Liver fat quantification using a multi-step adaptive fitting approach with multi-echo GRE imaging
Purpose The purpose of this study was to develop a multi‐step adaptive fitting approach for liver proton density fat fraction (PDFF) and R2* quantification, and to perform an initial validation on a broadly available hardware platform. Theory and Methods The proposed method uses a multi‐echo three‐d...
Saved in:
Published in | Magnetic resonance in medicine Vol. 72; no. 5; pp. 1353 - 1365 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Blackwell Publishing Ltd
01.11.2014
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Purpose
The purpose of this study was to develop a multi‐step adaptive fitting approach for liver proton density fat fraction (PDFF) and
R2* quantification, and to perform an initial validation on a broadly available hardware platform.
Theory and Methods
The proposed method uses a multi‐echo three‐dimensional gradient echo acquisition, with initial guesses for the fat and water signal fractions based on a Dixon decomposition of two selected echoes. Based on magnitude signal equations with a multi‐peak fat spectral model, a multi‐step nonlinear fitting procedure is then performed to adaptively update the fat and water signal fractions and
R2* values. The proposed method was validated using numeric phantoms as ground truth, followed by preliminary clinical validation of PDFF calculations against spectroscopy in 30 patients.
Results
The results of the proposed method agreed well with the ground truth of numerical phantoms, and were relatively insensitive to changes in field strength, field homogeneity, monopolar/bipolar readout, signal to noise ratio, and echo time selections. The in vivo patient study showed excellent consistency between the PDFF values measured with the proposed approach compared with spectroscopy.
Conclusion
This multi‐step adaptive fitting approach performed well in both simulated and initial clinical evaluation, and shows potential in the quantification of hepatic steatosis. Magn Reson Med 72:1353–1365, 2014. © 2013 Wiley Periodicals, Inc. |
---|---|
AbstractList | The purpose of this study was to develop a multi-step adaptive fitting approach for liver proton density fat fraction (PDFF) and R(2)* quantification, and to perform an initial validation on a broadly available hardware platform.PURPOSEThe purpose of this study was to develop a multi-step adaptive fitting approach for liver proton density fat fraction (PDFF) and R(2)* quantification, and to perform an initial validation on a broadly available hardware platform.The proposed method uses a multi-echo three-dimensional gradient echo acquisition, with initial guesses for the fat and water signal fractions based on a Dixon decomposition of two selected echoes. Based on magnitude signal equations with a multi-peak fat spectral model, a multi-step nonlinear fitting procedure is then performed to adaptively update the fat and water signal fractions and R(2)* values. The proposed method was validated using numeric phantoms as ground truth, followed by preliminary clinical validation of PDFF calculations against spectroscopy in 30 patients.THEORY AND METHODSThe proposed method uses a multi-echo three-dimensional gradient echo acquisition, with initial guesses for the fat and water signal fractions based on a Dixon decomposition of two selected echoes. Based on magnitude signal equations with a multi-peak fat spectral model, a multi-step nonlinear fitting procedure is then performed to adaptively update the fat and water signal fractions and R(2)* values. The proposed method was validated using numeric phantoms as ground truth, followed by preliminary clinical validation of PDFF calculations against spectroscopy in 30 patients.The results of the proposed method agreed well with the ground truth of numerical phantoms, and were relatively insensitive to changes in field strength, field homogeneity, monopolar/bipolar readout, signal to noise ratio, and echo time selections. The in vivo patient study showed excellent consistency between the PDFF values measured with the proposed approach compared with spectroscopy.RESULTSThe results of the proposed method agreed well with the ground truth of numerical phantoms, and were relatively insensitive to changes in field strength, field homogeneity, monopolar/bipolar readout, signal to noise ratio, and echo time selections. The in vivo patient study showed excellent consistency between the PDFF values measured with the proposed approach compared with spectroscopy.This multi-step adaptive fitting approach performed well in both simulated and initial clinical evaluation, and shows potential in the quantification of hepatic steatosis.CONCLUSIONThis multi-step adaptive fitting approach performed well in both simulated and initial clinical evaluation, and shows potential in the quantification of hepatic steatosis. Purpose The purpose of this study was to develop a multi-step adaptive fitting approach for liver proton density fat fraction (PDFF) and [Formulaomitted] quantification, and to perform an initial validation on a broadly available hardware platform. Theory and Methods The proposed method uses a multi-echo three-dimensional gradient echo acquisition, with initial guesses for the fat and water signal fractions based on a Dixon decomposition of two selected echoes. Based on magnitude signal equations with a multi-peak fat spectral model, a multi-step nonlinear fitting procedure is then performed to adaptively update the fat and water signal fractions and [Formulaomitted] values. The proposed method was validated using numeric phantoms as ground truth, followed by preliminary clinical validation of PDFF calculations against spectroscopy in 30 patients. Results The results of the proposed method agreed well with the ground truth of numerical phantoms, and were relatively insensitive to changes in field strength, field homogeneity, monopolar/bipolar readout, signal to noise ratio, and echo time selections. The in vivo patient study showed excellent consistency between the PDFF values measured with the proposed approach compared with spectroscopy. Conclusion This multi-step adaptive fitting approach performed well in both simulated and initial clinical evaluation, and shows potential in the quantification of hepatic steatosis. Magn Reson Med 72:1353-1365, 2014. copyright 2013 Wiley Periodicals, Inc. The purpose of this study was to develop a multi-step adaptive fitting approach for liver proton density fat fraction (PDFF) and R(2)* quantification, and to perform an initial validation on a broadly available hardware platform. The proposed method uses a multi-echo three-dimensional gradient echo acquisition, with initial guesses for the fat and water signal fractions based on a Dixon decomposition of two selected echoes. Based on magnitude signal equations with a multi-peak fat spectral model, a multi-step nonlinear fitting procedure is then performed to adaptively update the fat and water signal fractions and R(2)* values. The proposed method was validated using numeric phantoms as ground truth, followed by preliminary clinical validation of PDFF calculations against spectroscopy in 30 patients. The results of the proposed method agreed well with the ground truth of numerical phantoms, and were relatively insensitive to changes in field strength, field homogeneity, monopolar/bipolar readout, signal to noise ratio, and echo time selections. The in vivo patient study showed excellent consistency between the PDFF values measured with the proposed approach compared with spectroscopy. This multi-step adaptive fitting approach performed well in both simulated and initial clinical evaluation, and shows potential in the quantification of hepatic steatosis. Purpose The purpose of this study was to develop a multi-step adaptive fitting approach for liver proton density fat fraction (PDFF) and R 2 * quantification, and to perform an initial validation on a broadly available hardware platform. Theory and Methods The proposed method uses a multi-echo three-dimensional gradient echo acquisition, with initial guesses for the fat and water signal fractions based on a Dixon decomposition of two selected echoes. Based on magnitude signal equations with a multi-peak fat spectral model, a multi-step nonlinear fitting procedure is then performed to adaptively update the fat and water signal fractions and R 2 * values. The proposed method was validated using numeric phantoms as ground truth, followed by preliminary clinical validation of PDFF calculations against spectroscopy in 30 patients. Results The results of the proposed method agreed well with the ground truth of numerical phantoms, and were relatively insensitive to changes in field strength, field homogeneity, monopolar/bipolar readout, signal to noise ratio, and echo time selections. The in vivo patient study showed excellent consistency between the PDFF values measured with the proposed approach compared with spectroscopy. Conclusion This multi-step adaptive fitting approach performed well in both simulated and initial clinical evaluation, and shows potential in the quantification of hepatic steatosis. Magn Reson Med 72:1353-1365, 2014. © 2013 Wiley Periodicals, Inc. Purpose The purpose of this study was to develop a multi‐step adaptive fitting approach for liver proton density fat fraction (PDFF) and R2* quantification, and to perform an initial validation on a broadly available hardware platform. Theory and Methods The proposed method uses a multi‐echo three‐dimensional gradient echo acquisition, with initial guesses for the fat and water signal fractions based on a Dixon decomposition of two selected echoes. Based on magnitude signal equations with a multi‐peak fat spectral model, a multi‐step nonlinear fitting procedure is then performed to adaptively update the fat and water signal fractions and R2* values. The proposed method was validated using numeric phantoms as ground truth, followed by preliminary clinical validation of PDFF calculations against spectroscopy in 30 patients. Results The results of the proposed method agreed well with the ground truth of numerical phantoms, and were relatively insensitive to changes in field strength, field homogeneity, monopolar/bipolar readout, signal to noise ratio, and echo time selections. The in vivo patient study showed excellent consistency between the PDFF values measured with the proposed approach compared with spectroscopy. Conclusion This multi‐step adaptive fitting approach performed well in both simulated and initial clinical evaluation, and shows potential in the quantification of hepatic steatosis. Magn Reson Med 72:1353–1365, 2014. © 2013 Wiley Periodicals, Inc. |
Author | Bashir, Mustafa R. Nickel, Marcel D. Zhong, Xiaodong Kiefer, Berthold Dale, Brian M. Kannengiesser, Stephan A.R. |
Author_xml | – sequence: 1 givenname: Xiaodong surname: Zhong fullname: Zhong, Xiaodong email: xiaodong.zhong@siemens.com organization: MR R&D Collaborations, Siemens Healthcare, Georgia, Atlanta, USA – sequence: 2 givenname: Marcel D. surname: Nickel fullname: Nickel, Marcel D. organization: Siemens AG Healthcare Sector, Erlangen, Germany – sequence: 3 givenname: Stephan A.R. surname: Kannengiesser fullname: Kannengiesser, Stephan A.R. organization: Siemens AG Healthcare Sector, Erlangen, Germany – sequence: 4 givenname: Brian M. surname: Dale fullname: Dale, Brian M. organization: MR R&D Collaborations, Siemens Healthcare, North Carolina, Cary, USA – sequence: 5 givenname: Berthold surname: Kiefer fullname: Kiefer, Berthold organization: Siemens AG Healthcare Sector, Erlangen, Germany – sequence: 6 givenname: Mustafa R. surname: Bashir fullname: Bashir, Mustafa R. organization: Duke University Medical Center, North Carolina, Durham, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24323332$$D View this record in MEDLINE/PubMed |
BookMark | eNqN0UtPFTEYBuDGQOQALvwDpokbXAz0OjNdmhM8khw04RKWTacXTnFutB2Rf285FxdEE1dd9Hm_9Ot7CPb6obcAvMfoFCNEzrrQnRKOOHsDZpgTUhAu2B6YoYqhgmLBDsBhjA8IISEq9hYcEEYJpZTMgFr6nzZApxJ8nFSfvPNaJT_0cIq-v4cKdlObfBGTHaEyakzZQ-dTWt-OYxiUXsEnn1ZbafVqgIurc-g7dZ_RMdh3qo323fY8Ardfzm_mX4vl98XF_POy0IwwVmiDiNBUs8YxY7g1jXOiqSvKLdK1cLrCTVU7njFhipQ1MlxoXdeNro1pBD0CJ5u5-UmPk41Jdj5q27aqt8MUJS5xjTmtKP4fSohAtKwy_fiKPgxT6PMiLwpVoiwRz-rDVk1NZ40cQ14-PMvdP2dwtgE6DDEG66T2af3PKSjfSozkS5MyNynXTebEp1eJ3dC_2e30J9_a539DeXl1uUsUm4TPxf76k1Dhh8xLV1zefVvIcjmnJb2-lnP6G3tWu34 |
CODEN | MRMEEN |
CitedBy_id | crossref_primary_10_1007_s42058_023_00127_8 crossref_primary_10_1097_HJH_0000000000001741 crossref_primary_10_1007_s00192_019_04063_z crossref_primary_10_1007_s10549_017_4292_7 crossref_primary_10_1002_mrm_28981 crossref_primary_10_1016_j_mri_2024_110216 crossref_primary_10_1148_radiol_2017161786 crossref_primary_10_1038_s41598_021_99132_z crossref_primary_10_3390_tomography10030029 crossref_primary_10_1002_jmri_24922 crossref_primary_10_1016_j_ejrad_2018_04_011 crossref_primary_10_1002_jimd_12190 crossref_primary_10_1002_mrm_28103 crossref_primary_10_1016_j_mri_2016_11_011 crossref_primary_10_1016_j_ejrad_2024_111359 crossref_primary_10_4254_wjh_v10_i2_231 crossref_primary_10_1007_s10334_016_0595_7 crossref_primary_10_1002_acr_23833 crossref_primary_10_1053_j_gastro_2018_07_018 crossref_primary_10_1016_j_rcl_2014_12_001 crossref_primary_10_3390_nu11040912 crossref_primary_10_1007_s00330_018_5616_7 crossref_primary_10_3748_wjg_v26_i33_4996 crossref_primary_10_1038_s41372_022_01549_5 crossref_primary_10_1148_radiol_15140446 crossref_primary_10_1007_s00330_020_06757_1 crossref_primary_10_1007_s10396_021_01135_w crossref_primary_10_1002_mrm_28970 crossref_primary_10_3390_nu14071437 crossref_primary_10_1002_jmri_29526 crossref_primary_10_1002_mrm_28052 crossref_primary_10_1002_jmri_25967 crossref_primary_10_1002_jmri_25845 crossref_primary_10_1007_s10334_024_01187_2 crossref_primary_10_1007_s00261_024_04369_7 crossref_primary_10_1002_mus_24523 crossref_primary_10_1148_radiol_2021202912 crossref_primary_10_1016_j_mri_2024_03_015 crossref_primary_10_1016_j_ultrasmedbio_2024_11_017 crossref_primary_10_1002_jmri_27185 crossref_primary_10_3348_kjr_2018_19_1_63 crossref_primary_10_1016_j_heliyon_2024_e40146 crossref_primary_10_1177_02841851211063007 crossref_primary_10_3348_kjr_2022_0334 crossref_primary_10_1007_s00261_019_02206_w crossref_primary_10_1007_s00330_017_4781_4 crossref_primary_10_1016_j_ajcnut_2023_12_010 crossref_primary_10_1002_jmri_25630 crossref_primary_10_1097_HJH_0000000000001245 crossref_primary_10_1109_TMI_2022_3228075 crossref_primary_10_1210_clinem_dgaa005 crossref_primary_10_1002_mrm_30324 crossref_primary_10_1002_jmri_28624 crossref_primary_10_1002_nbm_4156 crossref_primary_10_1007_s00330_019_06450_y crossref_primary_10_1002_mrm_26589 crossref_primary_10_1148_radiol_241876 crossref_primary_10_1002_mrm_27557 crossref_primary_10_1002_mrm_26228 crossref_primary_10_1016_S0140_6736_18_30474_4 crossref_primary_10_1007_s00330_021_08019_0 crossref_primary_10_1097_RMR_0000000000000141 crossref_primary_10_1002_mus_24437 crossref_primary_10_1016_S2468_1253_21_00300_9 crossref_primary_10_3390_nu12030825 crossref_primary_10_1016_j_ejmp_2024_103210 crossref_primary_10_1007_s10549_021_06355_9 crossref_primary_10_1002_jmri_27921 crossref_primary_10_1002_jmri_26313 crossref_primary_10_1002_jmri_26312 crossref_primary_10_1016_j_mri_2017_03_001 crossref_primary_10_1002_mrm_26693 crossref_primary_10_1002_jmri_28337 crossref_primary_10_1007_s00723_015_0737_5 crossref_primary_10_1002_jmri_25748 crossref_primary_10_1002_mrm_29682 crossref_primary_10_1055_a_2211_3199 crossref_primary_10_1371_journal_pone_0255768 crossref_primary_10_1002_mrm_28592 crossref_primary_10_1097_RCT_0000000000000759 crossref_primary_10_1136_bmjgast_2021_000709 crossref_primary_10_1186_s12876_018_0840_9 crossref_primary_10_14309_ctg_0000000000000081 crossref_primary_10_3179_jjmu_JJMU_R_221 crossref_primary_10_1002_jmri_29541 crossref_primary_10_1016_j_jot_2023_07_005 crossref_primary_10_3390_nu11030544 crossref_primary_10_1002_jcsm_12343 crossref_primary_10_1148_radiol_2015142272 crossref_primary_10_1002_jmri_26270 crossref_primary_10_1016_j_zemedi_2022_12_004 crossref_primary_10_1002_jmri_25536 crossref_primary_10_1002_mrm_30182 crossref_primary_10_1097_RLI_0000000000000561 crossref_primary_10_1148_ryct_2021200575 crossref_primary_10_1016_j_compbiomed_2016_02_013 crossref_primary_10_1007_s00117_017_0232_0 crossref_primary_10_1007_s00330_015_3966_y crossref_primary_10_1111_hepr_12767 crossref_primary_10_1007_s00330_014_3528_8 crossref_primary_10_1016_j_ejrad_2019_03_019 crossref_primary_10_1007_s12194_017_0420_7 crossref_primary_10_3390_muscles3020013 crossref_primary_10_1007_s00330_023_09603_2 crossref_primary_10_1002_jmri_28084 crossref_primary_10_1148_radiol_213256 crossref_primary_10_1016_j_acra_2021_04_016 crossref_primary_10_1148_radiol_2017171316 crossref_primary_10_1007_s00261_019_02118_9 crossref_primary_10_1002_mrm_28546 crossref_primary_10_3348_kjr_2015_16_5_1086 crossref_primary_10_2463_mrms_tn_2021_0054 crossref_primary_10_1148_rycan_220019 crossref_primary_10_1016_j_ejrad_2016_11_001 crossref_primary_10_1016_j_mri_2021_10_016 crossref_primary_10_1038_s41598_020_64287_8 crossref_primary_10_1148_radiol_2021204325 crossref_primary_10_1016_S0140_6736_19_32517_6 crossref_primary_10_31159_ksmrt_2017_27_1_13 crossref_primary_10_1097_RLI_0000000000000173 crossref_primary_10_1016_j_mri_2015_12_002 crossref_primary_10_1002_nbm_5290 crossref_primary_10_1007_s00330_015_4144_y crossref_primary_10_1371_journal_pone_0192448 crossref_primary_10_1002_jmri_28755 crossref_primary_10_3390_cells10102516 crossref_primary_10_1002_oby_22560 crossref_primary_10_1097_RCT_0000000000000535 crossref_primary_10_1016_j_cct_2015_09_017 crossref_primary_10_1016_j_mri_2020_09_024 crossref_primary_10_1002_jmri_26219 crossref_primary_10_1007_s00330_017_5263_4 crossref_primary_10_1148_radiol_220743 crossref_primary_10_1097_LVT_0000000000000467 crossref_primary_10_1038_s41390_018_0129_2 crossref_primary_10_1002_mrm_28280 crossref_primary_10_3390_nu8070397 crossref_primary_10_1016_j_ejrad_2021_109845 crossref_primary_10_1016_j_jhep_2021_01_047 crossref_primary_10_1007_s00330_020_07291_w crossref_primary_10_1002_mrm_26383 crossref_primary_10_1002_mrm_29774 crossref_primary_10_1016_j_ejrad_2021_109687 crossref_primary_10_2214_AJR_17_19288 crossref_primary_10_1016_j_cct_2016_09_004 crossref_primary_10_1016_j_jocd_2018_03_002 crossref_primary_10_1038_s41598_023_39361_6 crossref_primary_10_1007_s00247_019_04384_7 crossref_primary_10_1007_s00330_019_06487_z crossref_primary_10_1007_s00247_018_4127_7 crossref_primary_10_1038_s41574_021_00573_3 crossref_primary_10_1097_MPG_0000000000002316 crossref_primary_10_1111_dom_14733 crossref_primary_10_1007_s00330_020_06858_x crossref_primary_10_1016_j_mri_2025_110355 crossref_primary_10_1080_15592294_2022_2039850 crossref_primary_10_1016_j_nmd_2021_08_011 crossref_primary_10_1111_obr_13481 crossref_primary_10_1002_oby_22712 crossref_primary_10_1055_a_1976_910 crossref_primary_10_3390_curroncol30030252 crossref_primary_10_1016_j_hpb_2019_06_006 crossref_primary_10_52668_kjar_2022_00143 crossref_primary_10_1002_jmri_27205 crossref_primary_10_1002_jmri_26632 crossref_primary_10_14283_jfa_2018_16 crossref_primary_10_1007_s00330_018_5783_6 crossref_primary_10_1097_MPG_0000000000002309 crossref_primary_10_1002_hep_28012 crossref_primary_10_1002_mrm_25681 crossref_primary_10_1002_mrm_30117 crossref_primary_10_3390_diagnostics13020201 crossref_primary_10_1002_mrm_29525 crossref_primary_10_1002_jmri_27321 crossref_primary_10_1259_bjr_20180019 crossref_primary_10_1002_jmri_25382 |
Cites_doi | 10.1002/nbm.891 10.1148/radiol.2373041639 10.1148/radiology.212.3.r99se34876 10.3109/10428194.2011.596963 10.1002/mrm.22840 10.1194/jlr.D800010-JLR200 10.1002/jmri.23835 10.1148/radiol.2523082084 10.1002/jmri.22580 10.1148/radiology.153.1.6089263 10.1148/radiol.2493080217 10.1002/jmri.21090 10.1148/radiol.2472070880 10.1148/radiol.10100708 10.1002/mrm.22455 10.1002/mrm.23044 10.1002/mrm.20787 10.1002/mrm.22300 10.1182/blood.V116.21.494.494 10.1002/jmri.23851 10.1002/jmri.21492 10.1148/radiol.2511080666 10.1148/radiol.09090131 10.1002/jmri.22701 10.1111/j.1572-0241.1999.01377.x 10.1016/j.ejrad.2011.01.067 10.1002/mrm.22578 10.1002/jmri.1880070612 10.1090/qam/10666 10.1002/mrm.22177 10.3748/wjg.v5.i4.301 10.1002/mrm.20624 10.1016/j.mri.2007.08.012 10.1002/mrm.1910180211 10.1002/mrm.21737 10.1148/radiol.10100659 |
ContentType | Journal Article |
Copyright | Copyright © 2013 Wiley Periodicals, Inc. |
Copyright_xml | – notice: Copyright © 2013 Wiley Periodicals, Inc. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 7QO |
DOI | 10.1002/mrm.25054 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitleList | MEDLINE - Academic Engineering Research Database MEDLINE Biochemistry Abstracts 1 |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Physics |
EISSN | 1522-2594 |
EndPage | 1365 |
ExternalDocumentID | 3459191591 24323332 10_1002_mrm_25054 MRM25054 ark_67375_WNG_6LC363SS_C |
Genre | article Validation Studies Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAHQN AAIPD AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 K9. M7Z P64 7X8 7QO |
ID | FETCH-LOGICAL-c4244-cd029c3c4bf4dd5edbff9b8735e0c89fc71b78f542424a2680d59cc88bc8ddb93 |
IEDL.DBID | DR2 |
ISSN | 0740-3194 1522-2594 |
IngestDate | Fri Jul 11 06:59:45 EDT 2025 Thu Jul 10 23:59:52 EDT 2025 Fri Jul 25 12:03:17 EDT 2025 Thu Apr 03 07:02:13 EDT 2025 Tue Jul 01 01:20:54 EDT 2025 Thu Apr 24 23:04:09 EDT 2025 Wed Jan 22 16:23:05 EST 2025 Wed Oct 30 10:01:28 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | iron quantification water fat separation fat quantification liver Dixon |
Language | English |
License | Copyright © 2013 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4244-cd029c3c4bf4dd5edbff9b8735e0c89fc71b78f542424a2680d59cc88bc8ddb93 |
Notes | ark:/67375/WNG-6LC363SS-C istex:9F8C302D4F802EFD3CE1186F12783613F03BF035 ArticleID:MRM25054 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Undefined-3 |
PMID | 24323332 |
PQID | 1610796605 |
PQPubID | 1016391 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_1618153731 proquest_miscellaneous_1612290367 proquest_journals_1610796605 pubmed_primary_24323332 crossref_citationtrail_10_1002_mrm_25054 crossref_primary_10_1002_mrm_25054 wiley_primary_10_1002_mrm_25054_MRM25054 istex_primary_ark_67375_WNG_6LC363SS_C |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-11 November 2014 2014-11-00 2014-Nov 20141101 |
PublicationDateYYYYMMDD | 2014-11-01 |
PublicationDate_xml | – month: 11 year: 2014 text: 2014-11 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Magnetic resonance in medicine |
PublicationTitleAlternate | Magn. Reson. Med |
PublicationYear | 2014 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Pineda N, Sharma P, Xu Q, Hu X, Vos M, Martin DR. Measurement of hepatic lipid: high-speed T2-corrected multiecho acquisition at 1H MR spectroscopy - a rapid and accurate technique. Radiology 2009;252:568-576. Hernando D, Kuhn J, Mensel B, Volzke H, Puls R, Hosten N, Reeder SB. R2* estimation using "in-phase" echoes in the presence of fat: the effects of complex spectrum of fat. J Magn Reson Imaging 2013;37:717-726. Chebrolu VV, Hines CD, Yu H, Pineda AR, Shimakawa A, McKenzie CA, Samsonov A, Brittain JH, Reeder SB. Independent estimation of T2* for water and fat for improved accuracy of fat quantification. Magn Reson Med 2010;63:849-857. Bashir MR, Merkle EM, Smith AD, Boll DT. Hepatic MR imaging for in vivo differentiation of steatosis, iron deposition and combined storage disorder: single-ratio in/opposed phase analysis vs. dual-ratio Dixon discrimination. Eur J Radiol 2012;81:e101-e109. Eggers H, Brendel B, Duijndam A, Herigault G. Dual-echo Dixon imaging with flexible choice of echo times. Magn Reson Med 2011;65:96-107. Hernando D, Hines CD, Yu H, Reeder SB. Addressing phase errors in fat-water imaging using a mixed magnitude/complex fitting method. Magn Reson Med 2012;67:638-644. Forgione A, Miele L, Cefalo C, Gasbarrini G, Grieco A. Alcoholic and nonalcoholic forms of fatty liver disease. Minerva Gastroenterol Dietol 2007;53:83-100. Hines CD, Yu H, Shimakawa A, McKenzie CA, Warner TF, Brittain JH, Reeder SB. Quantification of hepatic steatosis with 3-T MR imaging: validation in ob/ob mice. Radiology 2010;254:119-128. Goekbuget N, Baumann A, Beck J. PEG-Asparaginase intensification in adult acute lymphoblastic leukemia (ALL): significant improvement of outcome with moderate increase of liver toxicity in the german multicenter study group for adult ALL (GMALL) study 07/2003. Blood 2010;116:494. Yu H, Shimakawa A, Hines CD, McKenzie CA, Hamilton G, Sirlin CB, Brittain JH, Reeder SB. Combination of complex-based and magnitude-based multiecho water-fat separation for accurate quantification of fat-fraction. Magn Reson Med 2011;66:199-206. Hernando D, Liang ZP, Kellman P. Chemical shift-based water/fat separation: a comparison of signal models. Magn Reson Med 2010;64:811-822. Bydder M, Yokoo T, Hamilton G, Middleton MS, Chavez AD, Schwimmer JB, Lavine JE, Sirlin CB. Relaxation effects in the quantification of fat using gradient echo imaging. Magn Reson Imaging 2008;26:347-359. Yu H, McKenzie CA, Shimakawa A, Vu AT, Brau AC, Beatty PJ, Pineda AR, Brittain JH, Reeder SB. Multiecho reconstruction for simultaneous water-fat decomposition and T2* estimation. J Magn Reson Imaging 2007;26:1153-1161. O'Regan DP, Callaghan MF, Wylezinska-Arridge M, Fitzpatrick J, Naoumova RP, Hajnal JV, Schmitz SA. Liver fat content and T2*: simultaneous measurement by using breath-hold multiecho MR imaging at 3.0 T - feasibility. Radiology 2008;247:550-557. Rofsky NM, Lee VS, Laub G, Pollack MA, Krinsky GA, Thomasson D, Ambrosino MM, Weinreb JC. Abdominal MR imaging with a volumetric interpolated breath-hold examination. Radiology 1999;212:876-884. Thampanitchawong P, Piratvisuth T. Liver biopsy: complications and risk factors. World J Gastroenterol 1999;5:301-304. Hussain HK, Chenevert TL, Londy FJ, Gulani V, Swanson SD, McKenna BJ, Appelman HD, Adusumilli S, Greenson JK, Conjeevaram HS. Hepatic fat fraction: MR imaging for quantitative measurement and display - early experience. Radiology 2005;237:1048-1055. Yokoo T, Shiehmorteza M, Hamilton G, et al. Estimation of hepatic proton-density fat fraction by using MR imaging at 3.0 T. Radiology 2011;258:749-759. Yu H, Shimakawa A, McKenzie CA, Brodsky E, Brittain JH, Reeder SB. Multiecho water-fat separation and simultaneous R2* estimation with multifrequency fat spectrum modeling. Magn Reson Med 2008;60:1122-1134. Stock W, Douer D, DeAngelo DJ, et al. Prevention and management of asparaginase/pegasparaginase-associated toxicities in adults and older adolescents: recommendations of an expert panel. Leuk Lymphoma 2011;52:2237-2253. Hernando D, Kellman P, Haldar JP, Liang ZP. Robust water/fat separation in the presence of large field inhomogeneities using a graph cut algorithm. Magn Reson Med 2010;63:79-90. Reeder SB, Cruite I, Hamilton G, Sirlin CB. Quantitative assessment of liver fat with magnetic resonance imaging and spectroscopy. J Magn Reson Imaging 2011;34:729-749. Kreis R. Issues of spectral quality in clinical 1H-magnetic resonance spectroscopy and a gallery of artifacts. NMR Biomed 2004;17:361-381. Yokoo T, Bydder M, Hamilton G, et al. Nonalcoholic fatty liver disease: diagnostic and fat-grading accuracy of low-flip-angle multiecho gradient-recalled-echo MR imaging at 1.5 T. Radiology 2009;251:67-76. Reeder SB, Pineda AR, Wen Z, Shimakawa A, Yu H, Brittain JH, Gold GE, Beaulieu CH, Pelc NJ. Iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL): application with fast spin-echo imaging. Magn Reson Med 2005;54:636-644. Xiang QS, An L. Water-fat imaging with direct phase encoding. J Magn Reson Imaging 1997;7:1002-1015. Guiu B, Petit JM, Loffroy R, Ben Salem D, Aho S, Masson D, Hillon P, Krause D, Cercueil JP. Quantification of liver fat content: comparison of triple-echo chemical shift gradient-echo imaging and in vivo proton MR spectroscopy. Radiology 2009;250:95-102. Levenberg K. A method for the solution of certain non-linear problems in least squares. Q Appl Math 1944;2:164-168. Glover GH, Schneider E. Three-point Dixon technique for true water/fat decomposition with B0 inhomogeneity correction. Magn Reson Med 1991;18:371-383. Ren J, Dimitrov I, Sherry A, Malloy C. Composition of adipose tissue and marrow fat in humans by 1H NMR at 7 Tesla. J Lipid Res 2008;49:2055-2062. Brunt EM, Janney CG, Di Bisceglie AM, Neuschwander-Tetri BA, Bacon BR. Nonalcoholic steatohepatitis: a proposal for grading and staging the histological lesions. Am J Gastroenterol 1999;94:2467-2474. Meisamy S, Hines CD, Hamilton G, Sirlin CB, McKenzie CA, Yu H, Brittain JH, Reeder SB. Quantification of hepatic steatosis with T1-independent, T2-corrected MR imaging with spectral modeling of fat: blinded comparison with MR spectroscopy. Radiology 2011;258:767-775. Kang GH, Cruite I, Shiehmorteza M, Wolfson T, Gamst AC, Hamilton G, Bydder M, Middleton MS, Sirlin CB. Reproducibility of MRI-determined proton density fat fraction across two different MR scanner platforms. J Magn Reson Imaging 2011;34:928-934. Horng DE, Hernando D, Hines CD, Reeder SB. Comparison of R2* correction methods for accurate fat quantification in fatty liver. J Magn Reson Imaging 2013;37:414-422. Breuer FA, Blaimer M, Mueller MF, Seiberlich N, Heidemann RM, Griswold MA, Jakob PM. Controlled aliasing in volumetric parallel imaging (2D CAIPIRINHA). Magn Reson Med 2006;55:549-556. Dixon WT. Simple proton spectroscopic imaging. Radiology 1984;153:189-194. Ma J. Dixon techniques for water and fat imaging. J Magn Reson Imaging 2008;28:543-558. 2011; 258 1991; 18 2012; 81 2006; 55 2005; 237 2011; 52 2011; 34 2008; 247 2009; 250 2009; 251 2009; 252 2007; 53 1999; 5 2010; 63 1997; 7 2010; 64 2013; 37 1984; 153 2010; 116 2004; 17 2008; 49 2008; 28 1944; 2 2008; 26 2010; 254 2011; 66 2005; 54 2011; 65 1999; 212 1999; 94 2013 2012; 67 2008; 60 2007; 26 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_15_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 Forgione A (e_1_2_7_2_1) 2007; 53 |
References_xml | – reference: Hernando D, Hines CD, Yu H, Reeder SB. Addressing phase errors in fat-water imaging using a mixed magnitude/complex fitting method. Magn Reson Med 2012;67:638-644. – reference: Ren J, Dimitrov I, Sherry A, Malloy C. Composition of adipose tissue and marrow fat in humans by 1H NMR at 7 Tesla. J Lipid Res 2008;49:2055-2062. – reference: Forgione A, Miele L, Cefalo C, Gasbarrini G, Grieco A. Alcoholic and nonalcoholic forms of fatty liver disease. Minerva Gastroenterol Dietol 2007;53:83-100. – reference: Yu H, Shimakawa A, Hines CD, McKenzie CA, Hamilton G, Sirlin CB, Brittain JH, Reeder SB. Combination of complex-based and magnitude-based multiecho water-fat separation for accurate quantification of fat-fraction. Magn Reson Med 2011;66:199-206. – reference: Bashir MR, Merkle EM, Smith AD, Boll DT. Hepatic MR imaging for in vivo differentiation of steatosis, iron deposition and combined storage disorder: single-ratio in/opposed phase analysis vs. dual-ratio Dixon discrimination. Eur J Radiol 2012;81:e101-e109. – reference: Meisamy S, Hines CD, Hamilton G, Sirlin CB, McKenzie CA, Yu H, Brittain JH, Reeder SB. Quantification of hepatic steatosis with T1-independent, T2-corrected MR imaging with spectral modeling of fat: blinded comparison with MR spectroscopy. Radiology 2011;258:767-775. – reference: Hernando D, Kellman P, Haldar JP, Liang ZP. Robust water/fat separation in the presence of large field inhomogeneities using a graph cut algorithm. Magn Reson Med 2010;63:79-90. – reference: Kang GH, Cruite I, Shiehmorteza M, Wolfson T, Gamst AC, Hamilton G, Bydder M, Middleton MS, Sirlin CB. Reproducibility of MRI-determined proton density fat fraction across two different MR scanner platforms. J Magn Reson Imaging 2011;34:928-934. – reference: Dixon WT. Simple proton spectroscopic imaging. Radiology 1984;153:189-194. – reference: Breuer FA, Blaimer M, Mueller MF, Seiberlich N, Heidemann RM, Griswold MA, Jakob PM. Controlled aliasing in volumetric parallel imaging (2D CAIPIRINHA). Magn Reson Med 2006;55:549-556. – reference: Thampanitchawong P, Piratvisuth T. Liver biopsy: complications and risk factors. World J Gastroenterol 1999;5:301-304. – reference: Glover GH, Schneider E. Three-point Dixon technique for true water/fat decomposition with B0 inhomogeneity correction. Magn Reson Med 1991;18:371-383. – reference: Horng DE, Hernando D, Hines CD, Reeder SB. Comparison of R2* correction methods for accurate fat quantification in fatty liver. J Magn Reson Imaging 2013;37:414-422. – reference: O'Regan DP, Callaghan MF, Wylezinska-Arridge M, Fitzpatrick J, Naoumova RP, Hajnal JV, Schmitz SA. Liver fat content and T2*: simultaneous measurement by using breath-hold multiecho MR imaging at 3.0 T - feasibility. Radiology 2008;247:550-557. – reference: Yokoo T, Shiehmorteza M, Hamilton G, et al. Estimation of hepatic proton-density fat fraction by using MR imaging at 3.0 T. Radiology 2011;258:749-759. – reference: Yokoo T, Bydder M, Hamilton G, et al. Nonalcoholic fatty liver disease: diagnostic and fat-grading accuracy of low-flip-angle multiecho gradient-recalled-echo MR imaging at 1.5 T. Radiology 2009;251:67-76. – reference: Reeder SB, Pineda AR, Wen Z, Shimakawa A, Yu H, Brittain JH, Gold GE, Beaulieu CH, Pelc NJ. Iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL): application with fast spin-echo imaging. Magn Reson Med 2005;54:636-644. – reference: Goekbuget N, Baumann A, Beck J. PEG-Asparaginase intensification in adult acute lymphoblastic leukemia (ALL): significant improvement of outcome with moderate increase of liver toxicity in the german multicenter study group for adult ALL (GMALL) study 07/2003. Blood 2010;116:494. – reference: Hussain HK, Chenevert TL, Londy FJ, Gulani V, Swanson SD, McKenna BJ, Appelman HD, Adusumilli S, Greenson JK, Conjeevaram HS. Hepatic fat fraction: MR imaging for quantitative measurement and display - early experience. Radiology 2005;237:1048-1055. – reference: Stock W, Douer D, DeAngelo DJ, et al. Prevention and management of asparaginase/pegasparaginase-associated toxicities in adults and older adolescents: recommendations of an expert panel. Leuk Lymphoma 2011;52:2237-2253. – reference: Yu H, McKenzie CA, Shimakawa A, Vu AT, Brau AC, Beatty PJ, Pineda AR, Brittain JH, Reeder SB. Multiecho reconstruction for simultaneous water-fat decomposition and T2* estimation. J Magn Reson Imaging 2007;26:1153-1161. – reference: Hernando D, Kuhn J, Mensel B, Volzke H, Puls R, Hosten N, Reeder SB. R2* estimation using "in-phase" echoes in the presence of fat: the effects of complex spectrum of fat. J Magn Reson Imaging 2013;37:717-726. – reference: Chebrolu VV, Hines CD, Yu H, Pineda AR, Shimakawa A, McKenzie CA, Samsonov A, Brittain JH, Reeder SB. Independent estimation of T2* for water and fat for improved accuracy of fat quantification. Magn Reson Med 2010;63:849-857. – reference: Rofsky NM, Lee VS, Laub G, Pollack MA, Krinsky GA, Thomasson D, Ambrosino MM, Weinreb JC. Abdominal MR imaging with a volumetric interpolated breath-hold examination. Radiology 1999;212:876-884. – reference: Hines CD, Yu H, Shimakawa A, McKenzie CA, Warner TF, Brittain JH, Reeder SB. Quantification of hepatic steatosis with 3-T MR imaging: validation in ob/ob mice. Radiology 2010;254:119-128. – reference: Yu H, Shimakawa A, McKenzie CA, Brodsky E, Brittain JH, Reeder SB. Multiecho water-fat separation and simultaneous R2* estimation with multifrequency fat spectrum modeling. Magn Reson Med 2008;60:1122-1134. – reference: Bydder M, Yokoo T, Hamilton G, Middleton MS, Chavez AD, Schwimmer JB, Lavine JE, Sirlin CB. Relaxation effects in the quantification of fat using gradient echo imaging. Magn Reson Imaging 2008;26:347-359. – reference: Eggers H, Brendel B, Duijndam A, Herigault G. Dual-echo Dixon imaging with flexible choice of echo times. Magn Reson Med 2011;65:96-107. – reference: Kreis R. Issues of spectral quality in clinical 1H-magnetic resonance spectroscopy and a gallery of artifacts. NMR Biomed 2004;17:361-381. – reference: Guiu B, Petit JM, Loffroy R, Ben Salem D, Aho S, Masson D, Hillon P, Krause D, Cercueil JP. Quantification of liver fat content: comparison of triple-echo chemical shift gradient-echo imaging and in vivo proton MR spectroscopy. Radiology 2009;250:95-102. – reference: Hernando D, Liang ZP, Kellman P. Chemical shift-based water/fat separation: a comparison of signal models. Magn Reson Med 2010;64:811-822. – reference: Ma J. Dixon techniques for water and fat imaging. J Magn Reson Imaging 2008;28:543-558. – reference: Reeder SB, Cruite I, Hamilton G, Sirlin CB. Quantitative assessment of liver fat with magnetic resonance imaging and spectroscopy. J Magn Reson Imaging 2011;34:729-749. – reference: Levenberg K. A method for the solution of certain non-linear problems in least squares. Q Appl Math 1944;2:164-168. – reference: Brunt EM, Janney CG, Di Bisceglie AM, Neuschwander-Tetri BA, Bacon BR. Nonalcoholic steatohepatitis: a proposal for grading and staging the histological lesions. Am J Gastroenterol 1999;94:2467-2474. – reference: Pineda N, Sharma P, Xu Q, Hu X, Vos M, Martin DR. Measurement of hepatic lipid: high-speed T2-corrected multiecho acquisition at 1H MR spectroscopy - a rapid and accurate technique. Radiology 2009;252:568-576. – reference: Xiang QS, An L. Water-fat imaging with direct phase encoding. J Magn Reson Imaging 1997;7:1002-1015. – volume: 7 start-page: 1002 year: 1997 end-page: 1015 article-title: Water‐fat imaging with direct phase encoding publication-title: J Magn Reson Imaging – volume: 37 start-page: 717 year: 2013 end-page: 726 article-title: R2* estimation using “in‐phase” echoes in the presence of fat: the effects of complex spectrum of fat publication-title: J Magn Reson Imaging – volume: 250 start-page: 95 year: 2009 end-page: 102 article-title: Quantification of liver fat content: comparison of triple‐echo chemical shift gradient‐echo imaging and in vivo proton MR spectroscopy publication-title: Radiology – volume: 18 start-page: 371 year: 1991 end-page: 383 article-title: Three‐point Dixon technique for true water/fat decomposition with B0 inhomogeneity correction publication-title: Magn Reson Med – volume: 252 start-page: 568 year: 2009 end-page: 576 article-title: Measurement of hepatic lipid: high‐speed T2‐corrected multiecho acquisition at 1H MR spectroscopy ‐ a rapid and accurate technique publication-title: Radiology – volume: 63 start-page: 79 year: 2010 end-page: 90 article-title: Robust water/fat separation in the presence of large field inhomogeneities using a graph cut algorithm publication-title: Magn Reson Med – volume: 28 start-page: 543 year: 2008 end-page: 558 article-title: Dixon techniques for water and fat imaging publication-title: J Magn Reson Imaging – volume: 65 start-page: 96 year: 2011 end-page: 107 article-title: Dual‐echo Dixon imaging with flexible choice of echo times publication-title: Magn Reson Med – volume: 37 start-page: 414 year: 2013 end-page: 422 article-title: Comparison of R2* correction methods for accurate fat quantification in fatty liver publication-title: J Magn Reson Imaging – volume: 53 start-page: 83 year: 2007 end-page: 100 article-title: Alcoholic and nonalcoholic forms of fatty liver disease publication-title: Minerva Gastroenterol Dietol – volume: 52 start-page: 2237 year: 2011 end-page: 2253 article-title: Prevention and management of asparaginase/pegasparaginase‐associated toxicities in adults and older adolescents: recommendations of an expert panel publication-title: Leuk Lymphoma – volume: 212 start-page: 876 year: 1999 end-page: 884 article-title: Abdominal MR imaging with a volumetric interpolated breath‐hold examination publication-title: Radiology – volume: 153 start-page: 189 year: 1984 end-page: 194 article-title: Simple proton spectroscopic imaging publication-title: Radiology – volume: 258 start-page: 749 year: 2011 end-page: 759 article-title: Estimation of hepatic proton‐density fat fraction by using MR imaging at 3.0 T publication-title: Radiology – volume: 247 start-page: 550 year: 2008 end-page: 557 article-title: Liver fat content and T2*: simultaneous measurement by using breath‐hold multiecho MR imaging at 3.0 T ‐ feasibility publication-title: Radiology – volume: 49 start-page: 2055 year: 2008 end-page: 2062 article-title: Composition of adipose tissue and marrow fat in humans by 1H NMR at 7 Tesla publication-title: J Lipid Res – volume: 237 start-page: 1048 year: 2005 end-page: 1055 article-title: Hepatic fat fraction: MR imaging for quantitative measurement and display ‐ early experience publication-title: Radiology – volume: 55 start-page: 549 year: 2006 end-page: 556 article-title: Controlled aliasing in volumetric parallel imaging (2D CAIPIRINHA) publication-title: Magn Reson Med – volume: 63 start-page: 849 year: 2010 end-page: 857 article-title: Independent estimation of T2* for water and fat for improved accuracy of fat quantification publication-title: Magn Reson Med – volume: 254 start-page: 119 year: 2010 end-page: 128 article-title: Quantification of hepatic steatosis with 3‐T MR imaging: validation in ob/ob mice publication-title: Radiology – volume: 5 start-page: 301 year: 1999 end-page: 304 article-title: Liver biopsy: complications and risk factors publication-title: World J Gastroenterol – volume: 17 start-page: 361 year: 2004 end-page: 381 article-title: Issues of spectral quality in clinical 1H‐magnetic resonance spectroscopy and a gallery of artifacts publication-title: NMR Biomed – volume: 94 start-page: 2467 year: 1999 end-page: 2474 article-title: Nonalcoholic steatohepatitis: a proposal for grading and staging the histological lesions publication-title: Am J Gastroenterol – volume: 26 start-page: 1153 year: 2007 end-page: 1161 article-title: Multiecho reconstruction for simultaneous water‐fat decomposition and T2* estimation publication-title: J Magn Reson Imaging – volume: 34 start-page: 729 year: 2011 end-page: 749 article-title: Quantitative assessment of liver fat with magnetic resonance imaging and spectroscopy publication-title: J Magn Reson Imaging – volume: 2 start-page: 164 year: 1944 end-page: 168 article-title: A method for the solution of certain non‐linear problems in least squares publication-title: Q Appl Math – volume: 60 start-page: 1122 year: 2008 end-page: 1134 article-title: Multiecho water‐fat separation and simultaneous R2* estimation with multifrequency fat spectrum modeling publication-title: Magn Reson Med – volume: 251 start-page: 67 year: 2009 end-page: 76 article-title: Nonalcoholic fatty liver disease: diagnostic and fat‐grading accuracy of low‐flip‐angle multiecho gradient‐recalled‐echo MR imaging at 1.5 T publication-title: Radiology – volume: 116 start-page: 494 year: 2010 article-title: PEG‐Asparaginase intensification in adult acute lymphoblastic leukemia (ALL): significant improvement of outcome with moderate increase of liver toxicity in the german multicenter study group for adult ALL (GMALL) study 07/2003 publication-title: Blood – volume: 67 start-page: 638 year: 2012 end-page: 644 article-title: Addressing phase errors in fat‐water imaging using a mixed magnitude/complex fitting method publication-title: Magn Reson Med – volume: 66 start-page: 199 year: 2011 end-page: 206 article-title: Combination of complex‐based and magnitude‐based multiecho water‐fat separation for accurate quantification of fat‐fraction publication-title: Magn Reson Med – volume: 258 start-page: 767 year: 2011 end-page: 775 article-title: Quantification of hepatic steatosis with T1‐independent, T2‐corrected MR imaging with spectral modeling of fat: blinded comparison with MR spectroscopy publication-title: Radiology – volume: 54 start-page: 636 year: 2005 end-page: 644 article-title: Iterative decomposition of water and fat with echo asymmetry and least‐squares estimation (IDEAL): application with fast spin‐echo imaging publication-title: Magn Reson Med – volume: 81 start-page: e101 year: 2012 end-page: e109 article-title: Hepatic MR imaging for in vivo differentiation of steatosis, iron deposition and combined storage disorder: single‐ratio in/opposed phase analysis vs. dual‐ratio Dixon discrimination publication-title: Eur J Radiol – volume: 34 start-page: 928 year: 2011 end-page: 934 article-title: Reproducibility of MRI‐determined proton density fat fraction across two different MR scanner platforms publication-title: J Magn Reson Imaging – volume: 26 start-page: 347 year: 2008 end-page: 359 article-title: Relaxation effects in the quantification of fat using gradient echo imaging publication-title: Magn Reson Imaging – volume: 64 start-page: 811 year: 2010 end-page: 822 article-title: Chemical shift‐based water/fat separation: a comparison of signal models publication-title: Magn Reson Med – year: 2013 – ident: e_1_2_7_9_1 doi: 10.1002/nbm.891 – ident: e_1_2_7_16_1 doi: 10.1148/radiol.2373041639 – ident: e_1_2_7_38_1 doi: 10.1148/radiology.212.3.r99se34876 – ident: e_1_2_7_3_1 doi: 10.3109/10428194.2011.596963 – ident: e_1_2_7_26_1 doi: 10.1002/mrm.22840 – ident: e_1_2_7_35_1 doi: 10.1194/jlr.D800010-JLR200 – ident: e_1_2_7_31_1 doi: 10.1002/jmri.23835 – ident: e_1_2_7_7_1 doi: 10.1148/radiol.2523082084 – ident: e_1_2_7_15_1 doi: 10.1002/jmri.22580 – ident: e_1_2_7_10_1 doi: 10.1148/radiology.153.1.6089263 – ident: e_1_2_7_18_1 doi: 10.1148/radiol.2493080217 – ident: e_1_2_7_20_1 doi: 10.1002/jmri.21090 – ident: e_1_2_7_17_1 doi: 10.1148/radiol.2472070880 – volume: 53 start-page: 83 year: 2007 ident: e_1_2_7_2_1 article-title: Alcoholic and nonalcoholic forms of fatty liver disease publication-title: Minerva Gastroenterol Dietol – ident: e_1_2_7_27_1 doi: 10.1148/radiol.10100708 – ident: e_1_2_7_29_1 doi: 10.1002/mrm.22455 – ident: e_1_2_7_32_1 doi: 10.1002/mrm.23044 – ident: e_1_2_7_39_1 doi: 10.1002/mrm.20787 – ident: e_1_2_7_22_1 doi: 10.1002/mrm.22300 – ident: e_1_2_7_33_1 – ident: e_1_2_7_4_1 doi: 10.1182/blood.V116.21.494.494 – ident: e_1_2_7_28_1 doi: 10.1002/jmri.23851 – ident: e_1_2_7_14_1 doi: 10.1002/jmri.21492 – ident: e_1_2_7_8_1 doi: 10.1148/radiol.2511080666 – ident: e_1_2_7_30_1 doi: 10.1148/radiol.09090131 – ident: e_1_2_7_34_1 doi: 10.1002/jmri.22701 – ident: e_1_2_7_6_1 doi: 10.1111/j.1572-0241.1999.01377.x – ident: e_1_2_7_24_1 doi: 10.1016/j.ejrad.2011.01.067 – ident: e_1_2_7_37_1 doi: 10.1002/mrm.22578 – ident: e_1_2_7_12_1 doi: 10.1002/jmri.1880070612 – ident: e_1_2_7_36_1 doi: 10.1090/qam/10666 – ident: e_1_2_7_23_1 doi: 10.1002/mrm.22177 – ident: e_1_2_7_5_1 doi: 10.3748/wjg.v5.i4.301 – ident: e_1_2_7_13_1 doi: 10.1002/mrm.20624 – ident: e_1_2_7_25_1 doi: 10.1016/j.mri.2007.08.012 – ident: e_1_2_7_11_1 doi: 10.1002/mrm.1910180211 – ident: e_1_2_7_21_1 doi: 10.1002/mrm.21737 – ident: e_1_2_7_19_1 doi: 10.1148/radiol.10100659 |
SSID | ssj0009974 |
Score | 2.5359864 |
Snippet | Purpose
The purpose of this study was to develop a multi‐step adaptive fitting approach for liver proton density fat fraction (PDFF) and
R2* quantification,... The purpose of this study was to develop a multi-step adaptive fitting approach for liver proton density fat fraction (PDFF) and R(2)* quantification, and to... Purpose The purpose of this study was to develop a multi-step adaptive fitting approach for liver proton density fat fraction (PDFF) and R 2 * quantification,... Purpose The purpose of this study was to develop a multi-step adaptive fitting approach for liver proton density fat fraction (PDFF) and [Formulaomitted]... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1353 |
SubjectTerms | Computer Simulation Dixon fat quantification Fatty Liver - diagnosis Humans Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Imaging, Three-Dimensional - methods iron quantification liver Magnetic Resonance Imaging - methods Phantoms, Imaging Prospective Studies water fat separation |
Title | Liver fat quantification using a multi-step adaptive fitting approach with multi-echo GRE imaging |
URI | https://api.istex.fr/ark:/67375/WNG-6LC363SS-C/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.25054 https://www.ncbi.nlm.nih.gov/pubmed/24323332 https://www.proquest.com/docview/1610796605 https://www.proquest.com/docview/1612290367 https://www.proquest.com/docview/1618153731 |
Volume | 72 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFA6lovhStV66WiWKiC-zzUySSYJPsvSCdPuwtdgHISSZREq72-1eQPrUn-Bv9JeYk7mUShXxbWDOQC7nNsl3voPQ2_g_bYhXNjOmpBmTlYk2R0TGmYnRTxaBpq4lw4Ny74h9OubHK-hDWwtT80N0B25gGclfg4EbO9-6Jg0dz8Z9iN_ABQpYLUiIRtfUUUrVDMyCgZ9RrGUVIsVW9-WNWHQHlvX7bYnmzbw1BZ6dB-hrO-Qab3LaXy5s313-xub4n3N6iNaahBR_rDXoEVrxk3V0b9hcua-juwkj6uaPkd8HDAcOZoEvlqYGGaV9xQCe_4YNTujEn1c_4hSn2FRmCr4Uh5OErcYtfTmGs99O1kf_i3dH2_hknBomPUFHO9ufB3tZ06Uhc1Akl7mKFMpRxwDyV3Ff2RCUlYJyT5xUwYncChk4g0IUU5SSVFw5J6V1sqqsok_R6uR84jcQDrnJvQqWGBmiMLFS5YXPGXfRZQfPe-h9u1_aNRTm0EnjTNfky4WOC6jTAvbQm050WvN23Cb0Lm16J2FmpwB0E1x_OdjV5f6AlvTwUA96aLPVCt3Y-FzHXJkIIDeN43rdvY7WCVcuZuLPl0kGCPVpKf4qI2PcETTvoWe1xnUDKhgtKKVFnHnSmz_PRQ9Hw_Tw_N9FX6D7Mf9jdWnlJlpdzJb-ZcyxFvZVMqZf5DMi6w |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6VVjwuPAqUQAGDEOKy6e7au2tLXFDUNkCSQ9qKXirL9tpVVZKGNJEQJ34Cv5Ffgsf7qIoKQtxW2lnJj3mt_c03AK_8_7SKrdCRUjmNGC-Vt7m4iDKmfPTjqaOha8lwlPcP2IfD7HAF3ja1MBU_RHvghpYR_DUaOB5Ib12whk7mky4GcHYN1rCjd_ihGl-QRwlRcTAXDD2NYA2vUJxutZ9eikZruLBfr0o1L2euIfTs3IGjZtAV4uS0u1zorvn2G5_j_87qLtyuc1LyrlKie7Bip-twY1jfuq_D9QATNef3wQ4QxkGcWpAvS1XhjMLWEsTPHxNFAkDx5_cffo4zoko1Q3dK3EmAV5OGwZzg8W8ra70LJrvjbXIyCT2THsDBzvZ-rx_VjRoig3VykSnjVBhqGKL-ysyW2jmheUEzGxsunCkSXXCXMaxFUWnO4zITxnCuDS9LLehDWJ2eTe0jIC5RiRVOx4o7LxxrLpLUJiwz3ms7m3XgTbNh0tQs5thM47Os-JdT6RdQhgXswMtWdFZRd1wl9Drseiuh5qeIdSsy-Wm0K_NBj-Z0b0_2OrDZqIWszfxc-nQ5LpDf1I_rRfvaGyjeuqipPVsGGeTUp3nxVxnuQ09Bkw5sVCrXDihlNKWUpn7mQXH-PBc5HA_Dw-N_F30ON_v7w4EcvB99fAK3fDrIqkrLTVhdzJf2qU-5FvpZsKxf8wwnBg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFD7UFosvXupttWoUEV9mm5kkMwk-ybbbqruLbC3tgxCSTCKl7nbd7oL45E_wN_pLTDKXUqkivg3MGcjl3Cb5zncAnvv_aYWt0IlSOUkoL5W3OVwkjCof_XjmSOxaMhzlewf07RE7WoFXTS1MxQ_RHrgFy4j-Ohj4rHRb56Shk_mkG-I3vQJrNMc8qPT2-Jw7SoiKgrmgwdEI2tAK4Wyr_fRCMFoL6_r1skzzYuIaI0__BnxsxlwBTk66y4Xumm-_0Tn-56RuwvU6I0WvKxW6BSt2ugHrw_rOfQOuRpCoObsNdhBAHMipBfqyVBXKKG4sCuj5T0ihCE_8-f2Hn-IMqVLNgjNF7jiCq1HDX47C4W8ra70DRrvjHXQ8iR2T7sBBf-dDby-p2zQkJlTJJabEmTDE0ID5K5kttXNC84Iwiw0XzhSpLrhjNFSiqCznuGTCGM614WWpBbkLq9PTqb0PyKUqtcJprLjzwlhzkWY2pcx4n-0s68DLZr-kqTnMQyuNz7JiX86kX0AZF7ADz1rRWUXccZnQi7jprYSanwSkW8Hk4WhX5oMeycn-vux1YLPRClkb-Zn0yTIuArupH9fT9rU3z3Dnoqb2dBllAqM-yYu_ynAfeAqSduBepXHtgDJKMkJI5mce9ebPc5HD8TA-PPh30Sew_n67LwdvRu8ewjWfC9KqzHITVhfzpX3k862Ffhzt6heE5SW- |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Liver+fat+quantification+using+a+multi-step+adaptive+fitting+approach+with+multi-echo+GRE+imaging&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Zhong%2C+Xiaodong&rft.au=Nickel%2C+Marcel+D&rft.au=Kannengiesser%2C+Stephan+AR&rft.au=Dale%2C+Brian+M&rft.date=2014-11-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=72&rft.issue=5&rft.spage=1353&rft.epage=1365&rft_id=info:doi/10.1002%2Fmrm.25054&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |