Upper bound limit analysis using linear finite elements and non-linear programming

A new method for computing rigorous upper bounds on the limit loads for one‐, two‐ and three‐dimensional continua is described. The formulation is based on linear finite elements, permits kinematically admissible velocity discontinuities at all interelement boundaries, and furnishes a kinematically...

Full description

Saved in:
Bibliographic Details
Published inInternational journal for numerical and analytical methods in geomechanics Vol. 26; no. 2; pp. 181 - 216
Main Authors Lyamin, A. V., Sloan, S. W.
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 01.02.2002
Wiley
Subjects
Online AccessGet full text
ISSN0363-9061
1096-9853
DOI10.1002/nag.198

Cover

Loading…
Abstract A new method for computing rigorous upper bounds on the limit loads for one‐, two‐ and three‐dimensional continua is described. The formulation is based on linear finite elements, permits kinematically admissible velocity discontinuities at all interelement boundaries, and furnishes a kinematically admissible velocity field by solving a non‐linear programming problem. In the latter, the objective function corresponds to the dissipated power (which is minimized) and the unknowns are subject to linear equality constraints as well as linear and non‐linear inequality constraints. Provided the yield surface is convex, the optimization problem generated by the upper bound method is also convex and can be solved efficiently by applying a two‐stage, quasi‐Newton scheme to the corresponding Kuhn–Tucker optimality conditions. A key advantage of this strategy is that its iteration count is largely independent of the mesh size. Since the formulation permits non‐linear constraints on the unknowns, no linearization of the yield surface is necessary and the modelling of three‐dimensional geometries presents no special difficulties. The utility of the proposed upper bound method is illustrated by applying it to a number of two‐ and three‐dimensional boundary value problems. For a variety of two‐dimensional cases, the new scheme is up to two orders of magnitude faster than an equivalent linear programming scheme which uses yield surface linearization. Copyright © 2001 John Wiley & Sons, Ltd.
AbstractList A new method for computing rigorous upper bounds on the limit loads for one‐, two‐ and three‐dimensional continua is described. The formulation is based on linear finite elements, permits kinematically admissible velocity discontinuities at all interelement boundaries, and furnishes a kinematically admissible velocity field by solving a non‐linear programming problem. In the latter, the objective function corresponds to the dissipated power (which is minimized) and the unknowns are subject to linear equality constraints as well as linear and non‐linear inequality constraints. Provided the yield surface is convex, the optimization problem generated by the upper bound method is also convex and can be solved efficiently by applying a two‐stage, quasi‐Newton scheme to the corresponding Kuhn–Tucker optimality conditions. A key advantage of this strategy is that its iteration count is largely independent of the mesh size. Since the formulation permits non‐linear constraints on the unknowns, no linearization of the yield surface is necessary and the modelling of three‐dimensional geometries presents no special difficulties. The utility of the proposed upper bound method is illustrated by applying it to a number of two‐ and three‐dimensional boundary value problems. For a variety of two‐dimensional cases, the new scheme is up to two orders of magnitude faster than an equivalent linear programming scheme which uses yield surface linearization. Copyright © 2001 John Wiley & Sons, Ltd.
A new method for computing rigorous upper bounds on the limit loads for one-, two- and three-dimensional continua is described. The formulation is based on linear finite elements, permits kinematically admissible velocity discontinuities at all interelement boundaries, and furnishes a kinematically admissible velocity field by solving a non-linear programming problem. In the latter, the objective function corresponds to the dissipated power (which is minimized) and the unknowns are subject to linear equality constraints as well as linear and non-linear inequality constraints. Provided the yield surface is convex, the optimization problem generated by the upper bound method is also convex and can be solved efficiently by applying a two-stage, quasi-Newton scheme to the corresponding Kuhn-Tucker optimality conditions. A key advantage of this strategy is that its iteration count is largely independent of the mesh size. Since the formulation permits non-linear constraints on the unknowns, no linearization of the yield surface is necessary and the modelling of three-dimensional geometries presents no special difficulties. The utility of the proposed upper bound method is illustrated by applying it to a number of two- and three-dimensional boundary value problems. For a variety of two-dimensional cases, the new scheme is up to two orders of magnitude faster than an equivalent linear programming scheme which uses yield surface linearization.
Author Lyamin, A. V.
Sloan, S. W.
Author_xml – sequence: 1
  givenname: A. V.
  surname: Lyamin
  fullname: Lyamin, A. V.
  organization: Department of Civil, Surveying and Environmental Engineering, University of Newcastle, NSW 2308, Australia
– sequence: 2
  givenname: S. W.
  surname: Sloan
  fullname: Sloan, S. W.
  email: scott.sloan@newcastle.edu.au
  organization: Department of Civil, Surveying and Environmental Engineering, University of Newcastle, NSW 2308, Australia
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13433143$$DView record in Pascal Francis
BookMark eNp10E1LAzEQBuAgCtYP_At7UQ-yNdlkP3LUolUQRVH0Fqa7kxLNZmuyRfvvjbQoip4CmWfegXeLrLvOISF7jA4Zpdmxg-mQyWqNDBiVRSqrnK-TAeUFTyUt2CbZCuGZUprH6YDcPcxm6JNJN3dNYk1r-gQc2EUwIZkH46bx0yH4RBtnekzQYouuD1E1SbycrsYz3009tG3c2CEbGmzA3dW7TR7Oz-5HF-nVzfhydHKV1iITVao1lCWICgtoZD5BncmJLnmpBUUmdFFzEJnOucCaVZXQlWyaXEg9aTDnBUq-TQ6WufH26xxDr1oTarQWHHbzoLKyyMqSiQj3VxBCDVZ7cLUJauZNC36hGBecRxbd4dLVvgvBo_4mVH12q2K3KnYbZfpL1qaH3nSu92DsH_5o6d-MxcV_ser6ZPwj3YQe3780-BdVxIJy9Xg9VvJidJrRW6me-Af1jZt2
CODEN IJNGDZ
CitedBy_id crossref_primary_10_1002_nme_4527
crossref_primary_10_1061__ASCE_GT_1943_5606_0002046
crossref_primary_10_1016_j_sandf_2019_05_003
crossref_primary_10_1007_s10706_022_02129_2
crossref_primary_10_1007_s11440_014_0340_1
crossref_primary_10_1061__ASCE_GM_1943_5622_0000418
crossref_primary_10_1016_j_ijrmms_2007_08_010
crossref_primary_10_1016_j_compgeo_2012_05_010
crossref_primary_10_1016_j_ijengsci_2013_08_006
crossref_primary_10_3390_su142114465
crossref_primary_10_1016_j_compgeo_2008_07_002
crossref_primary_10_1061__ASCE_0733_9399_2008_134_4_339
crossref_primary_10_1007_s12665_021_09955_2
crossref_primary_10_1016_j_cma_2016_09_016
crossref_primary_10_1016_j_compgeo_2015_07_019
crossref_primary_10_1061_IJGNAI_GMENG_7463
crossref_primary_10_1002_nag_2700
crossref_primary_10_1016_j_finel_2016_08_002
crossref_primary_10_1061__ASCE_GM_1943_5622_0000092
crossref_primary_10_1016_j_compgeo_2015_07_014
crossref_primary_10_1016_j_compgeo_2018_01_005
crossref_primary_10_1061_IJGNAI_GMENG_7902
crossref_primary_10_1016_j_ijsolstr_2006_06_036
crossref_primary_10_1016_j_compstruc_2013_08_011
crossref_primary_10_1061__ASCE_GM_1943_5622_0001734
crossref_primary_10_1139_T10_030
crossref_primary_10_1007_s00707_007_0550_9
crossref_primary_10_3390_app112412068
crossref_primary_10_1016_j_cma_2014_10_008
crossref_primary_10_1016_j_compgeo_2015_07_011
crossref_primary_10_1038_s41598_023_40608_5
crossref_primary_10_1007_s00603_021_02549_1
crossref_primary_10_1016_j_compgeo_2019_103205
crossref_primary_10_1016_j_compgeo_2013_07_001
crossref_primary_10_1016_j_ijsolstr_2015_02_042
crossref_primary_10_1016_j_apm_2017_12_015
crossref_primary_10_1016_j_compgeo_2013_07_003
crossref_primary_10_1016_j_jrmge_2022_01_016
crossref_primary_10_3389_fbuil_2023_1117858
crossref_primary_10_1016_j_compstruc_2006_08_019
crossref_primary_10_1007_s11440_024_02443_4
crossref_primary_10_1080_19648189_2020_1791257
crossref_primary_10_1139_cgj_2017_0489
crossref_primary_10_1061__ASCE_GT_1943_5606_0000562
crossref_primary_10_1002_nme_4303
crossref_primary_10_1016_j_icarus_2023_115928
crossref_primary_10_1007_s40515_024_00510_7
crossref_primary_10_1139_cgj_2013_0378
crossref_primary_10_1016_j_compgeo_2016_10_023
crossref_primary_10_1016_j_compgeo_2023_105595
crossref_primary_10_1016_j_compgeo_2021_104183
crossref_primary_10_1061__ASCE_1090_0241_2004_130_10_1108
crossref_primary_10_1016_j_sandf_2020_09_011
crossref_primary_10_3208_sandf_45_2_17
crossref_primary_10_1016_j_compgeo_2024_106284
crossref_primary_10_1002_cnm_723
crossref_primary_10_1007_s10706_023_02497_3
crossref_primary_10_1108_JEDT_09_2021_0493
crossref_primary_10_1007_s11440_016_0505_1
crossref_primary_10_1002_gete_202400002
crossref_primary_10_1061__ASCE_GM_1943_5622_0001710
crossref_primary_10_1002_cnm_1224
crossref_primary_10_1016_j_enganabound_2016_07_010
crossref_primary_10_3390_su132313452
crossref_primary_10_1016_j_compgeo_2020_103906
crossref_primary_10_1007_s00466_006_0076_3
crossref_primary_10_1016_j_advengsoft_2014_09_004
crossref_primary_10_1088_1755_1315_861_3_032058
crossref_primary_10_1016_j_compgeo_2021_104170
crossref_primary_10_1016_j_aiig_2025_100111
crossref_primary_10_1061_IJGNAI_GMENG_10306
crossref_primary_10_1016_j_compgeo_2020_103587
crossref_primary_10_1061__ASCE_GM_1943_5622_0000980
crossref_primary_10_1680_geot_2007_57_8_647
crossref_primary_10_1002_nme_2483
crossref_primary_10_1061__ASCE_GM_1943_5622_0002487
crossref_primary_10_12989_sem_2014_51_4_565
crossref_primary_10_1680_jgeot_21_00022
crossref_primary_10_1016_j_compgeo_2020_103833
crossref_primary_10_1002_nme_2421
crossref_primary_10_1061_IJGNAI_GMENG_10595
crossref_primary_10_1016_j_compgeo_2015_06_018
crossref_primary_10_1016_j_compgeo_2020_103713
crossref_primary_10_1680_geot_14_P_022
crossref_primary_10_1016_j_compgeo_2019_02_008
crossref_primary_10_1007_s11440_018_0633_x
crossref_primary_10_1016_j_compgeo_2018_02_008
crossref_primary_10_1016_j_compstruc_2017_11_005
crossref_primary_10_1007_s11204_022_09790_y
crossref_primary_10_1061__ASCE_GM_1943_5622_0000292
crossref_primary_10_1061__ASCE_GM_1943_5622_0002596
crossref_primary_10_1080_17486025_2024_2389831
crossref_primary_10_1016_j_sandf_2022_101126
crossref_primary_10_1061__ASCE_GM_1943_5622_0001262
crossref_primary_10_3390_su15032585
crossref_primary_10_1016_j_ijsolstr_2004_08_002
crossref_primary_10_1051_matecconf_202440002003
crossref_primary_10_1080_19648189_2022_2080769
crossref_primary_10_1016_j_compgeo_2004_06_001
crossref_primary_10_1007_s40999_019_00463_w
crossref_primary_10_1002_nme_5925
crossref_primary_10_1016_j_compgeo_2016_08_012
crossref_primary_10_1061__ASCE_GM_1943_5622_0001018
crossref_primary_10_1016_j_compgeo_2013_06_007
crossref_primary_10_1061__ASCE_GM_1943_5622_0000725
crossref_primary_10_1016_j_oceaneng_2024_116744
crossref_primary_10_1002_nme_1567
crossref_primary_10_1016_j_compgeo_2015_06_002
crossref_primary_10_1098_rspa_2013_0009
crossref_primary_10_1002_nme_2897
crossref_primary_10_1061__ASCE_GM_1943_5622_0001935
crossref_primary_10_1080_12795119_2002_9692726
crossref_primary_10_1016_j_compstruc_2017_11_018
crossref_primary_10_2208_jscejam_69_I_247
crossref_primary_10_1007_s40891_016_0076_0
crossref_primary_10_1016_j_compgeo_2021_104072
crossref_primary_10_1016_j_ijsolstr_2004_11_023
crossref_primary_10_1016_j_sandf_2018_10_008
crossref_primary_10_1080_17499518_2015_1064141
crossref_primary_10_1680_geot_2006_56_2_141
crossref_primary_10_1061__ASCE_GM_1943_5622_0001370
crossref_primary_10_1016_j_compgeo_2021_104074
crossref_primary_10_1061__ASCE_GM_1943_5622_0000283
crossref_primary_10_1016_j_cam_2014_12_006
crossref_primary_10_1016_j_compgeo_2011_08_002
crossref_primary_10_1061__ASCE_GM_1943_5622_0000288
crossref_primary_10_3208_sandf_49_305
crossref_primary_10_1016_j_compgeo_2024_107007
crossref_primary_10_1680_geot_13_T_003
crossref_primary_10_1016_j_compgeo_2009_11_001
crossref_primary_10_1007_s12517_020_06255_0
crossref_primary_10_1016_j_compgeo_2021_104548
crossref_primary_10_1115_1_4041058
crossref_primary_10_1016_j_cma_2024_117007
crossref_primary_10_1680_jgeen_17_00151
crossref_primary_10_29252_nmce_3_3_20
crossref_primary_10_1016_j_ijrmms_2006_02_001
crossref_primary_10_1061__ASCE_0733_9399_2004_130_8_886
crossref_primary_10_1061_JGGEFK_GTENG_12907
crossref_primary_10_1016_j_compgeo_2012_09_005
crossref_primary_10_1061__ASCE_GM_1943_5622_0000715
crossref_primary_10_1007_s00419_020_01806_z
crossref_primary_10_1016_j_jrmge_2018_09_002
crossref_primary_10_1007_s11440_024_02450_5
crossref_primary_10_1016_j_compgeo_2023_105550
crossref_primary_10_1016_j_trgeo_2023_101168
crossref_primary_10_1155_2023_4286038
crossref_primary_10_1007_s00466_016_1280_4
crossref_primary_10_1002_nme_7340
crossref_primary_10_1061__ASCE_GM_1943_5622_0001247
crossref_primary_10_1016_j_compgeo_2021_104302
crossref_primary_10_1016_j_compgeo_2021_104423
crossref_primary_10_1016_j_compgeo_2023_105799
crossref_primary_10_1016_j_cma_2017_11_006
crossref_primary_10_1007_s40808_025_02338_7
crossref_primary_10_4028_www_scientific_net_AMM_90_93_778
crossref_primary_10_1016_j_euromechsol_2019_05_005
crossref_primary_10_1016_j_compgeo_2018_06_008
crossref_primary_10_1061__ASCE_GT_1943_5606_0002792
crossref_primary_10_1080_17486025_2019_1664775
crossref_primary_10_1002_gete_202200014
crossref_primary_10_1139_cgj_2014_0029
crossref_primary_10_1016_j_compgeo_2011_03_003
crossref_primary_10_3390_app13127053
crossref_primary_10_1002_cnm_998
crossref_primary_10_1016_S0266_352X_03_00009_0
crossref_primary_10_1016_j_compgeo_2019_03_003
crossref_primary_10_1061__ASCE_GM_1943_5622_0000385
crossref_primary_10_1007_s10706_020_01495_z
crossref_primary_10_1016_j_sandf_2016_01_007
crossref_primary_10_1155_2021_4017006
crossref_primary_10_1002_nme_5273
crossref_primary_10_1016_j_cam_2011_01_035
crossref_primary_10_1016_j_compgeo_2023_105667
crossref_primary_10_1002_nme_1771
crossref_primary_10_1680_jgele_18_00145
crossref_primary_10_1061__ASCE_GM_1943_5622_0000812
crossref_primary_10_1061__ASCE_GT_1943_5606_0001118
crossref_primary_10_1061__ASCE_1090_0241_2003_129_3_197
crossref_primary_10_1029_2008JB005591
crossref_primary_10_1061__ASCE_GT_1943_5606_0002683
crossref_primary_10_1002_nag_355
crossref_primary_10_1002_nag_2781
crossref_primary_10_1016_j_compgeo_2012_07_012
crossref_primary_10_1007_s40010_018_0569_4
crossref_primary_10_1002_nag_2543
crossref_primary_10_1016_j_compstruc_2016_04_004
crossref_primary_10_1051_geotech_2023014
crossref_primary_10_1016_j_jnlssr_2023_09_002
crossref_primary_10_1016_j_jnnfm_2018_04_012
crossref_primary_10_1016_j_compgeo_2021_104562
crossref_primary_10_3208_jgssp_v08_c19
crossref_primary_10_1139_t03_032
crossref_primary_10_1016_j_compgeo_2022_104843
crossref_primary_10_1179_1939787914Y_0000000070
crossref_primary_10_3390_app10062012
crossref_primary_10_1002_nme_4912
crossref_primary_10_1680_jgele_19_00003
crossref_primary_10_2478_sgem_2025_0002
crossref_primary_10_1016_j_ijmecsci_2013_01_017
crossref_primary_10_1007_s11440_022_01740_0
crossref_primary_10_1061__ASCE_EM_1943_7889_0000820
crossref_primary_10_1007_s13369_021_05632_5
crossref_primary_10_1016_j_engstruct_2020_111041
crossref_primary_10_1680_geolett_11_00026
crossref_primary_10_1680_geot_12_P_030
crossref_primary_10_1142_S0219876213420036
crossref_primary_10_1088_1755_1315_570_6_062004
crossref_primary_10_1016_j_compgeo_2024_106915
crossref_primary_10_1002_nme_2061
crossref_primary_10_1007_s00366_018_0583_9
crossref_primary_10_1016_j_compgeo_2022_104734
crossref_primary_10_1139_t03_042
crossref_primary_10_3390_su141912940
crossref_primary_10_1016_j_soildyn_2014_04_007
crossref_primary_10_1016_j_tust_2020_103293
crossref_primary_10_1007_s10596_010_9184_4
crossref_primary_10_1002_nme_1314
crossref_primary_10_1016_j_compgeo_2019_02_021
crossref_primary_10_1002_nag_3051
crossref_primary_10_1016_j_apor_2022_103308
crossref_primary_10_1061_IJGNAI_GMENG_8063
crossref_primary_10_1061_IJGNAI_GMENG_9394
crossref_primary_10_1007_s10706_024_02857_7
crossref_primary_10_3390_app14072683
crossref_primary_10_1007_s00158_018_2108_y
crossref_primary_10_1002_cepa_770
crossref_primary_10_1186_2196_1166_1_6
crossref_primary_10_1002_nag_2885
crossref_primary_10_1002_nag_2889
crossref_primary_10_1016_j_compgeo_2022_104866
crossref_primary_10_1016_j_ijmecsci_2010_07_006
crossref_primary_10_2208_jscejam_76_2_I_225
crossref_primary_10_1016_j_compgeo_2020_103502
crossref_primary_10_1061__ASCE_GM_1943_5622_0002527
crossref_primary_10_1016_j_soildyn_2017_11_011
crossref_primary_10_1061__ASCE_GM_1943_5622_0001315
crossref_primary_10_1016_j_cma_2014_12_014
crossref_primary_10_1080_13632469_2018_1452805
crossref_primary_10_1139_t06_126
crossref_primary_10_1016_j_compgeo_2019_103151
crossref_primary_10_1016_j_cma_2018_12_017
crossref_primary_10_1016_j_compgeo_2018_11_010
crossref_primary_10_1016_j_geotexmem_2021_05_002
crossref_primary_10_1016_j_ijsolstr_2005_03_035
crossref_primary_10_1680_geot_12_RL_001
crossref_primary_10_3390_buildings13041000
crossref_primary_10_1139_t11_041
crossref_primary_10_1002_nag_2775
crossref_primary_10_1061__ASCE_GM_1943_5622_0002088
crossref_primary_10_1061_IJGNAI_GMENG_8848
crossref_primary_10_1061__ASCE_GM_1943_5622_0000465
crossref_primary_10_1155_2019_1914674
crossref_primary_10_1016_j_compgeo_2013_04_009
crossref_primary_10_1007_s00500_022_06997_x
crossref_primary_10_1016_j_autcon_2016_02_004
crossref_primary_10_11118_actaun201664041131
crossref_primary_10_1007_s10064_020_01840_9
crossref_primary_10_1016_j_compgeo_2013_04_005
crossref_primary_10_1002_nme_6985
crossref_primary_10_1016_j_probengmech_2024_103692
crossref_primary_10_1002_nme_3358
crossref_primary_10_3208_sandf_48_843
crossref_primary_10_1680_jgeot_19_O_001
crossref_primary_10_3390_app10248839
crossref_primary_10_1007_s11440_006_0020_x
crossref_primary_10_1016_j_engstruct_2019_109892
crossref_primary_10_1016_j_oceaneng_2024_118098
crossref_primary_10_1016_j_sandf_2018_12_004
crossref_primary_10_1007_s40010_016_0311_z
crossref_primary_10_1007_s11709_023_0905_x
crossref_primary_10_1007_s11709_015_0317_7
crossref_primary_10_1061__ASCE_GM_1943_5622_0000211
crossref_primary_10_1002_nme_2275
crossref_primary_10_1007_s40999_020_00596_3
crossref_primary_10_1016_j_compgeo_2009_06_002
crossref_primary_10_1016_j_compstruc_2006_08_048
crossref_primary_10_1061__ASCE_GM_1943_5622_0002631
crossref_primary_10_1007_s12205_021_1162_y
crossref_primary_10_1061__ASCE_GM_1943_5622_0000324
crossref_primary_10_1061__ASCE_GT_1943_5606_0002255
crossref_primary_10_1016_j_compstruc_2012_03_012
crossref_primary_10_1155_2021_8503490
crossref_primary_10_1016_j_compgeo_2008_01_004
crossref_primary_10_3390_app10134675
crossref_primary_10_1016_j_undsp_2021_05_001
crossref_primary_10_1002_nag_567
crossref_primary_10_1007_s11440_016_0459_3
crossref_primary_10_3208_jgssp_OTH_01
crossref_primary_10_1016_j_tust_2020_103515
crossref_primary_10_1016_j_soildyn_2022_107674
crossref_primary_10_2208_jscejj_24_15034
crossref_primary_10_1016_j_compgeo_2021_104473
crossref_primary_10_1016_j_jpse_2023_100128
crossref_primary_10_1016_j_sandf_2019_08_014
crossref_primary_10_1007_s40515_023_00282_6
crossref_primary_10_1061__ASCE_GT_1943_5606_0000866
crossref_primary_10_1016_j_compgeo_2021_104232
crossref_primary_10_1061__ASCE_GM_1943_5622_0000560
crossref_primary_10_1016_j_compgeo_2020_103687
crossref_primary_10_1061__ASCE_GM_1943_5622_0002620
crossref_primary_10_1139_cgj_2016_0072
crossref_primary_10_1080_19648189_2020_1805643
crossref_primary_10_1061__ASCE_GM_1943_5622_0000438
crossref_primary_10_1002_cnm_1018
crossref_primary_10_1016_j_compgeo_2019_103362
crossref_primary_10_1093_tse_tdaa002
crossref_primary_10_1007_s40515_022_00260_4
crossref_primary_10_1016_j_compstruct_2019_02_101
crossref_primary_10_3390_w14152319
crossref_primary_10_1016_j_compgeo_2019_103112
crossref_primary_10_1007_s10706_021_01918_5
crossref_primary_10_1007_s12145_024_01634_7
crossref_primary_10_1016_j_compgeo_2012_03_014
crossref_primary_10_1061__ASCE_GM_1943_5622_0001760
crossref_primary_10_1061__ASCE_GT_1943_5606_0002816
crossref_primary_10_1016_j_compgeo_2022_104662
crossref_primary_10_1016_j_ijmecsci_2008_10_010
crossref_primary_10_1016_j_compgeo_2020_103531
crossref_primary_10_1016_j_compgeo_2023_106005
crossref_primary_10_1007_s11770_024_1176_6
crossref_primary_10_1007_s40948_017_0049_3
crossref_primary_10_1061__ASCE_GM_1943_5622_0001996
crossref_primary_10_1061__ASCE_GT_1943_5606_0000531
crossref_primary_10_1016_j_jnnfm_2016_05_008
crossref_primary_10_1680_geot_2003_53_9_785
crossref_primary_10_1061__ASCE_GT_1943_5606_0002151
crossref_primary_10_1080_19386362_2024_2362468
crossref_primary_10_1680_jgere_19_00033
crossref_primary_10_1016_j_compgeo_2016_11_013
crossref_primary_10_1016_j_undsp_2018_01_007
crossref_primary_10_1016_j_mechrescom_2010_07_023
crossref_primary_10_1016_j_ijplas_2006_02_001
crossref_primary_10_1016_j_compgeo_2019_103345
crossref_primary_10_1061__ASCE_GM_1943_5622_0002283
crossref_primary_10_3389_feart_2022_830371
crossref_primary_10_1016_j_compgeo_2019_103101
crossref_primary_10_1061__ASCE_GM_1943_5622_0002166
crossref_primary_10_1002_nme_3374
crossref_primary_10_1007_s13296_018_0194_8
crossref_primary_10_1016_j_ijrmms_2005_07_010
crossref_primary_10_5802_crmeca_88
crossref_primary_10_1016_j_euromechsol_2016_02_005
crossref_primary_10_1007_s12517_023_11468_0
crossref_primary_10_1007_s40996_024_01530_6
Cites_doi 10.1016/0045-7949(94)00339-5
10.1002/nag.1610130304
10.1002/nme.1620261207
10.1680/geot.1956.6.1.32
10.1016/0045-7825(95)00868-1
10.1016/0266-352X(92)90022-L
10.1680/geot.1982.32.3.261
10.1002/(SICI)1096-9853(200002)24:2<165::AID-NAG62>3.0.CO;2-A
10.1007/BF02591987
10.1016/0045-7825(80)90055-9
10.1016/0020-7683(93)90220-2
10.1139/t77-007
ContentType Journal Article
Copyright Copyright © 2001 John Wiley & Sons, Ltd.
2002 INIST-CNRS
Copyright_xml – notice: Copyright © 2001 John Wiley & Sons, Ltd.
– notice: 2002 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
8FD
FR3
KR7
DOI 10.1002/nag.198
DatabaseName Istex
CrossRef
Pascal-Francis
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Technology Research Database
Civil Engineering Abstracts
Engineering Research Database
DatabaseTitleList CrossRef

Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1096-9853
EndPage 216
ExternalDocumentID 13433143
10_1002_nag_198
NAG198
ark_67375_WNG_9HCB20Q9_X
Genre article
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
41~
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAYOK
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GBZZK
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6O
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RWS
RX1
RYL
SAMSI
SUPJJ
TN5
UB1
V2E
VH1
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZY4
ZZTAW
~02
~IA
~WT
AAHQN
AAMMB
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AEFGJ
AEYWJ
AFWVQ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ALVPJ
AAYXX
CITATION
IQODW
8FD
FR3
KR7
ID FETCH-LOGICAL-c4248-ffa77a48e6ad95bef29bf737f40e14f6c3a42f534ec1884f89dd549fbde536e93
IEDL.DBID DR2
ISSN 0363-9061
IngestDate Thu Jul 10 18:46:10 EDT 2025
Mon Jul 21 09:14:09 EDT 2025
Tue Jul 01 03:01:44 EDT 2025
Thu Apr 24 22:56:59 EDT 2025
Wed Aug 20 07:26:58 EDT 2025
Wed Oct 30 09:53:09 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Upper bound
Strip footing
Numerical simulation
Structure soil interaction
Non linear programming
Limit
Boundary condition
Computing method
Velocity
Optimization
Soil stability
Finite element
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4248-ffa77a48e6ad95bef29bf737f40e14f6c3a42f534ec1884f89dd549fbde536e93
Notes ark:/67375/WNG-9HCB20Q9-X
istex:072E97C8E168C636C3BAD1B758BD00E50097F84C
ArticleID:NAG198
Professor
Research Academic
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 27627714
PQPubID 23500
PageCount 36
ParticipantIDs proquest_miscellaneous_27627714
pascalfrancis_primary_13433143
crossref_primary_10_1002_nag_198
crossref_citationtrail_10_1002_nag_198
wiley_primary_10_1002_nag_198_NAG198
istex_primary_ark_67375_WNG_9HCB20Q9_X
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2002
PublicationDateYYYYMMDD 2002-02-01
PublicationDate_xml – month: 02
  year: 2002
  text: February 2002
PublicationDecade 2000
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Chichester
PublicationTitle International journal for numerical and analytical methods in geomechanics
PublicationTitleAlternate Int. J. Numer. Anal. Meth. Geomech
PublicationYear 2002
Publisher John Wiley & Sons, Ltd
Wiley
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley
References Pastor J, Thai T-H, Francescato P. New bounds for the height limit of a vertical slope. International Journal for Numerical and Analytical Methods in Geomechanics 2000; 24:165-182.
Sloan SW, Kleeman PW. Upper bound limit analysis using discontinuous velocity fields. Computer Methods in Applied Mechanics and Engineering 1995; 127:293-314.
Zouain N, Herskovits J, Borges LA, Feijóo RA. An iterative algorithm for limit analysis with nonlinear yield functions. International Journal of Solids and Structures 1993; 30(10): 1397-1417.
Avriel L. Nonlinear Programming, Analysis and Methods. Prentice-Hall, Inc.: Englewood Cliffs, NJ 1976
Sloan SW. A steepest edge active set algorithm for solving sparse linear programming problems. International Journal for Numerical Methods in Engineering 1988; 26:2671-2685.
Bjerrum L, Eide O. Stability of strutted excavations in clay. Geotechnique 1956; 6(1): 32-47.
Prandtl L. uml;ber die Härte plastischer Körper. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch -Physikalische Klasse 1920; 12:74-85.
Abbo AJ, Sloan SW. A smooth hyperbolic approximation to the Mohr-Coulomb yield criterion. Computers and Structures 1995; 54:427-441.
Yu HS. Expansion of a thick cylinder of soils. Computers and Geotechnics 1992; 14:21-41.
Prater EG. An examination of some theories of earth pressure on shaft linings. Canadian Geotechnical Journal 1977; 14(1): 91-106.
Sloan SW. Upper bound limit analysis using finite elements and linear programming. International Journal for Numerical and Analytical Methods in Geomechanics 1989; 13:263-282.
Britto AM, Kusakabe O. Stability of unsupported axisymmetric excavations in soft clay. Geotechnique 1982; 32(3): 261-270.
Herskovits J. A two-stage feasible directions algorithm for nonlinearly constrained optimization. Mathematical Programming 1986; 36:19-38.
Bottero A, Negre R, Pastor J, Turgeman S. Finite element method and limit analysis theory for soil mechanics problems. Computer Methods in Applied Mechanics and Engineering 1980; 22:131-149.
1920; 12
1977; 14
2000; 24
1988; 26
1980; 22
1986; 36
1982; 32
1993; 30
1995; 54
1976
1997
1956; 6
1995; 127
1992; 14
1981
1989; 13
1979
1999
Prandtl L (e_1_2_1_11_2) 1920; 12
e_1_2_1_6_2
Avriel L (e_1_2_1_7_2) 1976
e_1_2_1_4_2
e_1_2_1_5_2
e_1_2_1_2_2
e_1_2_1_3_2
e_1_2_1_12_2
Lyamin AV (e_1_2_1_9_2) 1997
e_1_2_1_20_2
e_1_2_1_10_2
Prater EG (e_1_2_1_16_2) 1977; 14
e_1_2_1_13_2
e_1_2_1_14_2
e_1_2_1_19_2
Bjerrum L (e_1_2_1_15_2) 1956; 6
e_1_2_1_8_2
e_1_2_1_17_2
e_1_2_1_18_2
References_xml – reference: Bottero A, Negre R, Pastor J, Turgeman S. Finite element method and limit analysis theory for soil mechanics problems. Computer Methods in Applied Mechanics and Engineering 1980; 22:131-149.
– reference: Abbo AJ, Sloan SW. A smooth hyperbolic approximation to the Mohr-Coulomb yield criterion. Computers and Structures 1995; 54:427-441.
– reference: Prater EG. An examination of some theories of earth pressure on shaft linings. Canadian Geotechnical Journal 1977; 14(1): 91-106.
– reference: Pastor J, Thai T-H, Francescato P. New bounds for the height limit of a vertical slope. International Journal for Numerical and Analytical Methods in Geomechanics 2000; 24:165-182.
– reference: Herskovits J. A two-stage feasible directions algorithm for nonlinearly constrained optimization. Mathematical Programming 1986; 36:19-38.
– reference: Britto AM, Kusakabe O. Stability of unsupported axisymmetric excavations in soft clay. Geotechnique 1982; 32(3): 261-270.
– reference: Prandtl L. uml;ber die Härte plastischer Körper. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch -Physikalische Klasse 1920; 12:74-85.
– reference: Sloan SW. A steepest edge active set algorithm for solving sparse linear programming problems. International Journal for Numerical Methods in Engineering 1988; 26:2671-2685.
– reference: Sloan SW, Kleeman PW. Upper bound limit analysis using discontinuous velocity fields. Computer Methods in Applied Mechanics and Engineering 1995; 127:293-314.
– reference: Avriel L. Nonlinear Programming, Analysis and Methods. Prentice-Hall, Inc.: Englewood Cliffs, NJ 1976
– reference: Sloan SW. Upper bound limit analysis using finite elements and linear programming. International Journal for Numerical and Analytical Methods in Geomechanics 1989; 13:263-282.
– reference: Yu HS. Expansion of a thick cylinder of soils. Computers and Geotechnics 1992; 14:21-41.
– reference: Zouain N, Herskovits J, Borges LA, Feijóo RA. An iterative algorithm for limit analysis with nonlinear yield functions. International Journal of Solids and Structures 1993; 30(10): 1397-1417.
– reference: Bjerrum L, Eide O. Stability of strutted excavations in clay. Geotechnique 1956; 6(1): 32-47.
– start-page: 505
  year: 1981
  end-page: 508
– volume: 14
  start-page: 91
  issue: 1
  year: 1977
  end-page: 106
  article-title: An examination of some theories of earth pressure on shaft linings
  publication-title: Canadian Geotechnical Journal
– volume: 30
  start-page: 1397
  issue: 10
  year: 1993
  end-page: 1417
  article-title: An iterative algorithm for limit analysis with nonlinear yield functions
  publication-title: International Journal of Solids and Structures
– start-page: 367
  year: 1997
  end-page: 373
– year: 1981
– volume: 24
  start-page: 165
  year: 2000
  end-page: 182
  article-title: New bounds for the height limit of a vertical slope
  publication-title: International Journal for Numerical and Analytical Methods in Geomechanics
– volume: 32
  start-page: 261
  issue: 3
  year: 1982
  end-page: 270
  article-title: Stability of unsupported axisymmetric excavations in soft clay
  publication-title: Geotechnique
– volume: 26
  start-page: 2671
  year: 1988
  end-page: 2685
  article-title: A steepest edge active set algorithm for solving sparse linear programming problems
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 13
  start-page: 263
  year: 1989
  end-page: 282
  article-title: Upper bound limit analysis using finite elements and linear programming
  publication-title: International Journal for Numerical and Analytical Methods in Geomechanics
– volume: 36
  start-page: 19
  year: 1986
  end-page: 38
  article-title: A two‐stage feasible directions algorithm for nonlinearly constrained optimization
  publication-title: Mathematical Programming
– volume: 127
  start-page: 293
  year: 1995
  end-page: 314
  article-title: Upper bound limit analysis using discontinuous velocity fields
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 54
  start-page: 427
  year: 1995
  end-page: 441
  article-title: A smooth hyperbolic approximation to the Mohr–Coulomb yield criterion
  publication-title: Computers and Structures
– volume: 12
  start-page: 74
  year: 1920
  end-page: 85
  article-title: uml;ber die Härte plastischer Körper
  publication-title: Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch ‐Physikalische Klasse
– volume: 6
  start-page: 32
  issue: 1
  year: 1956
  end-page: 47
  article-title: Stability of strutted excavations in clay
  publication-title: Geotechnique
– year: 1979
– year: 1976
– volume: 22
  start-page: 131
  year: 1980
  end-page: 149
  article-title: Finite element method and limit analysis theory for soil mechanics problems
  publication-title: Computer Methods in Applied Mechanics and Engineering
– year: 1999
– volume: 14
  start-page: 21
  year: 1992
  end-page: 41
  article-title: Expansion of a thick cylinder of soils
  publication-title: Computers and Geotechnics
– start-page: 367
  volume-title: Proceedings of the 6th International Symposium on Numerical Models in Geomechanics
  year: 1997
  ident: e_1_2_1_9_2
– ident: e_1_2_1_10_2
  doi: 10.1016/0045-7949(94)00339-5
– ident: e_1_2_1_17_2
– ident: e_1_2_1_3_2
  doi: 10.1002/nag.1610130304
– ident: e_1_2_1_12_2
  doi: 10.1002/nme.1620261207
– volume: 6
  start-page: 32
  issue: 1
  year: 1956
  ident: e_1_2_1_15_2
  article-title: Stability of strutted excavations in clay
  publication-title: Geotechnique
  doi: 10.1680/geot.1956.6.1.32
– ident: e_1_2_1_4_2
  doi: 10.1016/0045-7825(95)00868-1
– ident: e_1_2_1_13_2
  doi: 10.1016/0266-352X(92)90022-L
– ident: e_1_2_1_19_2
  doi: 10.1680/geot.1982.32.3.261
– ident: e_1_2_1_14_2
  doi: 10.1002/(SICI)1096-9853(200002)24:2<165::AID-NAG62>3.0.CO;2-A
– ident: e_1_2_1_8_2
– ident: e_1_2_1_20_2
– ident: e_1_2_1_6_2
  doi: 10.1007/BF02591987
– volume: 12
  start-page: 74
  year: 1920
  ident: e_1_2_1_11_2
  article-title: uml;ber die Härte plastischer Körper
  publication-title: Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch ‐Physikalische Klasse
– ident: e_1_2_1_2_2
  doi: 10.1016/0045-7825(80)90055-9
– ident: e_1_2_1_18_2
– volume-title: Nonlinear Programming, Analysis and Methods
  year: 1976
  ident: e_1_2_1_7_2
– ident: e_1_2_1_5_2
  doi: 10.1016/0020-7683(93)90220-2
– volume: 14
  start-page: 91
  issue: 1
  year: 1977
  ident: e_1_2_1_16_2
  article-title: An examination of some theories of earth pressure on shaft linings
  publication-title: Canadian Geotechnical Journal
  doi: 10.1139/t77-007
SSID ssj0005096
Score 2.183745
Snippet A new method for computing rigorous upper bounds on the limit loads for one‐, two‐ and three‐dimensional continua is described. The formulation is based on...
A new method for computing rigorous upper bounds on the limit loads for one-, two- and three-dimensional continua is described. The formulation is based on...
SourceID proquest
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 181
SubjectTerms Applied sciences
Buildings. Public works
Computation methods. Tables. Charts
Exact sciences and technology
finite element
Geotechnics
kinematic
limit analysis
nonlinear programming
Structural analysis. Stresses
Structure-soil interaction
upper bound
Title Upper bound limit analysis using linear finite elements and non-linear programming
URI https://api.istex.fr/ark:/67375/WNG-9HCB20Q9-X/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnag.198
https://www.proquest.com/docview/27627714
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQXNpDS19qoFAfELcseUxs5wgIWFViJSpWXfVi2bGNELCs9iFVnPoT-hv7S5hJsstuq0oVpxwyjpMZ2zOOv_mGsT2nRIpxsY-TyqkYigxiA4mNbRLoUKY0UGfInfdEtw9fBsVgqdRXww-x-OFGM6Ner2mCGzs5WCINNVcd3DHj6ktILQqHvj4RRxGpyfyUskSX1aTLUsuDtt2KH9oglf4gXKSZoGpCU9NiJehcDl1r33P6mn2fv3UDObnpzKa2Uz38Qej4rM_aZK_aiJQfNkPoDVvzw7fs5RJP4Tt22R-N_JhbKsHEbyklipuWzIQTcP6KU79mzMM1hbDcN5j0CUo5Prwf_v75qxVo4WB32OY965-eXB5347YcQ1xBBioOwUhpQHlhXFlYH7LSBpnLAIlPIYgqN5CFIgdfpUpBUKVzuPsM1vkiF77MP7B17NJ_ZLywCpwQTubWgQhSVbircQQnS61Atx2x_blxdNVylVPJjFvdsCxnGtWkUU0R4wvBUUPP8bfIfm3dxX0zviE0myz0t96ZLrvHR1lyUepBxHZXzP_0wJzSyiCP2Of5eNA4CelkxQz9_WyiM3QpUqYQsb3atv96F907PMPL1v-JbbMXde2ZGiP-ia1PxzO_gyHQ1O7Wo_0RyCYGFg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5ROLQc-q5IoeAD4pYlD8d2joAKSwsrtdpVV-rBsmMbVdBltQ-p4sRP4DfyS_A42WW3VaWqpxwyjpOxnZmxv_kGYNcIlnq_2MZJZURMi4zGiiY61onDQ5lS0ZAhd95h7R791C_6DaoSc2Fqfoj5hhuujPC_xgWOG9L7C6yh6qLlQ-YnsIb1vEM49fWROgppTWbnlKU3WnXCLDbdbxouWaI1VOovREaqsVeOq6taLLmdi85rsD7HL-D77L1r0MllazrRrermN0rH__uwl_C8cUrJQT2LXsGKHbyG9QWqwjfQ7Q2HdkQ0VmEiV5gVRVTDZ0IQO39BsGM1Iu4HerHE1rD0sZcyZHA9uL-9awQaRNhP3-Yt9I4_do_acVORIa5oRkXsnOJcUWGZMmWhrctK7XjOHU1sSh2rckUzV-TUVqkQ1InSGB-AOm1skTNb5u9g1XdpN4AUWlDDmOG5NpQ5Liof2BhElKWaecsdwd5sdGTV0JVj1YwrWRMtZ9KrSXo1RUDmgsOaoeNPkb0wvPP7anSJgDZeyG-dE1m2jw6z5Esp-xFsL43_4wNzzCyjeQQ7swkh_TrEwxU1sNfTscy8VeE8pRHshsH927vIzsGJv7z_N7EdeNrunp_Js9PO5014FkrRBMj4FqxORlP7wXtEE70dpv4DCfIKMQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BKyE4lGdFCrQ-VL1lm8fEdo6lZbu8VoC6YsXFsmO7Qi3b1T4kxImfwG_kl-BJsttdEBLilEPGsTMzzozjz98A7FvJ05AXuziprIyxyDDWmJjYJJ42ZUqN9Qm5t33eG-CrYTFcKfXV8EMsf7jRzKi_1zTBx9YfrpCG6vNOWDHfhE3kiSSHPvlwzRxFrCaLbcoyxKzmvCw1PWwbrgWiTdLpVwJG6mnQjW-KWqxlnau5ax18unfh02LYDebkojOfmU717TdGx_96r3uw1aak7Kjxoftww40ewJ0VosKHcDYYj92EGarBxC7pTBTTLZsJI-T8OaN-9YT5z5TDMteA0qdByrLR1ejn9x-tQIsH-xLaPIJB98XZcS9u6zHEFWYoY--1EBql49qWhXE-K40XufCYuBQ9r3KNmS9ydFUqJXpZWhuWn95YV-Tclfk2bIQu3WNghZFoObciNxa5F7IKyxpLeLLU8BC3IzhYGEdVLVk51cy4VA3NcqaCmlRQUwRsKThu-Dn-FDmorbu8rycXBGcThfrYP1Vl7_h5lrwv1TCC3TXzXz8wp3NlmEewt_AHFWYhba3okbuaT1UWYooQKUawX9v2b2NR_aPTcNn5N7E9uPXupKvevOy_fgK36zo0NV78KWzMJnP3LKRDM7NbO_4vEZgI6Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Upper+bound+limit+analysis+using+linear+finite+elements+and+non%E2%80%90linear+programming&rft.jtitle=International+journal+for+numerical+and+analytical+methods+in+geomechanics&rft.au=Lyamin%2C+A.+V.&rft.au=Sloan%2C+S.+W.&rft.date=2002-02-01&rft.issn=0363-9061&rft.eissn=1096-9853&rft.volume=26&rft.issue=2&rft.spage=181&rft.epage=216&rft_id=info:doi/10.1002%2Fnag.198&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_nag_198
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0363-9061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0363-9061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0363-9061&client=summon