Modeling Longitudinal Data with Nonignorable Dropouts Using a Latent Dropout Class Model
In longitudinal studies with dropout, pattern-mixture models form an attractive modeling framework to account for nonignorable missing data. However, pattern-mixture models assume that the components of the mixture distribution are entirely determined by the dropout times. That is, two subjects with...
Saved in:
Published in | Biometrics Vol. 59; no. 4; pp. 829 - 836 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
350 Main Street , Malden , MA 02148 , U.S.A , and P.O. Box 1354, 9600 Garsington Road , Oxford OX4 2DQ , U.K
Blackwell Publishing
01.12.2003
International Biometric Society |
Subjects | |
Online Access | Get full text |
ISSN | 0006-341X 1541-0420 |
DOI | 10.1111/j.0006-341X.2003.00097.x |
Cover
Abstract | In longitudinal studies with dropout, pattern-mixture models form an attractive modeling framework to account for nonignorable missing data. However, pattern-mixture models assume that the components of the mixture distribution are entirely determined by the dropout times. That is, two subjects with the same dropout time have the same distribution for their response with probability one. As that is unlikely to be the case, this assumption made lead to classification error. In addition, if there are certain dropout patterns with very few subjects, which often occurs when the number of observation times is relatively large, pattern-specific parameters may be weakly identified or require identifying restrictions. We propose an alternative approach, which is a latent-class model. The dropout time is assumed to be related to the unobserved (latent) class membership, where the number of classes is less than the number of observed patterns; a regression model for the response is specified conditional on the latent variable. This is a type of shared-parameter model, where the shared "parameter" is discrete. Parameter estimates are obtained using the method of maximum likelihood. Averaging the estimates of the conditional parameters over the distribution of the latent variable yields estimates of the marginal regression parameters. The methodology is illustrated using longitudinal data on depression from a study of HIV in women. |
---|---|
AbstractList | Summary
.
In longitudinal studies with dropout, pattern‐mixture models form an attractive modeling framework to account for nonignorable missing data. However, pattern‐mixture models assume that the components of the mixture distribution are entirely determined by the dropout times. That is, two subjects with the same dropout time have the same distribution for their response with probability one. As that is unlikely to be the case, this assumption made lead to classification error. In addition, if there are certain dropout patterns with very few subjects, which often occurs when the number of observation times is relatively large, pattern‐specific parameters may be weakly identified or require identifying restrictions. We propose an alternative approach, which is a latent‐class model. The dropout time is assumed to be related to the unobserved (latent) class membership, where the number of classes is less than the number of observed patterns; a regression model for the response is specified conditional on the latent variable. This is a type of shared‐parameter model, where the shared “parameter” is discrete. Parameter estimates are obtained using the method of maximum likelihood. Averaging the estimates of the conditional parameters over the distribution of the latent variable yields estimates of the marginal regression parameters. The methodology is illustrated using longitudinal data on depression from a study of HIV in women. In longitudinal studies with dropout, pattern-mixture models form an attractive modeling framework to account for nonignorable missing data. However, pattern-mixture models assume that the components of the mixture distribution are entirely determined by the dropout times. That is, two subjects with the same dropout time have the same distribution for their response with probability one. As that is unlikely to be the case, this assumption made lead to classification error. In addition, if there are certain dropout patterns with very few subjects, which often occurs when the number of observation times is relatively large, pattern-specific parameters may be weakly identified or require identifying restrictions. We propose an alternative approach, which is a latent-class model. The dropout time is assumed to be related to the unobserved (latent) class membership, where the number of classes is less than the number of observed patterns; a regression model for the response is specified conditional on the latent variable. This is a type of shared-parameter model, where the shared "parameter" is discrete. Parameter estimates are obtained using the method of maximum likelihood. Averaging the estimates of the conditional parameters over the distribution of the latent variable yields estimates of the marginal regression parameters. The methodology is illustrated using longitudinal data on depression from a study of HIV in women.In longitudinal studies with dropout, pattern-mixture models form an attractive modeling framework to account for nonignorable missing data. However, pattern-mixture models assume that the components of the mixture distribution are entirely determined by the dropout times. That is, two subjects with the same dropout time have the same distribution for their response with probability one. As that is unlikely to be the case, this assumption made lead to classification error. In addition, if there are certain dropout patterns with very few subjects, which often occurs when the number of observation times is relatively large, pattern-specific parameters may be weakly identified or require identifying restrictions. We propose an alternative approach, which is a latent-class model. The dropout time is assumed to be related to the unobserved (latent) class membership, where the number of classes is less than the number of observed patterns; a regression model for the response is specified conditional on the latent variable. This is a type of shared-parameter model, where the shared "parameter" is discrete. Parameter estimates are obtained using the method of maximum likelihood. Averaging the estimates of the conditional parameters over the distribution of the latent variable yields estimates of the marginal regression parameters. The methodology is illustrated using longitudinal data on depression from a study of HIV in women. In longitudinal studies with dropout, pattern-mixture models form an attractive modeling framework to account for nonignorable missing data. However, pattern-mixture models assume that the components of the mixture distribution are entirely determined by the dropout times. That is, two subjects with the same dropout time have the same distribution for their response with probability one. As that is unlikely to be the case, this assumption made lead to classification error. In addition, if there are certain dropout patterns with very few subjects, which often occurs when the number of observation times is relatively large, pattern-specific parameters may be weakly identified or require identifying restrictions. We propose an alternative approach, which is a latent-class model. The dropout time is assumed to be related to the unobserved (latent) class membership, where the number of classes is less than the number of observed patterns; a regression model for the response is specified conditional on the latent variable. This is a type of shared-parameter model, where the shared "parameter" is discrete. Parameter estimates are obtained using the method of maximum likelihood. Averaging the estimates of the conditional parameters over the distribution of the latent variable yields estimates of the marginal regression parameters. The methodology is illustrated using longitudinal data on depression from a study of HIV in women. |
Author | Roy, Jason |
