Liver fat quantification using a multi-step adaptive fitting approach with multi-echo GRE imaging

Purpose The purpose of this study was to develop a multi‐step adaptive fitting approach for liver proton density fat fraction (PDFF) and R2* quantification, and to perform an initial validation on a broadly available hardware platform. Theory and Methods The proposed method uses a multi‐echo three‐d...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 72; no. 5; pp. 1353 - 1365
Main Authors Zhong, Xiaodong, Nickel, Marcel D., Kannengiesser, Stephan A.R., Dale, Brian M., Kiefer, Berthold, Bashir, Mustafa R.
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.11.2014
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose The purpose of this study was to develop a multi‐step adaptive fitting approach for liver proton density fat fraction (PDFF) and R2* quantification, and to perform an initial validation on a broadly available hardware platform. Theory and Methods The proposed method uses a multi‐echo three‐dimensional gradient echo acquisition, with initial guesses for the fat and water signal fractions based on a Dixon decomposition of two selected echoes. Based on magnitude signal equations with a multi‐peak fat spectral model, a multi‐step nonlinear fitting procedure is then performed to adaptively update the fat and water signal fractions and R2* values. The proposed method was validated using numeric phantoms as ground truth, followed by preliminary clinical validation of PDFF calculations against spectroscopy in 30 patients. Results The results of the proposed method agreed well with the ground truth of numerical phantoms, and were relatively insensitive to changes in field strength, field homogeneity, monopolar/bipolar readout, signal to noise ratio, and echo time selections. The in vivo patient study showed excellent consistency between the PDFF values measured with the proposed approach compared with spectroscopy. Conclusion This multi‐step adaptive fitting approach performed well in both simulated and initial clinical evaluation, and shows potential in the quantification of hepatic steatosis. Magn Reson Med 72:1353–1365, 2014. © 2013 Wiley Periodicals, Inc.
AbstractList The purpose of this study was to develop a multi-step adaptive fitting approach for liver proton density fat fraction (PDFF) and R(2)* quantification, and to perform an initial validation on a broadly available hardware platform.PURPOSEThe purpose of this study was to develop a multi-step adaptive fitting approach for liver proton density fat fraction (PDFF) and R(2)* quantification, and to perform an initial validation on a broadly available hardware platform.The proposed method uses a multi-echo three-dimensional gradient echo acquisition, with initial guesses for the fat and water signal fractions based on a Dixon decomposition of two selected echoes. Based on magnitude signal equations with a multi-peak fat spectral model, a multi-step nonlinear fitting procedure is then performed to adaptively update the fat and water signal fractions and R(2)* values. The proposed method was validated using numeric phantoms as ground truth, followed by preliminary clinical validation of PDFF calculations against spectroscopy in 30 patients.THEORY AND METHODSThe proposed method uses a multi-echo three-dimensional gradient echo acquisition, with initial guesses for the fat and water signal fractions based on a Dixon decomposition of two selected echoes. Based on magnitude signal equations with a multi-peak fat spectral model, a multi-step nonlinear fitting procedure is then performed to adaptively update the fat and water signal fractions and R(2)* values. The proposed method was validated using numeric phantoms as ground truth, followed by preliminary clinical validation of PDFF calculations against spectroscopy in 30 patients.The results of the proposed method agreed well with the ground truth of numerical phantoms, and were relatively insensitive to changes in field strength, field homogeneity, monopolar/bipolar readout, signal to noise ratio, and echo time selections. The in vivo patient study showed excellent consistency between the PDFF values measured with the proposed approach compared with spectroscopy.RESULTSThe results of the proposed method agreed well with the ground truth of numerical phantoms, and were relatively insensitive to changes in field strength, field homogeneity, monopolar/bipolar readout, signal to noise ratio, and echo time selections. The in vivo patient study showed excellent consistency between the PDFF values measured with the proposed approach compared with spectroscopy.This multi-step adaptive fitting approach performed well in both simulated and initial clinical evaluation, and shows potential in the quantification of hepatic steatosis.CONCLUSIONThis multi-step adaptive fitting approach performed well in both simulated and initial clinical evaluation, and shows potential in the quantification of hepatic steatosis.
Purpose The purpose of this study was to develop a multi-step adaptive fitting approach for liver proton density fat fraction (PDFF) and [Formulaomitted] quantification, and to perform an initial validation on a broadly available hardware platform. Theory and Methods The proposed method uses a multi-echo three-dimensional gradient echo acquisition, with initial guesses for the fat and water signal fractions based on a Dixon decomposition of two selected echoes. Based on magnitude signal equations with a multi-peak fat spectral model, a multi-step nonlinear fitting procedure is then performed to adaptively update the fat and water signal fractions and [Formulaomitted] values. The proposed method was validated using numeric phantoms as ground truth, followed by preliminary clinical validation of PDFF calculations against spectroscopy in 30 patients. Results The results of the proposed method agreed well with the ground truth of numerical phantoms, and were relatively insensitive to changes in field strength, field homogeneity, monopolar/bipolar readout, signal to noise ratio, and echo time selections. The in vivo patient study showed excellent consistency between the PDFF values measured with the proposed approach compared with spectroscopy. Conclusion This multi-step adaptive fitting approach performed well in both simulated and initial clinical evaluation, and shows potential in the quantification of hepatic steatosis. Magn Reson Med 72:1353-1365, 2014. copyright 2013 Wiley Periodicals, Inc.
The purpose of this study was to develop a multi-step adaptive fitting approach for liver proton density fat fraction (PDFF) and R(2)* quantification, and to perform an initial validation on a broadly available hardware platform. The proposed method uses a multi-echo three-dimensional gradient echo acquisition, with initial guesses for the fat and water signal fractions based on a Dixon decomposition of two selected echoes. Based on magnitude signal equations with a multi-peak fat spectral model, a multi-step nonlinear fitting procedure is then performed to adaptively update the fat and water signal fractions and R(2)* values. The proposed method was validated using numeric phantoms as ground truth, followed by preliminary clinical validation of PDFF calculations against spectroscopy in 30 patients. The results of the proposed method agreed well with the ground truth of numerical phantoms, and were relatively insensitive to changes in field strength, field homogeneity, monopolar/bipolar readout, signal to noise ratio, and echo time selections. The in vivo patient study showed excellent consistency between the PDFF values measured with the proposed approach compared with spectroscopy. This multi-step adaptive fitting approach performed well in both simulated and initial clinical evaluation, and shows potential in the quantification of hepatic steatosis.
Purpose The purpose of this study was to develop a multi-step adaptive fitting approach for liver proton density fat fraction (PDFF) and R 2 * quantification, and to perform an initial validation on a broadly available hardware platform. Theory and Methods The proposed method uses a multi-echo three-dimensional gradient echo acquisition, with initial guesses for the fat and water signal fractions based on a Dixon decomposition of two selected echoes. Based on magnitude signal equations with a multi-peak fat spectral model, a multi-step nonlinear fitting procedure is then performed to adaptively update the fat and water signal fractions and R 2 * values. The proposed method was validated using numeric phantoms as ground truth, followed by preliminary clinical validation of PDFF calculations against spectroscopy in 30 patients. Results The results of the proposed method agreed well with the ground truth of numerical phantoms, and were relatively insensitive to changes in field strength, field homogeneity, monopolar/bipolar readout, signal to noise ratio, and echo time selections. The in vivo patient study showed excellent consistency between the PDFF values measured with the proposed approach compared with spectroscopy. Conclusion This multi-step adaptive fitting approach performed well in both simulated and initial clinical evaluation, and shows potential in the quantification of hepatic steatosis. Magn Reson Med 72:1353-1365, 2014. © 2013 Wiley Periodicals, Inc.
Purpose The purpose of this study was to develop a multi‐step adaptive fitting approach for liver proton density fat fraction (PDFF) and R2* quantification, and to perform an initial validation on a broadly available hardware platform. Theory and Methods The proposed method uses a multi‐echo three‐dimensional gradient echo acquisition, with initial guesses for the fat and water signal fractions based on a Dixon decomposition of two selected echoes. Based on magnitude signal equations with a multi‐peak fat spectral model, a multi‐step nonlinear fitting procedure is then performed to adaptively update the fat and water signal fractions and R2* values. The proposed method was validated using numeric phantoms as ground truth, followed by preliminary clinical validation of PDFF calculations against spectroscopy in 30 patients. Results The results of the proposed method agreed well with the ground truth of numerical phantoms, and were relatively insensitive to changes in field strength, field homogeneity, monopolar/bipolar readout, signal to noise ratio, and echo time selections. The in vivo patient study showed excellent consistency between the PDFF values measured with the proposed approach compared with spectroscopy. Conclusion This multi‐step adaptive fitting approach performed well in both simulated and initial clinical evaluation, and shows potential in the quantification of hepatic steatosis. Magn Reson Med 72:1353–1365, 2014. © 2013 Wiley Periodicals, Inc.
Author Bashir, Mustafa R.
Nickel, Marcel D.
Zhong, Xiaodong
Kiefer, Berthold
Dale, Brian M.
Kannengiesser, Stephan A.R.
Author_xml – sequence: 1
  givenname: Xiaodong
  surname: Zhong
  fullname: Zhong, Xiaodong
  email: xiaodong.zhong@siemens.com
  organization: MR R&D Collaborations, Siemens Healthcare, Georgia, Atlanta, USA
– sequence: 2
  givenname: Marcel D.
  surname: Nickel
  fullname: Nickel, Marcel D.
  organization: Siemens AG Healthcare Sector, Erlangen, Germany
– sequence: 3
  givenname: Stephan A.R.
  surname: Kannengiesser
  fullname: Kannengiesser, Stephan A.R.
  organization: Siemens AG Healthcare Sector, Erlangen, Germany
– sequence: 4
  givenname: Brian M.
  surname: Dale
  fullname: Dale, Brian M.
  organization: MR R&D Collaborations, Siemens Healthcare, North Carolina, Cary, USA
– sequence: 5
  givenname: Berthold
  surname: Kiefer
  fullname: Kiefer, Berthold
  organization: Siemens AG Healthcare Sector, Erlangen, Germany
– sequence: 6
  givenname: Mustafa R.
  surname: Bashir
  fullname: Bashir, Mustafa R.
  organization: Duke University Medical Center, North Carolina, Durham, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24323332$$D View this record in MEDLINE/PubMed
BookMark eNqN0UtPFTEYBuDGQOQALvwDpokbXAz0OjNdmhM8khw04RKWTacXTnFutB2Rf285FxdEE1dd9Hm_9Ot7CPb6obcAvMfoFCNEzrrQnRKOOHsDZpgTUhAu2B6YoYqhgmLBDsBhjA8IISEq9hYcEEYJpZTMgFr6nzZApxJ8nFSfvPNaJT_0cIq-v4cKdlObfBGTHaEyakzZQ-dTWt-OYxiUXsEnn1ZbafVqgIurc-g7dZ_RMdh3qo323fY8Ardfzm_mX4vl98XF_POy0IwwVmiDiNBUs8YxY7g1jXOiqSvKLdK1cLrCTVU7njFhipQ1MlxoXdeNro1pBD0CJ5u5-UmPk41Jdj5q27aqt8MUJS5xjTmtKP4fSohAtKwy_fiKPgxT6PMiLwpVoiwRz-rDVk1NZ40cQ14-PMvdP2dwtgE6DDEG66T2af3PKSjfSozkS5MyNynXTebEp1eJ3dC_2e30J9_a539DeXl1uUsUm4TPxf76k1Dhh8xLV1zefVvIcjmnJb2-lnP6G3tWu34
CODEN MRMEEN
CitedBy_id crossref_primary_10_1007_s42058_023_00127_8
crossref_primary_10_1097_HJH_0000000000001741
crossref_primary_10_1007_s00192_019_04063_z
crossref_primary_10_1007_s10549_017_4292_7
crossref_primary_10_1002_mrm_28981
crossref_primary_10_1016_j_mri_2024_110216
crossref_primary_10_1148_radiol_2017161786
crossref_primary_10_1038_s41598_021_99132_z
crossref_primary_10_3390_tomography10030029
crossref_primary_10_1002_jmri_24922
crossref_primary_10_1016_j_ejrad_2018_04_011
crossref_primary_10_1002_jimd_12190
crossref_primary_10_1002_mrm_28103
crossref_primary_10_1016_j_mri_2016_11_011
crossref_primary_10_1016_j_ejrad_2024_111359
crossref_primary_10_4254_wjh_v10_i2_231
crossref_primary_10_1007_s10334_016_0595_7
crossref_primary_10_1002_acr_23833
crossref_primary_10_1053_j_gastro_2018_07_018
crossref_primary_10_1016_j_rcl_2014_12_001
crossref_primary_10_3390_nu11040912
crossref_primary_10_1007_s00330_018_5616_7
crossref_primary_10_3748_wjg_v26_i33_4996
crossref_primary_10_1038_s41372_022_01549_5
crossref_primary_10_1148_radiol_15140446
crossref_primary_10_1007_s00330_020_06757_1
crossref_primary_10_1007_s10396_021_01135_w
crossref_primary_10_1002_mrm_28970
crossref_primary_10_3390_nu14071437
crossref_primary_10_1002_jmri_29526
crossref_primary_10_1002_mrm_28052
crossref_primary_10_1002_jmri_25967
crossref_primary_10_1002_jmri_25845
crossref_primary_10_1007_s10334_024_01187_2
crossref_primary_10_1007_s00261_024_04369_7
crossref_primary_10_1002_mus_24523
crossref_primary_10_1148_radiol_2021202912
crossref_primary_10_1016_j_mri_2024_03_015
crossref_primary_10_1016_j_ultrasmedbio_2024_11_017
crossref_primary_10_1002_jmri_27185
crossref_primary_10_3348_kjr_2018_19_1_63
crossref_primary_10_1016_j_heliyon_2024_e40146
crossref_primary_10_1177_02841851211063007
crossref_primary_10_3348_kjr_2022_0334
crossref_primary_10_1007_s00261_019_02206_w
crossref_primary_10_1007_s00330_017_4781_4
crossref_primary_10_1016_j_ajcnut_2023_12_010
crossref_primary_10_1002_jmri_25630
crossref_primary_10_1097_HJH_0000000000001245
crossref_primary_10_1109_TMI_2022_3228075
crossref_primary_10_1210_clinem_dgaa005
crossref_primary_10_1002_mrm_30324
crossref_primary_10_1002_jmri_28624
crossref_primary_10_1002_nbm_4156
crossref_primary_10_1007_s00330_019_06450_y
crossref_primary_10_1002_mrm_26589
crossref_primary_10_1148_radiol_241876
crossref_primary_10_1002_mrm_27557
crossref_primary_10_1002_mrm_26228
crossref_primary_10_1016_S0140_6736_18_30474_4
crossref_primary_10_1007_s00330_021_08019_0
crossref_primary_10_1097_RMR_0000000000000141
crossref_primary_10_1002_mus_24437
crossref_primary_10_1016_S2468_1253_21_00300_9
crossref_primary_10_3390_nu12030825
crossref_primary_10_1016_j_ejmp_2024_103210
