Effect of Hydrogen Enrichment for Reduction and Softening-melting Behaviors of Different Types of Lump Iron Ores

To explore smelting behavior of lump ores under hydrogen-rich conditions and guide optimization of burden structure of blast furnace after hydrogen injection, this study investigates the reduction and softening-melting behavior of lump ores. The results indicated that, compared to a pure CO atmosphe...

Full description

Saved in:
Bibliographic Details
Published inISIJ International Vol. 65; no. 6; pp. 794 - 802
Main Authors Wang, Guang, Yang, Zhi-wei, Hao, Di, Wang, Xu, Wang, Jing-song, Xue, Qing-guo
Format Journal Article
LanguageEnglish
Published The Iron and Steel Institute of Japan 30.05.2025
一般社団法人 日本鉄鋼協会
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To explore smelting behavior of lump ores under hydrogen-rich conditions and guide optimization of burden structure of blast furnace after hydrogen injection, this study investigates the reduction and softening-melting behavior of lump ores. The results indicated that, compared to a pure CO atmosphere, the reduction properties of lump ore were significantly improved under a pure H2 atmosphere, with the endpoint reduction degree reaching as high as 99%. The volume shrinkage of most lump ores increased after hydrogen enrichment. Notably, the shrinkage ratio of limonite before softening was considerably higher than that of hematite under both CO–N2 and CO–H2–N2 atmospheres. This suggests that the high-temperature compressive strength of limonite is lower than that of hematite. Hydrogen enrichment also led to a decrease in the softening beginning temperature of the lump ores, resulting in a broader softening range that shifted to a lower temperature range. The softening beginning and finishing temperatures of limonite were lower than those of hematite. Furthermore, hydrogen enrichment increased the melting beginning temperature, narrowed the melting range, and shifted it to a higher temperature region, thereby significantly improving the gas permeability of the burden column. After hydrogen enrichment, both the maximum pressure drop and permeability index of the lump ore decreased, which facilitated the reduction of the lump ore and the carburization of solid iron, ultimately increasing the mass of the dripping. These findings suggest that hydrogen enrichment can enhance the gas permeability of the burden column, thereby benefiting advanced smelting processes.
AbstractList To explore smelting behavior of lump ores under hydrogen-rich conditions and guide optimization of burden structure of blast furnace after hydrogen injection, this study investigates the reduction and softening-melting behavior of lump ores. The results indicated that, compared to a pure CO atmosphere, the reduction properties of lump ore were significantly improved under a pure H₂ atmosphere, with the endpoint reduction degree reaching as high as 99%. The volume shrinkage of most lump ores increased after hydrogen enrichment. Notably, the shrinkage ratio of limonite before softening was considerably higher than that of hematite under both CO-N2 and CO-H2 -N2 atmospheres. This suggests that the high-temperature compressive strength of limonite is lower than that of hematite. Hydrogen enrichment also led to a decrease in the softening beginning temperature of the lump ores, resulting in a broader softening range that shifted to a lower temperature range. The softening beginning and finishing temperatures of limonite were lower than those of hematite. Furthermore, hydrogen enrichment increased the melting beginning temperature, narrowed the melting range, and shifted it to a higher temperature region, thereby significantly improving the gas permeability of the burden column. After hydrogen enrichment, both the maximum pressure drop and permeability index of the lump ore decreased, which facilitated the reduction of the lump ore and the carburization of solid iron, ultimately increasing the mass of the dripping. These findings suggest that hydrogen enrichment can enhance the gas permeability of the burden column, thereby benefiting advanced smelting processes.
To explore smelting behavior of lump ores under hydrogen-rich conditions and guide optimization of burden structure of blast furnace after hydrogen injection, this study investigates the reduction and softening-melting behavior of lump ores. The results indicated that, compared to a pure CO atmosphere, the reduction properties of lump ore were significantly improved under a pure H2 atmosphere, with the endpoint reduction degree reaching as high as 99%. The volume shrinkage of most lump ores increased after hydrogen enrichment. Notably, the shrinkage ratio of limonite before softening was considerably higher than that of hematite under both CO–N2 and CO–H2–N2 atmospheres. This suggests that the high-temperature compressive strength of limonite is lower than that of hematite. Hydrogen enrichment also led to a decrease in the softening beginning temperature of the lump ores, resulting in a broader softening range that shifted to a lower temperature range. The softening beginning and finishing temperatures of limonite were lower than those of hematite. Furthermore, hydrogen enrichment increased the melting beginning temperature, narrowed the melting range, and shifted it to a higher temperature region, thereby significantly improving the gas permeability of the burden column. After hydrogen enrichment, both the maximum pressure drop and permeability index of the lump ore decreased, which facilitated the reduction of the lump ore and the carburization of solid iron, ultimately increasing the mass of the dripping. These findings suggest that hydrogen enrichment can enhance the gas permeability of the burden column, thereby benefiting advanced smelting processes.
ArticleNumber ISIJINT-2024-364
Author Hao, Di
Yang, Zhi-wei
Wang, Jing-song
Wang, Xu
Wang, Guang
Xue, Qing-guo
Author_xml – sequence: 1
  orcidid: 0000-0002-0982-3447
  fullname: Wang, Guang
  organization: State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing
– sequence: 2
  fullname: Yang, Zhi-wei
  organization: State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing
– sequence: 3
  fullname: Hao, Di
  organization: State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing
– sequence: 4
  fullname: Wang, Xu
  organization: State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing
– sequence: 5
  fullname: Wang, Jing-song
  organization: State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing
– sequence: 6
  fullname: Xue, Qing-guo
  organization: State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing
BackLink https://cir.nii.ac.jp/crid/1390303465378262400$$DView record in CiNii
BookMark eNptkF1LG0EUhgex0NT6H-bCK2HtfK47l2pj3RIUNELvhpOZM8lIMhtmNkL-vbuNeNF68x44vB_wfCPHqUtIyDlnF0Jq_SOW-BJTjzlBH7sE64v2qf3d3s8rwYSqZK2OyIRLdVlpVbNjMmGG64prbb6S01Ligg22RkkuJ2Q7DQFdT7tA7_Y-d0tMdJpydKsNpp6GLtNH9Ds3DlFInj51occU07La4LofLr3GFbzGLpex5Gcc-vIYne-3-Pc12222tM1D_iFj-U6-BFgXPH2_J-T5djq_uatmD7_am6tZ5ZRQqoJaGx4MOONFDcY7JbGRC8Y5d-CBB3AMgvdCLoTyjTJ-kIYrbhxouXDyhFwfel3uSskY7DbHDeS95cyOGO1_GO07RjtitAPGoeTsUJJitC6OyqVhkklVa3nZiFooxgbbn4PtpfSwxI8lyH10a_xkqda2HuXfxY-IW0G2mOQb_aqchA
Cites_doi 10.2355/isijinternational.ISIJINT-2023-477
10.1016/j.ijhydene.2022.07.035
10.2355/isijinternational.44.2057
10.1016/j.ijhydene.2020.06.250
10.1016/j.ijhydene.2020.03.143
10.1007/s42243-023-00951-3
10.1016/S0010-938X(02)00092-6
10.1016/j.ijhydene.2004.10.013
10.2355/tetsutohagane1955.68.15_2338
10.1007/s12613-020-2021-4
10.1016/j.jclepro.2021.127259
10.1515/htmp-2015-0031
10.3390/met14040480
10.2355/isijinternational.ISIJINT-2020-180
10.1016/j.tca.2016.12.009
10.1016/j.partic.2018.03.001
10.2355/isijinternational.ISIJINT-2015-269
10.1080/03019233.2018.1464107
10.1016/j.ijhydene.2023.08.218
10.1016/j.jclepro.2023.137659
10.1007/s11663-018-1299-3
10.3390/ma14247540
10.1016/j.esd.2023.101373
10.1007/s11837-022-05301-4
ContentType Journal Article
Copyright 2025 The Iron and Steel Institute of Japan.
Copyright_xml – notice: 2025 The Iron and Steel Institute of Japan.
DBID RYH
AAYXX
CITATION
DOI 10.2355/isijinternational.ISIJINT-2024-364
DatabaseName CiNii Complete
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1347-5460
EndPage 802
ExternalDocumentID 10_2355_isijinternational_ISIJINT_2024_364
article_isijinternational_65_6_65_ISIJINT_2024_364_article_char_en
GroupedDBID 5GY
AAFWJ
ABEFU
AENEX
ALMA_UNASSIGNED_HOLDINGS
ARCSS
CS3
DU5
EBS
EJD
GROUPED_DOAJ
HH5
JSF
JSH
KQ8
OK1
RJT
RZJ
SJN
~02
2WC
AFPKN
RYH
TKC
ZY4
AAYXX
CITATION
ID FETCH-LOGICAL-c4244-a6591f9ac9d26a9dc43e83b0111cada1fac0afdd23b24d849dd8481419ca53bc3
ISSN 0915-1559
IngestDate Thu Jul 03 08:40:02 EDT 2025
Thu Jun 26 23:12:46 EDT 2025
Thu Jul 17 14:00:50 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4244-a6591f9ac9d26a9dc43e83b0111cada1fac0afdd23b24d849dd8481419ca53bc3
ORCID 0000-0002-0982-3447
OpenAccessLink http://dx.doi.org/10.2355/isijinternational.ISIJINT-2024-364
PageCount 9
ParticipantIDs crossref_primary_10_2355_isijinternational_ISIJINT_2024_364
nii_cinii_1390303465378262400
jstage_primary_article_isijinternational_65_6_65_ISIJINT_2024_364_article_char_en
PublicationCentury 2000
PublicationDate 2025/05/30
PublicationDateYYYYMMDD 2025-05-30
PublicationDate_xml – month: 05
  year: 2025
  text: 2025/05/30
  day: 30
PublicationDecade 2020
PublicationTitle ISIJ International
PublicationTitleAlternate ISIJ Int.
PublicationTitle_FL ISIJ Int
ISIJ International
ISIJ International
PublicationYear 2025
Publisher The Iron and Steel Institute of Japan
一般社団法人 日本鉄鋼協会
Publisher_xml – name: The Iron and Steel Institute of Japan
– name: 一般社団法人 日本鉄鋼協会
References 12) T. Murakami, H. Wakabayashi, D. Maruoka and E. Kasai: ISIJ Int., 60 (2020), 2678. https://doi.org/10.2355/isijinternational.ISIJINT-2020-180
24) W.T. Guo, Q.G. Xue, Y.L. Liu, X.F. She and J.S. Wang: High Temp. Mater. Proc, 35 (2016), 805. https://doi.org/10.1515/htmp-2015-0031
13) M.N.A.A. Tahari, F. Salleh, S. Tengku, A. Samsuri, S. Samidin and A. Yarmo: Int J Hydrogen Energy, 46 (2021), 24791. https://doi.org/10.1016/j.ijhydene.2020.06.250
14) K. Piotrowski, K. Mondal, H. Lorethova, L. Stonawski, T. Szymanski and T. Wiltowski: Int. J. Hydrogen Energy, 30 (2005), 1543. https://doi.org/10.1016/j.ijhydene.2004.10.013
18) Y.Y. Xiao, K. Zhu, S.X. Ye, Z.G. Xie, Y.W. Zhang and X.G. Lu: Int. J. Hydrogen Energy, 47 (2022), 31129. https://doi.org/10.1016/j.ijhydene.2022.07.035
27) Z. Du, Q.S. Zhu, F. Pan, Z. Zou, Z.H. Xie and H.Z. Li: Particuology, 41 (2018), 11. https://doi.org/10.1016/j.partic.2018.03.001
5) L.L. Niu, J.L. Zhang, Y.Z. Wang, J.Q. Huang, B. Feng and Z.J. Liu: JOM, 74 (2022), 2733. https://doi.org/10.1007/s11837-022-05301-4
1) X.Y. Wang, B. Li, C. Lu, Z.J. Guan, B.F. Cai, Y. Lei and G. Yan: Res. Environ. Sci, 35 (2022), 339 (in Chinese). https://doi.org/10.13198/j.issn.1001-6929.2021.11.11
2) H. Huang, M.K. Guan, K.X. Wang, J.Y. Zhao and Q.Z. Yang: Energy Sustain. Dev, 78 (2024), 101373. https://doi.org/10.1016/j.esd.2023.101373
16) Q. Lyu, Y.N. Qie, X.J. Liu, C.C. Lan, J.P. Li and S. Liu: Thermochimica Acta, 648 (2017), 79. https://doi.org/10.1016/j.tca.2016.12.009
6) J. Tang, M.S. Chu, F. Li, C. Feng, Z.G. Liu and Y.S. Zhou: Int J Min Met Mater, 27 (2020), 713. https://doi.org/10.1007/s12613-020-2021-4
11) Y.N. Qie, D.Y. Shangguan, Y.Z. Li, X.D. Wang, Q. Lyu and X. Wang: ISIJ Int., 64 (2024), 1360. https://doi.org/10.2355/isijinternational.ISIJINT-2023-477
23) C.C. Lan, S.H. Zhang, X.J. Liu, L. Qing and M.F. Jiang: Int. J. Hydrogen Energy, 5 (2020), 14255. https://doi.org/10.1016/j.ijhydene.2020.03.143
28) J.Q. Zhang, A. Schneider and G. Inden: Corrosion Science, 45 (2003), 281. https://doi.org/10.1016/S0010-938X(02)00092-6
21) H. Kokubu, A. Sasaki, S. Taguchi and N. Tsuchiya: ISIJ Int., 68 (1982), 2338. https://doi.org/10.2355/tetsutohagane1955.68.15_2338
15) A. Heidari, N. Niknahad, M. Iljana and T. Fabritius: Materials, 14 (2021), 7540. https://doi.org/10.3390/ma14247540
19) S. Ueda, T. Kon, T. Miki, S.J. Kim and H. Nogami: ISIJ Int., 55 (2015), 2098. https://doi.org/10.2355/isijinternational.ISIJINT-2015-269
22) C.J. Yan, F.M. Li, Y.N. Qie, S. Liu and L. Qing: J. Iron Steel Res, 29 (2017), 441 (in Chinese). https://doi.org/10.13228/j.boyuan.issn1001-0963.20160233
17) G.Q. Yang, J.L. Zhang, Y.X. Chen, Q.Y. Wu, Z.Y. Zhao and J. Zhao: Iron Steel, 47 (2012), 14 (in Chinese). https://doi.org/10.13228/j.boyuan.issn0449-749x.2012.09.011
20) W.H. Wu, Y.Y. Xiao, Y.W. Zhang, K. Zhu, X.L. Zou and X.G. Lu: Int. J. Hydrogen Energy, 49 (2024), 1059. https://doi.org/10.1016/j.ijhydene.2023.08.218
9) B. Lu, G. Wang, L.D. Zhao, H.B. Zuo and J.S. Wang: J. Iron Steel Res. Int, 30 (2023), 2366. https://doi.org/10.1007/s42243-023-00951-3
7) X.Y. Zhang, K.X. Jiao, J.L. Zhang and Z.Y. Guo: J. Clean. Prod, 306 (2021), 127259. https://doi.org/10.1016/j.jclepro.2021.127259
26) K. Higuchi, M. Naito, M. Nakano and Y. Takamoto: ISIJ Int., 44 (2004), 2057. https://doi.org/10.2355/isijinternational.44.2057
8) X.L. Liu, T. Honeyands, G. Evans, P. Zulli and D. O’Dea: Ironmaking & Steelmaking, 46 (2019), 953. https://doi.org/10.1080/03019233.2018.1464107
3) J.Y. Yu, R.S. Xu, J.L. Zhang and A.Y. Zheng: J. Clean. Prod, 414 (2023), 137659. https://doi.org/10.1016/j.jclepro.2023.137659
4) Q.Y. Feng and G. Wang: Metals, 14 (2024), 480. https://doi.org/10.3390/met14040480
10) Y.N. Qie, L. Qing, X.J. Liu, J.P. Li, C.C. Lan, S.H. Zhang and C.J. Yan: Metall Mater Trans B, 49 (2018), 2622. https://doi.org/10.1007/s11663-018-1299-3
25) G.H. Zhu: Iron Steel, 55 (2020), 1 (in Chinese). https://doi.org/10.13228/j.boyuan.issn0449-749x.20190532
22
23
24
25
26
27
28
10
11
12
13
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
21
References_xml – reference: 4) Q.Y. Feng and G. Wang: Metals, 14 (2024), 480. https://doi.org/10.3390/met14040480
– reference: 21) H. Kokubu, A. Sasaki, S. Taguchi and N. Tsuchiya: ISIJ Int., 68 (1982), 2338. https://doi.org/10.2355/tetsutohagane1955.68.15_2338
– reference: 13) M.N.A.A. Tahari, F. Salleh, S. Tengku, A. Samsuri, S. Samidin and A. Yarmo: Int J Hydrogen Energy, 46 (2021), 24791. https://doi.org/10.1016/j.ijhydene.2020.06.250
– reference: 14) K. Piotrowski, K. Mondal, H. Lorethova, L. Stonawski, T. Szymanski and T. Wiltowski: Int. J. Hydrogen Energy, 30 (2005), 1543. https://doi.org/10.1016/j.ijhydene.2004.10.013
– reference: 2) H. Huang, M.K. Guan, K.X. Wang, J.Y. Zhao and Q.Z. Yang: Energy Sustain. Dev, 78 (2024), 101373. https://doi.org/10.1016/j.esd.2023.101373
– reference: 7) X.Y. Zhang, K.X. Jiao, J.L. Zhang and Z.Y. Guo: J. Clean. Prod, 306 (2021), 127259. https://doi.org/10.1016/j.jclepro.2021.127259
– reference: 16) Q. Lyu, Y.N. Qie, X.J. Liu, C.C. Lan, J.P. Li and S. Liu: Thermochimica Acta, 648 (2017), 79. https://doi.org/10.1016/j.tca.2016.12.009
– reference: 17) G.Q. Yang, J.L. Zhang, Y.X. Chen, Q.Y. Wu, Z.Y. Zhao and J. Zhao: Iron Steel, 47 (2012), 14 (in Chinese). https://doi.org/10.13228/j.boyuan.issn0449-749x.2012.09.011
– reference: 19) S. Ueda, T. Kon, T. Miki, S.J. Kim and H. Nogami: ISIJ Int., 55 (2015), 2098. https://doi.org/10.2355/isijinternational.ISIJINT-2015-269
– reference: 3) J.Y. Yu, R.S. Xu, J.L. Zhang and A.Y. Zheng: J. Clean. Prod, 414 (2023), 137659. https://doi.org/10.1016/j.jclepro.2023.137659
– reference: 25) G.H. Zhu: Iron Steel, 55 (2020), 1 (in Chinese). https://doi.org/10.13228/j.boyuan.issn0449-749x.20190532
– reference: 20) W.H. Wu, Y.Y. Xiao, Y.W. Zhang, K. Zhu, X.L. Zou and X.G. Lu: Int. J. Hydrogen Energy, 49 (2024), 1059. https://doi.org/10.1016/j.ijhydene.2023.08.218
– reference: 8) X.L. Liu, T. Honeyands, G. Evans, P. Zulli and D. O’Dea: Ironmaking & Steelmaking, 46 (2019), 953. https://doi.org/10.1080/03019233.2018.1464107
– reference: 5) L.L. Niu, J.L. Zhang, Y.Z. Wang, J.Q. Huang, B. Feng and Z.J. Liu: JOM, 74 (2022), 2733. https://doi.org/10.1007/s11837-022-05301-4
– reference: 23) C.C. Lan, S.H. Zhang, X.J. Liu, L. Qing and M.F. Jiang: Int. J. Hydrogen Energy, 5 (2020), 14255. https://doi.org/10.1016/j.ijhydene.2020.03.143
– reference: 15) A. Heidari, N. Niknahad, M. Iljana and T. Fabritius: Materials, 14 (2021), 7540. https://doi.org/10.3390/ma14247540
– reference: 6) J. Tang, M.S. Chu, F. Li, C. Feng, Z.G. Liu and Y.S. Zhou: Int J Min Met Mater, 27 (2020), 713. https://doi.org/10.1007/s12613-020-2021-4
– reference: 11) Y.N. Qie, D.Y. Shangguan, Y.Z. Li, X.D. Wang, Q. Lyu and X. Wang: ISIJ Int., 64 (2024), 1360. https://doi.org/10.2355/isijinternational.ISIJINT-2023-477
– reference: 22) C.J. Yan, F.M. Li, Y.N. Qie, S. Liu and L. Qing: J. Iron Steel Res, 29 (2017), 441 (in Chinese). https://doi.org/10.13228/j.boyuan.issn1001-0963.20160233
– reference: 9) B. Lu, G. Wang, L.D. Zhao, H.B. Zuo and J.S. Wang: J. Iron Steel Res. Int, 30 (2023), 2366. https://doi.org/10.1007/s42243-023-00951-3
– reference: 27) Z. Du, Q.S. Zhu, F. Pan, Z. Zou, Z.H. Xie and H.Z. Li: Particuology, 41 (2018), 11. https://doi.org/10.1016/j.partic.2018.03.001
– reference: 28) J.Q. Zhang, A. Schneider and G. Inden: Corrosion Science, 45 (2003), 281. https://doi.org/10.1016/S0010-938X(02)00092-6
– reference: 10) Y.N. Qie, L. Qing, X.J. Liu, J.P. Li, C.C. Lan, S.H. Zhang and C.J. Yan: Metall Mater Trans B, 49 (2018), 2622. https://doi.org/10.1007/s11663-018-1299-3
– reference: 24) W.T. Guo, Q.G. Xue, Y.L. Liu, X.F. She and J.S. Wang: High Temp. Mater. Proc, 35 (2016), 805. https://doi.org/10.1515/htmp-2015-0031
– reference: 18) Y.Y. Xiao, K. Zhu, S.X. Ye, Z.G. Xie, Y.W. Zhang and X.G. Lu: Int. J. Hydrogen Energy, 47 (2022), 31129. https://doi.org/10.1016/j.ijhydene.2022.07.035
– reference: 1) X.Y. Wang, B. Li, C. Lu, Z.J. Guan, B.F. Cai, Y. Lei and G. Yan: Res. Environ. Sci, 35 (2022), 339 (in Chinese). https://doi.org/10.13198/j.issn.1001-6929.2021.11.11
– reference: 12) T. Murakami, H. Wakabayashi, D. Maruoka and E. Kasai: ISIJ Int., 60 (2020), 2678. https://doi.org/10.2355/isijinternational.ISIJINT-2020-180
– reference: 26) K. Higuchi, M. Naito, M. Nakano and Y. Takamoto: ISIJ Int., 44 (2004), 2057. https://doi.org/10.2355/isijinternational.44.2057
– ident: 11
  doi: 10.2355/isijinternational.ISIJINT-2023-477
– ident: 18
  doi: 10.1016/j.ijhydene.2022.07.035
– ident: 26
  doi: 10.2355/isijinternational.44.2057
– ident: 13
  doi: 10.1016/j.ijhydene.2020.06.250
– ident: 23
  doi: 10.1016/j.ijhydene.2020.03.143
– ident: 9
  doi: 10.1007/s42243-023-00951-3
– ident: 28
  doi: 10.1016/S0010-938X(02)00092-6
– ident: 14
  doi: 10.1016/j.ijhydene.2004.10.013
– ident: 21
  doi: 10.2355/tetsutohagane1955.68.15_2338
– ident: 6
  doi: 10.1007/s12613-020-2021-4
– ident: 7
  doi: 10.1016/j.jclepro.2021.127259
– ident: 24
  doi: 10.1515/htmp-2015-0031
– ident: 4
  doi: 10.3390/met14040480
– ident: 12
  doi: 10.2355/isijinternational.ISIJINT-2020-180
– ident: 22
– ident: 17
– ident: 16
  doi: 10.1016/j.tca.2016.12.009
– ident: 27
  doi: 10.1016/j.partic.2018.03.001
– ident: 1
– ident: 19
  doi: 10.2355/isijinternational.ISIJINT-2015-269
– ident: 8
  doi: 10.1080/03019233.2018.1464107
– ident: 20
  doi: 10.1016/j.ijhydene.2023.08.218
– ident: 3
  doi: 10.1016/j.jclepro.2023.137659
– ident: 10
  doi: 10.1007/s11663-018-1299-3
– ident: 15
  doi: 10.3390/ma14247540
– ident: 2
  doi: 10.1016/j.esd.2023.101373
– ident: 5
  doi: 10.1007/s11837-022-05301-4
– ident: 25
SSID ssib002484313
ssj0027274
Score 2.434004
Snippet To explore smelting behavior of lump ores under hydrogen-rich conditions and guide optimization of burden structure of blast furnace after hydrogen injection,...
SourceID crossref
nii
jstage
SourceType Index Database
Publisher
StartPage 794
SubjectTerms Blast furnace
Hydrogen enrichment
Lump ore
Softening-melting properties
Title Effect of Hydrogen Enrichment for Reduction and Softening-melting Behaviors of Different Types of Lump Iron Ores
URI https://www.jstage.jst.go.jp/article/isijinternational/65/6/65_ISIJINT-2024-364/_article/-char/en
https://cir.nii.ac.jp/crid/1390303465378262400
Volume 65
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX ISIJ International, 2025/05/30, Vol.65(6), pp.794-802
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfYQAgeEJ-iwCY_8MTk0TiO04gnhEBrEZOmdVLFS-TYzpZpJFWWboK_njvns6zSgBercmUnufv5fHe-OxPyVoHchX01YSnHY0ZhBYtCsFq5MGPrpQYEJ2YjfzuUByditggWfVizyy6pkn39a2Neyf9wFfqAr5gl-w-c7SaFDvgN_IUWOAztX_G4KT2M-t5PUxanWLE_B8F25k74MYCwxMqsVRtyfAky16IjhP2wFy7euc3SdwEd7WUplXPMui4QXcs9zITbK8om2rDRZKfH09m6P7H3zaNPa6WaPRFFCvZ8P8vYtc16kVeAvF0bs1gNfRA8cMfn4w41iOhp2XzKcWXtxXqowwz2_XzoevQChseh9R5UC15fhCwQ9d0CrWRW5gqm3yToOahJwJ3sMjvPhl-63_QATLhgvhRb5C4HAwLvtvh6NDS0JqA5-b1pzut63e2b3Sfvmqe8v_0ZayrNvXPQ6rFcw1aeZQNVZf6YPGpsDPqxBswTcsfmT8nDQeXJZ2RZQ4cWKW2hQ3voUIAO7aBDgd70BnRoBx2cpIMOddDBLoQORehQhM5zcvLl8_zTAWsu32Aacx-ZkkHkpZHSkeFSRUYL3078BLYDTyujvFTpsUqN4X4C63oiImPwZgbhRVoFfqL9F2Q7L3L7ktBgonjqRSHowlaIRCYhT1Itw3BstRTWG5EPLf3iZV1jJQbbFKkf36B-jPCeHs5jpH4M1B-Ro5rk3dhmPW4YK4NYYvPnHN0QTHUEyTIiO8C9WGfYgo0EO6GPhQhBnZYYdP3qlv9fkwf9MnlDtqtyZXdAea2SXef02XVo_A0FzaLW
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+hydrogen+enrichment+for+reduction+and+softening-melting+behaviors+of+different+types+of+lump+iron+ores&rft.jtitle=ISIJ+International&rft.au=Wang+Guang&rft.au=Yang+Zhi-wei&rft.au=Hao+Di&rft.au=Wang+Xu&rft.date=2025-05-30&rft.pub=The+Iron+and+Steel+Institute+of+Japan&rft.issn=0915-1559&rft.eissn=1347-5460&rft.volume=advpub&rft_id=info:doi/10.2355%2Fisijinternational.isijint-2024-364
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0915-1559&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0915-1559&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0915-1559&client=summon