj_org_article_a35fd0e4a2bd4ee29f6b44dcf278aae1 10_3390_fermentation10010034 |
GeographicLocations | Germany |
GeographicLocations_xml | – name: Germany |
GroupedDBID | 8FE 8FH AADQD AAFWJ AAHBH AAYXX ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS BBNVY BCNDV BENPR BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ IAO ITC LK8 M7P MODMG M~E OK1 PHGZM PHGZT PIMPY PROAC ABUWG AZQEC DWQXO GNUQQ PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c424t-25c9f5c8c869d53c4757857b97bca77fa3727285d269e487bf9e069c70271b703 |
IEDL.DBID | BENPR |
ISSN | 2311-5637 |
IngestDate | Wed Aug 27 01:30:57 EDT 2025 Fri Jul 11 03:57:57 EDT 2025 Fri Jul 25 10:39:58 EDT 2025 Thu Apr 24 23:01:29 EDT 2025 Tue Jul 01 01:06:22 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c424t-25c9f5c8c869d53c4757857b97bca77fa3727285d269e487bf9e069c70271b703 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1168-1430 0000-0002-3687-6173 0000-0001-7500-2367 |
OpenAccessLink | https://www.proquest.com/docview/2918674673?pq-origsite=%requestingapplication% |
PQID | 2918674673 |
PQPubID | 2055414 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a35fd0e4a2bd4ee29f6b44dcf278aae1 proquest_miscellaneous_3040363966 proquest_journals_2918674673 crossref_citationtrail_10_3390_fermentation10010034 crossref_primary_10_3390_fermentation10010034 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Fermentation (Basel) |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Aryal (ref_9) 2018; 6 Desloover (ref_37) 2012; 40 ref_14 ref_12 Nie (ref_19) 2013; 15 Lee (ref_27) 2018; 259 Tashiro (ref_51) 2018; 47 ref_17 Chatzipanagiotou (ref_23) 2021; 86 Liu (ref_41) 2021; 41 Khalil (ref_43) 1991; 22 Krige (ref_16) 2021; 9 Munoz (ref_42) 2010; 12 Ohmi (ref_46) 1998; 14 Wang (ref_44) 2019; 444 Bajracharya (ref_15) 2017; 202 ref_24 Zhang (ref_7) 2013; 6 Bian (ref_20) 2018; 6 Marshall (ref_10) 2012; 78 Su (ref_18) 2020; 4 ref_29 Chatzipanagiotou (ref_36) 2022; 12 Guo (ref_22) 2015; 33 Pawar (ref_38) 2012; 33 Busalmen (ref_49) 2002; 47 Tremblay (ref_6) 2015; 5 Rabaey (ref_3) 2020; 62 Grass (ref_34) 2011; 77 Olsson (ref_39) 2003; 48 Shakeel (ref_40) 2022; 10 Zeradjanin (ref_32) 2016; 28 ref_31 Chen (ref_26) 2016; 4 Nevin (ref_2) 2011; 77 Baudler (ref_48) 2015; 8 Nevin (ref_1) 2010; 1 Jourdin (ref_13) 2018; 6 Jiang (ref_50) 2019; 159 Aryal (ref_28) 2016; 217 Jourdin (ref_4) 2020; 279 Jourdin (ref_11) 2014; 2 Bajracharya (ref_21) 2022; 287 (ref_47) 2019; 73 Rosenbaum (ref_25) 2019; Volume 167 Aryal (ref_33) 2019; 128 Chatzipanagiotou (ref_35) 2020; 12 Aryal (ref_8) 2017; 7 Rabaey (ref_30) 2010; 8 Wood (ref_5) 2021; 201 Sharma (ref_45) 2014; 140 |
References_xml | – volume: 128 start-page: 83 year: 2019 ident: ref_33 article-title: Increased carbon dioxide reduction to acetate in a microbial electrosynthesis reactor with a reduced graphene oxide-coated copper foam composite cathode publication-title: Bioelectrochemistry doi: 10.1016/j.bioelechem.2019.03.011 – ident: ref_31 doi: 10.3390/catal9020166 – ident: ref_24 doi: 10.3389/fmicb.2022.913311 – volume: 77 start-page: 2882 year: 2011 ident: ref_2 article-title: Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02642-10 – volume: 10 start-page: 108067 year: 2022 ident: ref_40 article-title: Enhanced production and utilization of biosynthesized acetate using a packed-fluidized bed cathode based MES system publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2022.108067 – volume: 7 start-page: 9107 year: 2017 ident: ref_8 article-title: Freestanding and flexible graphene papers as bioelectrochemical cathode for selective and efficient CO2 conversion publication-title: Sci. Rep. doi: 10.1038/s41598-017-09841-7 – ident: ref_17 doi: 10.1016/j.biortech.2022.127147 – volume: 86 start-page: 763 year: 2021 ident: ref_23 article-title: Catalytic Cooperation between a Copper Oxide Electrocatalyst and a Microbial Community for Microbial Electrosynthesis publication-title: Chempluschem doi: 10.1002/cplu.202100119 – volume: 41 start-page: 102844 year: 2021 ident: ref_41 article-title: Industrial stainless steel meshes for efficient electrocatalytic hydrogen evolution publication-title: J. Energy Storage doi: 10.1016/j.est.2021.102844 – volume: 73 start-page: 2103 year: 2019 ident: ref_47 article-title: New trends in corrosion protection of copper publication-title: Chem. Pap. doi: 10.1007/s11696-019-00774-1 – volume: 6 start-page: 217 year: 2013 ident: ref_7 article-title: Improved cathode materials for microbial electrosynthesis publication-title: Energy Environ. Sci. doi: 10.1039/C2EE23350A – volume: 12 start-page: 183 year: 2010 ident: ref_42 article-title: Combining phosphate species and stainless steel cathode to enhance hydrogen evolution in microbial electrolysis cell (MEC) publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2009.11.017 – volume: 22 start-page: 390 year: 1991 ident: ref_43 article-title: Hydrogen evolution reaction on Titanium and oxide-covered titanium electrodes publication-title: Materwiss. Werksttech. doi: 10.1002/mawe.19910221007 – volume: 40 start-page: 1233 year: 2012 ident: ref_37 article-title: Operational and technical considerations for microbial electrosynthesis publication-title: Biochem. Soc. Trans. doi: 10.1042/BST20120111 – volume: 6 start-page: 7 year: 2018 ident: ref_13 article-title: Critical Biofilm Growth throughout Unmodified Carbon Felts Allows Continuous Bioelectrochemical Chain Elongation from CO2 up to Caproate at High Current Density publication-title: Front. Energy Res. doi: 10.3389/fenrg.2018.00007 – volume: 47 start-page: 1857 year: 2002 ident: ref_49 article-title: New evidences on the catalase mechanism of microbial corrosion publication-title: Electrochim. Acta doi: 10.1016/S0013-4686(01)00899-4 – volume: 201 start-page: 117306 year: 2021 ident: ref_5 article-title: Strategies to improve viability of a circular carbon bioeconomy—A techno-economic review of microbial electrosynthesis and gas fermentation publication-title: Water Res. doi: 10.1016/j.watres.2021.117306 – ident: ref_12 doi: 10.1016/j.biteb.2019.100284 – volume: 140 start-page: 191 year: 2014 ident: ref_45 article-title: A critical revisit of the key parameters used to describe microbial electrochemical systems publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2014.02.111 – volume: 33 start-page: 149 year: 2015 ident: ref_22 article-title: Engineering electrodes for microbial electrocatalysis publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2015.02.014 – volume: 28 start-page: 2256 year: 2016 ident: ref_32 article-title: A Critical Review on Hydrogen Evolution Electrocatalysis: Re-exploring the Volcano-relationship publication-title: Electroanalysis doi: 10.1002/elan.201600270 – ident: ref_29 doi: 10.1016/j.bioflm.2022.100077 – volume: 279 start-page: 115775 year: 2020 ident: ref_4 article-title: Techno-economic assessment of microbial electrosynthesis from CO2 and/or organics: An interdisciplinary roadmap towards future research and application publication-title: Appl. Energy doi: 10.1016/j.apenergy.2020.115775 – volume: 8 start-page: 706 year: 2010 ident: ref_30 article-title: Microbial electrosynthesis—Revisiting the electrical route for microbial production.pdf publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro2422 – volume: 259 start-page: 128 year: 2018 ident: ref_27 article-title: Co-culture-based biological carbon monoxide conversion by Citrobacter amalonaticus Y19 and Sporomusa ovata via a reducing-equivalent transfer mediator publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2018.02.129 – volume: 77 start-page: 1541 year: 2011 ident: ref_34 article-title: Metallic Copper as an Antimicrobial Surface publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02766-10 – volume: 9 start-page: 106189 year: 2021 ident: ref_16 article-title: 3D bioprinting on cathodes in microbial electrosynthesis for increased acetate production rate using Sporomusa ovata publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2021.106189 – volume: 12 start-page: 3900 year: 2020 ident: ref_35 article-title: CO2 Conversion by Combining a Copper Electrocatalyst and Wild-type Microorganisms publication-title: ChemCatChem doi: 10.1002/cctc.202000678 – volume: 4 start-page: 8395 year: 2016 ident: ref_26 article-title: Electrosynthesis of acetate from CO2 by a highly structured biofilm assembled with reduced graphene oxide–tetraethylene pentamine publication-title: J. Mater. Chem. A doi: 10.1039/C6TA02036D – ident: ref_14 doi: 10.3389/fmicb.2017.00756 – volume: 48 start-page: 1093 year: 2003 ident: ref_39 article-title: Passive films on stainless steels—Chemistry, structure and growth publication-title: Electrochim. Acta doi: 10.1016/S0013-4686(02)00841-1 – volume: 47 start-page: 211 year: 2018 ident: ref_51 article-title: Electrical-biological hybrid system for CO2 reduction publication-title: Metab. Eng. doi: 10.1016/j.ymben.2018.03.015 – volume: 4 start-page: 800 year: 2020 ident: ref_18 article-title: Close-Packed Nanowire-Bacteria Hybrids for Efficient Solar-Driven CO2 Fixation publication-title: Joule doi: 10.1016/j.joule.2020.03.001 – volume: 78 start-page: 8412 year: 2012 ident: ref_10 article-title: Electrosynthesis of commodity chemicals by an autotrophic microbial community publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02401-12 – volume: 6 start-page: 17201 year: 2018 ident: ref_20 article-title: Porous Nickel Hollow Fiber Cathodes Coated with CNTs for Efficient Microbial Electrosynthesis of Acetate from CO2 using Sporomusa ovata publication-title: J. Mater. Chem. A doi: 10.1039/C8TA05322G – volume: 217 start-page: 117 year: 2016 ident: ref_28 article-title: Enhanced microbial electrosynthesis with three-dimensional graphene functionalized cathodes fabricated via solvothermal synthesis publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.09.063 – volume: 62 start-page: 48 year: 2020 ident: ref_3 article-title: Microbial electrosynthesis from CO2: Forever a promise? publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2019.08.014 – volume: 2 start-page: 13093 year: 2014 ident: ref_11 article-title: A novel carbon nanotube modified scaffold as an efficient biocathode material for improved microbial electrosynthesis publication-title: J. Mater. Chem. A doi: 10.1039/C4TA03101F – volume: 14 start-page: 2505 year: 1998 ident: ref_46 article-title: Formation of chromium oxide on 316L austenitic stainless steel publication-title: J. Vac. Sci. Technol. A Vac. Surf. Film. doi: 10.1116/1.580010 – volume: 287 start-page: 132188 year: 2022 ident: ref_21 article-title: Dual cathode configuration and headspace gas recirculation for enhancing microbial electrosynthesis using Sporomusa ovata publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.132188 – volume: Volume 167 start-page: 181 year: 2019 ident: ref_25 article-title: Microbial electrosynthesis I: Pure and defined mixed culture engineering publication-title: Advances in Biochemical Engineering/Biotechnology doi: 10.1007/10_2017_17 – volume: 444 start-page: 227306 year: 2019 ident: ref_44 article-title: Microbial community development on different cathode metals in a bioelectrolysis enhanced methane production system publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2019.227306 – volume: 6 start-page: 72 year: 2018 ident: ref_9 article-title: Highly Conductive Poly(3,4-ethylenedioxythiophene) Polystyrene Sulfonate Polymer Coated Cathode for the Microbial Electrosynthesis of Acetate from Carbon Dioxide publication-title: Front. Energy Res. doi: 10.3389/fenrg.2018.00072 – volume: 33 start-page: 3279 year: 2012 ident: ref_38 article-title: Alginate derivatization: A review of chemistry, properties and applications publication-title: Biomaterials doi: 10.1016/j.biomaterials.2012.01.007 – volume: 8 start-page: 2048 year: 2015 ident: ref_48 article-title: Does it have to be carbon? Metal anodes in microbial fuel cells and related bioelectrochemical systems publication-title: Energy Environ. Sci. doi: 10.1039/C5EE00866B – volume: 1 start-page: e00103-10 year: 2010 ident: ref_1 article-title: Microbial Electrosynthesis: Feeding Microbes Electricity to Convert Carbon Dioxide and Water to Multicarbon Extracellular Organic publication-title: MBio doi: 10.1128/mBio.00103-10 – volume: 5 start-page: 16168 year: 2015 ident: ref_6 article-title: Adaptation of the autotrophic acetogen Sporomusa ovata to methanol accelerates the conversion of CO2 to organic products publication-title: Sci. Rep. doi: 10.1038/srep16168 – volume: 202 start-page: 433 year: 2017 ident: ref_15 article-title: Bioelectrochemical conversion of CO2 to chemicals: CO2 as a next generation feedstock for electricity-driven bioproduction in batch and continuous modes publication-title: Faraday Discuss. doi: 10.1039/C7FD00050B – volume: 12 start-page: 2500 year: 2022 ident: ref_36 article-title: Concentration-dependent effects of nickel doping on activated carbon biocathodes publication-title: Catal. Sci. Technol. doi: 10.1039/D1CY02151F – volume: 159 start-page: 87 year: 2019 ident: ref_50 article-title: Zinc: A promising material for electrocatalyst-assisted microbial electrosynthesis of carboxylic acids from carbon dioxide publication-title: Water Res. doi: 10.1016/j.watres.2019.04.053 – volume: 15 start-page: 14290 year: 2013 ident: ref_19 article-title: Improved cathode for high efficient microbial-catalyzed reduction in microbial electrosynthesis cells publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c3cp52697f |
SSID | ssj0002246013 |
Score | 2.3182878 |
Snippet | Acetate can be produced from carbon dioxide (CO2) and electricity using bacteria at the cathode of microbial electrosynthesis (MES). This process relies on... Acetate can be produced from carbon dioxide (CO₂) and electricity using bacteria at the cathode of microbial electrosynthesis (MES). This process relies on... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 34 |
SubjectTerms | 3-D printers acetates Acetic acid alginates Alginic acid Bacteria biocathodes Biocompatibility biofilm Biofilms bioprinting Carbon dioxide Cathodes CO2 reduction Copper corrosion-resistance electricity Electrodes Electrons electrosynthesis fermentation Gases Heavy metals hydrogels Hydrogen hydrogen evolution metal-biocathode microbial electrosynthesis Microorganisms Productivity Reactors Silver chloride solubility Sporomusa ovata Stainless steel Titanium |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlp_ZQ-qTbJEWFHiOy1tM-JtuEUEgLTQK5GT1G4LKxl3j30D_Q390Z21m2tJBLLz7YI2NrRjPf6PENY5-SKfIc5lkkY7PQUSXhizIIhzkzhmtncqIDzpdf7cWN_nJrbndKfdGesJEeeOy4Y69QfA7ay5A0gKyyDVqnmKUrvYch8cGYt5NM_RhIXTRmGmo8K6cwrz_O6Oim0zwt8Q4RMcsfsWig7P_LIw9h5vwFez7hQ34yftdL9gTaV-zZDmvga_brshnYk1DsbCxi0_9sEcf1Tc-HHQBcfeanTUdTdrSpmXeZUzHz7m7Te041UPHa8kW3WsH9Eb-iyYElOjxxtQZYHnHfJn7dIGhsNnecTgh2CXqO4JYvvkn-nbhe6ffesJvzs-vFhZjKKYiopV4LaWKVTSxjaatkVNREZW9cqFyI3rnsFS3KliZJWwHmMSFXMLdVdJi5FgE9w1u213YtvGPc29JhWEN4BlHHmIO3RSw0ZHwbtgozph46to4T1ziVvFjWmHOQOup_qWPGxLbVauTaeET-lHS2lSWm7OEG2k892U_9mP3M2MGDxutp-Pa1rIjnD2OImrGP28c48Gg1xbfQbfpaoftTiO-sff8_vmOfPZWIl8bZnQO2t77fwCHinXX4MJj2b0CoA-8 priority: 102 providerName: Directory of Open Access Journals |
Title | Microbial Electrosynthesis Using 3D Bioprinting of Sporomusa ovata on Copper, Stainless-Steel, and Titanium Cathodes for CO2 Reduction |
URI | https://www.proquest.com/docview/2918674673 https://www.proquest.com/docview/3040363966 https://doaj.org/article/a35fd0e4a2bd4ee29f6b44dcf278aae1 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9NAEF5BeoED4ilCS7VIHLtqvC_bJ0RCqgqpBfUh9WbtE1lK7TRODv0D_G5m7E0AgeDig71ryZ6dmW9md74h5L1XWZyESWRe6cikE56ZrLAsh5gZ3HWuoscC57NzfXotP9-om5Rw69Kxyq1N7A21bx3myI95idRroNbiw_KOYdco3F1NLTQekj0wwUUxInvT-fnXi12WBenSAOQMNXMC4vvjCAYvVfU0yD-EBC2_-aSeuv8Py9y7m5On5EnCifTjINhn5EFonpPHv7AHviDfz-qeRQmGzYdmNt19A3iuqzvanwSg4hOd1i2m7vBwM20jxabm7e2mMxR7ocK1obN2uQyrI3qJSYIFGD52uQ5hcURN4-lVDeCx3txSrBRsfegogFw6-8LpBXK-4ue9JNcn86vZKUttFZiTXK4ZV66MyhWu0KVXwkmktFe5LXPrTJ5HI3BztlCe6zJAPGNjGSa6dDlEsJkFC_GKjJq2Ca8JNbrIwb0BTAtOOhet0ZnLZIjwNphlx0Rsf2zlEuc4tr5YVBB7oDiqv4ljTNhu1nLg3PjP-CnKbDcWGbP7G-3qW5UUsDIClt0kSMOtlyHwMmorpXeR54UxIRuTg63Eq6TGXfVz0Y3Ju91jUEDcVTFNaDddJcAMCsB5Wr_59yv2ySMOiGjI3xyQ0Xq1CW8B0aztYVq2h31G4Aexfvvp |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6V9AAcUHmJQCmLBLdatXfXa_uAEElTpbQJqE2l3sx6H8hSaoc4Eeof4OfwG5nxI4BAcOrFB3u9kj2vb2d3viHklQkD51vfeSaUzhOaG08FceZFsGaGcB2FzmCB82Qqxxfi_WV4uUW-d7UweKyy84m1ozalxhz5AUuQeg3Mmr9dfPGwaxTurnYtNBq1OLHXX2HJVr05PgT5vmbsaDQbjr22q4CnBRMrj4U6caGOdSwTE3ItkNE9jLIkyrSKIqc47k3GoWEysQDnM5dYXyY6ggVckIGBwLy3yLbg0mc9sj0YTT-ebbI6SM8GoKqp0eM88Q8cONi2iqhAviMkhPktBtatAv6IBHV4O9oh91pcSt81inSfbNniAbn7C1vhQ_JtktesTTBs1DTPqa4LwI9VXtH65AHlh3SQl5gqxMPUtHQUm6iXV-tKUey9CteCDsvFwi736TkmJebgaL3zlbXzfaoKQ2c5gNV8fUWxMrE0tqIAqunwA6NnyDGLn_eIXNzID39MekVZ2CeEKhlHEE4BFlottHaZkoEOhHUwG7yV9QnvfmyqW45zbLUxT2Gtg-JI_yaOPvE2by0ajo__jB-gzDZjkaG7vlEuP6etwaeKg5r7ViiWGWEtS5zMhDDasShWygZ9sttJPG3dRpX-VPI-ebl5DAaPuziqsOW6Sjm4XQ64Usqn_57iBbk9nk1O09Pj6ckzcocBGmtyR7ukt1qu7XNAU6tsr1VhSj7dtNX8ANGONi4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbhNBEG0FR0JwQGEThhAaCW4Zeaa7ZzsghDclhJgoi5Tb0CsayZkxHlsoP8BH8XVUzWJAIDjl4oPd05KntlfVXa8IeWXCwPnWd54JI-cJzY0ng0R5MeTMEK7j0BlscD6eRQcX4v1leLlFvne9MHitsvOJtaM2pcYa-YClSL0GZs0Hrr0WcTKevl188XCCFJ60duM0GhU5stdfIX2r3hyOQdavGZtOzkcHXjthwNOCiZXHQp26UCc6iVITci2Q3T2MVRorLePYSY7nlEloWJRagPbKpdaPUh1DMhcoMBbY9xbZjjEr6pHt4WR2crqp8CBVGwCspl-P89QfOHC2bUdRgdxHSA7zWzysxwb8ERXqUDfdIfdajErfNUp1n2zZ4gG5-wtz4UPy7TivGZxg2aQZpFNdF4Alq7yi9S0Eysd0mJdYNsSL1bR0FAeql1frSlKcwwqfBR2Vi4Vd7tMzLFDMwel6Zytr5_tUFoae5wBc8_UVxS7F0tiKAsCmo4-MniLfLP69R-TiRl74Y9IrysI-IVRGSQyhFSCi1UJrp2QU6EBYB7vBU6pPePdiM93ynePYjXkGeQ-KI_ubOPrE2zy1aPg-_rN-iDLbrEW27vqLcvk5a40_kxxU3rdCMmWEtSx1kRLCaMfiREob9MluJ_GsdSFV9lPh--Tl5mcwfjzRkYUt11XGwQVzwJhR9PTfW7wgt8Fasg-Hs6Nn5A4DYNaUkXZJb7Vc2-cArFZqr9VgSj7dtNH8APZrOmM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microbial+Electrosynthesis+Using+3D+Bioprinting+of+Sporomusa+ovata+on+Copper%2C+Stainless-Steel%2C+and+Titanium+Cathodes+for+CO2+Reduction&rft.jtitle=Fermentation+%28Basel%29&rft.au=Bajracharya%2C+Suman&rft.au=Krige%2C+Adolf&rft.au=Matsakas%2C+Leonidas&rft.au=Rova%2C+Ulrika&rft.date=2024-01-01&rft.issn=2311-5637&rft.eissn=2311-5637&rft.volume=10&rft.issue=1&rft.spage=34&rft_id=info:doi/10.3390%2Ffermentation10010034&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_fermentation10010034 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2311-5637&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2311-5637&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2311-5637&client=summon |