crossref_primary_10_1007_s10549_021_06355_9
crossref_primary_10_1002_jmri_27921
crossref_primary_10_1002_jmri_26313
crossref_primary_10_1002_jmri_26312
crossref_primary_10_1016_j_mri_2017_03_001
crossref_primary_10_1002_mrm_26693
crossref_primary_10_1002_jmri_28337
crossref_primary_10_1007_s00723_015_0737_5
crossref_primary_10_1002_jmri_25748
crossref_primary_10_1002_mrm_29682
crossref_primary_10_1055_a_2211_3199
crossref_primary_10_1371_journal_pone_0255768
crossref_primary_10_1002_mrm_28592
crossref_primary_10_1097_RCT_0000000000000759
crossref_primary_10_1136_bmjgast_2021_000709
crossref_primary_10_1186_s12876_018_0840_9
crossref_primary_10_14309_ctg_0000000000000081
crossref_primary_10_3179_jjmu_JJMU_R_221
crossref_primary_10_1002_jmri_29541
crossref_primary_10_1016_j_jot_2023_07_005
crossref_primary_10_3390_nu11030544
crossref_primary_10_1002_jcsm_12343
crossref_primary_10_1148_radiol_2015142272
crossref_primary_10_1002_jmri_26270
crossref_primary_10_1016_j_zemedi_2022_12_004
crossref_primary_10_1002_jmri_25536
crossref_primary_10_1002_mrm_30182
crossref_primary_10_1097_RLI_0000000000000561
crossref_primary_10_1148_ryct_2021200575
crossref_primary_10_1016_j_compbiomed_2016_02_013
crossref_primary_10_1007_s00117_017_0232_0
crossref_primary_10_1007_s00330_015_3966_y
crossref_primary_10_1111_hepr_12767
crossref_primary_10_1007_s00330_014_3528_8
crossref_primary_10_1016_j_ejrad_2019_03_019
crossref_primary_10_1007_s12194_017_0420_7
crossref_primary_10_3390_muscles3020013
crossref_primary_10_1007_s00330_023_09603_2
crossref_primary_10_1002_jmri_28084
crossref_primary_10_1148_radiol_213256
crossref_primary_10_1016_j_acra_2021_04_016
crossref_primary_10_1148_radiol_2017171316
crossref_primary_10_1007_s00261_019_02118_9
crossref_primary_10_1002_mrm_28546
crossref_primary_10_3348_kjr_2015_16_5_1086
crossref_primary_10_2463_mrms_tn_2021_0054
crossref_primary_10_1148_rycan_220019
crossref_primary_10_1016_j_ejrad_2016_11_001
crossref_primary_10_1016_j_mri_2021_10_016
crossref_primary_10_1038_s41598_020_64287_8
crossref_primary_10_1148_radiol_2021204325
crossref_primary_10_1016_S0140_6736_19_32517_6
crossref_primary_10_31159_ksmrt_2017_27_1_13
crossref_primary_10_1097_RLI_0000000000000173
crossref_primary_10_1016_j_mri_2015_12_002
crossref_primary_10_1002_nbm_5290
crossref_primary_10_1007_s00330_015_4144_y
crossref_primary_10_1371_journal_pone_0192448
crossref_primary_10_1002_jmri_28755
crossref_primary_10_3390_cells10102516
crossref_primary_10_1002_oby_22560
crossref_primary_10_1097_RCT_0000000000000535
crossref_primary_10_1016_j_cct_2015_09_017
crossref_primary_10_1016_j_mri_2020_09_024
crossref_primary_10_1002_jmri_26219
crossref_primary_10_1007_s00330_017_5263_4
crossref_primary_10_1148_radiol_220743
crossref_primary_10_1097_LVT_0000000000000467
crossref_primary_10_1038_s41390_018_0129_2
crossref_primary_10_1002_mrm_28280
crossref_primary_10_3390_nu8070397
crossref_primary_10_1016_j_ejrad_2021_109845
crossref_primary_10_1016_j_jhep_2021_01_047
crossref_primary_10_1007_s00330_020_07291_w
crossref_primary_10_1002_mrm_26383
crossref_primary_10_1002_mrm_29774
crossref_primary_10_1016_j_ejrad_2021_109687
crossref_primary_10_2214_AJR_17_19288
crossref_primary_10_1016_j_cct_2016_09_004
crossref_primary_10_1016_j_jocd_2018_03_002
crossref_primary_10_1038_s41598_023_39361_6
crossref_primary_10_1007_s00247_019_04384_7
crossref_primary_10_1007_s00330_019_06487_z
crossref_primary_10_1007_s00247_018_4127_7
crossref_primary_10_1038_s41574_021_00573_3
crossref_primary_10_1097_MPG_0000000000002316
crossref_primary_10_1111_dom_14733
crossref_primary_10_1007_s00330_020_06858_x
crossref_primary_10_1016_j_mri_2025_110355
crossref_primary_10_1080_15592294_2022_2039850
crossref_primary_10_1016_j_nmd_2021_08_011
crossref_primary_10_1111_obr_13481
crossref_primary_10_1002_oby_22712
crossref_primary_10_1055_a_1976_910
crossref_primary_10_3390_curroncol30030252
crossref_primary_10_1016_j_hpb_2019_06_006
crossref_primary_10_52668_kjar_2022_00143
crossref_primary_10_1002_jmri_27205
crossref_primary_10_1002_jmri_26632
crossref_primary_10_14283_jfa_2018_16
crossref_primary_10_1007_s00330_018_5783_6
crossref_primary_10_1097_MPG_0000000000002309
crossref_primary_10_1002_hep_28012
crossref_primary_10_1002_mrm_25681
crossref_primary_10_1002_mrm_30117
crossref_primary_10_3390_diagnostics13020201
crossref_primary_10_1002_mrm_29525
crossref_primary_10_1002_jmri_27321
crossref_primary_10_1259_bjr_20180019
crossref_primary_10_1002_jmri_25382
Cites_doi 10.1002/nbm.891
10.1148/radiol.2373041639
10.1148/radiology.212.3.r99se34876
10.3109/10428194.2011.596963
10.1002/mrm.22840
10.1194/jlr.D800010-JLR200
10.1002/jmri.23835
10.1148/radiol.2523082084
10.1002/jmri.22580
10.1148/radiology.153.1.6089263
10.1148/radiol.2493080217
10.1002/jmri.21090
10.1148/radiol.2472070880
10.1148/radiol.10100708
10.1002/mrm.22455
10.1002/mrm.23044
10.1002/mrm.20787
10.1002/mrm.22300
10.1182/blood.V116.21.494.494
10.1002/jmri.23851
10.1002/jmri.21492
10.1148/radiol.2511080666
10.1148/radiol.09090131
10.1002/jmri.22701
10.1111/j.1572-0241.1999.01377.x
10.1016/j.ejrad.2011.01.067
10.1002/mrm.22578
10.1002/jmri.1880070612
10.1090/qam/10666
10.1002/mrm.22177
10.3748/wjg.v5.i4.301
10.1002/mrm.20624
10.1016/j.mri.2007.08.012
10.1002/mrm.1910180211
10.1002/mrm.21737
10.1148/radiol.10100659
ContentType Journal Article
Copyright Copyright © 2013 Wiley Periodicals, Inc.
Copyright_xml – notice: Copyright © 2013 Wiley Periodicals, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
7QO
DOI 10.1002/mrm.25054
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitleList MEDLINE - Academic
Engineering Research Database
MEDLINE
Biochemistry Abstracts 1

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 1365
ExternalDocumentID 3459191591
24323332
10_1002_mrm_25054
MRM25054
ark_67375_WNG_6LC363SS_C
Genre article
Validation Studies
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAHQN
AAIPD
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
K9.
M7Z
P64
7X8
7QO
ID FETCH-LOGICAL-c4244-cd029c3c4bf4dd5edbff9b8735e0c89fc71b78f542424a2680d59cc88bc8ddb93
IEDL.DBID DR2
ISSN 0740-3194
1522-2594
IngestDate Fri Jul 11 06:59:45 EDT 2025
Thu Jul 10 23:59:52 EDT 2025
Fri Jul 25 12:03:17 EDT 2025
Thu Apr 03 07:02:13 EDT 2025
Tue Jul 01 01:20:54 EDT 2025
Thu Apr 24 23:04:09 EDT 2025
Wed Jan 22 16:23:05 EST 2025
Wed Oct 30 10:01:28 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords iron quantification
water fat separation
fat quantification
liver
Dixon
Language English
License Copyright © 2013 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4244-cd029c3c4bf4dd5edbff9b8735e0c89fc71b78f542424a2680d59cc88bc8ddb93
Notes ark:/67375/WNG-6LC363SS-C
istex:9F8C302D4F802EFD3CE1186F12783613F03BF035
ArticleID:MRM25054
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Undefined-3
PMID 24323332
PQID 1610796605
PQPubID 1016391
PageCount 13
ParticipantIDs proquest_miscellaneous_1618153731
proquest_miscellaneous_1612290367
proquest_journals_1610796605
pubmed_primary_24323332
crossref_citationtrail_10_1002_mrm_25054
crossref_primary_10_1002_mrm_25054
wiley_primary_10_1002_mrm_25054_MRM25054
istex_primary_ark_67375_WNG_6LC363SS_C
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-11
November 2014
2014-11-00
2014-Nov
20141101
PublicationDateYYYYMMDD 2014-11-01
PublicationDate_xml – month: 11
  year: 2014
  text: 2014-11
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn. Reson. Med
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Pineda N, Sharma P, Xu Q, Hu X, Vos M, Martin DR. Measurement of hepatic lipid: high-speed T2-corrected multiecho acquisition at 1H MR spectroscopy - a rapid and accurate technique. Radiology 2009;252:568-576.
Hernando D, Kuhn J, Mensel B, Volzke H, Puls R, Hosten N, Reeder SB. R2* estimation using "in-phase" echoes in the presence of fat: the effects of complex spectrum of fat. J Magn Reson Imaging 2013;37:717-726.
Chebrolu VV, Hines CD, Yu H, Pineda AR, Shimakawa A, McKenzie CA, Samsonov A, Brittain JH, Reeder SB. Independent estimation of T2* for water and fat for improved accuracy of fat quantification. Magn Reson Med 2010;63:849-857.
Bashir MR, Merkle EM, Smith AD, Boll DT. Hepatic MR imaging for in vivo differentiation of steatosis, iron deposition and combined storage disorder: single-ratio in/opposed phase analysis vs. dual-ratio Dixon discrimination. Eur J Radiol 2012;81:e101-e109.
Eggers H, Brendel B, Duijndam A, Herigault G. Dual-echo Dixon imaging with flexible choice of echo times. Magn Reson Med 2011;65:96-107.
Hernando D, Hines CD, Yu H, Reeder SB. Addressing phase errors in fat-water imaging using a mixed magnitude/complex fitting method. Magn Reson Med 2012;67:638-644.
Forgione A, Miele L, Cefalo C, Gasbarrini G, Grieco A. Alcoholic and nonalcoholic forms of fatty liver disease. Minerva Gastroenterol Dietol 2007;53:83-100.
Hines CD, Yu H, Shimakawa A, McKenzie CA, Warner TF, Brittain JH, Reeder SB. Quantification of hepatic steatosis with 3-T MR imaging: validation in ob/ob mice. Radiology 2010;254:119-128.
Goekbuget N, Baumann A, Beck J. PEG-Asparaginase intensification in adult acute lymphoblastic leukemia (ALL): significant improvement of outcome with moderate increase of liver toxicity in the german multicenter study group for adult ALL (GMALL) study 07/2003. Blood 2010;116:494.
Yu H, Shimakawa A, Hines CD, McKenzie CA, Hamilton G, Sirlin CB, Brittain JH, Reeder SB. Combination of complex-based and magnitude-based multiecho water-fat separation for accurate quantification of fat-fraction. Magn Reson Med 2011;66:199-206.
Hernando D, Liang ZP, Kellman P. Chemical shift-based water/fat separation: a comparison of signal models. Magn Reson Med 2010;64:811-822.
Bydder M, Yokoo T, Hamilton G, Middleton MS, Chavez AD, Schwimmer JB, Lavine JE, Sirlin CB. Relaxation effects in the quantification of fat using gradient echo imaging. Magn Reson Imaging 2008;26:347-359.
Yu H, McKenzie CA, Shimakawa A, Vu AT, Brau AC, Beatty PJ, Pineda AR, Brittain JH, Reeder SB. Multiecho reconstruction for simultaneous water-fat decomposition and T2* estimation. J Magn Reson Imaging 2007;26:1153-1161.
O'Regan DP, Callaghan MF, Wylezinska-Arridge M, Fitzpatrick J, Naoumova RP, Hajnal JV, Schmitz SA. Liver fat content and T2*: simultaneous measurement by using breath-hold multiecho MR imaging at 3.0 T - feasibility. Radiology 2008;247:550-557.
Rofsky NM, Lee VS, Laub G, Pollack MA, Krinsky GA, Thomasson D, Ambrosino MM, Weinreb JC. Abdominal MR imaging with a volumetric interpolated breath-hold examination. Radiology 1999;212:876-884.
Thampanitchawong P, Piratvisuth T. Liver biopsy: complications and risk factors. World J Gastroenterol 1999;5:301-304.
Hussain HK, Chenevert TL, Londy FJ, Gulani V, Swanson SD, McKenna BJ, Appelman HD, Adusumilli S, Greenson JK, Conjeevaram HS. Hepatic fat fraction: MR imaging for quantitative measurement and display - early experience. Radiology 2005;237:1048-1055.
Yokoo T, Shiehmorteza M, Hamilton G, et al. Estimation of hepatic proton-density fat fraction by using MR imaging at 3.0 T. Radiology 2011;258:749-759.
Yu H, Shimakawa A, McKenzie CA, Brodsky E, Brittain JH, Reeder SB. Multiecho water-fat separation and simultaneous R2* estimation with multifrequency fat spectrum modeling. Magn Reson Med 2008;60:1122-1134.
Stock W, Douer D, DeAngelo DJ, et al. Prevention and management of asparaginase/pegasparaginase-associated toxicities in adults and older adolescents: recommendations of an expert panel. Leuk Lymphoma 2011;52:2237-2253.
Hernando D, Kellman P, Haldar JP, Liang ZP. Robust water/fat separation in the presence of large field inhomogeneities using a graph cut algorithm. Magn Reson Med 2010;63:79-90.
Reeder SB, Cruite I, Hamilton G, Sirlin CB. Quantitative assessment of liver fat with magnetic resonance imaging and spectroscopy. J Magn Reson Imaging 2011;34:729-749.
Kreis R. Issues of spectral quality in clinical 1H-magnetic resonance spectroscopy and a gallery of artifacts. NMR Biomed 2004;17:361-381.
Yokoo T, Bydder M, Hamilton G, et al. Nonalcoholic fatty liver disease: diagnostic and fat-grading accuracy of low-flip-angle multiecho gradient-recalled-echo MR imaging at 1.5 T. Radiology 2009;251:67-76.
Reeder SB, Pineda AR, Wen Z, Shimakawa A, Yu H, Brittain JH, Gold GE, Beaulieu CH, Pelc NJ. Iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL): application with fast spin-echo imaging. Magn Reson Med 2005;54:636-644.
Xiang QS, An L. Water-fat imaging with direct phase encoding. J Magn Reson Imaging 1997;7:1002-1015.
Guiu B, Petit JM, Loffroy R, Ben Salem D, Aho S, Masson D, Hillon P, Krause D, Cercueil JP. Quantification of liver fat content: comparison of triple-echo chemical shift gradient-echo imaging and in vivo proton MR spectroscopy. Radiology 2009;250:95-102.
Levenberg K. A method for the solution of certain non-linear problems in least squares. Q Appl Math 1944;2:164-168.
Glover GH, Schneider E. Three-point Dixon technique for true water/fat decomposition with B0 inhomogeneity correction. Magn Reson Med 1991;18:371-383.
Ren J, Dimitrov I, Sherry A, Malloy C. Composition of adipose tissue and marrow fat in humans by 1H NMR at 7 Tesla. J Lipid Res 2008;49:2055-2062.
Brunt EM, Janney CG, Di Bisceglie AM, Neuschwander-Tetri BA, Bacon BR. Nonalcoholic steatohepatitis: a proposal for grading and staging the histological lesions. Am J Gastroenterol 1999;94:2467-2474.
Meisamy S, Hines CD, Hamilton G, Sirlin CB, McKenzie CA, Yu H, Brittain JH, Reeder SB. Quantification of hepatic steatosis with T1-independent, T2-corrected MR imaging with spectral modeling of fat: blinded comparison with MR spectroscopy. Radiology 2011;258:767-775.
Kang GH, Cruite I, Shiehmorteza M, Wolfson T, Gamst AC, Hamilton G, Bydder M, Middleton MS, Sirlin CB. Reproducibility of MRI-determined proton density fat fraction across two different MR scanner platforms. J Magn Reson Imaging 2011;34:928-934.
Horng DE, Hernando D, Hines CD, Reeder SB. Comparison of R2* correction methods for accurate fat quantification in fatty liver. J Magn Reson Imaging 2013;37:414-422.
Breuer FA, Blaimer M, Mueller MF, Seiberlich N, Heidemann RM, Griswold MA, Jakob PM. Controlled aliasing in volumetric parallel imaging (2D CAIPIRINHA). Magn Reson Med 2006;55:549-556.
Dixon WT. Simple proton spectroscopic imaging. Radiology 1984;153:189-194.
Ma J. Dixon techniques for water and fat imaging. J Magn Reson Imaging 2008;28:543-558.
2011; 258
1991; 18
2012; 81
2006; 55
2005; 237
2011; 52
2011; 34
2008; 247
2009; 250
2009; 251
2009; 252
2007; 53
1999; 5
2010; 63
1997; 7
2010; 64
2013; 37
1984; 153
2010; 116
2004; 17
2008; 49
2008; 28
1944; 2
2008; 26
2010; 254
2011; 66
2005; 54
2011; 65
1999; 212
1999; 94
2013
2012; 67
2008; 60
2007; 26
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
Forgione A (e_1_2_7_2_1) 2007; 53
References_xml – reference: Hernando D, Hines CD, Yu H, Reeder SB. Addressing phase errors in fat-water imaging using a mixed magnitude/complex fitting method. Magn Reson Med 2012;67:638-644.
– reference: Ren J, Dimitrov I, Sherry A, Malloy C. Composition of adipose tissue and marrow fat in humans by 1H NMR at 7 Tesla. J Lipid Res 2008;49:2055-2062.
– reference: Forgione A, Miele L, Cefalo C, Gasbarrini G, Grieco A. Alcoholic and nonalcoholic forms of fatty liver disease. Minerva Gastroenterol Dietol 2007;53:83-100.
– reference: Yu H, Shimakawa A, Hines CD, McKenzie CA, Hamilton G, Sirlin CB, Brittain JH, Reeder SB. Combination of complex-based and magnitude-based multiecho water-fat separation for accurate quantification of fat-fraction. Magn Reson Med 2011;66:199-206.
– reference: Bashir MR, Merkle EM, Smith AD, Boll DT. Hepatic MR imaging for in vivo differentiation of steatosis, iron deposition and combined storage disorder: single-ratio in/opposed phase analysis vs. dual-ratio Dixon discrimination. Eur J Radiol 2012;81:e101-e109.
– reference: Meisamy S, Hines CD, Hamilton G, Sirlin CB, McKenzie CA, Yu H, Brittain JH, Reeder SB. Quantification of hepatic steatosis with T1-independent, T2-corrected MR imaging with spectral modeling of fat: blinded comparison with MR spectroscopy. Radiology 2011;258:767-775.
– reference: Hernando D, Kellman P, Haldar JP, Liang ZP. Robust water/fat separation in the presence of large field inhomogeneities using a graph cut algorithm. Magn Reson Med 2010;63:79-90.
– reference: Kang GH, Cruite I, Shiehmorteza M, Wolfson T, Gamst AC, Hamilton G, Bydder M, Middleton MS, Sirlin CB. Reproducibility of MRI-determined proton density fat fraction across two different MR scanner platforms. J Magn Reson Imaging 2011;34:928-934.
– reference: Dixon WT. Simple proton spectroscopic imaging. Radiology 1984;153:189-194.
– reference: Breuer FA, Blaimer M, Mueller MF, Seiberlich N, Heidemann RM, Griswold MA, Jakob PM. Controlled aliasing in volumetric parallel imaging (2D CAIPIRINHA). Magn Reson Med 2006;55:549-556.
– reference: Thampanitchawong P, Piratvisuth T. Liver biopsy: complications and risk factors. World J Gastroenterol 1999;5:301-304.
– reference: Glover GH, Schneider E. Three-point Dixon technique for true water/fat decomposition with B0 inhomogeneity correction. Magn Reson Med 1991;18:371-383.
– reference: Horng DE, Hernando D, Hines CD, Reeder SB. Comparison of R2* correction methods for accurate fat quantification in fatty liver. J Magn Reson Imaging 2013;37:414-422.
– reference: O'Regan DP, Callaghan MF, Wylezinska-Arridge M, Fitzpatrick J, Naoumova RP, Hajnal JV, Schmitz SA. Liver fat content and T2*: simultaneous measurement by using breath-hold multiecho MR imaging at 3.0 T - feasibility. Radiology 2008;247:550-557.
– reference: Yokoo T, Shiehmorteza M, Hamilton G, et al. Estimation of hepatic proton-density fat fraction by using MR imaging at 3.0 T. Radiology 2011;258:749-759.
– reference: Yokoo T, Bydder M, Hamilton G, et al. Nonalcoholic fatty liver disease: diagnostic and fat-grading accuracy of low-flip-angle multiecho gradient-recalled-echo MR imaging at 1.5 T. Radiology 2009;251:67-76.
– reference: Reeder SB, Pineda AR, Wen Z, Shimakawa A, Yu H, Brittain JH, Gold GE, Beaulieu CH, Pelc NJ. Iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL): application with fast spin-echo imaging. Magn Reson Med 2005;54:636-644.
– reference: Goekbuget N, Baumann A, Beck J. PEG-Asparaginase intensification in adult acute lymphoblastic leukemia (ALL): significant improvement of outcome with moderate increase of liver toxicity in the german multicenter study group for adult ALL (GMALL) study 07/2003. Blood 2010;116:494.
– reference: Hussain HK, Chenevert TL, Londy FJ, Gulani V, Swanson SD, McKenna BJ, Appelman HD, Adusumilli S, Greenson JK, Conjeevaram HS. Hepatic fat fraction: MR imaging for quantitative measurement and display - early experience. Radiology 2005;237:1048-1055.
– reference: Stock W, Douer D, DeAngelo DJ, et al. Prevention and management of asparaginase/pegasparaginase-associated toxicities in adults and older adolescents: recommendations of an expert panel. Leuk Lymphoma 2011;52:2237-2253.
– reference: Yu H, McKenzie CA, Shimakawa A, Vu AT, Brau AC, Beatty PJ, Pineda AR, Brittain JH, Reeder SB. Multiecho reconstruction for simultaneous water-fat decomposition and T2* estimation. J Magn Reson Imaging 2007;26:1153-1161.
– reference: Hernando D, Kuhn J, Mensel B, Volzke H, Puls R, Hosten N, Reeder SB. R2* estimation using "in-phase" echoes in the presence of fat: the effects of complex spectrum of fat. J Magn Reson Imaging 2013;37:717-726.
– reference: Chebrolu VV, Hines CD, Yu H, Pineda AR, Shimakawa A, McKenzie CA, Samsonov A, Brittain JH, Reeder SB. Independent estimation of T2* for water and fat for improved accuracy of fat quantification. Magn Reson Med 2010;63:849-857.
– reference: Rofsky NM, Lee VS, Laub G, Pollack MA, Krinsky GA, Thomasson D, Ambrosino MM, Weinreb JC. Abdominal MR imaging with a volumetric interpolated breath-hold examination. Radiology 1999;212:876-884.
– reference: Hines CD, Yu H, Shimakawa A, McKenzie CA, Warner TF, Brittain JH, Reeder SB. Quantification of hepatic steatosis with 3-T MR imaging: validation in ob/ob mice. Radiology 2010;254:119-128.
– reference: Yu H, Shimakawa A, McKenzie CA, Brodsky E, Brittain JH, Reeder SB. Multiecho water-fat separation and simultaneous R2* estimation with multifrequency fat spectrum modeling. Magn Reson Med 2008;60:1122-1134.
– reference: Bydder M, Yokoo T, Hamilton G, Middleton MS, Chavez AD, Schwimmer JB, Lavine JE, Sirlin CB. Relaxation effects in the quantification of fat using gradient echo imaging. Magn Reson Imaging 2008;26:347-359.
– reference: Eggers H, Brendel B, Duijndam A, Herigault G. Dual-echo Dixon imaging with flexible choice of echo times. Magn Reson Med 2011;65:96-107.
– reference: Kreis R. Issues of spectral quality in clinical 1H-magnetic resonance spectroscopy and a gallery of artifacts. NMR Biomed 2004;17:361-381.
– reference: Guiu B, Petit JM, Loffroy R, Ben Salem D, Aho S, Masson D, Hillon P, Krause D, Cercueil JP. Quantification of liver fat content: comparison of triple-echo chemical shift gradient-echo imaging and in vivo proton MR spectroscopy. Radiology 2009;250:95-102.
– reference: Hernando D, Liang ZP, Kellman P. Chemical shift-based water/fat separation: a comparison of signal models. Magn Reson Med 2010;64:811-822.
– reference: Ma J. Dixon techniques for water and fat imaging. J Magn Reson Imaging 2008;28:543-558.
– reference: Reeder SB, Cruite I, Hamilton G, Sirlin CB. Quantitative assessment of liver fat with magnetic resonance imaging and spectroscopy. J Magn Reson Imaging 2011;34:729-749.
– reference: Levenberg K. A method for the solution of certain non-linear problems in least squares. Q Appl Math 1944;2:164-168.
– reference: Brunt EM, Janney CG, Di Bisceglie AM, Neuschwander-Tetri BA, Bacon BR. Nonalcoholic steatohepatitis: a proposal for grading and staging the histological lesions. Am J Gastroenterol 1999;94:2467-2474.
– reference: Pineda N, Sharma P, Xu Q, Hu X, Vos M, Martin DR. Measurement of hepatic lipid: high-speed T2-corrected multiecho acquisition at 1H MR spectroscopy - a rapid and accurate technique. Radiology 2009;252:568-576.
– reference: Xiang QS, An L. Water-fat imaging with direct phase encoding. J Magn Reson Imaging 1997;7:1002-1015.
– volume: 7
  start-page: 1002
  year: 1997
  end-page: 1015
  article-title: Water‐fat imaging with direct phase encoding
  publication-title: J Magn Reson Imaging
– volume: 37
  start-page: 717
  year: 2013
  end-page: 726
  article-title: R2* estimation using “in‐phase” echoes in the presence of fat: the effects of complex spectrum of fat
  publication-title: J Magn Reson Imaging
– volume: 250
  start-page: 95
  year: 2009
  end-page: 102
  article-title: Quantification of liver fat content: comparison of triple‐echo chemical shift gradient‐echo imaging and in vivo proton MR spectroscopy
  publication-title: Radiology
– volume: 18
  start-page: 371
  year: 1991
  end-page: 383
  article-title: Three‐point Dixon technique for true water/fat decomposition with B0 inhomogeneity correction
  publication-title: Magn Reson Med
– volume: 252
  start-page: 568
  year: 2009
  end-page: 576
  article-title: Measurement of hepatic lipid: high‐speed T2‐corrected multiecho acquisition at 1H MR spectroscopy ‐ a rapid and accurate technique
  publication-title: Radiology
– volume: 63
  start-page: 79
  year: 2010
  end-page: 90
  article-title: Robust water/fat separation in the presence of large field inhomogeneities using a graph cut algorithm
  publication-title: Magn Reson Med
– volume: 28
  start-page: 543
  year: 2008
  end-page: 558
  article-title: Dixon techniques for water and fat imaging
  publication-title: J Magn Reson Imaging
– volume: 65
  start-page: 96
  year: 2011
  end-page: 107
  article-title: Dual‐echo Dixon imaging with flexible choice of echo times
  publication-title: Magn Reson Med
– volume: 37
  start-page: 414
  year: 2013
  end-page: 422
  article-title: Comparison of R2* correction methods for accurate fat quantification in fatty liver
  publication-title: J Magn Reson Imaging
– volume: 53
  start-page: 83
  year: 2007
  end-page: 100
  article-title: Alcoholic and nonalcoholic forms of fatty liver disease
  publication-title: Minerva Gastroenterol Dietol
– volume: 52
  start-page: 2237
  year: 2011
  end-page: 2253
  article-title: Prevention and management of asparaginase/pegasparaginase‐associated toxicities in adults and older adolescents: recommendations of an expert panel
  publication-title: Leuk Lymphoma
– volume: 212
  start-page: 876
  year: 1999
  end-page: 884
  article-title: Abdominal MR imaging with a volumetric interpolated breath‐hold examination
  publication-title: Radiology
– volume: 153
  start-page: 189
  year: 1984
  end-page: 194
  article-title: Simple proton spectroscopic imaging
  publication-title: Radiology
– volume: 258
  start-page: 749
  year: 2011
  end-page: 759
  article-title: Estimation of hepatic proton‐density fat fraction by using MR imaging at 3.0 T
  publication-title: Radiology
– volume: 247
  start-page: 550
  year: 2008
  end-page: 557
  article-title: Liver fat content and T2*: simultaneous measurement by using breath‐hold multiecho MR imaging at 3.0 T ‐ feasibility
  publication-title: Radiology
– volume: 49
  start-page: 2055
  year: 2008
  end-page: 2062
  article-title: Composition of adipose tissue and marrow fat in humans by 1H NMR at 7 Tesla
  publication-title: J Lipid Res
– volume: 237
  start-page: 1048
  year: 2005
  end-page: 1055
  article-title: Hepatic fat fraction: MR imaging for quantitative measurement and display ‐ early experience
  publication-title: Radiology
– volume: 55
  start-page: 549
  year: 2006
  end-page: 556
  article-title: Controlled aliasing in volumetric parallel imaging (2D CAIPIRINHA)
  publication-title: Magn Reson Med
– volume: 63
  start-page: 849
  year: 2010
  end-page: 857
  article-title: Independent estimation of T2* for water and fat for improved accuracy of fat quantification
  publication-title: Magn Reson Med
– volume: 254
  start-page: 119
  year: 2010
  end-page: 128
  article-title: Quantification of hepatic steatosis with 3‐T MR imaging: validation in ob/ob mice
  publication-title: Radiology
– volume: 5
  start-page: 301
  year: 1999
  end-page: 304
  article-title: Liver biopsy: complications and risk factors
  publication-title: World J Gastroenterol
– volume: 17
  start-page: 361
  year: 2004
  end-page: 381
  article-title: Issues of spectral quality in clinical 1H‐magnetic resonance spectroscopy and a gallery of artifacts
  publication-title: NMR Biomed
– volume: 94
  start-page: 2467
  year: 1999
  end-page: 2474
  article-title: Nonalcoholic steatohepatitis: a proposal for grading and staging the histological lesions
  publication-title: Am J Gastroenterol
– volume: 26
  start-page: 1153
  year: 2007
  end-page: 1161
  article-title: Multiecho reconstruction for simultaneous water‐fat decomposition and T2* estimation
  publication-title: J Magn Reson Imaging
– volume: 34
  start-page: 729
  year: 2011
  end-page: 749
  article-title: Quantitative assessment of liver fat with magnetic resonance imaging and spectroscopy
  publication-title: J Magn Reson Imaging
– volume: 2
  start-page: 164
  year: 1944
  end-page: 168
  article-title: A method for the solution of certain non‐linear problems in least squares
  publication-title: Q Appl Math
– volume: 60
  start-page: 1122
  year: 2008
  end-page: 1134
  article-title: Multiecho water‐fat separation and simultaneous R2* estimation with multifrequency fat spectrum modeling
  publication-title: Magn Reson Med
– volume: 251
  start-page: 67
  year: 2009
  end-page: 76
  article-title: Nonalcoholic fatty liver disease: diagnostic and fat‐grading accuracy of low‐flip‐angle multiecho gradient‐recalled‐echo MR imaging at 1.5 T
  publication-title: Radiology
– volume: 116
  start-page: 494
  year: 2010
  article-title: PEG‐Asparaginase intensification in adult acute lymphoblastic leukemia (ALL): significant improvement of outcome with moderate increase of liver toxicity in the german multicenter study group for adult ALL (GMALL) study 07/2003
  publication-title: Blood
– volume: 67
  start-page: 638
  year: 2012
  end-page: 644
  article-title: Addressing phase errors in fat‐water imaging using a mixed magnitude/complex fitting method
  publication-title: Magn Reson Med
– volume: 66
  start-page: 199
  year: 2011
  end-page: 206
  article-title: Combination of complex‐based and magnitude‐based multiecho water‐fat separation for accurate quantification of fat‐fraction
  publication-title: Magn Reson Med
– volume: 258
  start-page: 767
  year: 2011
  end-page: 775
  article-title: Quantification of hepatic steatosis with T1‐independent, T2‐corrected MR imaging with spectral modeling of fat: blinded comparison with MR spectroscopy
  publication-title: Radiology
– volume: 54
  start-page: 636
  year: 2005
  end-page: 644
  article-title: Iterative decomposition of water and fat with echo asymmetry and least‐squares estimation (IDEAL): application with fast spin‐echo imaging
  publication-title: Magn Reson Med
– volume: 81
  start-page: e101
  year: 2012
  end-page: e109
  article-title: Hepatic MR imaging for in vivo differentiation of steatosis, iron deposition and combined storage disorder: single‐ratio in/opposed phase analysis vs. dual‐ratio Dixon discrimination
  publication-title: Eur J Radiol
– volume: 34
  start-page: 928
  year: 2011
  end-page: 934
  article-title: Reproducibility of MRI‐determined proton density fat fraction across two different MR scanner platforms
  publication-title: J Magn Reson Imaging
– volume: 26
  start-page: 347
  year: 2008
  end-page: 359
  article-title: Relaxation effects in the quantification of fat using gradient echo imaging
  publication-title: Magn Reson Imaging
– volume: 64
  start-page: 811
  year: 2010
  end-page: 822
  article-title: Chemical shift‐based water/fat separation: a comparison of signal models
  publication-title: Magn Reson Med
– year: 2013
– ident: e_1_2_7_9_1
  doi: 10.1002/nbm.891
– ident: e_1_2_7_16_1
  doi: 10.1148/radiol.2373041639
– ident: e_1_2_7_38_1
  doi: 10.1148/radiology.212.3.r99se34876
– ident: e_1_2_7_3_1
  doi: 10.3109/10428194.2011.596963
– ident: e_1_2_7_26_1
  doi: 10.1002/mrm.22840
– ident: e_1_2_7_35_1
  doi: 10.1194/jlr.D800010-JLR200
– ident: e_1_2_7_31_1
  doi: 10.1002/jmri.23835
– ident: e_1_2_7_7_1
  doi: 10.1148/radiol.2523082084
– ident: e_1_2_7_15_1
  doi: 10.1002/jmri.22580
– ident: e_1_2_7_10_1
  doi: 10.1148/radiology.153.1.6089263
– ident: e_1_2_7_18_1
  doi: 10.1148/radiol.2493080217
– ident: e_1_2_7_20_1
  doi: 10.1002/jmri.21090
– ident: e_1_2_7_17_1
  doi: 10.1148/radiol.2472070880
– volume: 53
  start-page: 83
  year: 2007
  ident: e_1_2_7_2_1
  article-title: Alcoholic and nonalcoholic forms of fatty liver disease
  publication-title: Minerva Gastroenterol Dietol
– ident: e_1_2_7_27_1
  doi: 10.1148/radiol.10100708
– ident: e_1_2_7_29_1
  doi: 10.1002/mrm.22455
– ident: e_1_2_7_32_1
  doi: 10.1002/mrm.23044
– ident: e_1_2_7_39_1
  doi: 10.1002/mrm.20787
– ident: e_1_2_7_22_1
  doi: 10.1002/mrm.22300
– ident: e_1_2_7_33_1
– ident: e_1_2_7_4_1
  doi: 10.1182/blood.V116.21.494.494
– ident: e_1_2_7_28_1
  doi: 10.1002/jmri.23851
– ident: e_1_2_7_14_1
  doi: 10.1002/jmri.21492
– ident: e_1_2_7_8_1
  doi: 10.1148/radiol.2511080666
– ident: e_1_2_7_30_1
  doi: 10.1148/radiol.09090131
– ident: e_1_2_7_34_1
  doi: 10.1002/jmri.22701
– ident: e_1_2_7_6_1
  doi: 10.1111/j.1572-0241.1999.01377.x
– ident: e_1_2_7_24_1
  doi: 10.1016/j.ejrad.2011.01.067
– ident: e_1_2_7_37_1
  doi: 10.1002/mrm.22578
– ident: e_1_2_7_12_1
  doi: 10.1002/jmri.1880070612
– ident: e_1_2_7_36_1
  doi: 10.1090/qam/10666
– ident: e_1_2_7_23_1
  doi: 10.1002/mrm.22177
– ident: e_1_2_7_5_1
  doi: 10.3748/wjg.v5.i4.301
– ident: e_1_2_7_13_1
  doi: 10.1002/mrm.20624
– ident: e_1_2_7_25_1
  doi: 10.1016/j.mri.2007.08.012
– ident: e_1_2_7_11_1
  doi: 10.1002/mrm.1910180211
– ident: e_1_2_7_21_1
  doi: 10.1002/mrm.21737
– ident: e_1_2_7_19_1
  doi: 10.1148/radiol.10100659
SSID ssj0009974
Score 2.5359864
Snippet Purpose The purpose of this study was to develop a multi‐step adaptive fitting approach for liver proton density fat fraction (PDFF) and R2* quantification,...
The purpose of this study was to develop a multi-step adaptive fitting approach for liver proton density fat fraction (PDFF) and R(2)* quantification, and to...
Purpose The purpose of this study was to develop a multi-step adaptive fitting approach for liver proton density fat fraction (PDFF) and R 2 * quantification,...
Purpose The purpose of this study was to develop a multi-step adaptive fitting approach for liver proton density fat fraction (PDFF) and [Formulaomitted]...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1353
SubjectTerms Computer Simulation
Dixon
fat quantification
Fatty Liver - diagnosis
Humans
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Imaging, Three-Dimensional - methods
iron quantification
liver
Magnetic Resonance Imaging - methods
Phantoms, Imaging
Prospective Studies
water fat separation
Title Liver fat quantification using a multi-step adaptive fitting approach with multi-echo GRE imaging
URI https://api.istex.fr/ark:/67375/WNG-6LC363SS-C/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.25054
https://www.ncbi.nlm.nih.gov/pubmed/24323332
https://www.proquest.com/docview/1610796605
https://www.proquest.com/docview/1612290367
https://www.proquest.com/docview/1618153731
Volume 72
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFA6lovhStV66WiWKiC-zzUySSYJPsvSCdPuwtdgHISSZREq72-1eQPrUn-Bv9JeYk7mUShXxbWDOQC7nNsl3voPQ2_g_bYhXNjOmpBmTlYk2R0TGmYnRTxaBpq4lw4Ny74h9OubHK-hDWwtT80N0B25gGclfg4EbO9-6Jg0dz8Z9iN_ABQpYLUiIRtfUUUrVDMyCgZ9RrGUVIsVW9-WNWHQHlvX7bYnmzbw1BZ6dB-hrO-Qab3LaXy5s313-xub4n3N6iNaahBR_rDXoEVrxk3V0b9hcua-juwkj6uaPkd8HDAcOZoEvlqYGGaV9xQCe_4YNTujEn1c_4hSn2FRmCr4Uh5OErcYtfTmGs99O1kf_i3dH2_hknBomPUFHO9ufB3tZ06Uhc1Akl7mKFMpRxwDyV3Ff2RCUlYJyT5xUwYncChk4g0IUU5SSVFw5J6V1sqqsok_R6uR84jcQDrnJvQqWGBmiMLFS5YXPGXfRZQfPe-h9u1_aNRTm0EnjTNfky4WOC6jTAvbQm050WvN23Cb0Lm16J2FmpwB0E1x_OdjV5f6AlvTwUA96aLPVCt3Y-FzHXJkIIDeN43rdvY7WCVcuZuLPl0kGCPVpKf4qI2PcETTvoWe1xnUDKhgtKKVFnHnSmz_PRQ9Hw_Tw_N9FX6D7Mf9jdWnlJlpdzJb-ZcyxFvZVMqZf5DMi6w
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6VVjwuPAqUQAGDEOKy6e7au2tLXFDUNkCSQ9qKXirL9tpVVZKGNJEQJ34Cv5Ffgsf7qIoKQtxW2lnJj3mt_c03AK_8_7SKrdCRUjmNGC-Vt7m4iDKmfPTjqaOha8lwlPcP2IfD7HAF3ja1MBU_RHvghpYR_DUaOB5Ib12whk7mky4GcHYN1rCjd_ihGl-QRwlRcTAXDD2NYA2vUJxutZ9eikZruLBfr0o1L2euIfTs3IGjZtAV4uS0u1zorvn2G5_j_87qLtyuc1LyrlKie7Bip-twY1jfuq_D9QATNef3wQ4QxkGcWpAvS1XhjMLWEsTPHxNFAkDx5_cffo4zoko1Q3dK3EmAV5OGwZzg8W8ra70LJrvjbXIyCT2THsDBzvZ-rx_VjRoig3VykSnjVBhqGKL-ysyW2jmheUEzGxsunCkSXXCXMaxFUWnO4zITxnCuDS9LLehDWJ2eTe0jIC5RiRVOx4o7LxxrLpLUJiwz3ms7m3XgTbNh0tQs5thM47Os-JdT6RdQhgXswMtWdFZRd1wl9Drseiuh5qeIdSsy-Wm0K_NBj-Z0b0_2OrDZqIWszfxc-nQ5LpDf1I_rRfvaGyjeuqipPVsGGeTUp3nxVxnuQ09Bkw5sVCrXDihlNKWUpn7mQXH-PBc5HA_Dw-N_F30ON_v7w4EcvB99fAK3fDrIqkrLTVhdzJf2qU-5FvpZsKxf8wwnBg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFD7UFosvXupttWoUEV9mm5kkMwk-ybbbqruLbC3tgxCSTCKl7nbd7oL45E_wN_pLTDKXUqkivg3MGcjl3Cb5zncAnvv_aYWt0IlSOUkoL5W3OVwkjCof_XjmSOxaMhzlewf07RE7WoFXTS1MxQ_RHrgFy4j-Ohj4rHRb56Shk_mkG-I3vQJrNMc8qPT2-Jw7SoiKgrmgwdEI2tAK4Wyr_fRCMFoL6_r1skzzYuIaI0__BnxsxlwBTk66y4Xumm-_0Tn-56RuwvU6I0WvKxW6BSt2ugHrw_rOfQOuRpCoObsNdhBAHMipBfqyVBXKKG4sCuj5T0ihCE_8-f2Hn-IMqVLNgjNF7jiCq1HDX47C4W8ra70DRrvjHXQ8iR2T7sBBf-dDby-p2zQkJlTJJabEmTDE0ID5K5kttXNC84Iwiw0XzhSpLrhjNFSiqCznuGTCGM614WWpBbkLq9PTqb0PyKUqtcJprLjzwlhzkWY2pcx4n-0s68DLZr-kqTnMQyuNz7JiX86kX0AZF7ADz1rRWUXccZnQi7jprYSanwSkW8Hk4WhX5oMeycn-vux1YLPRClkb-Zn0yTIuArupH9fT9rU3z3Dnoqb2dBllAqM-yYu_ynAfeAqSduBepXHtgDJKMkJI5mce9ebPc5HD8TA-PPh30Sew_n67LwdvRu8ewjWfC9KqzHITVhfzpX3k862Ffhzt6heE5SW-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Liver+fat+quantification+using+a+multi-step+adaptive+fitting+approach+with+multi-echo+GRE+imaging&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Zhong%2C+Xiaodong&rft.au=Nickel%2C+Marcel+D&rft.au=Kannengiesser%2C+Stephan+AR&rft.au=Dale%2C+Brian+M&rft.date=2014-11-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=72&rft.issue=5&rft.spage=1353&rft.epage=1365&rft_id=info:doi/10.1002%2Fmrm.25054&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon