Modeling Longitudinal Data with Nonignorable Dropouts Using a Latent Dropout Class Model

In longitudinal studies with dropout, pattern-mixture models form an attractive modeling framework to account for nonignorable missing data. However, pattern-mixture models assume that the components of the mixture distribution are entirely determined by the dropout times. That is, two subjects with...

Full description

Saved in:
Bibliographic Details
Published inBiometrics Vol. 59; no. 4; pp. 829 - 836
Main Author Roy, Jason
Format Journal Article
LanguageEnglish
Published 350 Main Street , Malden , MA 02148 , U.S.A , and P.O. Box 1354, 9600 Garsington Road , Oxford OX4 2DQ , U.K Blackwell Publishing 01.12.2003
International Biometric Society
Subjects
Online AccessGet full text
ISSN0006-341X
1541-0420
DOI10.1111/j.0006-341X.2003.00097.x

Cover

Abstract In longitudinal studies with dropout, pattern-mixture models form an attractive modeling framework to account for nonignorable missing data. However, pattern-mixture models assume that the components of the mixture distribution are entirely determined by the dropout times. That is, two subjects with the same dropout time have the same distribution for their response with probability one. As that is unlikely to be the case, this assumption made lead to classification error. In addition, if there are certain dropout patterns with very few subjects, which often occurs when the number of observation times is relatively large, pattern-specific parameters may be weakly identified or require identifying restrictions. We propose an alternative approach, which is a latent-class model. The dropout time is assumed to be related to the unobserved (latent) class membership, where the number of classes is less than the number of observed patterns; a regression model for the response is specified conditional on the latent variable. This is a type of shared-parameter model, where the shared "parameter" is discrete. Parameter estimates are obtained using the method of maximum likelihood. Averaging the estimates of the conditional parameters over the distribution of the latent variable yields estimates of the marginal regression parameters. The methodology is illustrated using longitudinal data on depression from a study of HIV in women.
AbstractList Summary .  In longitudinal studies with dropout, pattern‐mixture models form an attractive modeling framework to account for nonignorable missing data. However, pattern‐mixture models assume that the components of the mixture distribution are entirely determined by the dropout times. That is, two subjects with the same dropout time have the same distribution for their response with probability one. As that is unlikely to be the case, this assumption made lead to classification error. In addition, if there are certain dropout patterns with very few subjects, which often occurs when the number of observation times is relatively large, pattern‐specific parameters may be weakly identified or require identifying restrictions. We propose an alternative approach, which is a latent‐class model. The dropout time is assumed to be related to the unobserved (latent) class membership, where the number of classes is less than the number of observed patterns; a regression model for the response is specified conditional on the latent variable. This is a type of shared‐parameter model, where the shared “parameter” is discrete. Parameter estimates are obtained using the method of maximum likelihood. Averaging the estimates of the conditional parameters over the distribution of the latent variable yields estimates of the marginal regression parameters. The methodology is illustrated using longitudinal data on depression from a study of HIV in women.
In longitudinal studies with dropout, pattern-mixture models form an attractive modeling framework to account for nonignorable missing data. However, pattern-mixture models assume that the components of the mixture distribution are entirely determined by the dropout times. That is, two subjects with the same dropout time have the same distribution for their response with probability one. As that is unlikely to be the case, this assumption made lead to classification error. In addition, if there are certain dropout patterns with very few subjects, which often occurs when the number of observation times is relatively large, pattern-specific parameters may be weakly identified or require identifying restrictions. We propose an alternative approach, which is a latent-class model. The dropout time is assumed to be related to the unobserved (latent) class membership, where the number of classes is less than the number of observed patterns; a regression model for the response is specified conditional on the latent variable. This is a type of shared-parameter model, where the shared "parameter" is discrete. Parameter estimates are obtained using the method of maximum likelihood. Averaging the estimates of the conditional parameters over the distribution of the latent variable yields estimates of the marginal regression parameters. The methodology is illustrated using longitudinal data on depression from a study of HIV in women.In longitudinal studies with dropout, pattern-mixture models form an attractive modeling framework to account for nonignorable missing data. However, pattern-mixture models assume that the components of the mixture distribution are entirely determined by the dropout times. That is, two subjects with the same dropout time have the same distribution for their response with probability one. As that is unlikely to be the case, this assumption made lead to classification error. In addition, if there are certain dropout patterns with very few subjects, which often occurs when the number of observation times is relatively large, pattern-specific parameters may be weakly identified or require identifying restrictions. We propose an alternative approach, which is a latent-class model. The dropout time is assumed to be related to the unobserved (latent) class membership, where the number of classes is less than the number of observed patterns; a regression model for the response is specified conditional on the latent variable. This is a type of shared-parameter model, where the shared "parameter" is discrete. Parameter estimates are obtained using the method of maximum likelihood. Averaging the estimates of the conditional parameters over the distribution of the latent variable yields estimates of the marginal regression parameters. The methodology is illustrated using longitudinal data on depression from a study of HIV in women.
In longitudinal studies with dropout, pattern-mixture models form an attractive modeling framework to account for nonignorable missing data. However, pattern-mixture models assume that the components of the mixture distribution are entirely determined by the dropout times. That is, two subjects with the same dropout time have the same distribution for their response with probability one. As that is unlikely to be the case, this assumption made lead to classification error. In addition, if there are certain dropout patterns with very few subjects, which often occurs when the number of observation times is relatively large, pattern-specific parameters may be weakly identified or require identifying restrictions. We propose an alternative approach, which is a latent-class model. The dropout time is assumed to be related to the unobserved (latent) class membership, where the number of classes is less than the number of observed patterns; a regression model for the response is specified conditional on the latent variable. This is a type of shared-parameter model, where the shared "parameter" is discrete. Parameter estimates are obtained using the method of maximum likelihood. Averaging the estimates of the conditional parameters over the distribution of the latent variable yields estimates of the marginal regression parameters. The methodology is illustrated using longitudinal data on depression from a study of HIV in women.
Author Roy, Jason
Author_xml – sequence: 1
  givenname: Jason
  surname: Roy
  fullname: Roy, Jason
BackLink https://www.ncbi.nlm.nih.gov/pubmed/14969461$$D View this record in MEDLINE/PubMed
BookMark eNqNkMFPHCEYxYmx0dX6HzQNp95mhQGGmUObtGtrTUaNiUZvhJlhtmxZ2AIT1_9extE99NJyAb73e-9L3hHYt84qACBGc5zO6WqOECoyQvHDPEeIjN-Kz7d7YIYZxRmiOdoHsx10CI5CWI0QQ_kBOMS0Kipa4Bl4uHSdMtouYe3sUseh01YaeCajhI86_oJXzuqldV42RsEz7zZuiAHehdEiYS2jsvFtDhdGhgBfIt-Dd700QZ283sfg7sf328XPrL4-v1h8rbOW5pRnPWurQmJWtr1sMMdYqpKRqqC8xwpXJccdpQ1KFO_LsuhpQWiadyXiPWq6khyDT1Puxrs_gwpRrHVolTHSKjcEwTFjqEIkgR9fwaFZq05svF5L_yTeukjAlwlovQvBq160OsqonY1eaiMwEmP5YiXGXsXYqxjLFy_li20KKP8K2O34t_XzZH3URj39t098u7i-TK_k_zD5VyE6v_OTomIkz5OcTbIOUW13svS_RcEJZ-L-6lzc1Df1LSFpA3kGW1azvw
CitedBy_id crossref_primary_10_1002_sim_3604
crossref_primary_10_1037_1064_1297_14_2_265
crossref_primary_10_1080_00273171_2021_1874259
crossref_primary_10_1214_11_AOAS515
crossref_primary_10_1111_j_1541_0420_2009_01234_x
crossref_primary_10_1093_biostatistics_kxv023
crossref_primary_10_1111_rssa_12350
crossref_primary_10_1214_15_AOAS876
crossref_primary_10_3102_1076998612458701
crossref_primary_10_1186_1748_5908_7_11
crossref_primary_10_1080_10705511_2014_882666
crossref_primary_10_1016_j_inffus_2021_07_001
crossref_primary_10_1111_biom_12224
crossref_primary_10_1111_biom_12353
crossref_primary_10_1111_biom_12670
crossref_primary_10_1186_s12916_018_1031_9
crossref_primary_10_1016_j_jsat_2013_01_015
crossref_primary_10_1080_02664763_2010_491969
crossref_primary_10_1080_03610918_2014_889154
crossref_primary_10_1016_j_jsat_2008_03_002
crossref_primary_10_1002_sim_3287
crossref_primary_10_1016_j_ssresearch_2016_04_002
crossref_primary_10_1002_sim_3484
crossref_primary_10_1007_s11336_015_9442_4
crossref_primary_10_1080_03610920802585849
crossref_primary_10_1007_s11121_016_0735_3
crossref_primary_10_1080_01621459_2016_1167693
crossref_primary_10_1111_j_0006_341X_2004_00173_x
crossref_primary_10_1111_j_1467_9876_2007_00578_x
crossref_primary_10_1177_0962280209105016
crossref_primary_10_1097_EDE_0000000000000811
crossref_primary_10_1007_s13571_019_00222_w
crossref_primary_10_1111_add_14756
crossref_primary_10_1214_17_STS630
crossref_primary_10_1017_S104161020900876X
crossref_primary_10_1080_02664763_2021_1945000
crossref_primary_10_1111_j_1541_0420_2007_00884_x
crossref_primary_10_1016_j_csda_2010_07_002
crossref_primary_10_1111_biom_12100
crossref_primary_10_1080_00273171_2019_1660606
crossref_primary_10_1016_j_jpsychires_2012_06_014
crossref_primary_10_1007_s11121_024_01757_9
crossref_primary_10_1111_josh_12093
crossref_primary_10_1177_0962280206075311
crossref_primary_10_1080_00273170701710338
crossref_primary_10_1016_j_alcr_2018_10_006
crossref_primary_10_1186_s12889_015_1395_0
crossref_primary_10_22237_jmasm_1478003640
crossref_primary_10_1002_sim_2333
crossref_primary_10_1016_j_socscimed_2012_02_022
crossref_primary_10_1177_0163278716673688
crossref_primary_10_1371_journal_pone_0182615
crossref_primary_10_1111_biom_12566
crossref_primary_10_1007_s12160_012_9410_5
crossref_primary_10_1007_s11634_015_0222_x
crossref_primary_10_1186_s12889_021_11133_9
crossref_primary_10_1007_s11764_021_01036_4
crossref_primary_10_1016_j_appdev_2017_06_005
crossref_primary_10_3389_fpsyg_2017_00722
crossref_primary_10_1007_s11222_023_10293_5
crossref_primary_10_1016_j_drugalcdep_2011_12_016
crossref_primary_10_1016_j_jpsychores_2018_07_012
crossref_primary_10_1080_10705511_2014_936082
crossref_primary_10_1093_rheumatology_ket253
crossref_primary_10_1080_03610918_2018_1506028
crossref_primary_10_1080_00273171_2011_589261
crossref_primary_10_1080_10705511_2014_936086
crossref_primary_10_1007_s11764_021_01129_0
crossref_primary_10_1177_0962280216678433
crossref_primary_10_1111_biom_13894
crossref_primary_10_1198_jasa_2010_ap09321
crossref_primary_10_1016_j_chiabu_2010_01_003
crossref_primary_10_1111_j_1467_985X_2011_01034_x
crossref_primary_10_1214_13_STS414
crossref_primary_10_1111_papr_13082
crossref_primary_10_1002_sim_7994
crossref_primary_10_1186_s13722_021_00237_7
crossref_primary_10_20982_tqmp_19_4_p347
crossref_primary_10_6000_1929_6029_2014_03_02_4
crossref_primary_10_1007_s10964_015_0313_1
crossref_primary_10_1016_j_jpsychores_2011_05_006
crossref_primary_10_1111_j_1521_0391_2014_12100_x
Cites_doi 10.1111/j.0006-341X.2000.01241.x
10.2307/2531905
10.2307/2534023
10.1093/biostatistics/1.2.141
10.1002/sim.718
10.1111/j.0006-341X.2000.01055.x
10.1080/01621459.1993.10594302
10.2307/2531694
10.1080/01621459.1995.10476615
10.1002/9781119013563
10.1002/(SICI)1097-0258(19970215)16:3<239::AID-SIM483>3.0.CO;2-X
10.1002/(SICI)1097-0258(20000530)19:10<1303::AID-SIM424>3.0.CO;2-E
10.1002/sim.695
10.1016/0304-4076(81)90071-3
10.1002/(SICI)1097-0258(19970215)16:3<259::AID-SIM484>3.0.CO;2-S
10.1080/01621459.1999.10474179
10.1214/aos/1176344136
10.1093/oxfordjournals.aje.a009299
10.1080/01621459.1997.10473658
ContentType Journal Article
Copyright Copyright 2003 The International Biometric Society
Copyright_xml – notice: Copyright 2003 The International Biometric Society
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1111/j.0006-341X.2003.00097.x
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Biology
Mathematics
EISSN 1541-0420
EndPage 836
ExternalDocumentID 14969461
10_1111_j_0006_341X_2003_00097_x
BIOM097
3695322
ark_67375_WNG_QLQLT33X_2
Genre article
Research Support, U.S. Gov't, P.H.S
Journal Article
GrantInformation_xml – fundername: ODCDC CDC HHS
  grantid: U64-CCU10675
– fundername: NIAID NIH HHS
  grantid: P30-AI42853
– fundername: NIAID NIH HHS
  grantid: R01-AI50505
GroupedDBID ---
-~X
.3N
.4S
.DC
.GA
.GJ
.Y3
05W
0R~
10A
1OC
23N
2AX
2QV
3-9
31~
33P
36B
3SF
3V.
4.4
44B
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
6J9
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
88E
88I
8AF
8C1
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
8UM
930
A03
A8Z
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AAPXW
AASGY
AAUAY
AAXRX
AAZKR
AAZSN
ABBHK
ABCQN
ABCUV
ABDBF
ABEJV
ABEML
ABFAN
ABJCF
ABJNI
ABLJU
ABMNT
ABPPZ
ABPVW
ABTAH
ABUWG
ABXSQ
ABXVV
ABYWD
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACIWK
ACKIV
ACMTB
ACNCT
ACPOU
ACPRK
ACSCC
ACTMH
ACXBN
ACXQS
ADACV
ADBBV
ADEOM
ADIPN
ADIZJ
ADKYN
ADMGS
ADODI
ADOZA
ADULT
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AELPN
AENEX
AEQDE
AEUPB
AEUQT
AEUYR
AFBPY
AFDVO
AFEBI
AFFTP
AFGKR
AFKRA
AFPWT
AFVYC
AFZJQ
AGTJU
AHMBA
AIAGR
AIBGX
AIURR
AIWBW
AJAOE
AJBDE
AJXKR
ALAGY
ALEEW
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
APXXL
ARAPS
ARCSS
ASPBG
AS~
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BBNVY
BCRHZ
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BSCLL
BVXVI
BY8
CAG
CCPQU
COF
CS3
D-E
D-F
DCZOG
DPXWK
DQDLB
DR2
DRFUL
DRSTM
DSRWC
DWQXO
DXH
EAD
EAP
EBC
EBD
EBS
ECEWR
EDO
EJD
EMB
EMK
EMOBN
EST
ESTFP
ESX
F00
F01
F04
F5P
FD6
FEDTE
FXEWX
FYUFA
G-S
G.N
GNUQQ
GODZA
GS5
H.T
H.X
HCIFZ
HF~
HGD
HMCUK
HQ6
HVGLF
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JAC
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JSODD
JST
K48
K6V
K7-
KOP
L6V
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LK8
LOXES
LP6
LP7
LUTES
LW6
LYRES
M1P
M2P
M7P
M7S
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NHB
O66
O9-
OIG
OJZSN
OWPYF
P0-
P2P
P2W
P2X
P4D
P62
PQQKQ
PROAC
PSQYO
PTHSS
Q.N
Q11
Q2X
QB0
R.K
RNS
ROL
ROX
RWL
RX1
RXW
SA0
SUPJJ
SV3
TAE
TN5
TUS
UAP
UB1
UKHRP
V8K
VQA
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WRC
WYISQ
X6Y
XBAML
XG1
XSW
ZGI
ZXP
ZY4
ZZTAW
~02
~IA
~KM
~WT
AAMMB
AANHP
AAWIL
AAYCA
ABAWQ
ABDFA
ABGNP
ACHJO
ACRPL
ACUHS
ACYXJ
ADNBA
ADNMO
ADVOB
AEFGJ
AEOTA
AFWVQ
AGLNM
AGORE
AGQPQ
AGXDD
AIDQK
AIDYY
AIHAF
AJNCP
ALRMG
NU-
AAYXX
AHGBF
AJBYB
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7X8
ID FETCH-LOGICAL-c4247-f5c96a158cfab1711ae8539647f1e19871d44b05c97f886f4634e19d807f0bd83
IEDL.DBID DR2
ISSN 0006-341X
IngestDate Fri Sep 05 14:57:31 EDT 2025
Wed Feb 19 01:37:17 EST 2025
Thu Apr 24 23:06:23 EDT 2025
Tue Jul 01 02:39:13 EDT 2025
Wed Jan 22 17:08:24 EST 2025
Thu Jul 03 21:22:35 EDT 2025
Wed Oct 30 09:47:52 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4247-f5c96a158cfab1711ae8539647f1e19871d44b05c97f886f4634e19d807f0bd83
Notes ark:/67375/WNG-QLQLT33X-2
ArticleID:BIOM097
istex:A789F7709AB2B7CF7AC6FB7107DEE7F1969F604F
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 14969461
PQID 71550903
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_71550903
pubmed_primary_14969461
crossref_citationtrail_10_1111_j_0006_341X_2003_00097_x
crossref_primary_10_1111_j_0006_341X_2003_00097_x
wiley_primary_10_1111_j_0006_341X_2003_00097_x_BIOM097
jstor_primary_3695322
istex_primary_ark_67375_WNG_QLQLT33X_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2003
PublicationDateYYYYMMDD 2003-12-01
PublicationDate_xml – month: 12
  year: 2003
  text: December 2003
PublicationDecade 2000
PublicationPlace 350 Main Street , Malden , MA 02148 , U.S.A , and P.O. Box 1354, 9600 Garsington Road , Oxford OX4 2DQ , U.K
PublicationPlace_xml – name: 350 Main Street , Malden , MA 02148 , U.S.A , and P.O. Box 1354, 9600 Garsington Road , Oxford OX4 2DQ , U.K
– name: United States
PublicationTitle Biometrics
PublicationTitleAlternate Biometrics
PublicationYear 2003
Publisher Blackwell Publishing
International Biometric Society
Publisher_xml – name: Blackwell Publishing
– name: International Biometric Society
References Lin, H., McCulloch, C. E., Turnbull, B. W., Slate, E. H., and Clark, L. C. (2000). A latent class mixed model for analyzing biomarker trajectories with irregularly scheduled observations. Statistics in Medicine 19, 1303-1318.
Schwartz, G. (1978). Estimating the dimension of a model. Annals of Statistics 6, 461-464.
Bandeen-Roche, K., Miglioretti, D. L., Zeger, S. L., and Rathouz, P. J. (1997). Latent variable regression for multiple discrete outcomes. Journal of the American Statistical Association 92, 1375-1386.
Little, R. J. A. (1995). Modeling the drop-out mechanism in repeated-measures studies. Journal of the American Statistical Association 90, 1112-1121.
Daniels, M. J. and Hogan, J. W. (2000). Reparameterizing the pattern-mixture model for sensitivity analysis under informative dropout. Biometrics 56, 1241-1248.
Hogan, J. W. and Laird, N. M. (1997a). Mixture models for the joint distribution of repeated measures and event times. Statistics in Medicine 16, 239-257.
Wu, M. C. and Carroll, R. J. (1988). Estimation and comparison of changes in the presence of informative right censoring by modeling the censoring process. Biometrics 44, 175-188.
Little, R. J. A. (1993). Pattern-mixture models for multivariate incomplete data. Journal of the American Statistical Association 88, 125-134.
Roeder, K., Lynch, K. G., and Nagin, D. S. (1999). Modeling uncertainty in latent class membership: A case study in criminology. Journal of the American Statistical Association 94, 766-776.
Little, R. J. A. and Rubin, D. B. (2002). Statistical analysis with missing data, 2nd edition. New York : Wiley.
Reboussin, B. A. and Anthony, J. C. (2001). Latent class marginal regression models for modeling youthful drug involvement and its suspected influences. Statistics in Medicine 20, 623-639.
Hogan, J. W. and Laird, N. M. (1997b). Model-based approaches to analyzing incomplete longitudinal and failure-time data. Statistics in Medicine 16, 259-272.
Wu, M. C. and Bailey, K. R. (1989). Estimation and comparison of changes in the presence of informative right censoring: Conditional linear model. Biometrics 45, 939-955.
Akaike, H. (1981). Likelihood of a model and information criteria. Journal of Econometrics 16, 3-14.
Ten Have, T. R., Pulkstenis, E., Kunselman, A., and Landis, J. R. (1998). Mixed effects logistic regression models for longitudinal binary response data with informative dropout. Biometrics 54, 367-383.
Fitzmaurice, G. M. and Laird, N. M. (2000). Generalized linear mixture models for handling nonignorable dropouts in longitudinal studies. Biostatistics 1, 141-156.
Garrett, E. S. and Zeger, S. L. (2000). Latent class model diagnosis. Biometrics 56, 1055-1067.
Fitzmaurice, G. M., Laird, N. M., and Schneyer, L. (2001). An alternative parameterization of the general linear mixture model for longitudinal data with non-ignorable drop-outs. Statistics in Medicine 20, 1009-1021.
Smith, D. K., Warren, D. L., Vlahov, D., Schuman, P., Stein, M. D., Greenberg, B. L., and Holmberg, S. D. (1997). Design and baseline participant characteristics of human immunodeficiency virus epidemiology research (HER) study: A prospective cohort study of human immunodeficiency virus infection in U.S. women. American Journal of Epidemiology 146, 459-469.
1997; 146
2000; 19
1989; 45
1997; 92
1995; 90
1997a; 16
2000; 56
1993; 88
1988; 44
1981; 16
2000; 1
2002
1999; 94
1998; 54
1997b; 16
2001; 20
1978; 6
e_1_2_9_20_1
e_1_2_9_11_1
e_1_2_9_10_1
e_1_2_9_13_1
Hogan J. W. (e_1_2_9_9_1) 1997; 16
e_1_2_9_12_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_16_1
e_1_2_9_19_1
e_1_2_9_18_1
References_xml – reference: Bandeen-Roche, K., Miglioretti, D. L., Zeger, S. L., and Rathouz, P. J. (1997). Latent variable regression for multiple discrete outcomes. Journal of the American Statistical Association 92, 1375-1386.
– reference: Fitzmaurice, G. M. and Laird, N. M. (2000). Generalized linear mixture models for handling nonignorable dropouts in longitudinal studies. Biostatistics 1, 141-156.
– reference: Reboussin, B. A. and Anthony, J. C. (2001). Latent class marginal regression models for modeling youthful drug involvement and its suspected influences. Statistics in Medicine 20, 623-639.
– reference: Fitzmaurice, G. M., Laird, N. M., and Schneyer, L. (2001). An alternative parameterization of the general linear mixture model for longitudinal data with non-ignorable drop-outs. Statistics in Medicine 20, 1009-1021.
– reference: Ten Have, T. R., Pulkstenis, E., Kunselman, A., and Landis, J. R. (1998). Mixed effects logistic regression models for longitudinal binary response data with informative dropout. Biometrics 54, 367-383.
– reference: Lin, H., McCulloch, C. E., Turnbull, B. W., Slate, E. H., and Clark, L. C. (2000). A latent class mixed model for analyzing biomarker trajectories with irregularly scheduled observations. Statistics in Medicine 19, 1303-1318.
– reference: Garrett, E. S. and Zeger, S. L. (2000). Latent class model diagnosis. Biometrics 56, 1055-1067.
– reference: Wu, M. C. and Bailey, K. R. (1989). Estimation and comparison of changes in the presence of informative right censoring: Conditional linear model. Biometrics 45, 939-955.
– reference: Smith, D. K., Warren, D. L., Vlahov, D., Schuman, P., Stein, M. D., Greenberg, B. L., and Holmberg, S. D. (1997). Design and baseline participant characteristics of human immunodeficiency virus epidemiology research (HER) study: A prospective cohort study of human immunodeficiency virus infection in U.S. women. American Journal of Epidemiology 146, 459-469.
– reference: Roeder, K., Lynch, K. G., and Nagin, D. S. (1999). Modeling uncertainty in latent class membership: A case study in criminology. Journal of the American Statistical Association 94, 766-776.
– reference: Wu, M. C. and Carroll, R. J. (1988). Estimation and comparison of changes in the presence of informative right censoring by modeling the censoring process. Biometrics 44, 175-188.
– reference: Daniels, M. J. and Hogan, J. W. (2000). Reparameterizing the pattern-mixture model for sensitivity analysis under informative dropout. Biometrics 56, 1241-1248.
– reference: Hogan, J. W. and Laird, N. M. (1997a). Mixture models for the joint distribution of repeated measures and event times. Statistics in Medicine 16, 239-257.
– reference: Little, R. J. A. (1995). Modeling the drop-out mechanism in repeated-measures studies. Journal of the American Statistical Association 90, 1112-1121.
– reference: Little, R. J. A. and Rubin, D. B. (2002). Statistical analysis with missing data, 2nd edition. New York : Wiley.
– reference: Schwartz, G. (1978). Estimating the dimension of a model. Annals of Statistics 6, 461-464.
– reference: Akaike, H. (1981). Likelihood of a model and information criteria. Journal of Econometrics 16, 3-14.
– reference: Hogan, J. W. and Laird, N. M. (1997b). Model-based approaches to analyzing incomplete longitudinal and failure-time data. Statistics in Medicine 16, 259-272.
– reference: Little, R. J. A. (1993). Pattern-mixture models for multivariate incomplete data. Journal of the American Statistical Association 88, 125-134.
– volume: 56
  start-page: 1055
  year: 2000
  end-page: 1067
  article-title: Latent class model diagnosis
  publication-title: Biometrics
– volume: 16
  start-page: 239
  year: 1997a
  end-page: 257
  article-title: Mixture models for the joint distribution of repeated measures and event times
  publication-title: Statistics in Medicine
– volume: 19
  start-page: 1303
  year: 2000
  end-page: 1318
  article-title: A latent class mixed model for analyzing biomarker trajectories with irregularly scheduled observations
  publication-title: Statistics in Medicine
– volume: 56
  start-page: 1241
  year: 2000
  end-page: 1248
  article-title: Reparameterizing the pattern‐mixture model for sensitivity analysis under informative dropout
  publication-title: Biometrics
– volume: 16
  start-page: 259
  year: 1997b
  end-page: 272
  article-title: Model‐based approaches to analyzing incomplete longitudinal and failure‐time data
  publication-title: Statistics in Medicine
– volume: 88
  start-page: 125
  year: 1993
  end-page: 134
  article-title: Pattern‐mixture models for multivariate incomplete data
  publication-title: Journal of the American Statistical Association
– year: 2002
– volume: 54
  start-page: 367
  year: 1998
  end-page: 383
  article-title: Mixed effects logistic regression models for longitudinal binary response data with informative dropout
  publication-title: Biometrics
– volume: 44
  start-page: 175
  year: 1988
  end-page: 188
  article-title: Estimation and comparison of changes in the presence of informative right censoring by modeling the censoring process
  publication-title: Biometrics
– volume: 146
  start-page: 459
  year: 1997
  end-page: 469
  article-title: Design and baseline participant characteristics of human immunodeficiency virus epidemiology research (HER) study: A prospective cohort study of human immunodeficiency virus infection in U.S. women
  publication-title: American Journal of Epidemiology
– volume: 1
  start-page: 141
  year: 2000
  end-page: 156
  article-title: Generalized linear mixture models for handling nonignorable dropouts in longitudinal studies
  publication-title: Biostatistics
– volume: 94
  start-page: 766
  year: 1999
  end-page: 776
  article-title: Modeling uncertainty in latent class membership: A case study in criminology
  publication-title: Journal of the American Statistical Association
– volume: 6
  start-page: 461
  year: 1978
  end-page: 464
  article-title: Estimating the dimension of a model
  publication-title: Annals of Statistics
– volume: 20
  start-page: 1009
  year: 2001
  end-page: 1021
  article-title: An alternative parameterization of the general linear mixture model for longitudinal data with non‐ignorable drop‐outs
  publication-title: Statistics in Medicine
– volume: 90
  start-page: 1112
  year: 1995
  end-page: 1121
  article-title: Modeling the drop‐out mechanism in repeated‐measures studies
  publication-title: Journal of the American Statistical Association
– volume: 20
  start-page: 623
  year: 2001
  end-page: 639
  article-title: Latent class marginal regression models for modeling youthful drug involvement and its suspected influences
  publication-title: Statistics in Medicine
– volume: 45
  start-page: 939
  year: 1989
  end-page: 955
  article-title: Estimation and comparison of changes in the presence of informative right censoring: Conditional linear model
  publication-title: Biometrics
– volume: 16
  start-page: 3
  year: 1981
  end-page: 14
  article-title: Likelihood of a model and information criteria
  publication-title: Journal of Econometrics
– volume: 92
  start-page: 1375
  year: 1997
  end-page: 1386
  article-title: Latent variable regression for multiple discrete outcomes
  publication-title: Journal of the American Statistical Association
– ident: e_1_2_9_4_1
  doi: 10.1111/j.0006-341X.2000.01241.x
– ident: e_1_2_9_20_1
  doi: 10.2307/2531905
– ident: e_1_2_9_18_1
  doi: 10.2307/2534023
– ident: e_1_2_9_5_1
  doi: 10.1093/biostatistics/1.2.141
– ident: e_1_2_9_6_1
  doi: 10.1002/sim.718
– ident: e_1_2_9_7_1
  doi: 10.1111/j.0006-341X.2000.01055.x
– ident: e_1_2_9_11_1
  doi: 10.1080/01621459.1993.10594302
– ident: e_1_2_9_19_1
  doi: 10.2307/2531694
– ident: e_1_2_9_12_1
  doi: 10.1080/01621459.1995.10476615
– ident: e_1_2_9_13_1
  doi: 10.1002/9781119013563
– ident: e_1_2_9_8_1
  doi: 10.1002/(SICI)1097-0258(19970215)16:3<239::AID-SIM483>3.0.CO;2-X
– ident: e_1_2_9_10_1
  doi: 10.1002/(SICI)1097-0258(20000530)19:10<1303::AID-SIM424>3.0.CO;2-E
– ident: e_1_2_9_14_1
  doi: 10.1002/sim.695
– ident: e_1_2_9_2_1
  doi: 10.1016/0304-4076(81)90071-3
– volume: 16
  start-page: 259
  year: 1997
  ident: e_1_2_9_9_1
  article-title: Model‐based approaches to analyzing incomplete longitudinal and failure‐time data
  publication-title: Statistics in Medicine
  doi: 10.1002/(SICI)1097-0258(19970215)16:3<259::AID-SIM484>3.0.CO;2-S
– ident: e_1_2_9_15_1
  doi: 10.1080/01621459.1999.10474179
– ident: e_1_2_9_16_1
  doi: 10.1214/aos/1176344136
– ident: e_1_2_9_17_1
  doi: 10.1093/oxfordjournals.aje.a009299
– ident: e_1_2_9_3_1
  doi: 10.1080/01621459.1997.10473658
SSID ssj0009502
Score 2.064918
Snippet In longitudinal studies with dropout, pattern-mixture models form an attractive modeling framework to account for nonignorable missing data. However,...
In longitudinal studies with dropout, pattern‐mixture models form an attractive modeling framework to account for nonignorable missing data. However,...
Summary .  In longitudinal studies with dropout, pattern‐mixture models form an attractive modeling framework to account for nonignorable missing data....
SourceID proquest
pubmed
crossref
wiley
jstor
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 829
SubjectTerms Analysis of Variance
Analytical estimating
Biometrics
Biometry - methods
Data models
Depression - etiology
Female
HIV
HIV Infections - psychology
Humans
Incomplete data
Inference
Latent variable
Longitudinal data
Longitudinal Studies
Maximum likelihood estimation
Missing data
Modeling
Models, Statistical
Parametric models
Patient Dropouts
Pattern-mixture model
Repeated measures
Reproducibility of Results
School dropouts
Shared-parameter model
Title Modeling Longitudinal Data with Nonignorable Dropouts Using a Latent Dropout Class Model
URI https://api.istex.fr/ark:/67375/WNG-QLQLT33X-2/fulltext.pdf
https://www.jstor.org/stable/3695322
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.0006-341X.2003.00097.x
https://www.ncbi.nlm.nih.gov/pubmed/14969461
https://www.proquest.com/docview/71550903
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Bb9MwFH5CQ0jjwEYZkDHAB8QtVdw4dnIEyhioLRraRG-W7Tg7dErRmkiDX4-fnWQU7TAhbpGVZyX2ey-fnefvA3iT5IYnYmJjZQodM-qudCXS2EFnoZkwjHoi7fmCn5yzL8ts2dU_4VmYwA8xbLhhZPh8jQGu9GYryDHVxi4LLz2t59ifSRgjnqQpRxr96bfJH_y7SSAO70y2inpu72jrS3UfB_26L1q8DY5uo1v_eTreg1X_YqEqZTVuGz02v_7ifPw_b74PjzoUS94Ft3sM92w9ggdB1_LnCB7OBzLYzQh2EdAGPugnsETxNTwCT2ZrlEpqS5TlIlPVKIJ7wmThksxF7RxTX1oyRQ2HttkQX9lAFJk5aFw3fTvxkp7Ed3kA58cfzz6cxJ26Q2zYhIm4ykzBFc1yUylNBaXKOuiAB2MranErhJaM6cTdJao85xXjKXPtZZ6IKtFlnj6FnXpd2-duJg3Tbhlb2oy51WaRK5dYJnlpTJkl3NosAtHPpDQd9TkqcFzKmyUQDqnEIUVhzlT6IZXXEdDB8keg_7iDzVvvLIOBulph-ZzI5PfFJ3k6O52dpamzieDAe9NwY8qLzCXYCF733iVdsOMfHFXbdbuRAheURZJG8Cw43c1DsYIXjNMIuHedOz-tfP_569xdHf6r4QvYDQWOWOJzBDvNVWtfOqDW6Fc-BH8DNc0qUQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQK0Q58FgKhFd9QNyyijeOnRyBpWwhu6hoK_Zm2Y7Doass6iZS4dcz4zzKoh4qxC2KMlFiz0y-ccbfR8jrKLUikhMXapuZkDM4MqWMQ4DO0nBpOfNE2vOFmJ3xT6tk1ckB4V6Ylh9iWHDDyPD5GgMcF6R3ohxzbQhpeOV5Pcd-U8IYAOU-B9yBldj06-QPBt6opQ7vbHbaeq6_0863ah-H_bJvW7wOkO7iW_-BOr5P1v2rtX0p5-OmNmP76y_Wx__07g_IvQ7I0ret5z0kt1w1IrdbacufI3J3PvDBbkfkADFtSwn9iKxQfw13wdN8g2pJTYHKXHSqa01xWZguIM98r8A3zdrRKco4NPWW-uYGqmkO6Liq-_PUq3pSf8tDcnb8Yfl-FnYCD6HlEy7DMrGZ0CxJbakNk4xpB-gB98aWzOFqCCs4NxFcJcs0FSUXMYfzRRrJMjJFGj8me9Wmck9hKi03UMkWLuFQcGaphtwySQtriyQSziUBkf1UKtuxn6MIx1pdVUE4pAqHFLU5Y-WHVF0GhA2WP1oGkBvYvPHeMhjoi3PsoJOJ-rb4qE7z03wZx2ATkEPvTsOFscgSyLEBOerdS0G8408cXblNs1USa8osigPypPW6q4fimci4YAER3ndu_LTq3cmXORw9-1fDI3JntpznKj9ZfH5ODtp-R-z4eUH26ovGvQTcVptXPh5_A_O2LnA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQK1A58FgKhFd9QNyyijeOnRyBZWkhu1DUir1ZtuNw2CpbdROp8OuZcR5lUQ8V4hZZGSuxZyafnfH3EfI6Sq2I5MSF2mYm5AyuTCnjEKCzNFxazjyR9nwhDk_5p2Wy7Oqf8CxMyw8xbLhhZPh8jQF-XpRbQY6pNoQsvPS0nmN_JmEMeHKXCwAWCJC-Tf4g4I1a5vDOZquq5_qetj5Vuzjql33V4nV4dBve-u_T7D5Z9W_WlqWsxk1txvbXX6SP_-fVH5B7HYylb1u_e0huuWpEbrfClj9H5O58YIPdjMgeItqWEPoRWaL6Gp6Bp_katZKaAnW56FTXmuKmMF1AlvlRgWeaM0enKOLQ1BvqSxuopjlg46ru26nX9KS-y31yOvtw8v4w7OQdQssnXIZlYjOhWZLaUhsmGdMOsAOejC2Zw70QVnBuIrhLlmkqSi5iDu1FGskyMkUaPyY71bpyT2EmLTewji1cwmG5maUaMsskLawtkkg4lwRE9jOpbMd9jhIcZ-pqDYRDqnBIUZkzVn5I1WVA2GB53vJ_3MDmjXeWwUBfrLB-Tibq--KjOs6P85M4BpuA7HtvGm6MRZZAhg3IQe9dCqIdf-Hoyq2bjZK4osyiOCBPWqe7eiieiYwLFhDhXefGT6veHX2Zw9WzfzU8IHe-TmcqP1p8fk722mJHLPd5QXbqi8a9BNBWm1c-Gn8DJ3YtHw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+Longitudinal+Data+with+Nonignorable+Dropouts+Using+a+Latent+Dropout+Class+Model&rft.jtitle=Biometrics&rft.au=Roy%2C+Jason&rft.date=2003-12-01&rft.pub=Blackwell+Publishing&rft.issn=0006-341X&rft.eissn=1541-0420&rft.volume=59&rft.issue=4&rft.spage=829&rft.epage=836&rft_id=info:doi/10.1111%2Fj.0006-341X.2003.00097.x&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_QLQLT33X_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon