Circadian Regulation of Bone Remodeling
Adult bones are continuously remodeled by the balance between bone resorption by osteoclasts and subsequent bone formation by osteoblasts. Many studies have provided molecular evidence that bone remodeling is under the control of circadian rhythms. Circadian fluctuations have been reported in the se...
Saved in:
Published in | International journal of molecular sciences Vol. 25; no. 9; p. 4717 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
01.05.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1422-0067 1661-6596 1422-0067 |
DOI | 10.3390/ijms25094717 |
Cover
Loading…
Abstract | Adult bones are continuously remodeled by the balance between bone resorption by osteoclasts and subsequent bone formation by osteoblasts. Many studies have provided molecular evidence that bone remodeling is under the control of circadian rhythms. Circadian fluctuations have been reported in the serum and urine levels of bone turnover markers, such as digested collagen fragments and bone alkaline phosphatase. Additionally, the expressions of over a quarter of all transcripts in bones show circadian rhythmicity, including the genes encoding master transcription factors for osteoblastogenesis and osteoclastogenesis, osteogenic cytokines, and signaling pathway proteins. Serum levels of calcium, phosphate, parathyroid hormone, and calcitonin also display circadian rhythmicity. Finally, osteoblast- and osteoclast-specific knockout mice targeting the core circadian regulator gene Bmal1 show disrupted bone remodeling, although the results have not always been consistent. Despite these studies, however, establishing a direct link between circadian rhythms and bone remodeling in vivo remains a major challenge. It is nearly impossible to repeatedly collect bone materials from human subjects while following circadian changes. In addition, the differences in circadian gene regulation between diurnal humans and nocturnal mice, the main model organism, remain unclear. Filling the knowledge gap in the circadian regulation of bone remodeling could reveal novel regulatory mechanisms underlying many bone disorders including osteoporosis, genetic diseases, and fracture healing. This is also an important question for the basic understanding of how cell differentiation progresses under the influence of cyclically fluctuating environments. |
---|---|
AbstractList | Adult bones are continuously remodeled by the balance between bone resorption by osteoclasts and subsequent bone formation by osteoblasts. Many studies have provided molecular evidence that bone remodeling is under the control of circadian rhythms. Circadian fluctuations have been reported in the serum and urine levels of bone turnover markers, such as digested collagen fragments and bone alkaline phosphatase. Additionally, the expressions of over a quarter of all transcripts in bones show circadian rhythmicity, including the genes encoding master transcription factors for osteoblastogenesis and osteoclastogenesis, osteogenic cytokines, and signaling pathway proteins. Serum levels of calcium, phosphate, parathyroid hormone, and calcitonin also display circadian rhythmicity. Finally, osteoblast- and osteoclast-specific knockout mice targeting the core circadian regulator gene Bmal1 show disrupted bone remodeling, although the results have not always been consistent. Despite these studies, however, establishing a direct link between circadian rhythms and bone remodeling in vivo remains a major challenge. It is nearly impossible to repeatedly collect bone materials from human subjects while following circadian changes. In addition, the differences in circadian gene regulation between diurnal humans and nocturnal mice, the main model organism, remain unclear. Filling the knowledge gap in the circadian regulation of bone remodeling could reveal novel regulatory mechanisms underlying many bone disorders including osteoporosis, genetic diseases, and fracture healing. This is also an important question for the basic understanding of how cell differentiation progresses under the influence of cyclically fluctuating environments. Adult bones are continuously remodeled by the balance between bone resorption by osteoclasts and subsequent bone formation by osteoblasts. Many studies have provided molecular evidence that bone remodeling is under the control of circadian rhythms. Circadian fluctuations have been reported in the serum and urine levels of bone turnover markers, such as digested collagen fragments and bone alkaline phosphatase. Additionally, the expressions of over a quarter of all transcripts in bones show circadian rhythmicity, including the genes encoding master transcription factors for osteoblastogenesis and osteoclastogenesis, osteogenic cytokines, and signaling pathway proteins. Serum levels of calcium, phosphate, parathyroid hormone, and calcitonin also display circadian rhythmicity. Finally, osteoblast- and osteoclast-specific knockout mice targeting the core circadian regulator gene show disrupted bone remodeling, although the results have not always been consistent. Despite these studies, however, establishing a direct link between circadian rhythms and bone remodeling in vivo remains a major challenge. It is nearly impossible to repeatedly collect bone materials from human subjects while following circadian changes. In addition, the differences in circadian gene regulation between diurnal humans and nocturnal mice, the main model organism, remain unclear. Filling the knowledge gap in the circadian regulation of bone remodeling could reveal novel regulatory mechanisms underlying many bone disorders including osteoporosis, genetic diseases, and fracture healing. This is also an important question for the basic understanding of how cell differentiation progresses under the influence of cyclically fluctuating environments. Adult bones are continuously remodeled by the balance between bone resorption by osteoclasts and subsequent bone formation by osteoblasts. Many studies have provided molecular evidence that bone remodeling is under the control of circadian rhythms. Circadian fluctuations have been reported in the serum and urine levels of bone turnover markers, such as digested collagen fragments and bone alkaline phosphatase. Additionally, the expressions of over a quarter of all transcripts in bones show circadian rhythmicity, including the genes encoding master transcription factors for osteoblastogenesis and osteoclastogenesis, osteogenic cytokines, and signaling pathway proteins. Serum levels of calcium, phosphate, parathyroid hormone, and calcitonin also display circadian rhythmicity. Finally, osteoblast- and osteoclast-specific knockout mice targeting the core circadian regulator gene Bmal1 show disrupted bone remodeling, although the results have not always been consistent. Despite these studies, however, establishing a direct link between circadian rhythms and bone remodeling in vivo remains a major challenge. It is nearly impossible to repeatedly collect bone materials from human subjects while following circadian changes. In addition, the differences in circadian gene regulation between diurnal humans and nocturnal mice, the main model organism, remain unclear. Filling the knowledge gap in the circadian regulation of bone remodeling could reveal novel regulatory mechanisms underlying many bone disorders including osteoporosis, genetic diseases, and fracture healing. This is also an important question for the basic understanding of how cell differentiation progresses under the influence of cyclically fluctuating environments.Adult bones are continuously remodeled by the balance between bone resorption by osteoclasts and subsequent bone formation by osteoblasts. Many studies have provided molecular evidence that bone remodeling is under the control of circadian rhythms. Circadian fluctuations have been reported in the serum and urine levels of bone turnover markers, such as digested collagen fragments and bone alkaline phosphatase. Additionally, the expressions of over a quarter of all transcripts in bones show circadian rhythmicity, including the genes encoding master transcription factors for osteoblastogenesis and osteoclastogenesis, osteogenic cytokines, and signaling pathway proteins. Serum levels of calcium, phosphate, parathyroid hormone, and calcitonin also display circadian rhythmicity. Finally, osteoblast- and osteoclast-specific knockout mice targeting the core circadian regulator gene Bmal1 show disrupted bone remodeling, although the results have not always been consistent. Despite these studies, however, establishing a direct link between circadian rhythms and bone remodeling in vivo remains a major challenge. It is nearly impossible to repeatedly collect bone materials from human subjects while following circadian changes. In addition, the differences in circadian gene regulation between diurnal humans and nocturnal mice, the main model organism, remain unclear. Filling the knowledge gap in the circadian regulation of bone remodeling could reveal novel regulatory mechanisms underlying many bone disorders including osteoporosis, genetic diseases, and fracture healing. This is also an important question for the basic understanding of how cell differentiation progresses under the influence of cyclically fluctuating environments. |
Audience | Academic |
Author | Kikyo, Nobuaki |
Author_xml | – sequence: 1 givenname: Nobuaki orcidid: 0000-0002-5817-4498 surname: Kikyo fullname: Kikyo, Nobuaki |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38731934$$D View this record in MEDLINE/PubMed |
BookMark | eNpt0c1LwzAUAPAgE_ehN88y8KAHO1-SpmmOc_gFA0H0XNI0GRltM5v24H9v9qFOGTkkPH4v7_HeEPVqV2uEzjFMKBVwa5eVJwxEzDE_QgMcExIBJLy39-6jofdLAEIJEyeoT1NOsaDxAF3NbKNkYWU9ftWLrpStdfXYmfFdqBJClSt0aevFKTo2svT6bHeP0PvD_dvsKZq_PD7PpvNIxSRuI1wI0EKmkAisBCihFElELlMFCSnAiFxRkxc54QUwQpMYKxNrgwnFScxA0RG63v67atxHp32bVdYrXZay1q7zGQVGBecAaaCX_-jSdU0dutsonHIG_FctZKkzWxvXNlKtP82mXFCWJIyToCYHVDiFrqwKozA2xP8kXOyKd3mli2zV2Eo2n9n3ZAO42QLVOO8bbX4Ihmy9uGx_cYGTf1zZdrOM0IgtDyd9AR52lv0 |
CitedBy_id | crossref_primary_10_3390_biomedicines13030705 crossref_primary_10_1016_j_arr_2024_102633 crossref_primary_10_1016_j_cej_2024_154797 crossref_primary_10_3389_fmicb_2024_1447877 crossref_primary_10_18699_vjgb_25_18 crossref_primary_10_12680_balneo_2024_747 crossref_primary_10_3389_fbioe_2024_1400472 crossref_primary_10_1021_acsomega_4c07635 crossref_primary_10_1113_EP092189 crossref_primary_10_1016_j_ijbiomac_2024_134882 crossref_primary_10_1016_j_med_2024_11_020 crossref_primary_10_3390_ijms252313006 |
Cites_doi | 10.1155/2015/421746 10.1359/jbmr.061114 10.1002/jbmr.2803 10.1093/clinchem/45.8.1347 10.1249/JES.0000000000000225 10.1172/JCI107010 10.1111/brv.12505 10.1002/jbmr.5650101207 10.3389/fnins.2017.00063 10.1038/s41413-023-00298-1 10.1146/annurev-physiol-021119-034425 10.1016/j.bone.2019.01.016 10.1016/j.bone.2018.10.002 10.1002/ajpa.23966 10.1155/2018/9156478 10.1002/jbm4.10539 10.14310/horm.2002.1405 10.1038/s41580-019-0179-2 10.3390/jcm11030806 10.1359/jbmr.080216 10.1007/s00198-007-0423-z 10.1177/0748730417728663 10.3390/ijms241512307 10.1038/srep05183 10.1146/annurev-nutr-061121-091348 10.1016/j.bonr.2022.101593 10.1038/nm.2489 10.1210/jc.2006-1832 10.1152/physrev.00043.2020 10.1007/s40610-017-0062-x 10.1016/j.biopha.2022.114019 10.1002/jbm4.10504 10.1007/s002239900256 10.3389/fcell.2022.960456 10.1016/S0092-8674(00)00205-1 10.1016/j.bone.2016.01.006 10.1016/j.bone.2013.12.026 10.1074/mcp.M114.047621 10.1007/s00198-010-1501-1 10.3389/fendo.2022.954895 10.1002/biof.143 10.1007/s00198-017-4162-5 10.3389/fcell.2022.903657 10.3389/fendo.2018.00794 10.1016/S0196-0709(83)80002-7 10.1093/ndt/gfad188 10.1210/clinem/dgaa232 10.1038/s41586-019-1105-7 10.1016/j.chembiol.2013.12.016 10.3389/fcell.2021.788680 10.1101/cshperspect.a031229 10.3390/ijms22083989 10.1210/jc.2016-1183 10.1007/s00223-012-9672-8 10.1186/s41232-019-0111-3 10.1038/s12276-020-0484-z 10.1007/s00109-018-1723-9 10.1073/pnas.87.12.4828 10.1146/annurev-physiol-021119-034332 10.1016/j.lfs.2020.117636 10.11005/jbm.2014.21.4.233 10.1111/j.1365-2265.1994.tb03019.x 10.1677/joe.0.1070389 10.1146/annurev-biochem-013118-111603 10.1146/annurev.biochem.77.032207.120833 10.1002/jbmr.4017 10.1038/s41580-020-00279-w 10.1210/endrev/bnac031 10.1111/j.1600-079X.2012.01007.x 10.3389/fimmu.2021.778078 10.1007/978-3-030-91623-7_5 10.1186/s12967-021-03068-x 10.1210/jcem-60-4-736 10.3390/cells9092073 10.1002/jbmr.3463 10.1016/j.bone.2022.116499 10.1210/jcem-67-5-1068 10.1016/j.bone.2015.04.035 10.1016/j.reth.2014.10.002 10.1002/jbmr.320 10.1016/j.gene.2020.144855 10.1177/1759720X16670154 10.1016/S8756-3282(02)00791-3 10.1002/jbmr.3053 10.1126/science.abd0951 10.3390/ijms22136651 10.1084/jem.156.5.1516 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH GNUQQ GUQSH K9. M0S M1P M2O MBDVC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS Q9U 7X8 |
DOI | 10.3390/ijms25094717 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) Medical Database Research Library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1422-0067 |
ExternalDocumentID | A793566572 38731934 10_3390_ijms25094717 |
Genre | Journal Article Review |
GeographicLocations | Netherlands |
GeographicLocations_xml | – name: Netherlands |
GrantInformation_xml | – fundername: NIH HHS grantid: R01GM137603 |
GroupedDBID | --- 29J 2WC 53G 5GY 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8G5 A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BCNDV BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DIK DU5 DWQXO E3Z EBD EBS EJD ESX F5P FRP FYUFA GNUQQ GUQSH GX1 HH5 HMCUK HYE IAO IHR ITC KQ8 LK8 M1P M2O M48 MODMG O5R O5S OK1 OVT P2P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TR2 TUS UKHRP ~8M CGR CUY CVF ECM EIF NPM PJZUB PPXIY PMFND 3V. 7XB 8FK K9. MBDVC PKEHL PQEST PQUKI PRINS PUEGO Q9U 7X8 |
ID | FETCH-LOGICAL-c424t-1d90e9a80691c90c9cc269ba8c062d0f9bc3fbdb27d0523641cf4ef12316450c3 |
IEDL.DBID | M48 |
ISSN | 1422-0067 1661-6596 |
IngestDate | Fri Sep 05 05:20:01 EDT 2025 Thu Sep 04 04:16:28 EDT 2025 Tue Jun 17 22:10:17 EDT 2025 Tue Jun 10 21:07:31 EDT 2025 Mon Jul 21 06:06:45 EDT 2025 Tue Jul 01 01:43:24 EDT 2025 Thu Apr 24 22:56:13 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | RANKL M-CSF bone turnover marker bone remodeling bone osteoblast osteocyte circadian rhythms osteoclast Bmal1 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c424t-1d90e9a80691c90c9cc269ba8c062d0f9bc3fbdb27d0523641cf4ef12316450c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-5817-4498 |
OpenAccessLink | https://www.proquest.com/docview/3053187507?pq-origsite=%requestingapplication% |
PMID | 38731934 |
PQID | 3053187507 |
PQPubID | 2032341 |
ParticipantIDs | proquest_miscellaneous_3053977008 proquest_journals_3053187507 gale_infotracmisc_A793566572 gale_infotracacademiconefile_A793566572 pubmed_primary_38731934 crossref_primary_10_3390_ijms25094717 crossref_citationtrail_10_3390_ijms25094717 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-05-01 |
PublicationDateYYYYMMDD | 2024-05-01 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | International journal of molecular sciences |
PublicationTitleAlternate | Int J Mol Sci |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Gundberg (ref_78) 1985; 60 Salhotra (ref_2) 2020; 21 ref_14 Yavropoulou (ref_62) 2013; 12 Shimizu (ref_73) 2009; 71 ref_12 ref_95 Xu (ref_82) 2016; 31 Qian (ref_99) 2020; 35 ref_19 Oniszczuk (ref_48) 2022; 13 ref_18 ref_16 Millan (ref_27) 2013; 93 Greenspan (ref_72) 1997; 60 Robling (ref_31) 2020; 82 Wu (ref_15) 2019; 97 Shinohara (ref_46) 2011; 17 Winter (ref_13) 2021; 5 ref_22 Takarada (ref_98) 2017; 32 Xiao (ref_103) 2023; 11 ref_20 Murshed (ref_25) 2018; 8 Berendsen (ref_17) 2015; 80 Hughes (ref_55) 2017; 32 Akimbekov (ref_90) 2022; 1362 Bikle (ref_88) 2014; 21 Barak (ref_7) 2020; 172 Bellido (ref_30) 2022; 102 Markowitz (ref_92) 1988; 67 Wein (ref_33) 2017; 3 Ahmed (ref_44) 1982; 156 Bonewald (ref_28) 2011; 26 Tsang (ref_102) 2019; 121 Samsa (ref_101) 2016; 84 Patke (ref_52) 2020; 21 Qvist (ref_63) 2002; 31 Rehder (ref_76) 2015; 14 Schilperoort (ref_80) 2020; 34 Mundy (ref_84) 1999; 45 ref_83 Hughes (ref_6) 2020; 48 Zvonic (ref_54) 2007; 22 Mun (ref_43) 2020; 52 ref_87 ref_86 ref_85 Sun (ref_42) 2021; 12 Yeung (ref_100) 2014; 4 ref_58 Davesne (ref_29) 2019; 94 ref_57 Vasikaran (ref_59) 2011; 22 Swanson (ref_68) 2020; 105 Luo (ref_11) 2021; 19 Oei (ref_67) 2019; 120 Everts (ref_35) 2022; 163 Percin (ref_4) 2019; 568 Fujihara (ref_81) 2014; 61 Lausson (ref_94) 1985; 107 Bartocci (ref_45) 1990; 87 Nager (ref_49) 1983; 4 Schini (ref_56) 2023; 44 Vimalraj (ref_77) 2020; 754 Hansen (ref_69) 2022; 16 Karsenty (ref_74) 2023; 43 Redmond (ref_65) 2016; 101 Bollen (ref_71) 1995; 10 McDonald (ref_5) 2021; 5 Moser (ref_75) 2018; 9 Joseph (ref_64) 2007; 92 Klerman (ref_93) 1997; 82 Colditz (ref_51) 2018; 33 ref_36 Swanson (ref_66) 2017; 28 ref_34 Koronowski (ref_53) 2021; 371 ref_32 Sims (ref_38) 2020; 82 Wagner (ref_89) 2024; 39 ref_39 Dovio (ref_60) 2008; 19 ref_37 Jubiz (ref_91) 1972; 51 Blumsohn (ref_70) 1994; 40 Bunger (ref_97) 2000; 103 Langdahl (ref_10) 2016; 8 Hojo (ref_21) 2015; 1 ref_47 Shoulders (ref_23) 2009; 78 ref_1 Blair (ref_26) 2011; 37 Ito (ref_24) 2021; 90 Aoyama (ref_61) 2017; 11 ref_3 Kim (ref_41) 2014; 21 Chen (ref_96) 2020; 253 ref_9 ref_8 Slater (ref_79) 2012; 53 Ono (ref_40) 2020; 40 Li (ref_50) 2008; 23 |
References_xml | – ident: ref_9 – ident: ref_34 doi: 10.1155/2015/421746 – volume: 22 start-page: 357 year: 2007 ident: ref_54 article-title: Circadian oscillation of gene expression in murine calvarial bone publication-title: J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. doi: 10.1359/jbmr.061114 – volume: 31 start-page: 1344 year: 2016 ident: ref_82 article-title: Circadian Clock Regulates Bone Resorption in Mice publication-title: J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. doi: 10.1002/jbmr.2803 – volume: 45 start-page: 1347 year: 1999 ident: ref_84 article-title: Hormonal control of calcium homeostasis publication-title: Clin. Chem. doi: 10.1093/clinchem/45.8.1347 – volume: 48 start-page: 140 year: 2020 ident: ref_6 article-title: The Central Role of Osteocytes in the Four Adaptive Pathways of Bone’s Mechanostat publication-title: Exerc. Sport. Sci. Rev. doi: 10.1249/JES.0000000000000225 – volume: 51 start-page: 2040 year: 1972 ident: ref_91 article-title: Circadian rhythm in serum parathyroid hormone concentration in human subjects: Correlation with serum calcium, phosphate, albumin, and growth hormone levels publication-title: J. Clin. Investig. doi: 10.1172/JCI107010 – volume: 94 start-page: 1338 year: 2019 ident: ref_29 article-title: The phylogenetic origin and evolution of acellular bone in teleost fishes: Insights into osteocyte function in bone metabolism publication-title: Biol. Rev. Camb. Philos. Soc. doi: 10.1111/brv.12505 – volume: 10 start-page: 1885 year: 1995 ident: ref_71 article-title: Circadian variation in urinary excretion of bone collagen cross-links publication-title: J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. doi: 10.1002/jbmr.5650101207 – volume: 11 start-page: 63 year: 2017 ident: ref_61 article-title: The Role of Circadian Rhythms in Muscular and Osseous Physiology and Their Regulation by Nutrition and Exercise publication-title: Front. Neurosci. doi: 10.3389/fnins.2017.00063 – volume: 11 start-page: 59 year: 2023 ident: ref_103 article-title: Spatial transcriptomic interrogation of the murine bone marrow signaling landscape publication-title: Bone Res. doi: 10.1038/s41413-023-00298-1 – volume: 82 start-page: 507 year: 2020 ident: ref_38 article-title: Osteoclasts Provide Coupling Signals to Osteoblast Lineage Cells through Multiple Mechanisms publication-title: Annu. Rev. Physiol. doi: 10.1146/annurev-physiol-021119-034425 – volume: 121 start-page: 172 year: 2019 ident: ref_102 article-title: Defective circadian control in mesenchymal cells reduces adult bone mass in mice by promoting osteoclast function publication-title: Bone doi: 10.1016/j.bone.2019.01.016 – volume: 120 start-page: 61 year: 2019 ident: ref_67 article-title: The 24-hour serum profiles of bone markers in healthy older men and women publication-title: Bone doi: 10.1016/j.bone.2018.10.002 – volume: 172 start-page: 153 year: 2020 ident: ref_7 article-title: Bone modeling or bone remodeling: That is the question publication-title: Am. J. Phys. Anthr. doi: 10.1002/ajpa.23966 – ident: ref_14 doi: 10.1155/2018/9156478 – volume: 5 start-page: e10539 year: 2021 ident: ref_5 article-title: New Insights Into Osteoclast Biology publication-title: JBMR Plus doi: 10.1002/jbm4.10539 – volume: 12 start-page: 214 year: 2013 ident: ref_62 article-title: Incretins and bone: Evolving concepts in nutrient-dependent regulation of bone turnover publication-title: Hormones doi: 10.14310/horm.2002.1405 – volume: 21 start-page: 67 year: 2020 ident: ref_52 article-title: Molecular mechanisms and physiological importance of circadian rhythms publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-019-0179-2 – ident: ref_47 doi: 10.3390/jcm11030806 – ident: ref_83 – volume: 23 start-page: 860 year: 2008 ident: ref_50 article-title: Targeted deletion of the sclerostin gene in mice results in increased bone formation and bone strength publication-title: J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. doi: 10.1359/jbmr.080216 – volume: 19 start-page: 113 year: 2008 ident: ref_60 article-title: Variations along the 24-hour cycle of circulating osteoprotegerin and soluble RANKL: A rhythmometric analysis publication-title: Osteoporos. Int. doi: 10.1007/s00198-007-0423-z – volume: 32 start-page: 380 year: 2017 ident: ref_55 article-title: Guidelines for Genome-Scale Analysis of Biological Rhythms publication-title: J. Biol. Rhythm. doi: 10.1177/0748730417728663 – ident: ref_95 doi: 10.3390/ijms241512307 – volume: 4 start-page: 5183 year: 2014 ident: ref_100 article-title: Gremlin-2 is a BMP antagonist that is regulated by the circadian clock publication-title: Sci. Rep. doi: 10.1038/srep05183 – volume: 43 start-page: 55 year: 2023 ident: ref_74 article-title: Osteocalcin: A Multifaceted Bone-Derived Hormone publication-title: Annu. Rev. Nutr. doi: 10.1146/annurev-nutr-061121-091348 – volume: 16 start-page: 101593 year: 2022 ident: ref_69 article-title: Circadian rhythm of markers of bone turnover in patients with chronic kidney disease publication-title: Bone Rep. doi: 10.1016/j.bonr.2022.101593 – volume: 17 start-page: 1473 year: 2011 ident: ref_46 article-title: Suppression of bone formation by osteoclastic expression of semaphorin 4D publication-title: Nat. Med. doi: 10.1038/nm.2489 – volume: 92 start-page: 3230 year: 2007 ident: ref_64 article-title: The circadian rhythm of osteoprotegerin and its association with parathyroid hormone secretion publication-title: J. Clin. Endocrinol. Metab. doi: 10.1210/jc.2006-1832 – volume: 102 start-page: 379 year: 2022 ident: ref_30 article-title: The osteocyte as a signaling cell publication-title: Physiol. Rev. doi: 10.1152/physrev.00043.2020 – ident: ref_86 – volume: 3 start-page: 79 year: 2017 ident: ref_33 article-title: Bone lining cells: Normal physiology and role in response to anabolic osteoporosis treatments publication-title: Curr. Mol. Biol. Rep. doi: 10.1007/s40610-017-0062-x – ident: ref_12 doi: 10.1016/j.biopha.2022.114019 – volume: 5 start-page: e10504 year: 2021 ident: ref_13 article-title: Chronobiology and Chronotherapy of Osteoporosis publication-title: JBMR Plus doi: 10.1002/jbm4.10504 – volume: 60 start-page: 419 year: 1997 ident: ref_72 article-title: Diurnal variation of bone mineral turnover in elderly men and women publication-title: Calcif. Tissue Int. doi: 10.1007/s002239900256 – ident: ref_16 doi: 10.3389/fcell.2022.960456 – volume: 103 start-page: 1009 year: 2000 ident: ref_97 article-title: Mop3 is an essential component of the master circadian pacemaker in mammals publication-title: Cell doi: 10.1016/S0092-8674(00)00205-1 – volume: 84 start-page: 194 year: 2016 ident: ref_101 article-title: Deficiency of circadian clock protein BMAL1 in mice results in a low bone mass phenotype publication-title: Bone doi: 10.1016/j.bone.2016.01.006 – volume: 61 start-page: 1 year: 2014 ident: ref_81 article-title: Glucocorticoids mediate circadian timing in peripheral osteoclasts resulting in the circadian expression rhythm of osteoclast-related genes publication-title: Bone doi: 10.1016/j.bone.2013.12.026 – volume: 14 start-page: 1546 year: 2015 ident: ref_76 article-title: Gamma-carboxylation and fragmentation of osteocalcin in human serum defined by mass spectrometry publication-title: Mol. Cell. Proteom. MCP doi: 10.1074/mcp.M114.047621 – volume: 22 start-page: 391 year: 2011 ident: ref_59 article-title: Markers of bone turnover for the prediction of fracture risk and monitoring of osteoporosis treatment: A need for international reference standards publication-title: Osteoporos. Int. doi: 10.1007/s00198-010-1501-1 – volume: 13 start-page: 954895 year: 2022 ident: ref_48 article-title: Sclerostin as a biomarker of physical exercise in osteoporosis: A narrative review publication-title: Front. Endocrinol. doi: 10.3389/fendo.2022.954895 – volume: 37 start-page: 159 year: 2011 ident: ref_26 article-title: Calcium and bone disease publication-title: Biofactors doi: 10.1002/biof.143 – volume: 28 start-page: 3205 year: 2017 ident: ref_66 article-title: 24-hour profile of serum sclerostin and its association with bone biomarkers in men publication-title: Osteoporos. Int. doi: 10.1007/s00198-017-4162-5 – ident: ref_36 – ident: ref_22 – ident: ref_39 doi: 10.3389/fcell.2022.903657 – volume: 9 start-page: 794 year: 2018 ident: ref_75 article-title: Osteocalcin-A Versatile Bone-Derived Hormone publication-title: Front. Endocrinol. doi: 10.3389/fendo.2018.00794 – volume: 4 start-page: 1 year: 1983 ident: ref_49 article-title: Sclerosteosis involving the temporal bone: Clinical and radiologic aspects publication-title: Am. J. Otolaryngol. doi: 10.1016/S0196-0709(83)80002-7 – volume: 39 start-page: 190 year: 2024 ident: ref_89 article-title: The basics of phosphate metabolism publication-title: Nephrol. Dial. Transplant. doi: 10.1093/ndt/gfad188 – ident: ref_32 – volume: 105 start-page: 2456 year: 2020 ident: ref_68 article-title: Sleep Restriction with Circadian Disruption Negatively alter Bone Turnover Markers in Women publication-title: J. Clin. Endocrinol. Metab. doi: 10.1210/clinem/dgaa232 – volume: 568 start-page: 541 year: 2019 ident: ref_4 article-title: Developmental origin, functional maintenance and genetic rescue of osteoclasts publication-title: Nature doi: 10.1038/s41586-019-1105-7 – volume: 71 start-page: 285 year: 2009 ident: ref_73 article-title: Variations in circulating osteoprotegerin and soluble RANKL during diurnal and menstrual cycles in young women publication-title: Horm. Res. – volume: 21 start-page: 319 year: 2014 ident: ref_88 article-title: Vitamin D metabolism, mechanism of action, and clinical applications publication-title: Chem. Biol. doi: 10.1016/j.chembiol.2013.12.016 – ident: ref_3 doi: 10.3389/fcell.2021.788680 – volume: 8 start-page: a031229 year: 2018 ident: ref_25 article-title: Mechanism of Bone Mineralization publication-title: Cold Spring Harb. Perspect. Med. doi: 10.1101/cshperspect.a031229 – ident: ref_19 doi: 10.3390/ijms22083989 – volume: 101 start-page: 3222 year: 2016 ident: ref_65 article-title: Diurnal Rhythms of Bone Turnover Markers in Three Ethnic Groups publication-title: J. Clin. Endocrinol. Metab. doi: 10.1210/jc.2016-1183 – ident: ref_58 – volume: 93 start-page: 299 year: 2013 ident: ref_27 article-title: The role of phosphatases in the initiation of skeletal mineralization publication-title: Calcif. Tissue Int. doi: 10.1007/s00223-012-9672-8 – volume: 40 start-page: 2 year: 2020 ident: ref_40 article-title: RANKL biology: Bone metabolism, the immune system, and beyond publication-title: Inflamm. Regen. doi: 10.1186/s41232-019-0111-3 – volume: 52 start-page: 1239 year: 2020 ident: ref_43 article-title: The M-CSF receptor in osteoclasts and beyond publication-title: Exp. Mol. Med. doi: 10.1038/s12276-020-0484-z – volume: 97 start-page: 19 year: 2019 ident: ref_15 article-title: Emerging role of circadian rhythm in bone remodeling publication-title: J. Mol. Med. doi: 10.1007/s00109-018-1723-9 – ident: ref_8 – volume: 87 start-page: 4828 year: 1990 ident: ref_45 article-title: Total absence of colony-stimulating factor 1 in the macrophage-deficient osteopetrotic (op/op) mouse publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.87.12.4828 – volume: 82 start-page: 485 year: 2020 ident: ref_31 article-title: The Osteocyte: New Insights publication-title: Annu. Rev. Physiol. doi: 10.1146/annurev-physiol-021119-034332 – ident: ref_87 – volume: 253 start-page: 117636 year: 2020 ident: ref_96 article-title: The biological function of BMAL1 in skeleton development and disorders publication-title: Life Sci. doi: 10.1016/j.lfs.2020.117636 – volume: 21 start-page: 233 year: 2014 ident: ref_41 article-title: Regulation of NFATc1 in Osteoclast Differentiation publication-title: J. Bone Metab. doi: 10.11005/jbm.2014.21.4.233 – volume: 40 start-page: 663 year: 1994 ident: ref_70 article-title: Biochemical markers of bone turnover in girls during puberty publication-title: Clin. Endocrinol. doi: 10.1111/j.1365-2265.1994.tb03019.x – volume: 107 start-page: 389 year: 1985 ident: ref_94 article-title: Circadian variations in plasma calcium and calcitonin: Effect of calcium deficiency and fasting publication-title: J. Endocrinol. doi: 10.1677/joe.0.1070389 – volume: 90 start-page: 631 year: 2021 ident: ref_24 article-title: Quality Control of Procollagen in Cells publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev-biochem-013118-111603 – ident: ref_20 – volume: 78 start-page: 929 year: 2009 ident: ref_23 article-title: Collagen structure and stability publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.77.032207.120833 – volume: 34 start-page: 1052 year: 2020 ident: ref_80 article-title: Circadian disruption by shifting the light-dark cycle negatively affects bone health in mice publication-title: FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. – volume: 35 start-page: 1481 year: 2020 ident: ref_99 article-title: Postnatal Conditional Deletion of Bmal1 in Osteoblasts Enhances Trabecular Bone Formation Via Increased BMP2 Signals publication-title: J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. doi: 10.1002/jbmr.4017 – volume: 21 start-page: 696 year: 2020 ident: ref_2 article-title: Mechanisms of bone development and repair publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-020-00279-w – volume: 44 start-page: 417 year: 2023 ident: ref_56 article-title: Bone Turnover Markers: Basic Biology to Clinical Applications publication-title: Endocr. Rev. doi: 10.1210/endrev/bnac031 – volume: 53 start-page: 374 year: 2012 ident: ref_79 article-title: Effects on bone by the light/dark cycle and chronic treatment with melatonin and/or hormone replacement therapy in intact female mice publication-title: J. Pineal Res. doi: 10.1111/j.1600-079X.2012.01007.x – volume: 12 start-page: 778078 year: 2021 ident: ref_42 article-title: Macrophage-Osteoclast Associations: Origin, Polarization, and Subgroups publication-title: Front. Immunol. doi: 10.3389/fimmu.2021.778078 – volume: 1362 start-page: 37 year: 2022 ident: ref_90 article-title: Vitamin D and Phosphate Interactions in Health and Disease publication-title: Adv. Exp. Med. Biol. doi: 10.1007/978-3-030-91623-7_5 – volume: 19 start-page: 410 year: 2021 ident: ref_11 article-title: Circadian rhythms affect bone reconstruction by regulating bone energy metabolism publication-title: J. Transl. Med. doi: 10.1186/s12967-021-03068-x – ident: ref_18 – volume: 60 start-page: 736 year: 1985 ident: ref_78 article-title: Osteocalcin in human serum: A circadian rhythm publication-title: J. Clin. Endocrinol. Metab. doi: 10.1210/jcem-60-4-736 – ident: ref_37 doi: 10.3390/cells9092073 – volume: 33 start-page: 1698 year: 2018 ident: ref_51 article-title: Postnatal Skeletal Deletion of Dickkopf-1 Increases Bone Formation and Bone Volume in Male and Female Mice, Despite Increased Sclerostin Expression publication-title: J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. doi: 10.1002/jbmr.3463 – volume: 82 start-page: 281 year: 1997 ident: ref_93 article-title: The parathyroid hormone circadian rhythm is truly endogenous--a general clinical research center study publication-title: J. Clin. Endocrinol. Metab. – volume: 163 start-page: 116499 year: 2022 ident: ref_35 article-title: Mechanisms of bone resorption publication-title: Bone doi: 10.1016/j.bone.2022.116499 – volume: 67 start-page: 1068 year: 1988 ident: ref_92 article-title: Temporal interrelationships between the circadian rhythms of serum parathyroid hormone and calcium concentrations publication-title: J. Clin. Endocrinol. Metab. doi: 10.1210/jcem-67-5-1068 – volume: 80 start-page: 14 year: 2015 ident: ref_17 article-title: Bone development publication-title: Bone doi: 10.1016/j.bone.2015.04.035 – volume: 1 start-page: 57 year: 2015 ident: ref_21 article-title: Signaling pathways regulating the specification and differentiation of the osteoblast lineage publication-title: Regen. Ther. doi: 10.1016/j.reth.2014.10.002 – ident: ref_85 – volume: 26 start-page: 229 year: 2011 ident: ref_28 article-title: The amazing osteocyte publication-title: J. Bone Miner. Res. doi: 10.1002/jbmr.320 – volume: 754 start-page: 144855 year: 2020 ident: ref_77 article-title: Alkaline phosphatase: Structure, expression and its function in bone mineralization publication-title: Gene doi: 10.1016/j.gene.2020.144855 – volume: 8 start-page: 225 year: 2016 ident: ref_10 article-title: Bone modeling and remodeling: Potential as therapeutic targets for the treatment of osteoporosis publication-title: Ther. Adv. Musculoskelet. Dis. doi: 10.1177/1759720X16670154 – volume: 31 start-page: 57 year: 2002 ident: ref_63 article-title: Circadian variation in the serum concentration of C-terminal telopeptide of type I collagen (serum CTx): Effects of gender, age, menopausal status, posture, daylight, serum cortisol, and fasting publication-title: Bone doi: 10.1016/S8756-3282(02)00791-3 – volume: 32 start-page: 872 year: 2017 ident: ref_98 article-title: Bone Resorption Is Regulated by Circadian Clock in Osteoblasts publication-title: J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. doi: 10.1002/jbmr.3053 – volume: 371 start-page: eabd0951 year: 2021 ident: ref_53 article-title: Communicating clocks shape circadian homeostasis publication-title: Science doi: 10.1126/science.abd0951 – ident: ref_1 doi: 10.3390/ijms22136651 – ident: ref_57 – volume: 156 start-page: 1516 year: 1982 ident: ref_44 article-title: Hematological characterization of congenital osteopetrosis in op/op mouse. Possible mechanism for abnormal macrophage differentiation publication-title: J. Exp. Med. doi: 10.1084/jem.156.5.1516 |
SSID | ssj0023259 |
Score | 2.4724314 |
SecondaryResourceType | review_article |
Snippet | Adult bones are continuously remodeled by the balance between bone resorption by osteoclasts and subsequent bone formation by osteoblasts. Many studies have... |
SourceID | proquest gale pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 4717 |
SubjectTerms | Animals Bone and Bones - metabolism Bone Remodeling - genetics Bones Cell differentiation Circadian rhythm Circadian Rhythm - genetics Circadian Rhythm - physiology Collagen Cytokines Dietary minerals DNA binding proteins Extracellular matrix Gene Expression Regulation Genetic aspects Genetic transcription Homeostasis Hormones Humans Hydroxyapatite Mineralization Osteoblasts - metabolism Osteoclasts - metabolism Osteogenesis - genetics Osteoporosis Phosphatases Phosphates Proteins Transcription factors Vertebrae |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB50RfAivq0vKigepJgmbdqcxJUVEVxEXNhbaaYpKLpVdz3475202eoKem2maTqZzCvDfABHSC5sruKYhDfKA5IQGaSliANNAW5KFk_kdUL_ti-vB9HNMB66hNvYlVVOdWKtqIsKbY78TFhpIeeaJeevb4FFjbK3qw5CYx4WSAWncQcWur3-3X0bcglew6WFZIUCGSvZlL4LCvTPHp9exty2j0tqsLJvo_RbNf9yOGvDc7UCy85j9C-aLV6FOTNag8UGQ_JzHU4uH9-xbjDg3ze48sRpvyr9bjUy9KiGuiH7tAGDq97D5XXg0A8CjHg0CcJCMaPylEkVomKoELlUOk-RSV6wUmkUpS40Twqb2pVRiGVkSrJEFAHFDMUmdEb0pW3wSwobtFS5wlxF2nBthDBMoS5oBpEaD06nv5-haw1uESqeMwoRLLOyn8zy4Lilfm1aYvxBd2I5mdmTQrNh7gr-aU2251R2Qaohthc_3IO9GUqScJwdnu5F5k7YOPuWBw8O22H7pq0aG5nqo6Eh_5bcHA-2mj1sVyzShLSPiHb-n3wXlji5MU2J4x50Ju8fZp_ckIk-cLL2Bcq02Ag priority: 102 providerName: ProQuest |
Title | Circadian Regulation of Bone Remodeling |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38731934 https://www.proquest.com/docview/3053187507 https://www.proquest.com/docview/3053977008 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8NADA_bRPBF_HY6RwVlD1Lteteu9yCyjc0hbMhwsLfSu15hMjfdB7j_3qTthpsKvvShl_toLk3yuwsJwJVCFzYQjoPCywMTJcQ1vYg5pkSA66HFY0F8oN_uuK0ef-o7_Qwsq42mDJz-Cu2onlRvMrz9_Fg84A9_T4gTIfvd4PVtalMiOIQmWdhCm-SSfLf56j4B3Ya4bBodeJikoJMQ-B-914zTporecDxjA9Tcg93UczSqyVbvQ0aPDmA7qSW5OIRSfTBRcaIBo5vUl0eOG-PIqI1HGl_FJW_QTh1Br9l4qbfMtAqCqbjNZ2Y5FJYWgWe5oqyEpYRStitk4CnLtUMrElKxSIbSroR0xOvysoq4jtAiIRJyLMWOITfCmU7BiBA-SFcEQgWCS21LzZi2hJIhjsA8nYeb5ef7Kk0RTpUqhj5CBWKW_51ZebheUb8nqTH-oCsRJ33aQxxNBWngP66Jck_5VVQRDl0A2XkorFGipKv15uVe-EtB8RlpEQRdFs5zuWqmnhQ9NtLjeUKDfi66O3k4SfZwtWLmVVALMX72j97nsGOjT5PEOxYgN5vM9QX6JDNZhGylX8Gn13wswlat0XnuFslKOMVYEL8AZlvfqg |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5tqVB7QZRneJQggThUEV7b8caHCi20y_I8IJC4hXjiSFTtLrCLEH-K39hxnCzdlcqNazyZOJ7xPPyYD2ALKYTNdByT8sosIg1RUVKIODKU4Cbk8URWLuifnavulTy-jq8b8FLfhXHHKmubWBrqvI9ujXxXOG2h4Jq19u7uI4ca5XZXawgNrxYn9vmJUrbB96MfJN9tzjs_Lw-6UYUqEKHkchg1c82szhKmdBM1Q43IlTZZgkzxnBXaoChMbngrd0umSjaxkLYgC0-ZRcxQEN8P8FEKoV2t_qRzOErwBC_B2Zrk8yIVa-UP2hMh27399WfAXbG6VgmN9uoCJx3BRHhburnOLMxU8WnY9gr1BRq2NwfTHrHyeR52Dm4fsCxnEF54FHuSa9gvwv1-z9KjEliHvOECXL3LqCzCVI--tAxhQUmKUTrTmGlpLDdWCMs0mpw4iMQG8K3-_RSrQuQOD-N3SgmJG6z038EKYHtEfecLcPyHbseNZOrmJXHDrLpeQH1yFa7SNhmi2G0z8QDWxihpPuF4cy2LtJrPg_RV-wLYHDW7N90ZtZ7tP3oaiqYpqApgyctw1GORtMjWCbnyNvMN-NS9PDtNT4_OT1bhM6cAyh-uXIOp4cOjXacAaGi-lloXws17q_lfc24TOw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bS-QwFD7oyIovoq6r9doFxYelTCZp0-ZBxNugqw4iK_hWm9MUFJ1RZ0T8a_46T5p2vMD65muTpmny5VySk_MBrCGZsJmKIgJvmAWEEBkkhYgCTQ5uQhpPZOWG_klHHpyHfy-iixF4qe_C2LDKWiaWgjrvod0jbwqLFjKuWdwsqrCI07321t19YBmk7ElrTafhIHJknp_IfetvHu7RXK9z3t7_t3sQVAwDAYY8HAStXDGjsoRJ1ULFUCFyqXSWIJM8Z4XSKAqdax7ndvtUhi0sQlOQtCcvI2IoqN1RGItJKyYNGNvZ75yeDd09wUuqthZpwEBGSrqweyEUa15d3_a5TV0Xl0Rpbwrxs1r4ZOyWSq89BZOVtepvO3hNw4jpzsAPx1_5_BM2dq8esExu4J85TnuaZb9X-Du9rqFHJc0O6cZZOP-WcfkFjS59aR78glwWLVWmMFOhNlwbIQxTqHNqQSTGgz_176dYpSW37Bg3KbkndrDS94Plwfqw9p1Lx_Gfeht2JFO7Sqk1zKrLBtQnm-8q3SaxFNlDJ-7B0oeatLrwY3E9F2m1uvvpGxY9-D0stm_aiLWu6T26OmRbk4nlwZybw2GPRRKT5BPhwteNr8I4QTw9PuwcLcIEJ2vKRVouQWPw8GiWyRoa6JUKdj5cfjfSXwEThhjW |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Circadian+Regulation+of+Bone+Remodeling&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Kikyo%2C+Nobuaki&rft.date=2024-05-01&rft.issn=1422-0067&rft.eissn=1422-0067&rft.volume=25&rft.issue=9&rft_id=info:doi/10.3390%2Fijms25094717&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon |