Effect of Hydrogen Enrichment for Reduction and Softening-melting Behaviors of Different Types of Lump Iron Ores
To explore smelting behavior of lump ores under hydrogen-rich conditions and guide optimization of burden structure of blast furnace after hydrogen injection, this study investigates the reduction and softening-melting behavior of lump ores. The results indicated that, compared to a pure CO atmosphe...
Saved in:
Published in | ISIJ International Vol. 65; no. 6; pp. 794 - 802 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
The Iron and Steel Institute of Japan
30.05.2025
一般社団法人 日本鉄鋼協会 |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To explore smelting behavior of lump ores under hydrogen-rich conditions and guide optimization of burden structure of blast furnace after hydrogen injection, this study investigates the reduction and softening-melting behavior of lump ores. The results indicated that, compared to a pure CO atmosphere, the reduction properties of lump ore were significantly improved under a pure H2 atmosphere, with the endpoint reduction degree reaching as high as 99%. The volume shrinkage of most lump ores increased after hydrogen enrichment. Notably, the shrinkage ratio of limonite before softening was considerably higher than that of hematite under both CO–N2 and CO–H2–N2 atmospheres. This suggests that the high-temperature compressive strength of limonite is lower than that of hematite. Hydrogen enrichment also led to a decrease in the softening beginning temperature of the lump ores, resulting in a broader softening range that shifted to a lower temperature range. The softening beginning and finishing temperatures of limonite were lower than those of hematite. Furthermore, hydrogen enrichment increased the melting beginning temperature, narrowed the melting range, and shifted it to a higher temperature region, thereby significantly improving the gas permeability of the burden column. After hydrogen enrichment, both the maximum pressure drop and permeability index of the lump ore decreased, which facilitated the reduction of the lump ore and the carburization of solid iron, ultimately increasing the mass of the dripping. These findings suggest that hydrogen enrichment can enhance the gas permeability of the burden column, thereby benefiting advanced smelting processes. |
---|---|
AbstractList | To explore smelting behavior of lump ores under hydrogen-rich conditions and guide optimization of burden structure of blast furnace after hydrogen injection, this study investigates the reduction and softening-melting behavior of lump ores. The results indicated that, compared to a pure CO atmosphere, the reduction properties of lump ore were significantly improved under a pure H₂ atmosphere, with the endpoint reduction degree reaching as high as 99%. The volume shrinkage of most lump ores increased after hydrogen enrichment. Notably, the shrinkage ratio of limonite before softening was considerably higher than that of hematite under both CO-N2 and CO-H2 -N2 atmospheres. This suggests that the high-temperature compressive strength of limonite is lower than that of hematite. Hydrogen enrichment also led to a decrease in the softening beginning temperature of the lump ores, resulting in a broader softening range that shifted to a lower temperature range. The softening beginning and finishing temperatures of limonite were lower than those of hematite. Furthermore, hydrogen enrichment increased the melting beginning temperature, narrowed the melting range, and shifted it to a higher temperature region, thereby significantly improving the gas permeability of the burden column. After hydrogen enrichment, both the maximum pressure drop and permeability index of the lump ore decreased, which facilitated the reduction of the lump ore and the carburization of solid iron, ultimately increasing the mass of the dripping. These findings suggest that hydrogen enrichment can enhance the gas permeability of the burden column, thereby benefiting advanced smelting processes. To explore smelting behavior of lump ores under hydrogen-rich conditions and guide optimization of burden structure of blast furnace after hydrogen injection, this study investigates the reduction and softening-melting behavior of lump ores. The results indicated that, compared to a pure CO atmosphere, the reduction properties of lump ore were significantly improved under a pure H2 atmosphere, with the endpoint reduction degree reaching as high as 99%. The volume shrinkage of most lump ores increased after hydrogen enrichment. Notably, the shrinkage ratio of limonite before softening was considerably higher than that of hematite under both CO–N2 and CO–H2–N2 atmospheres. This suggests that the high-temperature compressive strength of limonite is lower than that of hematite. Hydrogen enrichment also led to a decrease in the softening beginning temperature of the lump ores, resulting in a broader softening range that shifted to a lower temperature range. The softening beginning and finishing temperatures of limonite were lower than those of hematite. Furthermore, hydrogen enrichment increased the melting beginning temperature, narrowed the melting range, and shifted it to a higher temperature region, thereby significantly improving the gas permeability of the burden column. After hydrogen enrichment, both the maximum pressure drop and permeability index of the lump ore decreased, which facilitated the reduction of the lump ore and the carburization of solid iron, ultimately increasing the mass of the dripping. These findings suggest that hydrogen enrichment can enhance the gas permeability of the burden column, thereby benefiting advanced smelting processes. |
ArticleNumber | ISIJINT-2024-364 |
Author | Hao, Di Yang, Zhi-wei Wang, Jing-song Wang, Xu Wang, Guang Xue, Qing-guo |
Author_xml | – sequence: 1 orcidid: 0000-0002-0982-3447 fullname: Wang, Guang organization: State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing – sequence: 2 fullname: Yang, Zhi-wei organization: State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing – sequence: 3 fullname: Hao, Di organization: State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing – sequence: 4 fullname: Wang, Xu organization: State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing – sequence: 5 fullname: Wang, Jing-song organization: State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing – sequence: 6 fullname: Xue, Qing-guo organization: State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing |
BackLink | https://cir.nii.ac.jp/crid/1390303465378262400$$DView record in CiNii |
BookMark | eNptkF1LG0EUhgex0NT6H-bCK2HtfK47l2pj3RIUNELvhpOZM8lIMhtmNkL-vbuNeNF68x44vB_wfCPHqUtIyDlnF0Jq_SOW-BJTjzlBH7sE64v2qf3d3s8rwYSqZK2OyIRLdVlpVbNjMmGG64prbb6S01Ligg22RkkuJ2Q7DQFdT7tA7_Y-d0tMdJpydKsNpp6GLtNH9Ds3DlFInj51occU07La4LofLr3GFbzGLpex5Gcc-vIYne-3-Pc12222tM1D_iFj-U6-BFgXPH2_J-T5djq_uatmD7_am6tZ5ZRQqoJaGx4MOONFDcY7JbGRC8Y5d-CBB3AMgvdCLoTyjTJ-kIYrbhxouXDyhFwfel3uSskY7DbHDeS95cyOGO1_GO07RjtitAPGoeTsUJJitC6OyqVhkklVa3nZiFooxgbbn4PtpfSwxI8lyH10a_xkqda2HuXfxY-IW0G2mOQb_aqchA |
Cites_doi | 10.2355/isijinternational.ISIJINT-2023-477 10.1016/j.ijhydene.2022.07.035 10.2355/isijinternational.44.2057 10.1016/j.ijhydene.2020.06.250 10.1016/j.ijhydene.2020.03.143 10.1007/s42243-023-00951-3 10.1016/S0010-938X(02)00092-6 10.1016/j.ijhydene.2004.10.013 10.2355/tetsutohagane1955.68.15_2338 10.1007/s12613-020-2021-4 10.1016/j.jclepro.2021.127259 10.1515/htmp-2015-0031 10.3390/met14040480 10.2355/isijinternational.ISIJINT-2020-180 10.1016/j.tca.2016.12.009 10.1016/j.partic.2018.03.001 10.2355/isijinternational.ISIJINT-2015-269 10.1080/03019233.2018.1464107 10.1016/j.ijhydene.2023.08.218 10.1016/j.jclepro.2023.137659 10.1007/s11663-018-1299-3 10.3390/ma14247540 10.1016/j.esd.2023.101373 10.1007/s11837-022-05301-4 |
ContentType | Journal Article |
Copyright | 2025 The Iron and Steel Institute of Japan. |
Copyright_xml | – notice: 2025 The Iron and Steel Institute of Japan. |
DBID | RYH AAYXX CITATION |
DOI | 10.2355/isijinternational.ISIJINT-2024-364 |
DatabaseName | CiNii Complete CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1347-5460 |
EndPage | 802 |
ExternalDocumentID | 10_2355_isijinternational_ISIJINT_2024_364 article_isijinternational_65_6_65_ISIJINT_2024_364_article_char_en |
GroupedDBID | 5GY AAFWJ ABEFU AENEX ALMA_UNASSIGNED_HOLDINGS ARCSS CS3 DU5 EBS EJD GROUPED_DOAJ HH5 JSF JSH KQ8 OK1 RJT RZJ SJN ~02 2WC AFPKN RYH TKC ZY4 AAYXX CITATION |
ID | FETCH-LOGICAL-c4244-a6591f9ac9d26a9dc43e83b0111cada1fac0afdd23b24d849dd8481419ca53bc3 |
ISSN | 0915-1559 |
IngestDate | Thu Jul 03 08:40:02 EDT 2025 Thu Jun 26 23:12:46 EDT 2025 Thu Jul 17 14:00:50 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4244-a6591f9ac9d26a9dc43e83b0111cada1fac0afdd23b24d849dd8481419ca53bc3 |
ORCID | 0000-0002-0982-3447 |
OpenAccessLink | http://dx.doi.org/10.2355/isijinternational.ISIJINT-2024-364 |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_2355_isijinternational_ISIJINT_2024_364 nii_cinii_1390303465378262400 jstage_primary_article_isijinternational_65_6_65_ISIJINT_2024_364_article_char_en |
PublicationCentury | 2000 |
PublicationDate | 2025/05/30 |
PublicationDateYYYYMMDD | 2025-05-30 |
PublicationDate_xml | – month: 05 year: 2025 text: 2025/05/30 day: 30 |
PublicationDecade | 2020 |
PublicationTitle | ISIJ International |
PublicationTitleAlternate | ISIJ Int. |
PublicationTitle_FL | ISIJ Int ISIJ International ISIJ International |
PublicationYear | 2025 |
Publisher | The Iron and Steel Institute of Japan 一般社団法人 日本鉄鋼協会 |
Publisher_xml | – name: The Iron and Steel Institute of Japan – name: 一般社団法人 日本鉄鋼協会 |
References | 12) T. Murakami, H. Wakabayashi, D. Maruoka and E. Kasai: ISIJ Int., 60 (2020), 2678. https://doi.org/10.2355/isijinternational.ISIJINT-2020-180 24) W.T. Guo, Q.G. Xue, Y.L. Liu, X.F. She and J.S. Wang: High Temp. Mater. Proc, 35 (2016), 805. https://doi.org/10.1515/htmp-2015-0031 13) M.N.A.A. Tahari, F. Salleh, S. Tengku, A. Samsuri, S. Samidin and A. Yarmo: Int J Hydrogen Energy, 46 (2021), 24791. https://doi.org/10.1016/j.ijhydene.2020.06.250 14) K. Piotrowski, K. Mondal, H. Lorethova, L. Stonawski, T. Szymanski and T. Wiltowski: Int. J. Hydrogen Energy, 30 (2005), 1543. https://doi.org/10.1016/j.ijhydene.2004.10.013 18) Y.Y. Xiao, K. Zhu, S.X. Ye, Z.G. Xie, Y.W. Zhang and X.G. Lu: Int. J. Hydrogen Energy, 47 (2022), 31129. https://doi.org/10.1016/j.ijhydene.2022.07.035 27) Z. Du, Q.S. Zhu, F. Pan, Z. Zou, Z.H. Xie and H.Z. Li: Particuology, 41 (2018), 11. https://doi.org/10.1016/j.partic.2018.03.001 5) L.L. Niu, J.L. Zhang, Y.Z. Wang, J.Q. Huang, B. Feng and Z.J. Liu: JOM, 74 (2022), 2733. https://doi.org/10.1007/s11837-022-05301-4 1) X.Y. Wang, B. Li, C. Lu, Z.J. Guan, B.F. Cai, Y. Lei and G. Yan: Res. Environ. Sci, 35 (2022), 339 (in Chinese). https://doi.org/10.13198/j.issn.1001-6929.2021.11.11 2) H. Huang, M.K. Guan, K.X. Wang, J.Y. Zhao and Q.Z. Yang: Energy Sustain. Dev, 78 (2024), 101373. https://doi.org/10.1016/j.esd.2023.101373 16) Q. Lyu, Y.N. Qie, X.J. Liu, C.C. Lan, J.P. Li and S. Liu: Thermochimica Acta, 648 (2017), 79. https://doi.org/10.1016/j.tca.2016.12.009 6) J. Tang, M.S. Chu, F. Li, C. Feng, Z.G. Liu and Y.S. Zhou: Int J Min Met Mater, 27 (2020), 713. https://doi.org/10.1007/s12613-020-2021-4 11) Y.N. Qie, D.Y. Shangguan, Y.Z. Li, X.D. Wang, Q. Lyu and X. Wang: ISIJ Int., 64 (2024), 1360. https://doi.org/10.2355/isijinternational.ISIJINT-2023-477 23) C.C. Lan, S.H. Zhang, X.J. Liu, L. Qing and M.F. Jiang: Int. J. Hydrogen Energy, 5 (2020), 14255. https://doi.org/10.1016/j.ijhydene.2020.03.143 28) J.Q. Zhang, A. Schneider and G. Inden: Corrosion Science, 45 (2003), 281. https://doi.org/10.1016/S0010-938X(02)00092-6 21) H. Kokubu, A. Sasaki, S. Taguchi and N. Tsuchiya: ISIJ Int., 68 (1982), 2338. https://doi.org/10.2355/tetsutohagane1955.68.15_2338 15) A. Heidari, N. Niknahad, M. Iljana and T. Fabritius: Materials, 14 (2021), 7540. https://doi.org/10.3390/ma14247540 19) S. Ueda, T. Kon, T. Miki, S.J. Kim and H. Nogami: ISIJ Int., 55 (2015), 2098. https://doi.org/10.2355/isijinternational.ISIJINT-2015-269 22) C.J. Yan, F.M. Li, Y.N. Qie, S. Liu and L. Qing: J. Iron Steel Res, 29 (2017), 441 (in Chinese). https://doi.org/10.13228/j.boyuan.issn1001-0963.20160233 17) G.Q. Yang, J.L. Zhang, Y.X. Chen, Q.Y. Wu, Z.Y. Zhao and J. Zhao: Iron Steel, 47 (2012), 14 (in Chinese). https://doi.org/10.13228/j.boyuan.issn0449-749x.2012.09.011 20) W.H. Wu, Y.Y. Xiao, Y.W. Zhang, K. Zhu, X.L. Zou and X.G. Lu: Int. J. Hydrogen Energy, 49 (2024), 1059. https://doi.org/10.1016/j.ijhydene.2023.08.218 9) B. Lu, G. Wang, L.D. Zhao, H.B. Zuo and J.S. Wang: J. Iron Steel Res. Int, 30 (2023), 2366. https://doi.org/10.1007/s42243-023-00951-3 7) X.Y. Zhang, K.X. Jiao, J.L. Zhang and Z.Y. Guo: J. Clean. Prod, 306 (2021), 127259. https://doi.org/10.1016/j.jclepro.2021.127259 26) K. Higuchi, M. Naito, M. Nakano and Y. Takamoto: ISIJ Int., 44 (2004), 2057. https://doi.org/10.2355/isijinternational.44.2057 8) X.L. Liu, T. Honeyands, G. Evans, P. Zulli and D. O’Dea: Ironmaking & Steelmaking, 46 (2019), 953. https://doi.org/10.1080/03019233.2018.1464107 3) J.Y. Yu, R.S. Xu, J.L. Zhang and A.Y. Zheng: J. Clean. Prod, 414 (2023), 137659. https://doi.org/10.1016/j.jclepro.2023.137659 4) Q.Y. Feng and G. Wang: Metals, 14 (2024), 480. https://doi.org/10.3390/met14040480 10) Y.N. Qie, L. Qing, X.J. Liu, J.P. Li, C.C. Lan, S.H. Zhang and C.J. Yan: Metall Mater Trans B, 49 (2018), 2622. https://doi.org/10.1007/s11663-018-1299-3 25) G.H. Zhu: Iron Steel, 55 (2020), 1 (in Chinese). https://doi.org/10.13228/j.boyuan.issn0449-749x.20190532 22 23 24 25 26 27 28 10 11 12 13 14 15 16 17 18 19 1 2 3 4 5 6 7 8 9 20 21 |
References_xml | – reference: 4) Q.Y. Feng and G. Wang: Metals, 14 (2024), 480. https://doi.org/10.3390/met14040480 – reference: 21) H. Kokubu, A. Sasaki, S. Taguchi and N. Tsuchiya: ISIJ Int., 68 (1982), 2338. https://doi.org/10.2355/tetsutohagane1955.68.15_2338 – reference: 13) M.N.A.A. Tahari, F. Salleh, S. Tengku, A. Samsuri, S. Samidin and A. Yarmo: Int J Hydrogen Energy, 46 (2021), 24791. https://doi.org/10.1016/j.ijhydene.2020.06.250 – reference: 14) K. Piotrowski, K. Mondal, H. Lorethova, L. Stonawski, T. Szymanski and T. Wiltowski: Int. J. Hydrogen Energy, 30 (2005), 1543. https://doi.org/10.1016/j.ijhydene.2004.10.013 – reference: 2) H. Huang, M.K. Guan, K.X. Wang, J.Y. Zhao and Q.Z. Yang: Energy Sustain. Dev, 78 (2024), 101373. https://doi.org/10.1016/j.esd.2023.101373 – reference: 7) X.Y. Zhang, K.X. Jiao, J.L. Zhang and Z.Y. Guo: J. Clean. Prod, 306 (2021), 127259. https://doi.org/10.1016/j.jclepro.2021.127259 – reference: 16) Q. Lyu, Y.N. Qie, X.J. Liu, C.C. Lan, J.P. Li and S. Liu: Thermochimica Acta, 648 (2017), 79. https://doi.org/10.1016/j.tca.2016.12.009 – reference: 17) G.Q. Yang, J.L. Zhang, Y.X. Chen, Q.Y. Wu, Z.Y. Zhao and J. Zhao: Iron Steel, 47 (2012), 14 (in Chinese). https://doi.org/10.13228/j.boyuan.issn0449-749x.2012.09.011 – reference: 19) S. Ueda, T. Kon, T. Miki, S.J. Kim and H. Nogami: ISIJ Int., 55 (2015), 2098. https://doi.org/10.2355/isijinternational.ISIJINT-2015-269 – reference: 3) J.Y. Yu, R.S. Xu, J.L. Zhang and A.Y. Zheng: J. Clean. Prod, 414 (2023), 137659. https://doi.org/10.1016/j.jclepro.2023.137659 – reference: 25) G.H. Zhu: Iron Steel, 55 (2020), 1 (in Chinese). https://doi.org/10.13228/j.boyuan.issn0449-749x.20190532 – reference: 20) W.H. Wu, Y.Y. Xiao, Y.W. Zhang, K. Zhu, X.L. Zou and X.G. Lu: Int. J. Hydrogen Energy, 49 (2024), 1059. https://doi.org/10.1016/j.ijhydene.2023.08.218 – reference: 8) X.L. Liu, T. Honeyands, G. Evans, P. Zulli and D. O’Dea: Ironmaking & Steelmaking, 46 (2019), 953. https://doi.org/10.1080/03019233.2018.1464107 – reference: 5) L.L. Niu, J.L. Zhang, Y.Z. Wang, J.Q. Huang, B. Feng and Z.J. Liu: JOM, 74 (2022), 2733. https://doi.org/10.1007/s11837-022-05301-4 – reference: 23) C.C. Lan, S.H. Zhang, X.J. Liu, L. Qing and M.F. Jiang: Int. J. Hydrogen Energy, 5 (2020), 14255. https://doi.org/10.1016/j.ijhydene.2020.03.143 – reference: 15) A. Heidari, N. Niknahad, M. Iljana and T. Fabritius: Materials, 14 (2021), 7540. https://doi.org/10.3390/ma14247540 – reference: 6) J. Tang, M.S. Chu, F. Li, C. Feng, Z.G. Liu and Y.S. Zhou: Int J Min Met Mater, 27 (2020), 713. https://doi.org/10.1007/s12613-020-2021-4 – reference: 11) Y.N. Qie, D.Y. Shangguan, Y.Z. Li, X.D. Wang, Q. Lyu and X. Wang: ISIJ Int., 64 (2024), 1360. https://doi.org/10.2355/isijinternational.ISIJINT-2023-477 – reference: 22) C.J. Yan, F.M. Li, Y.N. Qie, S. Liu and L. Qing: J. Iron Steel Res, 29 (2017), 441 (in Chinese). https://doi.org/10.13228/j.boyuan.issn1001-0963.20160233 – reference: 9) B. Lu, G. Wang, L.D. Zhao, H.B. Zuo and J.S. Wang: J. Iron Steel Res. Int, 30 (2023), 2366. https://doi.org/10.1007/s42243-023-00951-3 – reference: 27) Z. Du, Q.S. Zhu, F. Pan, Z. Zou, Z.H. Xie and H.Z. Li: Particuology, 41 (2018), 11. https://doi.org/10.1016/j.partic.2018.03.001 – reference: 28) J.Q. Zhang, A. Schneider and G. Inden: Corrosion Science, 45 (2003), 281. https://doi.org/10.1016/S0010-938X(02)00092-6 – reference: 10) Y.N. Qie, L. Qing, X.J. Liu, J.P. Li, C.C. Lan, S.H. Zhang and C.J. Yan: Metall Mater Trans B, 49 (2018), 2622. https://doi.org/10.1007/s11663-018-1299-3 – reference: 24) W.T. Guo, Q.G. Xue, Y.L. Liu, X.F. She and J.S. Wang: High Temp. Mater. Proc, 35 (2016), 805. https://doi.org/10.1515/htmp-2015-0031 – reference: 18) Y.Y. Xiao, K. Zhu, S.X. Ye, Z.G. Xie, Y.W. Zhang and X.G. Lu: Int. J. Hydrogen Energy, 47 (2022), 31129. https://doi.org/10.1016/j.ijhydene.2022.07.035 – reference: 1) X.Y. Wang, B. Li, C. Lu, Z.J. Guan, B.F. Cai, Y. Lei and G. Yan: Res. Environ. Sci, 35 (2022), 339 (in Chinese). https://doi.org/10.13198/j.issn.1001-6929.2021.11.11 – reference: 12) T. Murakami, H. Wakabayashi, D. Maruoka and E. Kasai: ISIJ Int., 60 (2020), 2678. https://doi.org/10.2355/isijinternational.ISIJINT-2020-180 – reference: 26) K. Higuchi, M. Naito, M. Nakano and Y. Takamoto: ISIJ Int., 44 (2004), 2057. https://doi.org/10.2355/isijinternational.44.2057 – ident: 11 doi: 10.2355/isijinternational.ISIJINT-2023-477 – ident: 18 doi: 10.1016/j.ijhydene.2022.07.035 – ident: 26 doi: 10.2355/isijinternational.44.2057 – ident: 13 doi: 10.1016/j.ijhydene.2020.06.250 – ident: 23 doi: 10.1016/j.ijhydene.2020.03.143 – ident: 9 doi: 10.1007/s42243-023-00951-3 – ident: 28 doi: 10.1016/S0010-938X(02)00092-6 – ident: 14 doi: 10.1016/j.ijhydene.2004.10.013 – ident: 21 doi: 10.2355/tetsutohagane1955.68.15_2338 – ident: 6 doi: 10.1007/s12613-020-2021-4 – ident: 7 doi: 10.1016/j.jclepro.2021.127259 – ident: 24 doi: 10.1515/htmp-2015-0031 – ident: 4 doi: 10.3390/met14040480 – ident: 12 doi: 10.2355/isijinternational.ISIJINT-2020-180 – ident: 22 – ident: 17 – ident: 16 doi: 10.1016/j.tca.2016.12.009 – ident: 27 doi: 10.1016/j.partic.2018.03.001 – ident: 1 – ident: 19 doi: 10.2355/isijinternational.ISIJINT-2015-269 – ident: 8 doi: 10.1080/03019233.2018.1464107 – ident: 20 doi: 10.1016/j.ijhydene.2023.08.218 – ident: 3 doi: 10.1016/j.jclepro.2023.137659 – ident: 10 doi: 10.1007/s11663-018-1299-3 – ident: 15 doi: 10.3390/ma14247540 – ident: 2 doi: 10.1016/j.esd.2023.101373 – ident: 5 doi: 10.1007/s11837-022-05301-4 – ident: 25 |
SSID | ssib002484313 ssj0027274 |
Score | 2.434004 |
Snippet | To explore smelting behavior of lump ores under hydrogen-rich conditions and guide optimization of burden structure of blast furnace after hydrogen injection,... |
SourceID | crossref nii jstage |
SourceType | Index Database Publisher |
StartPage | 794 |
SubjectTerms | Blast furnace Hydrogen enrichment Lump ore Softening-melting properties |
Title | Effect of Hydrogen Enrichment for Reduction and Softening-melting Behaviors of Different Types of Lump Iron Ores |
URI | https://www.jstage.jst.go.jp/article/isijinternational/65/6/65_ISIJINT-2024-364/_article/-char/en https://cir.nii.ac.jp/crid/1390303465378262400 |
Volume | 65 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | ISIJ International, 2025/05/30, Vol.65(6), pp.794-802 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfYQAgeEJ-iwCY_8MTk0TiO04gnhEBrEZOmdVLFS-TYzpZpJFWWboK_njvns6zSgBercmUnufv5fHe-OxPyVoHchX01YSnHY0ZhBYtCsFq5MGPrpQYEJ2YjfzuUByditggWfVizyy6pkn39a2Neyf9wFfqAr5gl-w-c7SaFDvgN_IUWOAztX_G4KT2M-t5PUxanWLE_B8F25k74MYCwxMqsVRtyfAky16IjhP2wFy7euc3SdwEd7WUplXPMui4QXcs9zITbK8om2rDRZKfH09m6P7H3zaNPa6WaPRFFCvZ8P8vYtc16kVeAvF0bs1gNfRA8cMfn4w41iOhp2XzKcWXtxXqowwz2_XzoevQChseh9R5UC15fhCwQ9d0CrWRW5gqm3yToOahJwJ3sMjvPhl-63_QATLhgvhRb5C4HAwLvtvh6NDS0JqA5-b1pzut63e2b3Sfvmqe8v_0ZayrNvXPQ6rFcw1aeZQNVZf6YPGpsDPqxBswTcsfmT8nDQeXJZ2RZQ4cWKW2hQ3voUIAO7aBDgd70BnRoBx2cpIMOddDBLoQORehQhM5zcvLl8_zTAWsu32Aacx-ZkkHkpZHSkeFSRUYL3078BLYDTyujvFTpsUqN4X4C63oiImPwZgbhRVoFfqL9F2Q7L3L7ktBgonjqRSHowlaIRCYhT1Itw3BstRTWG5EPLf3iZV1jJQbbFKkf36B-jPCeHs5jpH4M1B-Ro5rk3dhmPW4YK4NYYvPnHN0QTHUEyTIiO8C9WGfYgo0EO6GPhQhBnZYYdP3qlv9fkwf9MnlDtqtyZXdAea2SXef02XVo_A0FzaLW |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+hydrogen+enrichment+for+reduction+and+softening-melting+behaviors+of+different+types+of+lump+iron+ores&rft.jtitle=ISIJ+International&rft.au=Wang+Guang&rft.au=Yang+Zhi-wei&rft.au=Hao+Di&rft.au=Wang+Xu&rft.date=2025-05-30&rft.pub=The+Iron+and+Steel+Institute+of+Japan&rft.issn=0915-1559&rft.eissn=1347-5460&rft.volume=advpub&rft_id=info:doi/10.2355%2Fisijinternational.isijint-2024-364 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0915-1559&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0915-1559&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0915-1559&client=summon |