Author_xml | – sequence: 1 givenname: Jason surname: Roy fullname: Roy, Jason |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/14969461$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkMFPHCEYxYmx0dX6HzQNp95mhQGGmUObtGtrTUaNiUZvhJlhtmxZ2AIT1_9extE99NJyAb73e-9L3hHYt84qACBGc5zO6WqOECoyQvHDPEeIjN-Kz7d7YIYZxRmiOdoHsx10CI5CWI0QQ_kBOMS0Kipa4Bl4uHSdMtouYe3sUseh01YaeCajhI86_oJXzuqldV42RsEz7zZuiAHehdEiYS2jsvFtDhdGhgBfIt-Dd700QZ283sfg7sf328XPrL4-v1h8rbOW5pRnPWurQmJWtr1sMMdYqpKRqqC8xwpXJccdpQ1KFO_LsuhpQWiadyXiPWq6khyDT1Puxrs_gwpRrHVolTHSKjcEwTFjqEIkgR9fwaFZq05svF5L_yTeukjAlwlovQvBq160OsqonY1eaiMwEmP5YiXGXsXYqxjLFy_li20KKP8K2O34t_XzZH3URj39t098u7i-TK_k_zD5VyE6v_OTomIkz5OcTbIOUW13svS_RcEJZ-L-6lzc1Df1LSFpA3kGW1azvw |
CitedBy_id | crossref_primary_10_1002_sim_3604 crossref_primary_10_1037_1064_1297_14_2_265 crossref_primary_10_1080_00273171_2021_1874259 crossref_primary_10_1214_11_AOAS515 crossref_primary_10_1111_j_1541_0420_2009_01234_x crossref_primary_10_1093_biostatistics_kxv023 crossref_primary_10_1111_rssa_12350 crossref_primary_10_1214_15_AOAS876 crossref_primary_10_3102_1076998612458701 crossref_primary_10_1186_1748_5908_7_11 crossref_primary_10_1080_10705511_2014_882666 crossref_primary_10_1016_j_inffus_2021_07_001 crossref_primary_10_1111_biom_12224 crossref_primary_10_1111_biom_12353 crossref_primary_10_1111_biom_12670 crossref_primary_10_1186_s12916_018_1031_9 crossref_primary_10_1016_j_jsat_2013_01_015 crossref_primary_10_1080_02664763_2010_491969 crossref_primary_10_1080_03610918_2014_889154 crossref_primary_10_1016_j_jsat_2008_03_002 crossref_primary_10_1002_sim_3287 crossref_primary_10_1016_j_ssresearch_2016_04_002 crossref_primary_10_1002_sim_3484 crossref_primary_10_1007_s11336_015_9442_4 crossref_primary_10_1080_03610920802585849 crossref_primary_10_1007_s11121_016_0735_3 crossref_primary_10_1080_01621459_2016_1167693 crossref_primary_10_1111_j_0006_341X_2004_00173_x crossref_primary_10_1111_j_1467_9876_2007_00578_x crossref_primary_10_1177_0962280209105016 crossref_primary_10_1097_EDE_0000000000000811 crossref_primary_10_1007_s13571_019_00222_w crossref_primary_10_1111_add_14756 crossref_primary_10_1214_17_STS630 crossref_primary_10_1017_S104161020900876X crossref_primary_10_1080_02664763_2021_1945000 crossref_primary_10_1111_j_1541_0420_2007_00884_x crossref_primary_10_1016_j_csda_2010_07_002 crossref_primary_10_1111_biom_12100 crossref_primary_10_1080_00273171_2019_1660606 crossref_primary_10_1016_j_jpsychires_2012_06_014 crossref_primary_10_1007_s11121_024_01757_9 crossref_primary_10_1111_josh_12093 crossref_primary_10_1177_0962280206075311 crossref_primary_10_1080_00273170701710338 crossref_primary_10_1016_j_alcr_2018_10_006 crossref_primary_10_1186_s12889_015_1395_0 crossref_primary_10_22237_jmasm_1478003640 crossref_primary_10_1002_sim_2333 crossref_primary_10_1016_j_socscimed_2012_02_022 crossref_primary_10_1177_0163278716673688 crossref_primary_10_1371_journal_pone_0182615 crossref_primary_10_1111_biom_12566 crossref_primary_10_1007_s12160_012_9410_5 crossref_primary_10_1007_s11634_015_0222_x crossref_primary_10_1186_s12889_021_11133_9 crossref_primary_10_1007_s11764_021_01036_4 crossref_primary_10_1016_j_appdev_2017_06_005 crossref_primary_10_3389_fpsyg_2017_00722 crossref_primary_10_1007_s11222_023_10293_5 crossref_primary_10_1016_j_drugalcdep_2011_12_016 crossref_primary_10_1016_j_jpsychores_2018_07_012 crossref_primary_10_1080_10705511_2014_936082 crossref_primary_10_1093_rheumatology_ket253 crossref_primary_10_1080_03610918_2018_1506028 crossref_primary_10_1080_00273171_2011_589261 crossref_primary_10_1080_10705511_2014_936086 crossref_primary_10_1007_s11764_021_01129_0 crossref_primary_10_1177_0962280216678433 crossref_primary_10_1111_biom_13894 crossref_primary_10_1198_jasa_2010_ap09321 crossref_primary_10_1016_j_chiabu_2010_01_003 crossref_primary_10_1111_j_1467_985X_2011_01034_x crossref_primary_10_1214_13_STS414 crossref_primary_10_1111_papr_13082 crossref_primary_10_1002_sim_7994 crossref_primary_10_1186_s13722_021_00237_7 crossref_primary_10_20982_tqmp_19_4_p347 crossref_primary_10_6000_1929_6029_2014_03_02_4 crossref_primary_10_1007_s10964_015_0313_1 crossref_primary_10_1016_j_jpsychores_2011_05_006 crossref_primary_10_1111_j_1521_0391_2014_12100_x |
Cites_doi | 10.1111/j.0006-341X.2000.01241.x 10.2307/2531905 10.2307/2534023 10.1093/biostatistics/1.2.141 10.1002/sim.718 10.1111/j.0006-341X.2000.01055.x 10.1080/01621459.1993.10594302 10.2307/2531694 10.1080/01621459.1995.10476615 10.1002/9781119013563 10.1002/(SICI)1097-0258(19970215)16:3<239::AID-SIM483>3.0.CO;2-X 10.1002/(SICI)1097-0258(20000530)19:10<1303::AID-SIM424>3.0.CO;2-E 10.1002/sim.695 10.1016/0304-4076(81)90071-3 10.1002/(SICI)1097-0258(19970215)16:3<259::AID-SIM484>3.0.CO;2-S 10.1080/01621459.1999.10474179 10.1214/aos/1176344136 10.1093/oxfordjournals.aje.a009299 10.1080/01621459.1997.10473658 |
ContentType | Journal Article |
Copyright | Copyright 2003 The International Biometric Society |
Copyright_xml | – notice: Copyright 2003 The International Biometric Society |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1111/j.0006-341X.2003.00097.x |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Biology Mathematics |
EISSN | 1541-0420 |
EndPage | 836 |
ExternalDocumentID | 14969461 10_1111_j_0006_341X_2003_00097_x BIOM097 3695322 ark_67375_WNG_QLQLT33X_2 |
Genre | article Research Support, U.S. Gov't, P.H.S Journal Article |
GrantInformation_xml | – fundername: ODCDC CDC HHS grantid: U64-CCU10675 – fundername: NIAID NIH HHS grantid: P30-AI42853 – fundername: NIAID NIH HHS grantid: R01-AI50505 |
GroupedDBID | --- -~X .3N .4S .DC .GA .GJ .Y3 05W 0R~ 10A 1OC 23N 2AX 2QV 3-9 31~ 33P 36B 3SF 3V. 4.4 44B 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 6J9 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 88E 88I 8AF 8C1 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 8UM 930 A03 A8Z AAESR AAEVG AAHBH AAHHS AANLZ AAONW AAPXW AASGY AAUAY AAXRX AAZKR AAZSN ABBHK ABCQN ABCUV ABDBF ABEJV ABEML ABFAN ABJCF ABJNI ABLJU ABMNT ABPPZ ABPVW ABTAH ABUWG ABXSQ ABXVV ABYWD ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOD ACIWK ACKIV ACMTB ACNCT ACPOU ACPRK ACSCC ACTMH ACXBN ACXQS ADACV ADBBV ADEOM ADIPN ADIZJ ADKYN ADMGS ADODI ADOZA ADULT ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AELPN AENEX AEQDE AEUPB AEUQT AEUYR AFBPY AFDVO AFEBI AFFTP AFGKR AFKRA AFPWT AFVYC AFZJQ AGTJU AHMBA AIAGR AIBGX AIURR AIWBW AJAOE AJBDE AJXKR ALAGY ALEEW ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB APXXL ARAPS ARCSS ASPBG AS~ ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BBNVY BCRHZ BDRZF BENPR BFHJK BGLVJ BHBCM BHPHI BMNLL BMXJE BNHUX BPHCQ BROTX BRXPI BSCLL BVXVI BY8 CAG CCPQU COF CS3 D-E D-F DCZOG DPXWK DQDLB DR2 DRFUL DRSTM DSRWC DWQXO DXH EAD EAP EBC EBD EBS ECEWR EDO EJD EMB EMK EMOBN EST ESTFP ESX F00 F01 F04 F5P FD6 FEDTE FXEWX FYUFA G-S G.N GNUQQ GODZA GS5 H.T H.X HCIFZ HF~ HGD HMCUK HQ6 HVGLF HZI HZ~ IHE IPSME IX1 J0M JAAYA JAC JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JSODD JST K48 K6V K7- KOP L6V LATKE LC2 LC3 LEEKS LH4 LITHE LK8 LOXES LP6 LP7 LUTES LW6 LYRES M1P M2P M7P M7S MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ NHB O66 O9- OIG OJZSN OWPYF P0- P2P P2W P2X P4D P62 PQQKQ PROAC PSQYO PTHSS Q.N Q11 Q2X QB0 R.K RNS ROL ROX RWL RX1 RXW SA0 SUPJJ SV3 TAE TN5 TUS UAP UB1 UKHRP V8K VQA W8V W99 WBKPD WH7 WIH WIK WOHZO WQJ WRC WYISQ X6Y XBAML XG1 XSW ZGI ZXP ZY4 ZZTAW ~02 ~IA ~KM ~WT AAMMB AANHP AAWIL AAYCA ABAWQ ABDFA ABGNP ACHJO ACRPL ACUHS ACYXJ ADNBA ADNMO ADVOB AEFGJ AEOTA AFWVQ AGLNM AGORE AGQPQ AGXDD AIDQK AIDYY AIHAF AJNCP ALRMG NU- AAYXX AHGBF AJBYB CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM PKN 7X8 |
ID | FETCH-LOGICAL-c4247-f5c96a158cfab1711ae8539647f1e19871d44b05c97f886f4634e19d807f0bd83 |
IEDL.DBID | DR2 |
ISSN | 0006-341X |
IngestDate | Fri Sep 05 14:57:31 EDT 2025 Wed Feb 19 01:37:17 EST 2025 Thu Apr 24 23:06:23 EDT 2025 Tue Jul 01 02:39:13 EDT 2025 Wed Jan 22 17:08:24 EST 2025 Thu Jul 03 21:22:35 EDT 2025 Wed Oct 30 09:47:52 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4247-f5c96a158cfab1711ae8539647f1e19871d44b05c97f886f4634e19d807f0bd83 |
Notes | ark:/67375/WNG-QLQLT33X-2 ArticleID:BIOM097 istex:A789F7709AB2B7CF7AC6FB7107DEE7F1969F604F ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 14969461 |
PQID | 71550903 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_71550903 pubmed_primary_14969461 crossref_citationtrail_10_1111_j_0006_341X_2003_00097_x crossref_primary_10_1111_j_0006_341X_2003_00097_x wiley_primary_10_1111_j_0006_341X_2003_00097_x_BIOM097 jstor_primary_3695322 istex_primary_ark_67375_WNG_QLQLT33X_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2003 |
PublicationDateYYYYMMDD | 2003-12-01 |
PublicationDate_xml | – month: 12 year: 2003 text: December 2003 |
PublicationDecade | 2000 |
PublicationPlace | 350 Main Street , Malden , MA 02148 , U.S.A , and P.O. Box 1354, 9600 Garsington Road , Oxford OX4 2DQ , U.K |
PublicationPlace_xml | – name: 350 Main Street , Malden , MA 02148 , U.S.A , and P.O. Box 1354, 9600 Garsington Road , Oxford OX4 2DQ , U.K – name: United States |
PublicationTitle | Biometrics |
PublicationTitleAlternate | Biometrics |
PublicationYear | 2003 |
Publisher | Blackwell Publishing International Biometric Society |
Publisher_xml | – name: Blackwell Publishing – name: International Biometric Society |
References | Lin, H., McCulloch, C. E., Turnbull, B. W., Slate, E. H., and Clark, L. C. (2000). A latent class mixed model for analyzing biomarker trajectories with irregularly scheduled observations. Statistics in Medicine 19, 1303-1318. Schwartz, G. (1978). Estimating the dimension of a model. Annals of Statistics 6, 461-464. Bandeen-Roche, K., Miglioretti, D. L., Zeger, S. L., and Rathouz, P. J. (1997). Latent variable regression for multiple discrete outcomes. Journal of the American Statistical Association 92, 1375-1386. Little, R. J. A. (1995). Modeling the drop-out mechanism in repeated-measures studies. Journal of the American Statistical Association 90, 1112-1121. Daniels, M. J. and Hogan, J. W. (2000). Reparameterizing the pattern-mixture model for sensitivity analysis under informative dropout. Biometrics 56, 1241-1248. Hogan, J. W. and Laird, N. M. (1997a). Mixture models for the joint distribution of repeated measures and event times. Statistics in Medicine 16, 239-257. Wu, M. C. and Carroll, R. J. (1988). Estimation and comparison of changes in the presence of informative right censoring by modeling the censoring process. Biometrics 44, 175-188. Little, R. J. A. (1993). Pattern-mixture models for multivariate incomplete data. Journal of the American Statistical Association 88, 125-134. Roeder, K., Lynch, K. G., and Nagin, D. S. (1999). Modeling uncertainty in latent class membership: A case study in criminology. Journal of the American Statistical Association 94, 766-776. Little, R. J. A. and Rubin, D. B. (2002). Statistical analysis with missing data, 2nd edition. New York : Wiley. Reboussin, B. A. and Anthony, J. C. (2001). Latent class marginal regression models for modeling youthful drug involvement and its suspected influences. Statistics in Medicine 20, 623-639. Hogan, J. W. and Laird, N. M. (1997b). Model-based approaches to analyzing incomplete longitudinal and failure-time data. Statistics in Medicine 16, 259-272. Wu, M. C. and Bailey, K. R. (1989). Estimation and comparison of changes in the presence of informative right censoring: Conditional linear model. Biometrics 45, 939-955. Akaike, H. (1981). Likelihood of a model and information criteria. Journal of Econometrics 16, 3-14. Ten Have, T. R., Pulkstenis, E., Kunselman, A., and Landis, J. R. (1998). Mixed effects logistic regression models for longitudinal binary response data with informative dropout. Biometrics 54, 367-383. Fitzmaurice, G. M. and Laird, N. M. (2000). Generalized linear mixture models for handling nonignorable dropouts in longitudinal studies. Biostatistics 1, 141-156. Garrett, E. S. and Zeger, S. L. (2000). Latent class model diagnosis. Biometrics 56, 1055-1067. Fitzmaurice, G. M., Laird, N. M., and Schneyer, L. (2001). An alternative parameterization of the general linear mixture model for longitudinal data with non-ignorable drop-outs. Statistics in Medicine 20, 1009-1021. Smith, D. K., Warren, D. L., Vlahov, D., Schuman, P., Stein, M. D., Greenberg, B. L., and Holmberg, S. D. (1997). Design and baseline participant characteristics of human immunodeficiency virus epidemiology research (HER) study: A prospective cohort study of human immunodeficiency virus infection in U.S. women. American Journal of Epidemiology 146, 459-469. 1997; 146 2000; 19 1989; 45 1997; 92 1995; 90 1997a; 16 2000; 56 1993; 88 1988; 44 1981; 16 2000; 1 2002 1999; 94 1998; 54 1997b; 16 2001; 20 1978; 6 e_1_2_9_20_1 e_1_2_9_11_1 e_1_2_9_10_1 e_1_2_9_13_1 Hogan J. W. (e_1_2_9_9_1) 1997; 16 e_1_2_9_12_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_15_1 e_1_2_9_14_1 e_1_2_9_17_1 e_1_2_9_16_1 e_1_2_9_19_1 e_1_2_9_18_1 |
References_xml | – reference: Bandeen-Roche, K., Miglioretti, D. L., Zeger, S. L., and Rathouz, P. J. (1997). Latent variable regression for multiple discrete outcomes. Journal of the American Statistical Association 92, 1375-1386. – reference: Fitzmaurice, G. M. and Laird, N. M. (2000). Generalized linear mixture models for handling nonignorable dropouts in longitudinal studies. Biostatistics 1, 141-156. – reference: Reboussin, B. A. and Anthony, J. C. (2001). Latent class marginal regression models for modeling youthful drug involvement and its suspected influences. Statistics in Medicine 20, 623-639. – reference: Fitzmaurice, G. M., Laird, N. M., and Schneyer, L. (2001). An alternative parameterization of the general linear mixture model for longitudinal data with non-ignorable drop-outs. Statistics in Medicine 20, 1009-1021. – reference: Ten Have, T. R., Pulkstenis, E., Kunselman, A., and Landis, J. R. (1998). Mixed effects logistic regression models for longitudinal binary response data with informative dropout. Biometrics 54, 367-383. – reference: Lin, H., McCulloch, C. E., Turnbull, B. W., Slate, E. H., and Clark, L. C. (2000). A latent class mixed model for analyzing biomarker trajectories with irregularly scheduled observations. Statistics in Medicine 19, 1303-1318. – reference: Garrett, E. S. and Zeger, S. L. (2000). Latent class model diagnosis. Biometrics 56, 1055-1067. – reference: Wu, M. C. and Bailey, K. R. (1989). Estimation and comparison of changes in the presence of informative right censoring: Conditional linear model. Biometrics 45, 939-955. – reference: Smith, D. K., Warren, D. L., Vlahov, D., Schuman, P., Stein, M. D., Greenberg, B. L., and Holmberg, S. D. (1997). Design and baseline participant characteristics of human immunodeficiency virus epidemiology research (HER) study: A prospective cohort study of human immunodeficiency virus infection in U.S. women. American Journal of Epidemiology 146, 459-469. – reference: Roeder, K., Lynch, K. G., and Nagin, D. S. (1999). Modeling uncertainty in latent class membership: A case study in criminology. Journal of the American Statistical Association 94, 766-776. – reference: Wu, M. C. and Carroll, R. J. (1988). Estimation and comparison of changes in the presence of informative right censoring by modeling the censoring process. Biometrics 44, 175-188. – reference: Daniels, M. J. and Hogan, J. W. (2000). Reparameterizing the pattern-mixture model for sensitivity analysis under informative dropout. Biometrics 56, 1241-1248. – reference: Hogan, J. W. and Laird, N. M. (1997a). Mixture models for the joint distribution of repeated measures and event times. Statistics in Medicine 16, 239-257. – reference: Little, R. J. A. (1995). Modeling the drop-out mechanism in repeated-measures studies. Journal of the American Statistical Association 90, 1112-1121. – reference: Little, R. J. A. and Rubin, D. B. (2002). Statistical analysis with missing data, 2nd edition. New York : Wiley. – reference: Schwartz, G. (1978). Estimating the dimension of a model. Annals of Statistics 6, 461-464. – reference: Akaike, H. (1981). Likelihood of a model and information criteria. Journal of Econometrics 16, 3-14. – reference: Hogan, J. W. and Laird, N. M. (1997b). Model-based approaches to analyzing incomplete longitudinal and failure-time data. Statistics in Medicine 16, 259-272. – reference: Little, R. J. A. (1993). Pattern-mixture models for multivariate incomplete data. Journal of the American Statistical Association 88, 125-134. – volume: 56 start-page: 1055 year: 2000 end-page: 1067 article-title: Latent class model diagnosis publication-title: Biometrics – volume: 16 start-page: 239 year: 1997a end-page: 257 article-title: Mixture models for the joint distribution of repeated measures and event times publication-title: Statistics in Medicine – volume: 19 start-page: 1303 year: 2000 end-page: 1318 article-title: A latent class mixed model for analyzing biomarker trajectories with irregularly scheduled observations publication-title: Statistics in Medicine – volume: 56 start-page: 1241 year: 2000 end-page: 1248 article-title: Reparameterizing the pattern‐mixture model for sensitivity analysis under informative dropout publication-title: Biometrics – volume: 16 start-page: 259 year: 1997b end-page: 272 article-title: Model‐based approaches to analyzing incomplete longitudinal and failure‐time data publication-title: Statistics in Medicine – volume: 88 start-page: 125 year: 1993 end-page: 134 article-title: Pattern‐mixture models for multivariate incomplete data publication-title: Journal of the American Statistical Association – year: 2002 – volume: 54 start-page: 367 year: 1998 end-page: 383 article-title: Mixed effects logistic regression models for longitudinal binary response data with informative dropout publication-title: Biometrics – volume: 44 start-page: 175 year: 1988 end-page: 188 article-title: Estimation and comparison of changes in the presence of informative right censoring by modeling the censoring process publication-title: Biometrics – volume: 146 start-page: 459 year: 1997 end-page: 469 article-title: Design and baseline participant characteristics of human immunodeficiency virus epidemiology research (HER) study: A prospective cohort study of human immunodeficiency virus infection in U.S. women publication-title: American Journal of Epidemiology – volume: 1 start-page: 141 year: 2000 end-page: 156 article-title: Generalized linear mixture models for handling nonignorable dropouts in longitudinal studies publication-title: Biostatistics – volume: 94 start-page: 766 year: 1999 end-page: 776 article-title: Modeling uncertainty in latent class membership: A case study in criminology publication-title: Journal of the American Statistical Association – volume: 6 start-page: 461 year: 1978 end-page: 464 article-title: Estimating the dimension of a model publication-title: Annals of Statistics – volume: 20 start-page: 1009 year: 2001 end-page: 1021 article-title: An alternative parameterization of the general linear mixture model for longitudinal data with non‐ignorable drop‐outs publication-title: Statistics in Medicine – volume: 90 start-page: 1112 year: 1995 end-page: 1121 article-title: Modeling the drop‐out mechanism in repeated‐measures studies publication-title: Journal of the American Statistical Association – volume: 20 start-page: 623 year: 2001 end-page: 639 article-title: Latent class marginal regression models for modeling youthful drug involvement and its suspected influences publication-title: Statistics in Medicine – volume: 45 start-page: 939 year: 1989 end-page: 955 article-title: Estimation and comparison of changes in the presence of informative right censoring: Conditional linear model publication-title: Biometrics – volume: 16 start-page: 3 year: 1981 end-page: 14 article-title: Likelihood of a model and information criteria publication-title: Journal of Econometrics – volume: 92 start-page: 1375 year: 1997 end-page: 1386 article-title: Latent variable regression for multiple discrete outcomes publication-title: Journal of the American Statistical Association – ident: e_1_2_9_4_1 doi: 10.1111/j.0006-341X.2000.01241.x – ident: e_1_2_9_20_1 doi: 10.2307/2531905 – ident: e_1_2_9_18_1 doi: 10.2307/2534023 – ident: e_1_2_9_5_1 doi: 10.1093/biostatistics/1.2.141 – ident: e_1_2_9_6_1 doi: 10.1002/sim.718 – ident: e_1_2_9_7_1 doi: 10.1111/j.0006-341X.2000.01055.x – ident: e_1_2_9_11_1 doi: 10.1080/01621459.1993.10594302 – ident: e_1_2_9_19_1 doi: 10.2307/2531694 – ident: e_1_2_9_12_1 doi: 10.1080/01621459.1995.10476615 – ident: e_1_2_9_13_1 doi: 10.1002/9781119013563 – ident: e_1_2_9_8_1 doi: 10.1002/(SICI)1097-0258(19970215)16:3<239::AID-SIM483>3.0.CO;2-X – ident: e_1_2_9_10_1 doi: 10.1002/(SICI)1097-0258(20000530)19:10<1303::AID-SIM424>3.0.CO;2-E – ident: e_1_2_9_14_1 doi: 10.1002/sim.695 – ident: e_1_2_9_2_1 doi: 10.1016/0304-4076(81)90071-3 – volume: 16 start-page: 259 year: 1997 ident: e_1_2_9_9_1 article-title: Model‐based approaches to analyzing incomplete longitudinal and failure‐time data publication-title: Statistics in Medicine doi: 10.1002/(SICI)1097-0258(19970215)16:3<259::AID-SIM484>3.0.CO;2-S – ident: e_1_2_9_15_1 doi: 10.1080/01621459.1999.10474179 – ident: e_1_2_9_16_1 doi: 10.1214/aos/1176344136 – ident: e_1_2_9_17_1 doi: 10.1093/oxfordjournals.aje.a009299 – ident: e_1_2_9_3_1 doi: 10.1080/01621459.1997.10473658 |
SSID | ssj0009502 |
Score | 2.064918 |
Snippet | In longitudinal studies with dropout, pattern-mixture models form an attractive modeling framework to account for nonignorable missing data. However,... In longitudinal studies with dropout, pattern‐mixture models form an attractive modeling framework to account for nonignorable missing data. However,... Summary . In longitudinal studies with dropout, pattern‐mixture models form an attractive modeling framework to account for nonignorable missing data.... |
SourceID | proquest pubmed crossref wiley jstor istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 829 |
SubjectTerms | Analysis of Variance Analytical estimating Biometrics Biometry - methods Data models Depression - etiology Female HIV HIV Infections - psychology Humans Incomplete data Inference Latent variable Longitudinal data Longitudinal Studies Maximum likelihood estimation Missing data Modeling Models, Statistical Parametric models Patient Dropouts Pattern-mixture model Repeated measures Reproducibility of Results School dropouts Shared-parameter model |
Title | Modeling Longitudinal Data with Nonignorable Dropouts Using a Latent Dropout Class Model |
URI | https://api.istex.fr/ark:/67375/WNG-QLQLT33X-2/fulltext.pdf https://www.jstor.org/stable/3695322 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.0006-341X.2003.00097.x https://www.ncbi.nlm.nih.gov/pubmed/14969461 https://www.proquest.com/docview/71550903 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Bb9MwFH5CQ0jjwEYZkDHAB8QtVdw4dnIEyhioLRraRG-W7Tg7dErRmkiDX4-fnWQU7TAhbpGVZyX2ey-fnefvA3iT5IYnYmJjZQodM-qudCXS2EFnoZkwjHoi7fmCn5yzL8ts2dU_4VmYwA8xbLhhZPh8jQGu9GYryDHVxi4LLz2t59ifSRgjnqQpRxr96bfJH_y7SSAO70y2inpu72jrS3UfB_26L1q8DY5uo1v_eTreg1X_YqEqZTVuGz02v_7ifPw_b74PjzoUS94Ft3sM92w9ggdB1_LnCB7OBzLYzQh2EdAGPugnsETxNTwCT2ZrlEpqS5TlIlPVKIJ7wmThksxF7RxTX1oyRQ2HttkQX9lAFJk5aFw3fTvxkp7Ed3kA58cfzz6cxJ26Q2zYhIm4ykzBFc1yUylNBaXKOuiAB2MranErhJaM6cTdJao85xXjKXPtZZ6IKtFlnj6FnXpd2-duJg3Tbhlb2oy51WaRK5dYJnlpTJkl3NosAtHPpDQd9TkqcFzKmyUQDqnEIUVhzlT6IZXXEdDB8keg_7iDzVvvLIOBulph-ZzI5PfFJ3k6O52dpamzieDAe9NwY8qLzCXYCF733iVdsOMfHFXbdbuRAheURZJG8Cw43c1DsYIXjNMIuHedOz-tfP_569xdHf6r4QvYDQWOWOJzBDvNVWtfOqDW6Fc-BH8DNc0qUQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQK0Q58FgKhFd9QNyyijeOnRyBpWwhu6hoK_Zm2Y7Doass6iZS4dcz4zzKoh4qxC2KMlFiz0y-ccbfR8jrKLUikhMXapuZkDM4MqWMQ4DO0nBpOfNE2vOFmJ3xT6tk1ckB4V6Ylh9iWHDDyPD5GgMcF6R3ohxzbQhpeOV5Pcd-U8IYAOU-B9yBldj06-QPBt6opQ7vbHbaeq6_0863ah-H_bJvW7wOkO7iW_-BOr5P1v2rtX0p5-OmNmP76y_Wx__07g_IvQ7I0ret5z0kt1w1IrdbacufI3J3PvDBbkfkADFtSwn9iKxQfw13wdN8g2pJTYHKXHSqa01xWZguIM98r8A3zdrRKco4NPWW-uYGqmkO6Liq-_PUq3pSf8tDcnb8Yfl-FnYCD6HlEy7DMrGZ0CxJbakNk4xpB-gB98aWzOFqCCs4NxFcJcs0FSUXMYfzRRrJMjJFGj8me9Wmck9hKi03UMkWLuFQcGaphtwySQtriyQSziUBkf1UKtuxn6MIx1pdVUE4pAqHFLU5Y-WHVF0GhA2WP1oGkBvYvPHeMhjoi3PsoJOJ-rb4qE7z03wZx2ATkEPvTsOFscgSyLEBOerdS0G8408cXblNs1USa8osigPypPW6q4fimci4YAER3ndu_LTq3cmXORw9-1fDI3JntpznKj9ZfH5ODtp-R-z4eUH26ovGvQTcVptXPh5_A_O2LnA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQK1A58FgKhFd9QNyyijeOnRyBZWkhu1DUir1ZtuNw2CpbdROp8OuZcR5lUQ8V4hZZGSuxZyafnfH3EfI6Sq2I5MSF2mYm5AyuTCnjEKCzNFxazjyR9nwhDk_5p2Wy7Oqf8CxMyw8xbLhhZPh8jQF-XpRbQY6pNoQsvPS0nmN_JmEMeHKXCwAWCJC-Tf4g4I1a5vDOZquq5_qetj5Vuzjql33V4nV4dBve-u_T7D5Z9W_WlqWsxk1txvbXX6SP_-fVH5B7HYylb1u_e0huuWpEbrfClj9H5O58YIPdjMgeItqWEPoRWaL6Gp6Bp_katZKaAnW56FTXmuKmMF1AlvlRgWeaM0enKOLQ1BvqSxuopjlg46ru26nX9KS-y31yOvtw8v4w7OQdQssnXIZlYjOhWZLaUhsmGdMOsAOejC2Zw70QVnBuIrhLlmkqSi5iDu1FGskyMkUaPyY71bpyT2EmLTewji1cwmG5maUaMsskLawtkkg4lwRE9jOpbMd9jhIcZ-pqDYRDqnBIUZkzVn5I1WVA2GB53vJ_3MDmjXeWwUBfrLB-Tibq--KjOs6P85M4BpuA7HtvGm6MRZZAhg3IQe9dCqIdf-Hoyq2bjZK4osyiOCBPWqe7eiieiYwLFhDhXefGT6veHX2Zw9WzfzU8IHe-TmcqP1p8fk722mJHLPd5QXbqi8a9BNBWm1c-Gn8DJ3YtHw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+Longitudinal+Data+with+Nonignorable+Dropouts+Using+a+Latent+Dropout+Class+Model&rft.jtitle=Biometrics&rft.au=Roy%2C+Jason&rft.date=2003-12-01&rft.pub=Blackwell+Publishing&rft.issn=0006-341X&rft.eissn=1541-0420&rft.volume=59&rft.issue=4&rft.spage=829&rft.epage=836&rft_id=info:doi/10.1111%2Fj.0006-341X.2003.00097.x&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_QLQLT33X_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon |