Changes in the Functional Potential of the Gut Microbiome Following Probiotic Supplementation during Helicobacter Pylori Treatment

Background Probiotic supplementation is utilized to alleviate the side effects associated with antibiotic therapy for Helicobacter pylori infection. Several studies have described the effects of administration of probiotics on the gut microbiota during antibiotic therapy. However, most of these stud...

Full description

Saved in:
Bibliographic Details
Published inHelicobacter (Cambridge, Mass.) Vol. 21; no. 6; pp. 493 - 503
Main Authors Oh, Bumjo, Kim, Ji Won, Kim, Bong-Soo
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.12.2016
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN1083-4389
1523-5378
1523-5378
DOI10.1111/hel.12306

Cover

Abstract Background Probiotic supplementation is utilized to alleviate the side effects associated with antibiotic therapy for Helicobacter pylori infection. Several studies have described the effects of administration of probiotics on the gut microbiota during antibiotic therapy. However, most of these studies have focused on specific bacteria, thereby providing limited information on the functional roles of the altered microbiota. Therefore, we examined the impact of probiotic supplementation on the structure and functional dynamics of the gut microbiota during H. pylori eradication, using whole‐metagenomic sequence analysis. Methods Subjects were divided into two groups: the antibiotics group, which received only antibiotics, and the probiotics group, which received antibiotics with probiotic supplementation. The structural and functional profiles of gut microbiota was analyzed using metagenomic DNA extracted from the feces during treatment by Illumina MiSeq system. Results The overall alterations in microbiota, as revealed by whole metagenome sequencing, were similar with results from our previous 16S rRNA gene‐based analysis. The proportional shift in functional gene families was greater in the antibiotics group than in the probiotics group. In particular, the proportion of genes related to selenocompound metabolism was reduced in the probiotics group, whereas genes associated with the metabolism of nucleotide sugars were increased. Conclusion The functional alterations of gut microbiota may link to the reduction in intestinal irritation and maintenance of bacterial diversity observed following probiotic supplementation with antibiotic therapy. The potential beneficial roles of altered gut microbiota following probiotic supplementation are expected a reduction in side effects such as intestinal irritation and antibiotics resistance.
AbstractList Probiotic supplementation is utilized to alleviate the side effects associated with antibiotic therapy for Helicobacter pylori infection. Several studies have described the effects of administration of probiotics on the gut microbiota during antibiotic therapy. However, most of these studies have focused on specific bacteria, thereby providing limited information on the functional roles of the altered microbiota. Therefore, we examined the impact of probiotic supplementation on the structure and functional dynamics of the gut microbiota during H. pylori eradication, using whole-metagenomic sequence analysis.BACKGROUNDProbiotic supplementation is utilized to alleviate the side effects associated with antibiotic therapy for Helicobacter pylori infection. Several studies have described the effects of administration of probiotics on the gut microbiota during antibiotic therapy. However, most of these studies have focused on specific bacteria, thereby providing limited information on the functional roles of the altered microbiota. Therefore, we examined the impact of probiotic supplementation on the structure and functional dynamics of the gut microbiota during H. pylori eradication, using whole-metagenomic sequence analysis.Subjects were divided into two groups: the antibiotics group, which received only antibiotics, and the probiotics group, which received antibiotics with probiotic supplementation. The structural and functional profiles of gut microbiota was analyzed using metagenomic DNA extracted from the feces during treatment by Illumina MiSeq system.METHODSSubjects were divided into two groups: the antibiotics group, which received only antibiotics, and the probiotics group, which received antibiotics with probiotic supplementation. The structural and functional profiles of gut microbiota was analyzed using metagenomic DNA extracted from the feces during treatment by Illumina MiSeq system.The overall alterations in microbiota, as revealed by whole metagenome sequencing, were similar with results from our previous 16S rRNA gene-based analysis. The proportional shift in functional gene families was greater in the antibiotics group than in the probiotics group. In particular, the proportion of genes related to selenocompound metabolism was reduced in the probiotics group, whereas genes associated with the metabolism of nucleotide sugars were increased.RESULTSThe overall alterations in microbiota, as revealed by whole metagenome sequencing, were similar with results from our previous 16S rRNA gene-based analysis. The proportional shift in functional gene families was greater in the antibiotics group than in the probiotics group. In particular, the proportion of genes related to selenocompound metabolism was reduced in the probiotics group, whereas genes associated with the metabolism of nucleotide sugars were increased.The functional alterations of gut microbiota may link to the reduction in intestinal irritation and maintenance of bacterial diversity observed following probiotic supplementation with antibiotic therapy. The potential beneficial roles of altered gut microbiota following probiotic supplementation are expected a reduction in side effects such as intestinal irritation and antibiotics resistance.CONCLUSIONThe functional alterations of gut microbiota may link to the reduction in intestinal irritation and maintenance of bacterial diversity observed following probiotic supplementation with antibiotic therapy. The potential beneficial roles of altered gut microbiota following probiotic supplementation are expected a reduction in side effects such as intestinal irritation and antibiotics resistance.
Probiotic supplementation is utilized to alleviate the side effects associated with antibiotic therapy for Helicobacter pylori infection. Several studies have described the effects of administration of probiotics on the gut microbiota during antibiotic therapy. However, most of these studies have focused on specific bacteria, thereby providing limited information on the functional roles of the altered microbiota. Therefore, we examined the impact of probiotic supplementation on the structure and functional dynamics of the gut microbiota during H. pylori eradication, using whole-metagenomic sequence analysis. Subjects were divided into two groups: the antibiotics group, which received only antibiotics, and the probiotics group, which received antibiotics with probiotic supplementation. The structural and functional profiles of gut microbiota was analyzed using metagenomic DNA extracted from the feces during treatment by Illumina MiSeq system. The overall alterations in microbiota, as revealed by whole metagenome sequencing, were similar with results from our previous 16S rRNA gene-based analysis. The proportional shift in functional gene families was greater in the antibiotics group than in the probiotics group. In particular, the proportion of genes related to selenocompound metabolism was reduced in the probiotics group, whereas genes associated with the metabolism of nucleotide sugars were increased. The functional alterations of gut microbiota may link to the reduction in intestinal irritation and maintenance of bacterial diversity observed following probiotic supplementation with antibiotic therapy. The potential beneficial roles of altered gut microbiota following probiotic supplementation are expected a reduction in side effects such as intestinal irritation and antibiotics resistance.
Background Probiotic supplementation is utilized to alleviate the side effects associated with antibiotic therapy for Helicobacter pylori infection. Several studies have described the effects of administration of probiotics on the gut microbiota during antibiotic therapy. However, most of these studies have focused on specific bacteria, thereby providing limited information on the functional roles of the altered microbiota. Therefore, we examined the impact of probiotic supplementation on the structure and functional dynamics of the gut microbiota during H. pylori eradication, using whole‐metagenomic sequence analysis. Methods Subjects were divided into two groups: the antibiotics group, which received only antibiotics, and the probiotics group, which received antibiotics with probiotic supplementation. The structural and functional profiles of gut microbiota was analyzed using metagenomic DNA extracted from the feces during treatment by Illumina MiSeq system. Results The overall alterations in microbiota, as revealed by whole metagenome sequencing, were similar with results from our previous 16S rRNA gene‐based analysis. The proportional shift in functional gene families was greater in the antibiotics group than in the probiotics group. In particular, the proportion of genes related to selenocompound metabolism was reduced in the probiotics group, whereas genes associated with the metabolism of nucleotide sugars were increased. Conclusion The functional alterations of gut microbiota may link to the reduction in intestinal irritation and maintenance of bacterial diversity observed following probiotic supplementation with antibiotic therapy. The potential beneficial roles of altered gut microbiota following probiotic supplementation are expected a reduction in side effects such as intestinal irritation and antibiotics resistance.
Background Probiotic supplementation is utilized to alleviate the side effects associated with antibiotic therapy for Helicobacter pylori infection. Several studies have described the effects of administration of probiotics on the gut microbiota during antibiotic therapy. However, most of these studies have focused on specific bacteria, thereby providing limited information on the functional roles of the altered microbiota. Therefore, we examined the impact of probiotic supplementation on the structure and functional dynamics of the gut microbiota during H. pylori eradication, using whole-metagenomic sequence analysis. Methods Subjects were divided into two groups: the antibiotics group, which received only antibiotics, and the probiotics group, which received antibiotics with probiotic supplementation. The structural and functional profiles of gut microbiota was analyzed using metagenomic DNA extracted from the feces during treatment by Illumina MiSeq system. Results The overall alterations in microbiota, as revealed by whole metagenome sequencing, were similar with results from our previous 16S rRNA gene-based analysis. The proportional shift in functional gene families was greater in the antibiotics group than in the probiotics group. In particular, the proportion of genes related to selenocompound metabolism was reduced in the probiotics group, whereas genes associated with the metabolism of nucleotide sugars were increased. Conclusion The functional alterations of gut microbiota may link to the reduction in intestinal irritation and maintenance of bacterial diversity observed following probiotic supplementation with antibiotic therapy. The potential beneficial roles of altered gut microbiota following probiotic supplementation are expected a reduction in side effects such as intestinal irritation and antibiotics resistance.
Author Kim, Ji Won
Oh, Bumjo
Kim, Bong-Soo
Author_xml – sequence: 1
  givenname: Bumjo
  surname: Oh
  fullname: Oh, Bumjo
  organization: Department of Family Medicine, Seoul National University Boramae Hospital, 20 Boramae-ro 5-gil, Seoul, 07061, Dongjak-gu, Republic of Korea
– sequence: 2
  givenname: Ji Won
  surname: Kim
  fullname: Kim, Ji Won
  organization: Department of internal Medicine, Seoul National University Boramae Hospital, 20 Boramae-ro 5-gil, Seoul, 07061, Dongjak-gu, Republic of Korea
– sequence: 3
  givenname: Bong-Soo
  surname: Kim
  fullname: Kim, Bong-Soo
  email: bkim79@hallym.ac.kr, : Bong-Soo Kim, Department of Life Science, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Ganwon-do 200-702, Republic of Korea., bkim79@hallym.ac.kr
  organization: Department of Life Science, Hallym University, Gangwon-do, 200-702, Chuncheon, Republic of Korea
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26991862$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtv1DAUhSNURB-w4A-gSGxgkdaPxHaWaNTOUA1lBCOxtBznpuPiiQfbUZktvxxnHiwqkPDGV_Z3jnTPOc9OetdDlr3G6BKnc7UCe4kJRexZdoYrQouKcnGSZiRoUVJRn2bnITwghCpa1i-yU8LqGgtGzrJfk5Xq7yHkps_jCvKbodfRuF7ZfOEi9NGkyXW7v-kQ809Ge9cYt06os9Y9mv4-X-yeotH512GzsbBOOjW65O3gR2AG1mjXKB3B54utdd7kSw8qjuTL7HmnbIBXh_siW95cLyezYv55-nHyYV7okpSsUCCgxrwVjDdlJ9q202lL1Gne0RbrmgtRKaCsJbQmGFHRNU3CoeUV0LqkF9m7ve3Gux8DhCjXJmiwVvXghiCxqBBnNef0P1DCGENlOaJvn6APbvApvpEqy7oiAo3UmwM1NGto5cabtfJbeewhAVd7IKUbgodOarOPMHplrMRIjk3L1LTcNZ0U758ojqZ_Yw_uj8bC9t-gnF3Pj4pirzAhws8_CuW_S8Ypr-S3u6kUt4svt3cVkYj-Bsv_x0g
CitedBy_id crossref_primary_10_1007_s00203_022_03314_w
crossref_primary_10_1111_hel_12343
crossref_primary_10_1111_hel_12475
crossref_primary_10_1016_j_pnpbp_2020_110182
crossref_primary_10_3389_fendo_2021_639856
crossref_primary_10_1080_19490976_2022_2108655
crossref_primary_10_1099_jmm_0_001625
crossref_primary_10_1371_journal_pone_0218274
crossref_primary_10_1111_hel_12854
crossref_primary_10_3389_fcimb_2023_1121947
crossref_primary_10_3390_microorganisms9081611
crossref_primary_10_1186_s12876_021_01977_1
crossref_primary_10_1016_j_copbio_2020_01_005
crossref_primary_10_3389_fmicb_2019_01902
crossref_primary_10_1111_hel_13077
crossref_primary_10_1136_bmjopen_2018_023131
crossref_primary_10_1039_D0FO02981E
crossref_primary_10_33920_med_10_2012_05
crossref_primary_10_1124_dmd_124_001837
crossref_primary_10_3390_ijms252312826
crossref_primary_10_1038_s41598_019_56631_4
crossref_primary_10_1111_hel_12713
crossref_primary_10_3389_fcimb_2022_913384
crossref_primary_10_3390_microorganisms12020319
Cites_doi 10.1111/j.1440-1746.2009.06220.x
10.1046/j.1365-2036.2001.00923.x
10.1046/j.1472-765X.2003.01380.x
10.1111/hel.12270
10.1016/j.pbi.2008.03.009
10.4161/viru.22718
10.1136/gutjnl-2012-303184
10.1111/j.1365-2362.2009.02166.x
10.1038/ncomms2266
10.1038/nature09944
10.1046/j.1365-2036.1998.00386.x
10.1038/nature08821
10.1093/oxfordjournals.epirev.a018040
10.1038/nature11450
10.1128/AAC.46.7.2229-2233.2002
10.1038/nature11319
10.1016/j.mib.2013.06.003
10.1016/j.febslet.2005.08.028
10.1099/jmm.0.47615-0
10.1093/bioinformatics/btq041
10.1073/pnas.1000081107
10.1385/BTER:98:2:143
10.1111/j.1523-5378.2006.00398.x
10.1038/nature11552
10.1038/nature11550
10.1093/jac/dkf140
10.1126/scitranslmed.3002701
10.1128/jb.178.20.5853-5859.1996
10.1038/nature11234
10.1038/nature12198
10.1126/science.aac6468
10.1099/00222615-42-4-276
10.3748/wjg.v20.i33.11878
10.1038/nmeth.2066
10.1155/2012/723183
10.1056/NEJMra020542
10.1111/j.2517-6161.1995.tb02031.x
10.1128/AAC.44.12.3368-3373.2000
10.1016/S1473-3099(06)70627-2
10.3748/wjg.v20.i3.673
10.1136/gut.2007.133603
10.1093/jac/dkg050
10.1073/pnas.0804812105
10.1371/journal.pone.0009836
10.1111/j.1574-6968.2009.01506.x
10.1128/CMR.11.4.589
10.1016/S1473-3099(13)70190-7
10.1111/j.1523-5378.2012.00981.x
10.1016/j.ijantimicag.2006.08.034
10.1016/j.ijantimicag.2005.04.004
10.1371/journal.pone.0004344
10.1007/s15010-007-6180-2
10.1111/j.1083-4389.2004.00251.x
10.1136/gutjnl-2012-302504
10.1371/journal.pcbi.1002358
10.1038/nmeth.3176
10.1517/14656566.8.16.2701
ContentType Journal Article
Copyright 2016 John Wiley & Sons Ltd
2016 John Wiley & Sons Ltd.
Copyright © 2016 John Wiley & Sons Ltd
Copyright_xml – notice: 2016 John Wiley & Sons Ltd
– notice: 2016 John Wiley & Sons Ltd.
– notice: Copyright © 2016 John Wiley & Sons Ltd
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
C1K
K9.
7X8
DOI 10.1111/hel.12306
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Environmental Sciences and Pollution Management
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Bacteriology Abstracts (Microbiology B)
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Bacteriology Abstracts (Microbiology B)
ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1523-5378
EndPage 503
ExternalDocumentID 4266401131
26991862
10_1111_hel_12306
HEL12306
ark_67375_WNG_8JPRJN52_0
Genre article
Journal Article
GrantInformation_xml – fundername: Hallym University Specialization Fund
  funderid: HRF‐S‐12
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29I
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
A8Z
AAESR
AAEVG
AAHHS
AAKAS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZCM
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHEFC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DTERQ
DU5
EAD
EAP
EBC
EBD
EBS
EDH
EJD
EMB
EMK
EMOBN
EST
ESTFP
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
FZ0
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OBS
OIG
OVD
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
SV3
TEORI
TUS
UB1
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WOHZO
WOW
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
YFH
ZZTAW
~IA
~WT
AAHQN
AAIPD
AAMNL
AANHP
AAYCA
ACRPL
ACUHS
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7QL
C1K
K9.
7X8
ID FETCH-LOGICAL-c4246-ae8e917d867b4f8ddfc3780fc7f3d1c97885ae36d23921038fbb17ded75e3943
IEDL.DBID DR2
ISSN 1083-4389
1523-5378
IngestDate Fri Jul 11 12:35:59 EDT 2025
Mon Sep 08 14:07:21 EDT 2025
Fri Jul 25 10:38:52 EDT 2025
Mon Jul 21 06:04:15 EDT 2025
Thu Apr 24 22:53:40 EDT 2025
Tue Jul 01 00:54:45 EDT 2025
Wed Jan 22 16:59:34 EST 2025
Wed Oct 30 10:01:33 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Whole metagenome sequence
functional profile
gut microbiota
probiotics
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2016 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4246-ae8e917d867b4f8ddfc3780fc7f3d1c97885ae36d23921038fbb17ded75e3943
Notes istex:D3746CAF2D69109246B1D8418EFEBE6429875E1E
ark:/67375/WNG-8JPRJN52-0
Hallym University Specialization Fund - No. HRF-S-12
ArticleID:HEL12306
Table. S1 The summary of clinical characteristics.Table. S2 The number of analyzed whole-metagenome sequences.Fig. S1 Comparison of phyla composition analyzed by 16S rRNA gene and metagenomic marker genes. Fig. S2 Comparison of microbiota changes analyzed by 16S rRNA gene and metagenomic marker genes after treatment. Fig. S3 Comparison of predominant species between groups in analysis of metagenome sequences.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2468-0755
PMID 26991862
PQID 1844952803
PQPubID 2034141
PageCount 11
ParticipantIDs proquest_miscellaneous_1850769773
proquest_miscellaneous_1826660443
proquest_journals_1844952803
pubmed_primary_26991862
crossref_citationtrail_10_1111_hel_12306
crossref_primary_10_1111_hel_12306
wiley_primary_10_1111_hel_12306_HEL12306
istex_primary_ark_67375_WNG_8JPRJN52_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-12
December 2016
2016-12-00
2016-Dec
20161201
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-12
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Helicobacter (Cambridge, Mass.)
PublicationTitleAlternate Helicobacter
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Al Jassim RA. Lactobacillus ruminis is a predominant lactic acid producing bacterium in the caecum and rectum of the pig. Lett Appl Microbiol 2003;37:213-7.
Myllyluoma E, Ahlroos T, Veijola L, Rautelin H, Tynkkynen S, Korpela R. Effects of anti-Helicobacter pylori treatment and probiotic supplementation on intestinal microbiota. Int J Antimicrob Agents 2007;29:66-72.
Parks DH, Beiko RG. Identifying biologically relevant differences between metagenomic communities. Bioinformatics 2010;26:715-21.
Schieber AM, Lee YM, Chang MW, Leblanc M, Collins B, Downes M, Evans RM, Ayres JS. Disease tolerance mediated by microbiome E. coli involves inflammasome and IGF-1 signaling. Science 2015;350:558-63.
Park YC, Kim JB, Heo Y, et al. Metabolism of subtoxic level of selenite by double-perfused small intestine in rats. Biol Trace Elem Res 2004;98:143-57.
Claesson MJ, Jeffery IB, Conde S, et al. Gut microbiota composition correlates with diet and health in the elderly. Nature 2012;488:178-84.
Sokol H, Pigneur B, Watterlot L, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U S A 2008;105:16731-6.
Gerrits MM, Godoy AP, Kuipers EJ, Ribeiro ML, Stoof J, Mendonca S, van Vliet AH, Pedrazzoli J Jr, Kusters JG. Multiple mutations in or adjacent to the conserved penicillin-binding protein motifs of the penicillin-binding protein 1A confer amoxicillin resistance to Helicobacter pylori. Helicobacter 2006;11:181-7.
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc 1995;57:289-300.
Webber MA, Piddock LJ. The importance of efflux pumps in bacterial antibiotic resistance. J Antimicrob Chemother 2003;51:9-11.
Tremaroli V, Backhed F. Functional interactions between the gut microbiota and host metabolism. Nature 2012;489:242-9.
Munoz-Price LS, Poirel L, Bonomo RA, et al. Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect Dis 2013;13:785-96.
Zoetendal EG, Rajilic-Stojanovic M, de Vos WM. High-throughput diversity and functionality analysis of the gastrointestinal tract microbiota. Gut 2008;57:1605-15.
Sugimoto M, Furuta T, Shirai N, et al. Treatment strategy to eradicate Helicobacter pylori infection: impact of pharmacogenomics-based acid inhibition regimen and alternative antibiotics. Expert Opin Pharmacother 2007;8:2701-17.
DeLoney CR, Schiller NL. Characterization of an In vitro-selected amoxicillin-resistant strain of Helicobacter pylori. Antimicrob Agents Chemother 2000;44:3368-73.
Forssten S, Evans M, Wilson D, Ouwehand AC. Influence of a probiotic mixture on antibiotic induced microbiota disturbances. World J Gastroenterol 2014;20:11878-85.
Karlsson FH, Fak F, Nookaew I, Tremaroli V, Fagerberg B, Petranovic D, Backhed F, Nielsen J. Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat Commun 2012;3:1245.
Taweechotipatr M, Iyer C, Spinler JK, Versalovic J, Tumwasorn S. Lactobacillus saerimneri and Lactobacillus ruminis: novel human-derived probiotic strains with immunomodulatory activities. FEMS Microbiol Lett 2009;293:65-72.
Reiter WD. Biochemical genetics of nucleotide sugar interconversion reactions. Curr Opin Plant Biol 2008;11:236-43.
Miquel S, Martin R, Rossi O, Bermudez-Humaran LG, Chatel JM, Sokol H, Thomas M, Wells JM, Langella P. Faecalibacterium prausnitzii and human intestinal health. Curr Opin Microbiol 2013;16:255-61.
Kenny JG, Ward D, Josefsson E, Jonsson IM, Hinds J, Rees HH, Lindsay JA, Tarkowski A, Horsburgh MJ. The Staphylococcus aureus response to unsaturated long chain free fatty acids: survival mechanisms and virulence implications. PLoS One 2009;4:e4344.
Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010;464:59-65.
Arumugam M, Raes J, Pelletier E, et al. Enterotypes of the human gut microbiome. Nature 2011;473:174-80.
McNulty NP, Yatsunenko T, Hsiao A, et al. The impact of a consortium of fermented milk strains on the gut microbiome of gnotobiotic mice and monozygotic twins. Sci Transl Med 2011;3:106ra.
Jakobsson HE, Jernberg C, Andersson AF, Sjolund-Karlsson M, Jansson JK, Engstrand L. Short-term antibiotic treatment has differing long-term impacts on the human throat and gut microbiome. PLoS One 2010;5:e9836.
Pacifico L, Osborn JF, Bonci E, Romaggioli S, Baldini R, Chiesa C. Probiotics for the treatment of Helicobacter pylori infection in children. World J Gastroenterol 2014;20:673-83.
Hirata K, Suzuki H, Nishizawa T, Tsugawa H, Muraoka H, Saito Y, Matsuzaki J, Hibi T. Contribution of efflux pumps to clarithromycin resistance in Helicobacter pylori. J Gastroenterol Hepatol 2010;25(Suppl 1):S75-9.
Lewis SJ, Freedman AR. Review article: the use of biotherapeutic agents in the prevention and treatment of gastrointestinal disease. Aliment Pharmacol Ther 1998;12:807-22.
Segata N, Waldron L, Ballarini A, Narasimhan V, Jousson O, Huttenhower C. Metagenomic microbial community profiling using unique clade-specific marker genes. Nat Methods 2012;9:811-4.
Abubucker S, Segata N, Goll J, et al. Metabolic reconstruction for metagenomic data and its application to the human microbiome. PLoS Comput Biol 2012;8:e1002358.
Gerrits MM, van Vliet AH, Kuipers EJ, Kusters JG. Helicobacter pylori and antimicrobial resistance: molecular mechanisms and clinical implications. Lancet Infect Dis 2006;6:699-709.
Sanders ME, Guarner F, Guerrant R, Holt PR, Quigley EM, Sartor RB, Sherman PM, Mayer EA. An update on the use and investigation of probiotics in health and disease. Gut 2013;62:787-96.
Shon AS, Bajwa RP, Russo TA. Hypervirulent (hypermucoviscous) Klebsiella pneumoniae: a new and dangerous breed. Virulence 2013;4:107-18.
Suerbaum S, Michetti P. Helicobacter pylori infection. N Engl J Med 2002;347:1175-86.
Podschun R, Ullmann U. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev 1998;11:589-603.
Perez-Cobas AE, Gosalbes MJ, Friedrichs A, et al. Gut microbiota disturbance during antibiotic therapy: a multi-omic approach. Gut 2013;62:1591-601.
Laupland KB, Ross T, Pitout JD, Church DL, Gregson DB. Community-onset urinary tract infections: a population-based assessment. Infection 2007;35:150-3.
Tepes B, O'Connor A, Gisbert JP, O'Morain C. Treatment of Helicobacter pylori infection 2012. Helicobacter 2012;17(Suppl 1):36-42.
Brown LM. Helicobacter pylori: epidemiology and routes of transmission. Epidemiol Rev 2000;22:283-97.
Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity, stability and resilience of the human gut microbiota. Nature 2012;489:220-30.
Qin J, Li Y, Cai Z, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012;490:55-60.
Oh B, Kim BS, Kim JW, Kim JS, Koh SJ, Kim BG, Lee KL, Chun J. The effect of probiotics on gut microbiota during the Helicobacter pylori eradication: randomized controlled trial. Helicobacter 2015; doi:10.1111/hel.12270.
Okamoto T, Yoshiyama H, Nakazawa T, Park ID, Chang MW, Yanai H, Okita K, Shirai M. A change in PBP1 is involved in amoxicillin resistance of clinical isolates of Helicobacter pylori. J Antimicrob Chemother 2002;50:849-56.
Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods 2015;12:59-60.
Koenig JE, Spor A, Scalfone N, Fricker AD, Stombaugh J, Knight R, Angenent LT, Ley RE. Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci U S A 2011;108(Suppl 1):4578-85.
Gerrits MM, Schuijffel D, van Zwet AA, Kuipers EJ, Vandenbroucke-Grauls CM, Kusters JG. Alterations in penicillin-binding protein 1A confer resistance to beta-lactam antibiotics in Helicobacter pylori. Antimicrob Agents Chemother 2002;46:2229-33.
McLoughlin R, Racz I, Buckley M, O'Connor HJ, O'Morain C. Therapy of Helicobacter pylori. Helicobacter 2004;9(Suppl 1):42-8.
Armuzzi A, Cremonini F, Bartolozzi F, et al. The effect of oral administration of Lactobacillus GG on antibiotic-associated gastrointestinal side-effects during Helicobacter pylori eradication therapy. Aliment Pharmacol Ther 2001;15:163-9.
Huttenhower C, Gevers D, Knight R, et al. Structure, function and diversity of the healthy human microbiome. Nature 2012;486:207-14.
Nikaido H. Multidrug efflux pumps of gram-negative bacteria. J Bacteriol 1996;178:5853-9.
Bluman AG. Elementary Statistics: A Step by Step Approach, 6th ed. New York, NY: McGraw Hill Higher Education, 2007.
Tseng YS, Wu DC, Chang CY, Kuo CH, Yang YC, Jan CM, Su YC, Kuo FC, Chang LL. Amoxicillin resistance with beta-lactamase production in Helicobacter pylori. Eur J Clin Invest 2009;39:807-12.
Zheng CJ, Yoo JS, Lee TG, Cho HY, Kim YH, Kim WG. Fatty acid synthesis is a target for antibacterial activity of unsaturated fatty acids. FEBS Lett 2005;579:5157-62.
Plummer SF, Garaiova I, Sarvotham T, Cottrell SL, Le Scouiller S, Weaver MA, Tang J, Dee P, Hunter J. Effects of probiotics on the composition of the intestinal microbiota following antibiotic therapy. Int J Antimicrob Agents 2005;26:69-74.
Khulusi S, Ahmed HA, Patel P, Mendall MA, Northfield TC. The effects of unsaturated fatty acids on Helicobacter pylori in vitro. J Med Microbiol 1995;42:276-82.
Wu W, Yang Y, Sun G. Recent insights into antibiotic resistance in Helicobacter pylori eradication. Gastroenterol Res Pract 2012;2012:723183.
Engelbrektson A, Korzenik JR, Pittler A, Sanders ME, Klaenhammer TR, Leyer G, Kitts CL. Probiotics to minimize the disruption of faecal microbiota in healthy subjects undergoing antibiotic therapy. J Med Microbiol 2009;58:663-70.
Karlsson FH, Tremaroli V, Nookaew I, Bergstrom G, Behre CJ, Fagerberg B, Nielsen J, Backhed F. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 2013;498:99-103.
Maag DD, Orsborn JS, Clopton JR. The effect of sodium selenite on cattle. Am J Vet Res 1960;21:1049-53.
2012; 2012
2013; 4
2012; 486
2002; 50
2013; 62
2000; 44
2010; 464
2004; 9
2005; 579
2008; 105
2012; 17
2005; 26
2012; 488
2012; 489
2003; 51
2007; 35
2011; 473
2014; 20
2007; 29
2009; 58
2010; 26
2010; 25
2013; 16
2013; 13
2002; 46
2012; 490
2007; 8
2002; 347
2001; 15
2010; 5
1996; 178
1998; 12
1998; 11
2015; 12
2006; 11
1995; 57
2000; 22
2007
2003; 37
2008; 57
2006; 6
2009; 293
2008; 11
2011; 3
2015; 350
1995; 42
2004; 98
1960; 21
2011; 108
2012; 3
2013; 498
2015
2009; 4
2012; 8
2012; 9
2009; 39
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_43_1
e_1_2_6_20_1
Maag DD (e_1_2_6_45_1) 1960; 21
e_1_2_6_41_1
e_1_2_6_60_1
Benjamini Y (e_1_2_6_31_1) 1995; 57
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_50_1
Bluman AG (e_1_2_6_30_1) 2007
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – reference: Wu W, Yang Y, Sun G. Recent insights into antibiotic resistance in Helicobacter pylori eradication. Gastroenterol Res Pract 2012;2012:723183.
– reference: Qin J, Li Y, Cai Z, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012;490:55-60.
– reference: Arumugam M, Raes J, Pelletier E, et al. Enterotypes of the human gut microbiome. Nature 2011;473:174-80.
– reference: Huttenhower C, Gevers D, Knight R, et al. Structure, function and diversity of the healthy human microbiome. Nature 2012;486:207-14.
– reference: Taweechotipatr M, Iyer C, Spinler JK, Versalovic J, Tumwasorn S. Lactobacillus saerimneri and Lactobacillus ruminis: novel human-derived probiotic strains with immunomodulatory activities. FEMS Microbiol Lett 2009;293:65-72.
– reference: Hirata K, Suzuki H, Nishizawa T, Tsugawa H, Muraoka H, Saito Y, Matsuzaki J, Hibi T. Contribution of efflux pumps to clarithromycin resistance in Helicobacter pylori. J Gastroenterol Hepatol 2010;25(Suppl 1):S75-9.
– reference: Maag DD, Orsborn JS, Clopton JR. The effect of sodium selenite on cattle. Am J Vet Res 1960;21:1049-53.
– reference: McNulty NP, Yatsunenko T, Hsiao A, et al. The impact of a consortium of fermented milk strains on the gut microbiome of gnotobiotic mice and monozygotic twins. Sci Transl Med 2011;3:106ra.
– reference: Khulusi S, Ahmed HA, Patel P, Mendall MA, Northfield TC. The effects of unsaturated fatty acids on Helicobacter pylori in vitro. J Med Microbiol 1995;42:276-82.
– reference: Miquel S, Martin R, Rossi O, Bermudez-Humaran LG, Chatel JM, Sokol H, Thomas M, Wells JM, Langella P. Faecalibacterium prausnitzii and human intestinal health. Curr Opin Microbiol 2013;16:255-61.
– reference: Sanders ME, Guarner F, Guerrant R, Holt PR, Quigley EM, Sartor RB, Sherman PM, Mayer EA. An update on the use and investigation of probiotics in health and disease. Gut 2013;62:787-96.
– reference: Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods 2015;12:59-60.
– reference: Suerbaum S, Michetti P. Helicobacter pylori infection. N Engl J Med 2002;347:1175-86.
– reference: Jakobsson HE, Jernberg C, Andersson AF, Sjolund-Karlsson M, Jansson JK, Engstrand L. Short-term antibiotic treatment has differing long-term impacts on the human throat and gut microbiome. PLoS One 2010;5:e9836.
– reference: Shon AS, Bajwa RP, Russo TA. Hypervirulent (hypermucoviscous) Klebsiella pneumoniae: a new and dangerous breed. Virulence 2013;4:107-18.
– reference: Karlsson FH, Tremaroli V, Nookaew I, Bergstrom G, Behre CJ, Fagerberg B, Nielsen J, Backhed F. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 2013;498:99-103.
– reference: Myllyluoma E, Ahlroos T, Veijola L, Rautelin H, Tynkkynen S, Korpela R. Effects of anti-Helicobacter pylori treatment and probiotic supplementation on intestinal microbiota. Int J Antimicrob Agents 2007;29:66-72.
– reference: Al Jassim RA. Lactobacillus ruminis is a predominant lactic acid producing bacterium in the caecum and rectum of the pig. Lett Appl Microbiol 2003;37:213-7.
– reference: Laupland KB, Ross T, Pitout JD, Church DL, Gregson DB. Community-onset urinary tract infections: a population-based assessment. Infection 2007;35:150-3.
– reference: Claesson MJ, Jeffery IB, Conde S, et al. Gut microbiota composition correlates with diet and health in the elderly. Nature 2012;488:178-84.
– reference: Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity, stability and resilience of the human gut microbiota. Nature 2012;489:220-30.
– reference: Gerrits MM, Godoy AP, Kuipers EJ, Ribeiro ML, Stoof J, Mendonca S, van Vliet AH, Pedrazzoli J Jr, Kusters JG. Multiple mutations in or adjacent to the conserved penicillin-binding protein motifs of the penicillin-binding protein 1A confer amoxicillin resistance to Helicobacter pylori. Helicobacter 2006;11:181-7.
– reference: Parks DH, Beiko RG. Identifying biologically relevant differences between metagenomic communities. Bioinformatics 2010;26:715-21.
– reference: Plummer SF, Garaiova I, Sarvotham T, Cottrell SL, Le Scouiller S, Weaver MA, Tang J, Dee P, Hunter J. Effects of probiotics on the composition of the intestinal microbiota following antibiotic therapy. Int J Antimicrob Agents 2005;26:69-74.
– reference: DeLoney CR, Schiller NL. Characterization of an In vitro-selected amoxicillin-resistant strain of Helicobacter pylori. Antimicrob Agents Chemother 2000;44:3368-73.
– reference: Okamoto T, Yoshiyama H, Nakazawa T, Park ID, Chang MW, Yanai H, Okita K, Shirai M. A change in PBP1 is involved in amoxicillin resistance of clinical isolates of Helicobacter pylori. J Antimicrob Chemother 2002;50:849-56.
– reference: Segata N, Waldron L, Ballarini A, Narasimhan V, Jousson O, Huttenhower C. Metagenomic microbial community profiling using unique clade-specific marker genes. Nat Methods 2012;9:811-4.
– reference: Sugimoto M, Furuta T, Shirai N, et al. Treatment strategy to eradicate Helicobacter pylori infection: impact of pharmacogenomics-based acid inhibition regimen and alternative antibiotics. Expert Opin Pharmacother 2007;8:2701-17.
– reference: McLoughlin R, Racz I, Buckley M, O'Connor HJ, O'Morain C. Therapy of Helicobacter pylori. Helicobacter 2004;9(Suppl 1):42-8.
– reference: Tepes B, O'Connor A, Gisbert JP, O'Morain C. Treatment of Helicobacter pylori infection 2012. Helicobacter 2012;17(Suppl 1):36-42.
– reference: Reiter WD. Biochemical genetics of nucleotide sugar interconversion reactions. Curr Opin Plant Biol 2008;11:236-43.
– reference: Park YC, Kim JB, Heo Y, et al. Metabolism of subtoxic level of selenite by double-perfused small intestine in rats. Biol Trace Elem Res 2004;98:143-57.
– reference: Pacifico L, Osborn JF, Bonci E, Romaggioli S, Baldini R, Chiesa C. Probiotics for the treatment of Helicobacter pylori infection in children. World J Gastroenterol 2014;20:673-83.
– reference: Nikaido H. Multidrug efflux pumps of gram-negative bacteria. J Bacteriol 1996;178:5853-9.
– reference: Forssten S, Evans M, Wilson D, Ouwehand AC. Influence of a probiotic mixture on antibiotic induced microbiota disturbances. World J Gastroenterol 2014;20:11878-85.
– reference: Kenny JG, Ward D, Josefsson E, Jonsson IM, Hinds J, Rees HH, Lindsay JA, Tarkowski A, Horsburgh MJ. The Staphylococcus aureus response to unsaturated long chain free fatty acids: survival mechanisms and virulence implications. PLoS One 2009;4:e4344.
– reference: Tremaroli V, Backhed F. Functional interactions between the gut microbiota and host metabolism. Nature 2012;489:242-9.
– reference: Engelbrektson A, Korzenik JR, Pittler A, Sanders ME, Klaenhammer TR, Leyer G, Kitts CL. Probiotics to minimize the disruption of faecal microbiota in healthy subjects undergoing antibiotic therapy. J Med Microbiol 2009;58:663-70.
– reference: Podschun R, Ullmann U. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev 1998;11:589-603.
– reference: Karlsson FH, Fak F, Nookaew I, Tremaroli V, Fagerberg B, Petranovic D, Backhed F, Nielsen J. Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat Commun 2012;3:1245.
– reference: Perez-Cobas AE, Gosalbes MJ, Friedrichs A, et al. Gut microbiota disturbance during antibiotic therapy: a multi-omic approach. Gut 2013;62:1591-601.
– reference: Armuzzi A, Cremonini F, Bartolozzi F, et al. The effect of oral administration of Lactobacillus GG on antibiotic-associated gastrointestinal side-effects during Helicobacter pylori eradication therapy. Aliment Pharmacol Ther 2001;15:163-9.
– reference: Lewis SJ, Freedman AR. Review article: the use of biotherapeutic agents in the prevention and treatment of gastrointestinal disease. Aliment Pharmacol Ther 1998;12:807-22.
– reference: Webber MA, Piddock LJ. The importance of efflux pumps in bacterial antibiotic resistance. J Antimicrob Chemother 2003;51:9-11.
– reference: Oh B, Kim BS, Kim JW, Kim JS, Koh SJ, Kim BG, Lee KL, Chun J. The effect of probiotics on gut microbiota during the Helicobacter pylori eradication: randomized controlled trial. Helicobacter 2015; doi:10.1111/hel.12270.
– reference: Zheng CJ, Yoo JS, Lee TG, Cho HY, Kim YH, Kim WG. Fatty acid synthesis is a target for antibacterial activity of unsaturated fatty acids. FEBS Lett 2005;579:5157-62.
– reference: Gerrits MM, van Vliet AH, Kuipers EJ, Kusters JG. Helicobacter pylori and antimicrobial resistance: molecular mechanisms and clinical implications. Lancet Infect Dis 2006;6:699-709.
– reference: Zoetendal EG, Rajilic-Stojanovic M, de Vos WM. High-throughput diversity and functionality analysis of the gastrointestinal tract microbiota. Gut 2008;57:1605-15.
– reference: Abubucker S, Segata N, Goll J, et al. Metabolic reconstruction for metagenomic data and its application to the human microbiome. PLoS Comput Biol 2012;8:e1002358.
– reference: Schieber AM, Lee YM, Chang MW, Leblanc M, Collins B, Downes M, Evans RM, Ayres JS. Disease tolerance mediated by microbiome E. coli involves inflammasome and IGF-1 signaling. Science 2015;350:558-63.
– reference: Tseng YS, Wu DC, Chang CY, Kuo CH, Yang YC, Jan CM, Su YC, Kuo FC, Chang LL. Amoxicillin resistance with beta-lactamase production in Helicobacter pylori. Eur J Clin Invest 2009;39:807-12.
– reference: Koenig JE, Spor A, Scalfone N, Fricker AD, Stombaugh J, Knight R, Angenent LT, Ley RE. Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci U S A 2011;108(Suppl 1):4578-85.
– reference: Munoz-Price LS, Poirel L, Bonomo RA, et al. Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect Dis 2013;13:785-96.
– reference: Brown LM. Helicobacter pylori: epidemiology and routes of transmission. Epidemiol Rev 2000;22:283-97.
– reference: Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc 1995;57:289-300.
– reference: Gerrits MM, Schuijffel D, van Zwet AA, Kuipers EJ, Vandenbroucke-Grauls CM, Kusters JG. Alterations in penicillin-binding protein 1A confer resistance to beta-lactam antibiotics in Helicobacter pylori. Antimicrob Agents Chemother 2002;46:2229-33.
– reference: Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010;464:59-65.
– reference: Bluman AG. Elementary Statistics: A Step by Step Approach, 6th ed. New York, NY: McGraw Hill Higher Education, 2007.
– reference: Sokol H, Pigneur B, Watterlot L, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U S A 2008;105:16731-6.
– volume: 108
  start-page: 4578
  issue: Suppl 1
  year: 2011
  end-page: 85
  article-title: Succession of microbial consortia in the developing infant gut microbiome
  publication-title: Proc Natl Acad Sci U S A
– volume: 5
  start-page: e9836
  year: 2010
  article-title: Short‐term antibiotic treatment has differing long‐term impacts on the human throat and gut microbiome
  publication-title: PLoS One
– volume: 57
  start-page: 289
  year: 1995
  end-page: 300
  article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing
  publication-title: J R Stat Soc
– volume: 105
  start-page: 16731
  year: 2008
  end-page: 6
  article-title: is an anti‐inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients
  publication-title: Proc Natl Acad Sci U S A
– volume: 57
  start-page: 1605
  year: 2008
  end-page: 15
  article-title: High‐throughput diversity and functionality analysis of the gastrointestinal tract microbiota
  publication-title: Gut
– volume: 20
  start-page: 11878
  year: 2014
  end-page: 85
  article-title: Influence of a probiotic mixture on antibiotic induced microbiota disturbances
  publication-title: World J Gastroenterol
– volume: 6
  start-page: 699
  year: 2006
  end-page: 709
  article-title: and antimicrobial resistance: molecular mechanisms and clinical implications
  publication-title: Lancet Infect Dis
– volume: 62
  start-page: 1591
  year: 2013
  end-page: 601
  article-title: Gut microbiota disturbance during antibiotic therapy: a multi‐omic approach
  publication-title: Gut
– volume: 178
  start-page: 5853
  year: 1996
  end-page: 9
  article-title: Multidrug efflux pumps of gram‐negative bacteria
  publication-title: J Bacteriol
– volume: 464
  start-page: 59
  year: 2010
  end-page: 65
  article-title: A human gut microbial gene catalogue established by metagenomic sequencing
  publication-title: Nature
– year: 2015
  article-title: The effect of probiotics on gut microbiota during the eradication: randomized controlled trial
  publication-title: Helicobacter
– volume: 11
  start-page: 236
  year: 2008
  end-page: 43
  article-title: Biochemical genetics of nucleotide sugar interconversion reactions
  publication-title: Curr Opin Plant Biol
– volume: 39
  start-page: 807
  year: 2009
  end-page: 12
  article-title: Amoxicillin resistance with beta‐lactamase production in
  publication-title: Eur J Clin Invest
– volume: 3
  start-page: 106
  year: 2011
  article-title: The impact of a consortium of fermented milk strains on the gut microbiome of gnotobiotic mice and monozygotic twins
  publication-title: Sci Transl Med
– volume: 2012
  start-page: 723183
  year: 2012
  article-title: Recent insights into antibiotic resistance in eradication
  publication-title: Gastroenterol Res Pract
– volume: 11
  start-page: 181
  year: 2006
  end-page: 7
  article-title: Multiple mutations in or adjacent to the conserved penicillin‐binding protein motifs of the penicillin‐binding protein 1A confer amoxicillin resistance to
  publication-title: Helicobacter
– volume: 9
  start-page: 811
  year: 2012
  end-page: 4
  article-title: Metagenomic microbial community profiling using unique clade‐specific marker genes
  publication-title: Nat Methods
– volume: 4
  start-page: e4344
  year: 2009
  article-title: The response to unsaturated long chain free fatty acids: survival mechanisms and virulence implications
  publication-title: PLoS One
– volume: 490
  start-page: 55
  year: 2012
  end-page: 60
  article-title: A metagenome‐wide association study of gut microbiota in type 2 diabetes
  publication-title: Nature
– volume: 579
  start-page: 5157
  year: 2005
  end-page: 62
  article-title: Fatty acid synthesis is a target for antibacterial activity of unsaturated fatty acids
  publication-title: FEBS Lett
– volume: 25
  start-page: S75
  issue: Suppl 1
  year: 2010
  end-page: 9
  article-title: Contribution of efflux pumps to clarithromycin resistance in
  publication-title: J Gastroenterol Hepatol
– volume: 8
  start-page: e1002358
  year: 2012
  article-title: Metabolic reconstruction for metagenomic data and its application to the human microbiome
  publication-title: PLoS Comput Biol
– volume: 293
  start-page: 65
  year: 2009
  end-page: 72
  article-title: and : novel human‐derived probiotic strains with immunomodulatory activities
  publication-title: FEMS Microbiol Lett
– volume: 498
  start-page: 99
  year: 2013
  end-page: 103
  article-title: Gut metagenome in European women with normal, impaired and diabetic glucose control
  publication-title: Nature
– volume: 11
  start-page: 589
  year: 1998
  end-page: 603
  article-title: spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors
  publication-title: Clin Microbiol Rev
– volume: 350
  start-page: 558
  year: 2015
  end-page: 63
  article-title: Disease tolerance mediated by microbiome involves inflammasome and IGF‐1 signaling
  publication-title: Science
– volume: 21
  start-page: 1049
  year: 1960
  end-page: 53
  article-title: The effect of sodium selenite on cattle
  publication-title: Am J Vet Res
– volume: 29
  start-page: 66
  year: 2007
  end-page: 72
  article-title: Effects of anti‐ treatment and probiotic supplementation on intestinal microbiota
  publication-title: Int J Antimicrob Agents
– volume: 12
  start-page: 807
  year: 1998
  end-page: 22
  article-title: Review article: the use of biotherapeutic agents in the prevention and treatment of gastrointestinal disease
  publication-title: Aliment Pharmacol Ther
– volume: 16
  start-page: 255
  year: 2013
  end-page: 61
  article-title: and human intestinal health
  publication-title: Curr Opin Microbiol
– volume: 42
  start-page: 276
  year: 1995
  end-page: 82
  article-title: The effects of unsaturated fatty acids on
  publication-title: J Med Microbiol
– volume: 22
  start-page: 283
  year: 2000
  end-page: 97
  article-title: : epidemiology and routes of transmission
  publication-title: Epidemiol Rev
– volume: 489
  start-page: 220
  year: 2012
  end-page: 30
  article-title: Diversity, stability and resilience of the human gut microbiota
  publication-title: Nature
– year: 2007
– volume: 46
  start-page: 2229
  year: 2002
  end-page: 33
  article-title: Alterations in penicillin‐binding protein 1A confer resistance to beta‐lactam antibiotics in
  publication-title: Antimicrob Agents Chemother
– volume: 37
  start-page: 213
  year: 2003
  end-page: 7
  article-title: is a predominant lactic acid producing bacterium in the caecum and rectum of the pig
  publication-title: Lett Appl Microbiol
– volume: 3
  start-page: 1245
  year: 2012
  article-title: Symptomatic atherosclerosis is associated with an altered gut metagenome
  publication-title: Nat Commun
– volume: 12
  start-page: 59
  year: 2015
  end-page: 60
  article-title: Fast and sensitive protein alignment using DIAMOND
  publication-title: Nat Methods
– volume: 44
  start-page: 3368
  year: 2000
  end-page: 73
  article-title: Characterization of an ‐selected amoxicillin‐resistant strain of
  publication-title: Antimicrob Agents Chemother
– volume: 35
  start-page: 150
  year: 2007
  end-page: 3
  article-title: Community‐onset urinary tract infections: a population‐based assessment
  publication-title: Infection
– volume: 4
  start-page: 107
  year: 2013
  end-page: 18
  article-title: Hypervirulent (hypermucoviscous) : a new and dangerous breed
  publication-title: Virulence
– volume: 13
  start-page: 785
  year: 2013
  end-page: 96
  article-title: Clinical epidemiology of the global expansion of carbapenemases
  publication-title: Lancet Infect Dis
– volume: 9
  start-page: 42
  issue: Suppl 1
  year: 2004
  end-page: 8
  article-title: Therapy of
  publication-title: Helicobacter
– volume: 26
  start-page: 69
  year: 2005
  end-page: 74
  article-title: Effects of probiotics on the composition of the intestinal microbiota following antibiotic therapy
  publication-title: Int J Antimicrob Agents
– volume: 488
  start-page: 178
  year: 2012
  end-page: 84
  article-title: Gut microbiota composition correlates with diet and health in the elderly
  publication-title: Nature
– volume: 486
  start-page: 207
  year: 2012
  end-page: 14
  article-title: Structure, function and diversity of the healthy human microbiome
  publication-title: Nature
– volume: 26
  start-page: 715
  year: 2010
  end-page: 21
  article-title: Identifying biologically relevant differences between metagenomic communities
  publication-title: Bioinformatics
– volume: 20
  start-page: 673
  year: 2014
  end-page: 83
  article-title: Probiotics for the treatment of infection in children
  publication-title: World J Gastroenterol
– volume: 15
  start-page: 163
  year: 2001
  end-page: 9
  article-title: The effect of oral administration of on antibiotic‐associated gastrointestinal side‐effects during eradication therapy
  publication-title: Aliment Pharmacol Ther
– volume: 17
  start-page: 36
  issue: Suppl 1
  year: 2012
  end-page: 42
  article-title: Treatment of infection 2012
  publication-title: Helicobacter
– volume: 58
  start-page: 663
  year: 2009
  end-page: 70
  article-title: Probiotics to minimize the disruption of faecal microbiota in healthy subjects undergoing antibiotic therapy
  publication-title: J Med Microbiol
– volume: 51
  start-page: 9
  year: 2003
  end-page: 11
  article-title: The importance of efflux pumps in bacterial antibiotic resistance
  publication-title: J Antimicrob Chemother
– volume: 98
  start-page: 143
  year: 2004
  end-page: 57
  article-title: Metabolism of subtoxic level of selenite by double‐perfused small intestine in rats
  publication-title: Biol Trace Elem Res
– volume: 347
  start-page: 1175
  year: 2002
  end-page: 86
  article-title: infection
  publication-title: N Engl J Med
– volume: 489
  start-page: 242
  year: 2012
  end-page: 9
  article-title: Functional interactions between the gut microbiota and host metabolism
  publication-title: Nature
– volume: 50
  start-page: 849
  year: 2002
  end-page: 56
  article-title: A change in PBP1 is involved in amoxicillin resistance of clinical isolates of
  publication-title: J Antimicrob Chemother
– volume: 62
  start-page: 787
  year: 2013
  end-page: 96
  article-title: An update on the use and investigation of probiotics in health and disease
  publication-title: Gut
– volume: 473
  start-page: 174
  year: 2011
  end-page: 80
  article-title: Enterotypes of the human gut microbiome
  publication-title: Nature
– volume: 8
  start-page: 2701
  year: 2007
  end-page: 17
  article-title: Treatment strategy to eradicate infection: impact of pharmacogenomics‐based acid inhibition regimen and alternative antibiotics
  publication-title: Expert Opin Pharmacother
– ident: e_1_2_6_54_1
  doi: 10.1111/j.1440-1746.2009.06220.x
– ident: e_1_2_6_59_1
  doi: 10.1046/j.1365-2036.2001.00923.x
– ident: e_1_2_6_33_1
  doi: 10.1046/j.1472-765X.2003.01380.x
– ident: e_1_2_6_21_1
  doi: 10.1111/hel.12270
– ident: e_1_2_6_44_1
  doi: 10.1016/j.pbi.2008.03.009
– ident: e_1_2_6_36_1
  doi: 10.4161/viru.22718
– ident: e_1_2_6_6_1
  doi: 10.1136/gutjnl-2012-303184
– ident: e_1_2_6_53_1
  doi: 10.1111/j.1365-2362.2009.02166.x
– ident: e_1_2_6_24_1
  doi: 10.1038/ncomms2266
– ident: e_1_2_6_17_1
  doi: 10.1038/nature09944
– ident: e_1_2_6_10_1
  doi: 10.1046/j.1365-2036.1998.00386.x
– ident: e_1_2_6_22_1
  doi: 10.1038/nature08821
– ident: e_1_2_6_3_1
  doi: 10.1093/oxfordjournals.epirev.a018040
– ident: e_1_2_6_23_1
  doi: 10.1038/nature11450
– ident: e_1_2_6_52_1
  doi: 10.1128/AAC.46.7.2229-2233.2002
– ident: e_1_2_6_18_1
  doi: 10.1038/nature11319
– ident: e_1_2_6_40_1
  doi: 10.1016/j.mib.2013.06.003
– ident: e_1_2_6_41_1
  doi: 10.1016/j.febslet.2005.08.028
– ident: e_1_2_6_14_1
  doi: 10.1099/jmm.0.47615-0
– ident: e_1_2_6_29_1
  doi: 10.1093/bioinformatics/btq041
– ident: e_1_2_6_19_1
  doi: 10.1073/pnas.1000081107
– ident: e_1_2_6_46_1
  doi: 10.1385/BTER:98:2:143
– ident: e_1_2_6_49_1
  doi: 10.1111/j.1523-5378.2006.00398.x
– ident: e_1_2_6_8_1
  doi: 10.1038/nature11552
– ident: e_1_2_6_57_1
  doi: 10.1038/nature11550
– ident: e_1_2_6_50_1
  doi: 10.1093/jac/dkf140
– ident: e_1_2_6_16_1
  doi: 10.1126/scitranslmed.3002701
– ident: e_1_2_6_56_1
  doi: 10.1128/jb.178.20.5853-5859.1996
– ident: e_1_2_6_20_1
  doi: 10.1038/nature11234
– ident: e_1_2_6_25_1
  doi: 10.1038/nature12198
– ident: e_1_2_6_38_1
  doi: 10.1126/science.aac6468
– ident: e_1_2_6_43_1
  doi: 10.1099/00222615-42-4-276
– ident: e_1_2_6_11_1
  doi: 10.3748/wjg.v20.i33.11878
– ident: e_1_2_6_26_1
  doi: 10.1038/nmeth.2066
– ident: e_1_2_6_7_1
  doi: 10.1155/2012/723183
– ident: e_1_2_6_2_1
  doi: 10.1056/NEJMra020542
– volume: 57
  start-page: 289
  year: 1995
  ident: e_1_2_6_31_1
  article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing
  publication-title: J R Stat Soc
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– ident: e_1_2_6_51_1
  doi: 10.1128/AAC.44.12.3368-3373.2000
– ident: e_1_2_6_47_1
  doi: 10.1016/S1473-3099(06)70627-2
– volume: 21
  start-page: 1049
  year: 1960
  ident: e_1_2_6_45_1
  article-title: The effect of sodium selenite on cattle
  publication-title: Am J Vet Res
– ident: e_1_2_6_58_1
  doi: 10.3748/wjg.v20.i3.673
– ident: e_1_2_6_9_1
  doi: 10.1136/gut.2007.133603
– ident: e_1_2_6_55_1
  doi: 10.1093/jac/dkg050
– ident: e_1_2_6_39_1
  doi: 10.1073/pnas.0804812105
– ident: e_1_2_6_60_1
  doi: 10.1371/journal.pone.0009836
– ident: e_1_2_6_32_1
  doi: 10.1111/j.1574-6968.2009.01506.x
– ident: e_1_2_6_34_1
  doi: 10.1128/CMR.11.4.589
– ident: e_1_2_6_37_1
  doi: 10.1016/S1473-3099(13)70190-7
– ident: e_1_2_6_5_1
  doi: 10.1111/j.1523-5378.2012.00981.x
– ident: e_1_2_6_13_1
  doi: 10.1016/j.ijantimicag.2006.08.034
– ident: e_1_2_6_12_1
  doi: 10.1016/j.ijantimicag.2005.04.004
– volume-title: Elementary Statistics: A Step by Step Approach
  year: 2007
  ident: e_1_2_6_30_1
– ident: e_1_2_6_42_1
  doi: 10.1371/journal.pone.0004344
– ident: e_1_2_6_35_1
  doi: 10.1007/s15010-007-6180-2
– ident: e_1_2_6_4_1
  doi: 10.1111/j.1083-4389.2004.00251.x
– ident: e_1_2_6_15_1
  doi: 10.1136/gutjnl-2012-302504
– ident: e_1_2_6_27_1
  doi: 10.1371/journal.pcbi.1002358
– ident: e_1_2_6_28_1
  doi: 10.1038/nmeth.3176
– ident: e_1_2_6_48_1
  doi: 10.1517/14656566.8.16.2701
SSID ssj0005349
Score 2.2656972
Snippet Background Probiotic supplementation is utilized to alleviate the side effects associated with antibiotic therapy for Helicobacter pylori infection. Several...
Probiotic supplementation is utilized to alleviate the side effects associated with antibiotic therapy for Helicobacter pylori infection. Several studies have...
Background Probiotic supplementation is utilized to alleviate the side effects associated with antibiotic therapy for Helicobacter pylori infection. Several...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 493
SubjectTerms Adult
Anti-Bacterial Agents - administration & dosage
Antibiotics
functional profile
Gastrointestinal Microbiome
Gastrointestinal Tract - microbiology
gut microbiota
Helicobacter Infections - therapy
Helicobacter pylori
Humans
Male
Metabolism
Metagenomics
Middle Aged
Probiotics
Probiotics - administration & dosage
RNA, Bacterial - genetics
RNA, Ribosomal, 16S - genetics
Side effects
Treatment Outcome
Whole metagenome sequence
Title Changes in the Functional Potential of the Gut Microbiome Following Probiotic Supplementation during Helicobacter Pylori Treatment
URI https://api.istex.fr/ark:/67375/WNG-8JPRJN52-0/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fhel.12306
https://www.ncbi.nlm.nih.gov/pubmed/26991862
https://www.proquest.com/docview/1844952803
https://www.proquest.com/docview/1826660443
https://www.proquest.com/docview/1850769773
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9Nm0C88DG-CmMyCCFeUjWx4zjiaWPrqopV1VTEHpCiOL6IaiNBayo-HvnLOdtJYGggxFvU_NrGzl3ud875dwDPQ4VGJCYNMM5FIMRIBymmMuCF1BIxNFi4Kt-ZnLwV09P4dANedXthvD5Ev-BmPcM9r62D53r1i5N_wPNhaAk0PX9DLq1u_sHJT-momDvqGxLFCGyH71ZVyFbx9N-8FIu27LR-uYpoXuatLvCMb8H77pJ9vcnZcN3oYfHtNzXH_xzTbbjZElK25y3oDmxgtQ3XfIvKr9tw_bh9-X4XvvudCCu2rBjRRjamkOhXEtm8bmzVER3VpTt3tG7Y8dKLPH0kKFlb_ZmiJJu7j-i_mOsn6mvX7a8wv2GSURwk49RORJrN7XLCki26avh7sBgfLl5PgraFQ1CISMggR4WUEBolEy1KZUxZ8ESNyiIpuQkLSmFVnCOXJiKeZrXaS60JjiaJkaeC34fNqq7wITCuUOooKnmCxCq0ymPMlTaCCArKHNMBvOzuZVa08ua2y8Z51qU5NLmZm9wBPOuhn7ymx1WgF84gekR-cWaL4JI4ezc7ytR0fjKdxVE2GsBOZzFZ6_-rjPJmyjxt568BPO1Pk-fa1zF5hfXaYogcyZEQf8UQX5fE0QnzwFtjf0GRJG5PCSmN3NnUn8eSTQ7fuINH_w59DDeIG0pfubMDm83FGp8Q_2r0Lmzt7R_sj3edw_0AJlMtUw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VVjwuPMorUGBBCHFxFNvr9VrigqBpCEkUVUH0Uq283rGIWmLUOuJx5Jczu2sbigpC3Kz4S-Jdz3i-Wc9-A_A0lGh4arIAk5wHnA90kGEmgrgQWiCGBgtX5TsTo3d8fJAcbMCLdi-M14foFtysZ7jntXVwuyD9i5d_wON-aBn0BdjiRDRs6vV6_6d4VBI78hsSyQhsj-9GV8jW8XRfPRONtuzEfjmPap5lri70DK_BYXvRvuLkqL-udb_49pue4_-O6jpcbTgpe-mN6AZs4GobLvoulV-34dK0ef9-E777zQinbLlixBzZkKKiX0xk86q2hUd0VJXu3N66ZtOl13n6SFAyuOozBUo2dx_RfzHXUtSXr9tfYX7PJKNQSPapnY40m9sVhSVbtAXxt2Ax3F28GgVNF4eg4BEXQY4SKSc0UqSal9KYsohTOSiLtIxNWFAWK5McY2EiompWrr3UmuBo0gTjjMe3YXNVrfAusFii0FFUxikSsdAyTzCX2nDiKChyzHrwvL2ZqmgUzm2jjWPVZjo0ucpNbg-edNBPXtbjPNAzZxEdIj85snVwaaLez_aUHM_3x7MkUoMe7LQmo5pHwKmi1JmST9v8qwePu9PkvPaNTL7Cam0xxI_EgPO_Ysi0BdF0wtzx5thdUCSI3lNOSiN3RvXnsajR7sQd3Pt36CO4PFpMJ2ryZvb2Plwhqih8Ic8ObNYna3xAdKzWD53X_QBtMzAA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVlRceJTXQgGDEOKS1SZxHEecEHS7LO0qqhbRA5IVxxOxakmqdlc8jvxyxnYSKCoIcYviSWI7M5lvnPE3AE9DiYanJgswKXjA-UgHGWYiiEuhBWJosHRZvjMxecenh8nhGrzo9sJ4foh-wc1ahvteWwM_MdUvRv4Rj4ehBdCXYIMLQhIWER385I5KYod9Q2oJbInvllbIpvH0l55zRht2Xr9chDTPA1fnecbX4EPXZ59wcjRcLfWw_PYbneN_Duo6XG0RKXvpVegGrGG9BZd9jcqvW7C53_59vwnf_VaEM7aoGeFGNiaf6JcSWd4sbdoRHTWVa9tdLdn-wrM8fSJRUrfmM7lJlrtT9CzmCor65HV7F-Z3TDJyhKSd2rFIs9yuJyzYvEuHvwXz8c781SRoazgEJY-4CAqUSBGhkSLVvJLGVGWcylFVplVswpJiWJkUGAsTEVCzZO2V1iSOJk0wznh8G9brpsa7wGKJQkdRFadIsELLIsFCasMJoaAoMBvA8-5dqrLlN7dlNo5VF-fQ5Co3uQN40oueeFKPi4SeOYXoJYrTI5sFlybq_WxXyWl-MJ0lkRoNYLvTGNV-AM4UBc4UetrSXwN43DeT6dr_MUWNzcrKEDoSI87_KkOAXRBIJ5k7Xhv7DkWCwD1FpDRyp1N_Houa7Oy5g3v_LvoINvPXY7X3Zvb2PlwhnCh8Fs82rC9PV_iAsNhSP3Q29wO7Cy6v
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Changes+in+the+Functional+Potential+of+the+Gut+Microbiome+Following+Probiotic+Supplementation+during+Helicobacter+Pylori+Treatment&rft.jtitle=Helicobacter+%28Cambridge%2C+Mass.%29&rft.au=Oh%2C+Bumjo&rft.au=Kim%2C+Ji+Won&rft.au=Kim%2C+Bong-Soo&rft.date=2016-12-01&rft.eissn=1523-5378&rft.volume=21&rft.issue=6&rft.spage=493&rft_id=info:doi/10.1111%2Fhel.12306&rft_id=info%3Apmid%2F26991862&rft.externalDocID=26991862
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1083-4389&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1083-4389&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1083-4389&client=summon