Upper bound limit analysis using linear finite elements and non-linear programming
A new method for computing rigorous upper bounds on the limit loads for one‐, two‐ and three‐dimensional continua is described. The formulation is based on linear finite elements, permits kinematically admissible velocity discontinuities at all interelement boundaries, and furnishes a kinematically...
Saved in:
Published in | International journal for numerical and analytical methods in geomechanics Vol. 26; no. 2; pp. 181 - 216 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Ltd
01.02.2002
Wiley |
Subjects | |
Online Access | Get full text |
ISSN | 0363-9061 1096-9853 |
DOI | 10.1002/nag.198 |
Cover
Loading…
Abstract | A new method for computing rigorous upper bounds on the limit loads for one‐, two‐ and three‐dimensional continua is described. The formulation is based on linear finite elements, permits kinematically admissible velocity discontinuities at all interelement boundaries, and furnishes a kinematically admissible velocity field by solving a non‐linear programming problem. In the latter, the objective function corresponds to the dissipated power (which is minimized) and the unknowns are subject to linear equality constraints as well as linear and non‐linear inequality constraints.
Provided the yield surface is convex, the optimization problem generated by the upper bound method is also convex and can be solved efficiently by applying a two‐stage, quasi‐Newton scheme to the corresponding Kuhn–Tucker optimality conditions. A key advantage of this strategy is that its iteration count is largely independent of the mesh size. Since the formulation permits non‐linear constraints on the unknowns, no linearization of the yield surface is necessary and the modelling of three‐dimensional geometries presents no special difficulties.
The utility of the proposed upper bound method is illustrated by applying it to a number of two‐ and three‐dimensional boundary value problems. For a variety of two‐dimensional cases, the new scheme is up to two orders of magnitude faster than an equivalent linear programming scheme which uses yield surface linearization. Copyright © 2001 John Wiley & Sons, Ltd. |
---|---|
AbstractList | A new method for computing rigorous upper bounds on the limit loads for one‐, two‐ and three‐dimensional continua is described. The formulation is based on linear finite elements, permits kinematically admissible velocity discontinuities at all interelement boundaries, and furnishes a kinematically admissible velocity field by solving a non‐linear programming problem. In the latter, the objective function corresponds to the dissipated power (which is minimized) and the unknowns are subject to linear equality constraints as well as linear and non‐linear inequality constraints.
Provided the yield surface is convex, the optimization problem generated by the upper bound method is also convex and can be solved efficiently by applying a two‐stage, quasi‐Newton scheme to the corresponding Kuhn–Tucker optimality conditions. A key advantage of this strategy is that its iteration count is largely independent of the mesh size. Since the formulation permits non‐linear constraints on the unknowns, no linearization of the yield surface is necessary and the modelling of three‐dimensional geometries presents no special difficulties.
The utility of the proposed upper bound method is illustrated by applying it to a number of two‐ and three‐dimensional boundary value problems. For a variety of two‐dimensional cases, the new scheme is up to two orders of magnitude faster than an equivalent linear programming scheme which uses yield surface linearization. Copyright © 2001 John Wiley & Sons, Ltd. A new method for computing rigorous upper bounds on the limit loads for one-, two- and three-dimensional continua is described. The formulation is based on linear finite elements, permits kinematically admissible velocity discontinuities at all interelement boundaries, and furnishes a kinematically admissible velocity field by solving a non-linear programming problem. In the latter, the objective function corresponds to the dissipated power (which is minimized) and the unknowns are subject to linear equality constraints as well as linear and non-linear inequality constraints. Provided the yield surface is convex, the optimization problem generated by the upper bound method is also convex and can be solved efficiently by applying a two-stage, quasi-Newton scheme to the corresponding Kuhn-Tucker optimality conditions. A key advantage of this strategy is that its iteration count is largely independent of the mesh size. Since the formulation permits non-linear constraints on the unknowns, no linearization of the yield surface is necessary and the modelling of three-dimensional geometries presents no special difficulties. The utility of the proposed upper bound method is illustrated by applying it to a number of two- and three-dimensional boundary value problems. For a variety of two-dimensional cases, the new scheme is up to two orders of magnitude faster than an equivalent linear programming scheme which uses yield surface linearization. |
Author | Lyamin, A. V. Sloan, S. W. |
Author_xml | – sequence: 1 givenname: A. V. surname: Lyamin fullname: Lyamin, A. V. organization: Department of Civil, Surveying and Environmental Engineering, University of Newcastle, NSW 2308, Australia – sequence: 2 givenname: S. W. surname: Sloan fullname: Sloan, S. W. email: scott.sloan@newcastle.edu.au organization: Department of Civil, Surveying and Environmental Engineering, University of Newcastle, NSW 2308, Australia |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13433143$$DView record in Pascal Francis |
BookMark | eNp10E1LAzEQBuAgCtYP_At7UQ-yNdlkP3LUolUQRVH0Fqa7kxLNZmuyRfvvjbQoip4CmWfegXeLrLvOISF7jA4Zpdmxg-mQyWqNDBiVRSqrnK-TAeUFTyUt2CbZCuGZUprH6YDcPcxm6JNJN3dNYk1r-gQc2EUwIZkH46bx0yH4RBtnekzQYouuD1E1SbycrsYz3009tG3c2CEbGmzA3dW7TR7Oz-5HF-nVzfhydHKV1iITVao1lCWICgtoZD5BncmJLnmpBUUmdFFzEJnOucCaVZXQlWyaXEg9aTDnBUq-TQ6WufH26xxDr1oTarQWHHbzoLKyyMqSiQj3VxBCDVZ7cLUJauZNC36hGBecRxbd4dLVvgvBo_4mVH12q2K3KnYbZfpL1qaH3nSu92DsH_5o6d-MxcV_ser6ZPwj3YQe3780-BdVxIJy9Xg9VvJidJrRW6me-Af1jZt2 |
CODEN | IJNGDZ |
CitedBy_id | crossref_primary_10_1002_nme_4527 crossref_primary_10_1061__ASCE_GT_1943_5606_0002046 crossref_primary_10_1016_j_sandf_2019_05_003 crossref_primary_10_1007_s10706_022_02129_2 crossref_primary_10_1007_s11440_014_0340_1 crossref_primary_10_1061__ASCE_GM_1943_5622_0000418 crossref_primary_10_1016_j_ijrmms_2007_08_010 crossref_primary_10_1016_j_compgeo_2012_05_010 crossref_primary_10_1016_j_ijengsci_2013_08_006 crossref_primary_10_3390_su142114465 crossref_primary_10_1016_j_compgeo_2008_07_002 crossref_primary_10_1061__ASCE_0733_9399_2008_134_4_339 crossref_primary_10_1007_s12665_021_09955_2 crossref_primary_10_1016_j_cma_2016_09_016 crossref_primary_10_1016_j_compgeo_2015_07_019 crossref_primary_10_1061_IJGNAI_GMENG_7463 crossref_primary_10_1002_nag_2700 crossref_primary_10_1016_j_finel_2016_08_002 crossref_primary_10_1061__ASCE_GM_1943_5622_0000092 crossref_primary_10_1016_j_compgeo_2015_07_014 crossref_primary_10_1016_j_compgeo_2018_01_005 crossref_primary_10_1061_IJGNAI_GMENG_7902 crossref_primary_10_1016_j_ijsolstr_2006_06_036 crossref_primary_10_1016_j_compstruc_2013_08_011 crossref_primary_10_1061__ASCE_GM_1943_5622_0001734 crossref_primary_10_1139_T10_030 crossref_primary_10_1007_s00707_007_0550_9 crossref_primary_10_3390_app112412068 crossref_primary_10_1016_j_cma_2014_10_008 crossref_primary_10_1016_j_compgeo_2015_07_011 crossref_primary_10_1038_s41598_023_40608_5 crossref_primary_10_1007_s00603_021_02549_1 crossref_primary_10_1016_j_compgeo_2019_103205 crossref_primary_10_1016_j_compgeo_2013_07_001 crossref_primary_10_1016_j_ijsolstr_2015_02_042 crossref_primary_10_1016_j_apm_2017_12_015 crossref_primary_10_1016_j_compgeo_2013_07_003 crossref_primary_10_1016_j_jrmge_2022_01_016 crossref_primary_10_3389_fbuil_2023_1117858 crossref_primary_10_1016_j_compstruc_2006_08_019 crossref_primary_10_1007_s11440_024_02443_4 crossref_primary_10_1080_19648189_2020_1791257 crossref_primary_10_1139_cgj_2017_0489 crossref_primary_10_1061__ASCE_GT_1943_5606_0000562 crossref_primary_10_1002_nme_4303 crossref_primary_10_1016_j_icarus_2023_115928 crossref_primary_10_1007_s40515_024_00510_7 crossref_primary_10_1139_cgj_2013_0378 crossref_primary_10_1016_j_compgeo_2016_10_023 crossref_primary_10_1016_j_compgeo_2023_105595 crossref_primary_10_1016_j_compgeo_2021_104183 crossref_primary_10_1061__ASCE_1090_0241_2004_130_10_1108 crossref_primary_10_1016_j_sandf_2020_09_011 crossref_primary_10_3208_sandf_45_2_17 crossref_primary_10_1016_j_compgeo_2024_106284 crossref_primary_10_1002_cnm_723 crossref_primary_10_1007_s10706_023_02497_3 crossref_primary_10_1108_JEDT_09_2021_0493 crossref_primary_10_1007_s11440_016_0505_1 crossref_primary_10_1002_gete_202400002 crossref_primary_10_1061__ASCE_GM_1943_5622_0001710 crossref_primary_10_1002_cnm_1224 crossref_primary_10_1016_j_enganabound_2016_07_010 crossref_primary_10_3390_su132313452 crossref_primary_10_1016_j_compgeo_2020_103906 crossref_primary_10_1007_s00466_006_0076_3 crossref_primary_10_1016_j_advengsoft_2014_09_004 crossref_primary_10_1088_1755_1315_861_3_032058 crossref_primary_10_1016_j_compgeo_2021_104170 crossref_primary_10_1016_j_aiig_2025_100111 crossref_primary_10_1061_IJGNAI_GMENG_10306 crossref_primary_10_1016_j_compgeo_2020_103587 crossref_primary_10_1061__ASCE_GM_1943_5622_0000980 crossref_primary_10_1680_geot_2007_57_8_647 crossref_primary_10_1002_nme_2483 crossref_primary_10_1061__ASCE_GM_1943_5622_0002487 crossref_primary_10_12989_sem_2014_51_4_565 crossref_primary_10_1680_jgeot_21_00022 crossref_primary_10_1016_j_compgeo_2020_103833 crossref_primary_10_1002_nme_2421 crossref_primary_10_1061_IJGNAI_GMENG_10595 crossref_primary_10_1016_j_compgeo_2015_06_018 crossref_primary_10_1016_j_compgeo_2020_103713 crossref_primary_10_1680_geot_14_P_022 crossref_primary_10_1016_j_compgeo_2019_02_008 crossref_primary_10_1007_s11440_018_0633_x crossref_primary_10_1016_j_compgeo_2018_02_008 crossref_primary_10_1016_j_compstruc_2017_11_005 crossref_primary_10_1007_s11204_022_09790_y crossref_primary_10_1061__ASCE_GM_1943_5622_0000292 crossref_primary_10_1061__ASCE_GM_1943_5622_0002596 crossref_primary_10_1080_17486025_2024_2389831 crossref_primary_10_1016_j_sandf_2022_101126 crossref_primary_10_1061__ASCE_GM_1943_5622_0001262 crossref_primary_10_3390_su15032585 crossref_primary_10_1016_j_ijsolstr_2004_08_002 crossref_primary_10_1051_matecconf_202440002003 crossref_primary_10_1080_19648189_2022_2080769 crossref_primary_10_1016_j_compgeo_2004_06_001 crossref_primary_10_1007_s40999_019_00463_w crossref_primary_10_1002_nme_5925 crossref_primary_10_1016_j_compgeo_2016_08_012 crossref_primary_10_1061__ASCE_GM_1943_5622_0001018 crossref_primary_10_1016_j_compgeo_2013_06_007 crossref_primary_10_1061__ASCE_GM_1943_5622_0000725 crossref_primary_10_1016_j_oceaneng_2024_116744 crossref_primary_10_1002_nme_1567 crossref_primary_10_1016_j_compgeo_2015_06_002 crossref_primary_10_1098_rspa_2013_0009 crossref_primary_10_1002_nme_2897 crossref_primary_10_1061__ASCE_GM_1943_5622_0001935 crossref_primary_10_1080_12795119_2002_9692726 crossref_primary_10_1016_j_compstruc_2017_11_018 crossref_primary_10_2208_jscejam_69_I_247 crossref_primary_10_1007_s40891_016_0076_0 crossref_primary_10_1016_j_compgeo_2021_104072 crossref_primary_10_1016_j_ijsolstr_2004_11_023 crossref_primary_10_1016_j_sandf_2018_10_008 crossref_primary_10_1080_17499518_2015_1064141 crossref_primary_10_1680_geot_2006_56_2_141 crossref_primary_10_1061__ASCE_GM_1943_5622_0001370 crossref_primary_10_1016_j_compgeo_2021_104074 crossref_primary_10_1061__ASCE_GM_1943_5622_0000283 crossref_primary_10_1016_j_cam_2014_12_006 crossref_primary_10_1016_j_compgeo_2011_08_002 crossref_primary_10_1061__ASCE_GM_1943_5622_0000288 crossref_primary_10_3208_sandf_49_305 crossref_primary_10_1016_j_compgeo_2024_107007 crossref_primary_10_1680_geot_13_T_003 crossref_primary_10_1016_j_compgeo_2009_11_001 crossref_primary_10_1007_s12517_020_06255_0 crossref_primary_10_1016_j_compgeo_2021_104548 crossref_primary_10_1115_1_4041058 crossref_primary_10_1016_j_cma_2024_117007 crossref_primary_10_1680_jgeen_17_00151 crossref_primary_10_29252_nmce_3_3_20 crossref_primary_10_1016_j_ijrmms_2006_02_001 crossref_primary_10_1061__ASCE_0733_9399_2004_130_8_886 crossref_primary_10_1061_JGGEFK_GTENG_12907 crossref_primary_10_1016_j_compgeo_2012_09_005 crossref_primary_10_1061__ASCE_GM_1943_5622_0000715 crossref_primary_10_1007_s00419_020_01806_z crossref_primary_10_1016_j_jrmge_2018_09_002 crossref_primary_10_1007_s11440_024_02450_5 crossref_primary_10_1016_j_compgeo_2023_105550 crossref_primary_10_1016_j_trgeo_2023_101168 crossref_primary_10_1155_2023_4286038 crossref_primary_10_1007_s00466_016_1280_4 crossref_primary_10_1002_nme_7340 crossref_primary_10_1061__ASCE_GM_1943_5622_0001247 crossref_primary_10_1016_j_compgeo_2021_104302 crossref_primary_10_1016_j_compgeo_2021_104423 crossref_primary_10_1016_j_compgeo_2023_105799 crossref_primary_10_1016_j_cma_2017_11_006 crossref_primary_10_1007_s40808_025_02338_7 crossref_primary_10_4028_www_scientific_net_AMM_90_93_778 crossref_primary_10_1016_j_euromechsol_2019_05_005 crossref_primary_10_1016_j_compgeo_2018_06_008 crossref_primary_10_1061__ASCE_GT_1943_5606_0002792 crossref_primary_10_1080_17486025_2019_1664775 crossref_primary_10_1002_gete_202200014 crossref_primary_10_1139_cgj_2014_0029 crossref_primary_10_1016_j_compgeo_2011_03_003 crossref_primary_10_3390_app13127053 crossref_primary_10_1002_cnm_998 crossref_primary_10_1016_S0266_352X_03_00009_0 crossref_primary_10_1016_j_compgeo_2019_03_003 crossref_primary_10_1061__ASCE_GM_1943_5622_0000385 crossref_primary_10_1007_s10706_020_01495_z crossref_primary_10_1016_j_sandf_2016_01_007 crossref_primary_10_1155_2021_4017006 crossref_primary_10_1002_nme_5273 crossref_primary_10_1016_j_cam_2011_01_035 crossref_primary_10_1016_j_compgeo_2023_105667 crossref_primary_10_1002_nme_1771 crossref_primary_10_1680_jgele_18_00145 crossref_primary_10_1061__ASCE_GM_1943_5622_0000812 crossref_primary_10_1061__ASCE_GT_1943_5606_0001118 crossref_primary_10_1061__ASCE_1090_0241_2003_129_3_197 crossref_primary_10_1029_2008JB005591 crossref_primary_10_1061__ASCE_GT_1943_5606_0002683 crossref_primary_10_1002_nag_355 crossref_primary_10_1002_nag_2781 crossref_primary_10_1016_j_compgeo_2012_07_012 crossref_primary_10_1007_s40010_018_0569_4 crossref_primary_10_1002_nag_2543 crossref_primary_10_1016_j_compstruc_2016_04_004 crossref_primary_10_1051_geotech_2023014 crossref_primary_10_1016_j_jnlssr_2023_09_002 crossref_primary_10_1016_j_jnnfm_2018_04_012 crossref_primary_10_1016_j_compgeo_2021_104562 crossref_primary_10_3208_jgssp_v08_c19 crossref_primary_10_1139_t03_032 crossref_primary_10_1016_j_compgeo_2022_104843 crossref_primary_10_1179_1939787914Y_0000000070 crossref_primary_10_3390_app10062012 crossref_primary_10_1002_nme_4912 crossref_primary_10_1680_jgele_19_00003 crossref_primary_10_2478_sgem_2025_0002 crossref_primary_10_1016_j_ijmecsci_2013_01_017 crossref_primary_10_1007_s11440_022_01740_0 crossref_primary_10_1061__ASCE_EM_1943_7889_0000820 crossref_primary_10_1007_s13369_021_05632_5 crossref_primary_10_1016_j_engstruct_2020_111041 crossref_primary_10_1680_geolett_11_00026 crossref_primary_10_1680_geot_12_P_030 crossref_primary_10_1142_S0219876213420036 crossref_primary_10_1088_1755_1315_570_6_062004 crossref_primary_10_1016_j_compgeo_2024_106915 crossref_primary_10_1002_nme_2061 crossref_primary_10_1007_s00366_018_0583_9 crossref_primary_10_1016_j_compgeo_2022_104734 crossref_primary_10_1139_t03_042 crossref_primary_10_3390_su141912940 crossref_primary_10_1016_j_soildyn_2014_04_007 crossref_primary_10_1016_j_tust_2020_103293 crossref_primary_10_1007_s10596_010_9184_4 crossref_primary_10_1002_nme_1314 crossref_primary_10_1016_j_compgeo_2019_02_021 crossref_primary_10_1002_nag_3051 crossref_primary_10_1016_j_apor_2022_103308 crossref_primary_10_1061_IJGNAI_GMENG_8063 crossref_primary_10_1061_IJGNAI_GMENG_9394 crossref_primary_10_1007_s10706_024_02857_7 crossref_primary_10_3390_app14072683 crossref_primary_10_1007_s00158_018_2108_y crossref_primary_10_1002_cepa_770 crossref_primary_10_1186_2196_1166_1_6 crossref_primary_10_1002_nag_2885 crossref_primary_10_1002_nag_2889 crossref_primary_10_1016_j_compgeo_2022_104866 crossref_primary_10_1016_j_ijmecsci_2010_07_006 crossref_primary_10_2208_jscejam_76_2_I_225 crossref_primary_10_1016_j_compgeo_2020_103502 crossref_primary_10_1061__ASCE_GM_1943_5622_0002527 crossref_primary_10_1016_j_soildyn_2017_11_011 crossref_primary_10_1061__ASCE_GM_1943_5622_0001315 crossref_primary_10_1016_j_cma_2014_12_014 crossref_primary_10_1080_13632469_2018_1452805 crossref_primary_10_1139_t06_126 crossref_primary_10_1016_j_compgeo_2019_103151 crossref_primary_10_1016_j_cma_2018_12_017 crossref_primary_10_1016_j_compgeo_2018_11_010 crossref_primary_10_1016_j_geotexmem_2021_05_002 crossref_primary_10_1016_j_ijsolstr_2005_03_035 crossref_primary_10_1680_geot_12_RL_001 crossref_primary_10_3390_buildings13041000 crossref_primary_10_1139_t11_041 crossref_primary_10_1002_nag_2775 crossref_primary_10_1061__ASCE_GM_1943_5622_0002088 crossref_primary_10_1061_IJGNAI_GMENG_8848 crossref_primary_10_1061__ASCE_GM_1943_5622_0000465 crossref_primary_10_1155_2019_1914674 crossref_primary_10_1016_j_compgeo_2013_04_009 crossref_primary_10_1007_s00500_022_06997_x crossref_primary_10_1016_j_autcon_2016_02_004 crossref_primary_10_11118_actaun201664041131 crossref_primary_10_1007_s10064_020_01840_9 crossref_primary_10_1016_j_compgeo_2013_04_005 crossref_primary_10_1002_nme_6985 crossref_primary_10_1016_j_probengmech_2024_103692 crossref_primary_10_1002_nme_3358 crossref_primary_10_3208_sandf_48_843 crossref_primary_10_1680_jgeot_19_O_001 crossref_primary_10_3390_app10248839 crossref_primary_10_1007_s11440_006_0020_x crossref_primary_10_1016_j_engstruct_2019_109892 crossref_primary_10_1016_j_oceaneng_2024_118098 crossref_primary_10_1016_j_sandf_2018_12_004 crossref_primary_10_1007_s40010_016_0311_z crossref_primary_10_1007_s11709_023_0905_x crossref_primary_10_1007_s11709_015_0317_7 crossref_primary_10_1061__ASCE_GM_1943_5622_0000211 crossref_primary_10_1002_nme_2275 crossref_primary_10_1007_s40999_020_00596_3 crossref_primary_10_1016_j_compgeo_2009_06_002 crossref_primary_10_1016_j_compstruc_2006_08_048 crossref_primary_10_1061__ASCE_GM_1943_5622_0002631 crossref_primary_10_1007_s12205_021_1162_y crossref_primary_10_1061__ASCE_GM_1943_5622_0000324 crossref_primary_10_1061__ASCE_GT_1943_5606_0002255 crossref_primary_10_1016_j_compstruc_2012_03_012 crossref_primary_10_1155_2021_8503490 crossref_primary_10_1016_j_compgeo_2008_01_004 crossref_primary_10_3390_app10134675 crossref_primary_10_1016_j_undsp_2021_05_001 crossref_primary_10_1002_nag_567 crossref_primary_10_1007_s11440_016_0459_3 crossref_primary_10_3208_jgssp_OTH_01 crossref_primary_10_1016_j_tust_2020_103515 crossref_primary_10_1016_j_soildyn_2022_107674 crossref_primary_10_2208_jscejj_24_15034 crossref_primary_10_1016_j_compgeo_2021_104473 crossref_primary_10_1016_j_jpse_2023_100128 crossref_primary_10_1016_j_sandf_2019_08_014 crossref_primary_10_1007_s40515_023_00282_6 crossref_primary_10_1061__ASCE_GT_1943_5606_0000866 crossref_primary_10_1016_j_compgeo_2021_104232 crossref_primary_10_1061__ASCE_GM_1943_5622_0000560 crossref_primary_10_1016_j_compgeo_2020_103687 crossref_primary_10_1061__ASCE_GM_1943_5622_0002620 crossref_primary_10_1139_cgj_2016_0072 crossref_primary_10_1080_19648189_2020_1805643 crossref_primary_10_1061__ASCE_GM_1943_5622_0000438 crossref_primary_10_1002_cnm_1018 crossref_primary_10_1016_j_compgeo_2019_103362 crossref_primary_10_1093_tse_tdaa002 crossref_primary_10_1007_s40515_022_00260_4 crossref_primary_10_1016_j_compstruct_2019_02_101 crossref_primary_10_3390_w14152319 crossref_primary_10_1016_j_compgeo_2019_103112 crossref_primary_10_1007_s10706_021_01918_5 crossref_primary_10_1007_s12145_024_01634_7 crossref_primary_10_1016_j_compgeo_2012_03_014 crossref_primary_10_1061__ASCE_GM_1943_5622_0001760 crossref_primary_10_1061__ASCE_GT_1943_5606_0002816 crossref_primary_10_1016_j_compgeo_2022_104662 crossref_primary_10_1016_j_ijmecsci_2008_10_010 crossref_primary_10_1016_j_compgeo_2020_103531 crossref_primary_10_1016_j_compgeo_2023_106005 crossref_primary_10_1007_s11770_024_1176_6 crossref_primary_10_1007_s40948_017_0049_3 crossref_primary_10_1061__ASCE_GM_1943_5622_0001996 crossref_primary_10_1061__ASCE_GT_1943_5606_0000531 crossref_primary_10_1016_j_jnnfm_2016_05_008 crossref_primary_10_1680_geot_2003_53_9_785 crossref_primary_10_1061__ASCE_GT_1943_5606_0002151 crossref_primary_10_1080_19386362_2024_2362468 crossref_primary_10_1680_jgere_19_00033 crossref_primary_10_1016_j_compgeo_2016_11_013 crossref_primary_10_1016_j_undsp_2018_01_007 crossref_primary_10_1016_j_mechrescom_2010_07_023 crossref_primary_10_1016_j_ijplas_2006_02_001 crossref_primary_10_1016_j_compgeo_2019_103345 crossref_primary_10_1061__ASCE_GM_1943_5622_0002283 crossref_primary_10_3389_feart_2022_830371 crossref_primary_10_1016_j_compgeo_2019_103101 crossref_primary_10_1061__ASCE_GM_1943_5622_0002166 crossref_primary_10_1002_nme_3374 crossref_primary_10_1007_s13296_018_0194_8 crossref_primary_10_1016_j_ijrmms_2005_07_010 crossref_primary_10_5802_crmeca_88 crossref_primary_10_1016_j_euromechsol_2016_02_005 crossref_primary_10_1007_s12517_023_11468_0 crossref_primary_10_1007_s40996_024_01530_6 |
Cites_doi | 10.1016/0045-7949(94)00339-5 10.1002/nag.1610130304 10.1002/nme.1620261207 10.1680/geot.1956.6.1.32 10.1016/0045-7825(95)00868-1 10.1016/0266-352X(92)90022-L 10.1680/geot.1982.32.3.261 10.1002/(SICI)1096-9853(200002)24:2<165::AID-NAG62>3.0.CO;2-A 10.1007/BF02591987 10.1016/0045-7825(80)90055-9 10.1016/0020-7683(93)90220-2 10.1139/t77-007 |
ContentType | Journal Article |
Copyright | Copyright © 2001 John Wiley & Sons, Ltd. 2002 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2001 John Wiley & Sons, Ltd. – notice: 2002 INIST-CNRS |
DBID | BSCLL AAYXX CITATION IQODW 8FD FR3 KR7 |
DOI | 10.1002/nag.198 |
DatabaseName | Istex CrossRef Pascal-Francis Technology Research Database Engineering Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Technology Research Database Civil Engineering Abstracts Engineering Research Database |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EISSN | 1096-9853 |
EndPage | 216 |
ExternalDocumentID | 13433143 10_1002_nag_198 NAG198 ark_67375_WNG_9HCB20Q9_X |
Genre | article |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 41~ 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAYOK AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AI. AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE G-S G.N GBZZK GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6O MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RWS RX1 RYL SAMSI SUPJJ TN5 UB1 V2E VH1 W8V W99 WBKPD WIB WIH WIK WLBEL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ZY4 ZZTAW ~02 ~IA ~WT AAHQN AAMMB AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AEFGJ AEYWJ AFWVQ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY ALVPJ AAYXX CITATION IQODW 8FD FR3 KR7 |
ID | FETCH-LOGICAL-c4248-ffa77a48e6ad95bef29bf737f40e14f6c3a42f534ec1884f89dd549fbde536e93 |
IEDL.DBID | DR2 |
ISSN | 0363-9061 |
IngestDate | Thu Jul 10 18:46:10 EDT 2025 Mon Jul 21 09:14:09 EDT 2025 Tue Jul 01 03:01:44 EDT 2025 Thu Apr 24 22:56:59 EDT 2025 Wed Aug 20 07:26:58 EDT 2025 Wed Oct 30 09:53:09 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Upper bound Strip footing Numerical simulation Structure soil interaction Non linear programming Limit Boundary condition Computing method Velocity Optimization Soil stability Finite element |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4248-ffa77a48e6ad95bef29bf737f40e14f6c3a42f534ec1884f89dd549fbde536e93 |
Notes | ark:/67375/WNG-9HCB20Q9-X istex:072E97C8E168C636C3BAD1B758BD00E50097F84C ArticleID:NAG198 Professor Research Academic ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 27627714 |
PQPubID | 23500 |
PageCount | 36 |
ParticipantIDs | proquest_miscellaneous_27627714 pascalfrancis_primary_13433143 crossref_primary_10_1002_nag_198 crossref_citationtrail_10_1002_nag_198 wiley_primary_10_1002_nag_198_NAG198 istex_primary_ark_67375_WNG_9HCB20Q9_X |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2002 |
PublicationDateYYYYMMDD | 2002-02-01 |
PublicationDate_xml | – month: 02 year: 2002 text: February 2002 |
PublicationDecade | 2000 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK – name: Chichester |
PublicationTitle | International journal for numerical and analytical methods in geomechanics |
PublicationTitleAlternate | Int. J. Numer. Anal. Meth. Geomech |
PublicationYear | 2002 |
Publisher | John Wiley & Sons, Ltd Wiley |
Publisher_xml | – name: John Wiley & Sons, Ltd – name: Wiley |
References | Pastor J, Thai T-H, Francescato P. New bounds for the height limit of a vertical slope. International Journal for Numerical and Analytical Methods in Geomechanics 2000; 24:165-182. Sloan SW, Kleeman PW. Upper bound limit analysis using discontinuous velocity fields. Computer Methods in Applied Mechanics and Engineering 1995; 127:293-314. Zouain N, Herskovits J, Borges LA, Feijóo RA. An iterative algorithm for limit analysis with nonlinear yield functions. International Journal of Solids and Structures 1993; 30(10): 1397-1417. Avriel L. Nonlinear Programming, Analysis and Methods. Prentice-Hall, Inc.: Englewood Cliffs, NJ 1976 Sloan SW. A steepest edge active set algorithm for solving sparse linear programming problems. International Journal for Numerical Methods in Engineering 1988; 26:2671-2685. Bjerrum L, Eide O. Stability of strutted excavations in clay. Geotechnique 1956; 6(1): 32-47. Prandtl L. uml;ber die Härte plastischer Körper. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch -Physikalische Klasse 1920; 12:74-85. Abbo AJ, Sloan SW. A smooth hyperbolic approximation to the Mohr-Coulomb yield criterion. Computers and Structures 1995; 54:427-441. Yu HS. Expansion of a thick cylinder of soils. Computers and Geotechnics 1992; 14:21-41. Prater EG. An examination of some theories of earth pressure on shaft linings. Canadian Geotechnical Journal 1977; 14(1): 91-106. Sloan SW. Upper bound limit analysis using finite elements and linear programming. International Journal for Numerical and Analytical Methods in Geomechanics 1989; 13:263-282. Britto AM, Kusakabe O. Stability of unsupported axisymmetric excavations in soft clay. Geotechnique 1982; 32(3): 261-270. Herskovits J. A two-stage feasible directions algorithm for nonlinearly constrained optimization. Mathematical Programming 1986; 36:19-38. Bottero A, Negre R, Pastor J, Turgeman S. Finite element method and limit analysis theory for soil mechanics problems. Computer Methods in Applied Mechanics and Engineering 1980; 22:131-149. 1920; 12 1977; 14 2000; 24 1988; 26 1980; 22 1986; 36 1982; 32 1993; 30 1995; 54 1976 1997 1956; 6 1995; 127 1992; 14 1981 1989; 13 1979 1999 Prandtl L (e_1_2_1_11_2) 1920; 12 e_1_2_1_6_2 Avriel L (e_1_2_1_7_2) 1976 e_1_2_1_4_2 e_1_2_1_5_2 e_1_2_1_2_2 e_1_2_1_3_2 e_1_2_1_12_2 Lyamin AV (e_1_2_1_9_2) 1997 e_1_2_1_20_2 e_1_2_1_10_2 Prater EG (e_1_2_1_16_2) 1977; 14 e_1_2_1_13_2 e_1_2_1_14_2 e_1_2_1_19_2 Bjerrum L (e_1_2_1_15_2) 1956; 6 e_1_2_1_8_2 e_1_2_1_17_2 e_1_2_1_18_2 |
References_xml | – reference: Bottero A, Negre R, Pastor J, Turgeman S. Finite element method and limit analysis theory for soil mechanics problems. Computer Methods in Applied Mechanics and Engineering 1980; 22:131-149. – reference: Abbo AJ, Sloan SW. A smooth hyperbolic approximation to the Mohr-Coulomb yield criterion. Computers and Structures 1995; 54:427-441. – reference: Prater EG. An examination of some theories of earth pressure on shaft linings. Canadian Geotechnical Journal 1977; 14(1): 91-106. – reference: Pastor J, Thai T-H, Francescato P. New bounds for the height limit of a vertical slope. International Journal for Numerical and Analytical Methods in Geomechanics 2000; 24:165-182. – reference: Herskovits J. A two-stage feasible directions algorithm for nonlinearly constrained optimization. Mathematical Programming 1986; 36:19-38. – reference: Britto AM, Kusakabe O. Stability of unsupported axisymmetric excavations in soft clay. Geotechnique 1982; 32(3): 261-270. – reference: Prandtl L. uml;ber die Härte plastischer Körper. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch -Physikalische Klasse 1920; 12:74-85. – reference: Sloan SW. A steepest edge active set algorithm for solving sparse linear programming problems. International Journal for Numerical Methods in Engineering 1988; 26:2671-2685. – reference: Sloan SW, Kleeman PW. Upper bound limit analysis using discontinuous velocity fields. Computer Methods in Applied Mechanics and Engineering 1995; 127:293-314. – reference: Avriel L. Nonlinear Programming, Analysis and Methods. Prentice-Hall, Inc.: Englewood Cliffs, NJ 1976 – reference: Sloan SW. Upper bound limit analysis using finite elements and linear programming. International Journal for Numerical and Analytical Methods in Geomechanics 1989; 13:263-282. – reference: Yu HS. Expansion of a thick cylinder of soils. Computers and Geotechnics 1992; 14:21-41. – reference: Zouain N, Herskovits J, Borges LA, Feijóo RA. An iterative algorithm for limit analysis with nonlinear yield functions. International Journal of Solids and Structures 1993; 30(10): 1397-1417. – reference: Bjerrum L, Eide O. Stability of strutted excavations in clay. Geotechnique 1956; 6(1): 32-47. – start-page: 505 year: 1981 end-page: 508 – volume: 14 start-page: 91 issue: 1 year: 1977 end-page: 106 article-title: An examination of some theories of earth pressure on shaft linings publication-title: Canadian Geotechnical Journal – volume: 30 start-page: 1397 issue: 10 year: 1993 end-page: 1417 article-title: An iterative algorithm for limit analysis with nonlinear yield functions publication-title: International Journal of Solids and Structures – start-page: 367 year: 1997 end-page: 373 – year: 1981 – volume: 24 start-page: 165 year: 2000 end-page: 182 article-title: New bounds for the height limit of a vertical slope publication-title: International Journal for Numerical and Analytical Methods in Geomechanics – volume: 32 start-page: 261 issue: 3 year: 1982 end-page: 270 article-title: Stability of unsupported axisymmetric excavations in soft clay publication-title: Geotechnique – volume: 26 start-page: 2671 year: 1988 end-page: 2685 article-title: A steepest edge active set algorithm for solving sparse linear programming problems publication-title: International Journal for Numerical Methods in Engineering – volume: 13 start-page: 263 year: 1989 end-page: 282 article-title: Upper bound limit analysis using finite elements and linear programming publication-title: International Journal for Numerical and Analytical Methods in Geomechanics – volume: 36 start-page: 19 year: 1986 end-page: 38 article-title: A two‐stage feasible directions algorithm for nonlinearly constrained optimization publication-title: Mathematical Programming – volume: 127 start-page: 293 year: 1995 end-page: 314 article-title: Upper bound limit analysis using discontinuous velocity fields publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 54 start-page: 427 year: 1995 end-page: 441 article-title: A smooth hyperbolic approximation to the Mohr–Coulomb yield criterion publication-title: Computers and Structures – volume: 12 start-page: 74 year: 1920 end-page: 85 article-title: uml;ber die Härte plastischer Körper publication-title: Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch ‐Physikalische Klasse – volume: 6 start-page: 32 issue: 1 year: 1956 end-page: 47 article-title: Stability of strutted excavations in clay publication-title: Geotechnique – year: 1979 – year: 1976 – volume: 22 start-page: 131 year: 1980 end-page: 149 article-title: Finite element method and limit analysis theory for soil mechanics problems publication-title: Computer Methods in Applied Mechanics and Engineering – year: 1999 – volume: 14 start-page: 21 year: 1992 end-page: 41 article-title: Expansion of a thick cylinder of soils publication-title: Computers and Geotechnics – start-page: 367 volume-title: Proceedings of the 6th International Symposium on Numerical Models in Geomechanics year: 1997 ident: e_1_2_1_9_2 – ident: e_1_2_1_10_2 doi: 10.1016/0045-7949(94)00339-5 – ident: e_1_2_1_17_2 – ident: e_1_2_1_3_2 doi: 10.1002/nag.1610130304 – ident: e_1_2_1_12_2 doi: 10.1002/nme.1620261207 – volume: 6 start-page: 32 issue: 1 year: 1956 ident: e_1_2_1_15_2 article-title: Stability of strutted excavations in clay publication-title: Geotechnique doi: 10.1680/geot.1956.6.1.32 – ident: e_1_2_1_4_2 doi: 10.1016/0045-7825(95)00868-1 – ident: e_1_2_1_13_2 doi: 10.1016/0266-352X(92)90022-L – ident: e_1_2_1_19_2 doi: 10.1680/geot.1982.32.3.261 – ident: e_1_2_1_14_2 doi: 10.1002/(SICI)1096-9853(200002)24:2<165::AID-NAG62>3.0.CO;2-A – ident: e_1_2_1_8_2 – ident: e_1_2_1_20_2 – ident: e_1_2_1_6_2 doi: 10.1007/BF02591987 – volume: 12 start-page: 74 year: 1920 ident: e_1_2_1_11_2 article-title: uml;ber die Härte plastischer Körper publication-title: Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch ‐Physikalische Klasse – ident: e_1_2_1_2_2 doi: 10.1016/0045-7825(80)90055-9 – ident: e_1_2_1_18_2 – volume-title: Nonlinear Programming, Analysis and Methods year: 1976 ident: e_1_2_1_7_2 – ident: e_1_2_1_5_2 doi: 10.1016/0020-7683(93)90220-2 – volume: 14 start-page: 91 issue: 1 year: 1977 ident: e_1_2_1_16_2 article-title: An examination of some theories of earth pressure on shaft linings publication-title: Canadian Geotechnical Journal doi: 10.1139/t77-007 |
SSID | ssj0005096 |
Score | 2.183745 |
Snippet | A new method for computing rigorous upper bounds on the limit loads for one‐, two‐ and three‐dimensional continua is described. The formulation is based on... A new method for computing rigorous upper bounds on the limit loads for one-, two- and three-dimensional continua is described. The formulation is based on... |
SourceID | proquest pascalfrancis crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 181 |
SubjectTerms | Applied sciences Buildings. Public works Computation methods. Tables. Charts Exact sciences and technology finite element Geotechnics kinematic limit analysis nonlinear programming Structural analysis. Stresses Structure-soil interaction upper bound |
Title | Upper bound limit analysis using linear finite elements and non-linear programming |
URI | https://api.istex.fr/ark:/67375/WNG-9HCB20Q9-X/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnag.198 https://www.proquest.com/docview/27627714 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQXNpDS19qoFAfELcseUxs5wgIWFViJSpWXfVi2bGNELCs9iFVnPoT-hv7S5hJsstuq0oVpxwyjpMZ2zOOv_mGsT2nRIpxsY-TyqkYigxiA4mNbRLoUKY0UGfInfdEtw9fBsVgqdRXww-x-OFGM6Ner2mCGzs5WCINNVcd3DHj6ktILQqHvj4RRxGpyfyUskSX1aTLUsuDtt2KH9oglf4gXKSZoGpCU9NiJehcDl1r33P6mn2fv3UDObnpzKa2Uz38Qej4rM_aZK_aiJQfNkPoDVvzw7fs5RJP4Tt22R-N_JhbKsHEbyklipuWzIQTcP6KU79mzMM1hbDcN5j0CUo5Prwf_v75qxVo4WB32OY965-eXB5347YcQ1xBBioOwUhpQHlhXFlYH7LSBpnLAIlPIYgqN5CFIgdfpUpBUKVzuPsM1vkiF77MP7B17NJ_ZLywCpwQTubWgQhSVbircQQnS61Atx2x_blxdNVylVPJjFvdsCxnGtWkUU0R4wvBUUPP8bfIfm3dxX0zviE0myz0t96ZLrvHR1lyUepBxHZXzP_0wJzSyiCP2Of5eNA4CelkxQz9_WyiM3QpUqYQsb3atv96F907PMPL1v-JbbMXde2ZGiP-ia1PxzO_gyHQ1O7Wo_0RyCYGFg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5ROLQc-q5IoeAD4pYlD8d2joAKSwsrtdpVV-rBsmMbVdBltQ-p4sRP4DfyS_A42WW3VaWqpxwyjpOxnZmxv_kGYNcIlnq_2MZJZURMi4zGiiY61onDQ5lS0ZAhd95h7R791C_6DaoSc2Fqfoj5hhuujPC_xgWOG9L7C6yh6qLlQ-YnsIb1vEM49fWROgppTWbnlKU3WnXCLDbdbxouWaI1VOovREaqsVeOq6taLLmdi85rsD7HL-D77L1r0MllazrRrermN0rH__uwl_C8cUrJQT2LXsGKHbyG9QWqwjfQ7Q2HdkQ0VmEiV5gVRVTDZ0IQO39BsGM1Iu4HerHE1rD0sZcyZHA9uL-9awQaRNhP3-Yt9I4_do_acVORIa5oRkXsnOJcUWGZMmWhrctK7XjOHU1sSh2rckUzV-TUVqkQ1InSGB-AOm1skTNb5u9g1XdpN4AUWlDDmOG5NpQ5Liof2BhElKWaecsdwd5sdGTV0JVj1YwrWRMtZ9KrSXo1RUDmgsOaoeNPkb0wvPP7anSJgDZeyG-dE1m2jw6z5Esp-xFsL43_4wNzzCyjeQQ7swkh_TrEwxU1sNfTscy8VeE8pRHshsH927vIzsGJv7z_N7EdeNrunp_Js9PO5014FkrRBMj4FqxORlP7wXtEE70dpv4DCfIKMQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BKyE4lGdFCrQ-VL1lm8fEdo6lZbu8VoC6YsXFsmO7Qi3b1T4kxImfwG_kl-BJsttdEBLilEPGsTMzzozjz98A7FvJ05AXuziprIyxyDDWmJjYJJ42ZUqN9Qm5t33eG-CrYTFcKfXV8EMsf7jRzKi_1zTBx9YfrpCG6vNOWDHfhE3kiSSHPvlwzRxFrCaLbcoyxKzmvCw1PWwbrgWiTdLpVwJG6mnQjW-KWqxlnau5ax18unfh02LYDebkojOfmU717TdGx_96r3uw1aak7Kjxoftww40ewJ0VosKHcDYYj92EGarBxC7pTBTTLZsJI-T8OaN-9YT5z5TDMteA0qdByrLR1ejn9x-tQIsH-xLaPIJB98XZcS9u6zHEFWYoY--1EBql49qWhXE-K40XufCYuBQ9r3KNmS9ydFUqJXpZWhuWn95YV-Tclfk2bIQu3WNghZFoObciNxa5F7IKyxpLeLLU8BC3IzhYGEdVLVk51cy4VA3NcqaCmlRQUwRsKThu-Dn-FDmorbu8rycXBGcThfrYP1Vl7_h5lrwv1TCC3TXzXz8wp3NlmEewt_AHFWYhba3okbuaT1UWYooQKUawX9v2b2NR_aPTcNn5N7E9uPXupKvevOy_fgK36zo0NV78KWzMJnP3LKRDM7NbO_4vEZgI6Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Upper+bound+limit+analysis+using+linear+finite+elements+and+non%E2%80%90linear+programming&rft.jtitle=International+journal+for+numerical+and+analytical+methods+in+geomechanics&rft.au=Lyamin%2C+A.+V.&rft.au=Sloan%2C+S.+W.&rft.date=2002-02-01&rft.issn=0363-9061&rft.eissn=1096-9853&rft.volume=26&rft.issue=2&rft.spage=181&rft.epage=216&rft_id=info:doi/10.1002%2Fnag.198&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_nag_198 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0363-9061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0363-9061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0363-9061&client=summon |