Heart rate recovery: autonomic determinants, methods of assessment and association with mortality and cardiovascular diseases
Summary Cardiovascular disease (CVD) is the primary cause of mortality worldwide. Cardiac autonomic dysfunction seems to be related to the genesis of several CVDs and is also linked to the increased risk of mortality in CVD patients. The quantification of heart rate decrement after exercise – known...
Saved in:
Published in | Clinical physiology and functional imaging Vol. 34; no. 5; pp. 327 - 339 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
01.09.2014
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
Cardiovascular disease (CVD) is the primary cause of mortality worldwide. Cardiac autonomic dysfunction seems to be related to the genesis of several CVDs and is also linked to the increased risk of mortality in CVD patients. The quantification of heart rate decrement after exercise – known as heart rate recovery (HRR) – is a simple tool for assessing cardiac autonomic activity in healthy and CVD patients. Furthermore, since The Cleveland Clinic studies, HRR has also been used as a powerful index for predicting mortality. For these reasons, in recent years, the scientific community has been interested in proposing methods and protocols to investigate HRR and understand its underlying mechanisms. The aim of this review is to discuss current knowledge about HRR, including its potential primary and secondary physiological determinants, as well as its role in predicting mortality. Published data show that HRR can be modelled by an exponential curve, with a fast and a slow decay component. HRR may be influenced by population and exercise characteristics. The fast component mainly seems to be dictated by the cardiac parasympathetic reactivation, probably promoted by the deactivation of central command and mechanoreflex inputs immediately after exercise cessation. On the other hand, the slow phase of HRR may be determined by cardiac sympathetic withdrawal, possibly via the deactivation of metaboreflex and thermoregulatory mechanisms. All these pathways seem to be impaired in CVD, helping to explain the slower HRR in such patients and the increased rate of mortality in individuals who present a slower HRR. |
---|---|
AbstractList | Cardiovascular disease (
CVD
) is the primary cause of mortality worldwide. Cardiac autonomic dysfunction seems to be related to the genesis of several
CVD
s and is also linked to the increased risk of mortality in
CVD
patients. The quantification of heart rate decrement after exercise – known as heart rate recovery (
HRR
) – is a simple tool for assessing cardiac autonomic activity in healthy and
CVD
patients. Furthermore, since The Cleveland Clinic studies,
HRR
has also been used as a powerful index for predicting mortality. For these reasons, in recent years, the scientific community has been interested in proposing methods and protocols to investigate
HRR
and understand its underlying mechanisms. The aim of this review is to discuss current knowledge about
HRR
, including its potential primary and secondary physiological determinants, as well as its role in predicting mortality. Published data show that
HRR
can be modelled by an exponential curve, with a fast and a slow decay component.
HRR
may be influenced by population and exercise characteristics. The fast component mainly seems to be dictated by the cardiac parasympathetic reactivation, probably promoted by the deactivation of central command and mechanoreflex inputs immediately after exercise cessation. On the other hand, the slow phase of
HRR
may be determined by cardiac sympathetic withdrawal, possibly via the deactivation of metaboreflex and thermoregulatory mechanisms. All these pathways seem to be impaired in
CVD
, helping to explain the slower
HRR
in such patients and the increased rate of mortality in individuals who present a slower
HRR
. Cardiovascular disease (CVD) is the primary cause of mortality worldwide. Cardiac autonomic dysfunction seems to be related to the genesis of several CVDs and is also linked to the increased risk of mortality in CVD patients. The quantification of heart rate decrement after exercise - known as heart rate recovery (HRR) - is a simple tool for assessing cardiac autonomic activity in healthy and CVD patients. Furthermore, since The Cleveland Clinic studies, HRR has also been used as a powerful index for predicting mortality. For these reasons, in recent years, the scientific community has been interested in proposing methods and protocols to investigate HRR and understand its underlying mechanisms. The aim of this review is to discuss current knowledge about HRR, including its potential primary and secondary physiological determinants, as well as its role in predicting mortality. Published data show that HRR can be modelled by an exponential curve, with a fast and a slow decay component. HRR may be influenced by population and exercise characteristics. The fast component mainly seems to be dictated by the cardiac parasympathetic reactivation, probably promoted by the deactivation of central command and mechanoreflex inputs immediately after exercise cessation. On the other hand, the slow phase of HRR may be determined by cardiac sympathetic withdrawal, possibly via the deactivation of metaboreflex and thermoregulatory mechanisms. All these pathways seem to be impaired in CVD, helping to explain the slower HRR in such patients and the increased rate of mortality in individuals who present a slower HRR.Cardiovascular disease (CVD) is the primary cause of mortality worldwide. Cardiac autonomic dysfunction seems to be related to the genesis of several CVDs and is also linked to the increased risk of mortality in CVD patients. The quantification of heart rate decrement after exercise - known as heart rate recovery (HRR) - is a simple tool for assessing cardiac autonomic activity in healthy and CVD patients. Furthermore, since The Cleveland Clinic studies, HRR has also been used as a powerful index for predicting mortality. For these reasons, in recent years, the scientific community has been interested in proposing methods and protocols to investigate HRR and understand its underlying mechanisms. The aim of this review is to discuss current knowledge about HRR, including its potential primary and secondary physiological determinants, as well as its role in predicting mortality. Published data show that HRR can be modelled by an exponential curve, with a fast and a slow decay component. HRR may be influenced by population and exercise characteristics. The fast component mainly seems to be dictated by the cardiac parasympathetic reactivation, probably promoted by the deactivation of central command and mechanoreflex inputs immediately after exercise cessation. On the other hand, the slow phase of HRR may be determined by cardiac sympathetic withdrawal, possibly via the deactivation of metaboreflex and thermoregulatory mechanisms. All these pathways seem to be impaired in CVD, helping to explain the slower HRR in such patients and the increased rate of mortality in individuals who present a slower HRR. Summary Cardiovascular disease (CVD) is the primary cause of mortality worldwide. Cardiac autonomic dysfunction seems to be related to the genesis of several CVDs and is also linked to the increased risk of mortality in CVD patients. The quantification of heart rate decrement after exercise - known as heart rate recovery (HRR) - is a simple tool for assessing cardiac autonomic activity in healthy and CVD patients. Furthermore, since The Cleveland Clinic studies, HRR has also been used as a powerful index for predicting mortality. For these reasons, in recent years, the scientific community has been interested in proposing methods and protocols to investigate HRR and understand its underlying mechanisms. The aim of this review is to discuss current knowledge about HRR, including its potential primary and secondary physiological determinants, as well as its role in predicting mortality. Published data show that HRR can be modelled by an exponential curve, with a fast and a slow decay component. HRR may be influenced by population and exercise characteristics. The fast component mainly seems to be dictated by the cardiac parasympathetic reactivation, probably promoted by the deactivation of central command and mechanoreflex inputs immediately after exercise cessation. On the other hand, the slow phase of HRR may be determined by cardiac sympathetic withdrawal, possibly via the deactivation of metaboreflex and thermoregulatory mechanisms. All these pathways seem to be impaired in CVD, helping to explain the slower HRR in such patients and the increased rate of mortality in individuals who present a slower HRR. [PUBLICATION ABSTRACT] Cardiovascular disease (CVD) is the primary cause of mortality worldwide. Cardiac autonomic dysfunction seems to be related to the genesis of several CVDs and is also linked to the increased risk of mortality in CVD patients. The quantification of heart rate decrement after exercise - known as heart rate recovery (HRR) - is a simple tool for assessing cardiac autonomic activity in healthy and CVD patients. Furthermore, since The Cleveland Clinic studies, HRR has also been used as a powerful index for predicting mortality. For these reasons, in recent years, the scientific community has been interested in proposing methods and protocols to investigate HRR and understand its underlying mechanisms. The aim of this review is to discuss current knowledge about HRR, including its potential primary and secondary physiological determinants, as well as its role in predicting mortality. Published data show that HRR can be modelled by an exponential curve, with a fast and a slow decay component. HRR may be influenced by population and exercise characteristics. The fast component mainly seems to be dictated by the cardiac parasympathetic reactivation, probably promoted by the deactivation of central command and mechanoreflex inputs immediately after exercise cessation. On the other hand, the slow phase of HRR may be determined by cardiac sympathetic withdrawal, possibly via the deactivation of metaboreflex and thermoregulatory mechanisms. All these pathways seem to be impaired in CVD, helping to explain the slower HRR in such patients and the increased rate of mortality in individuals who present a slower HRR. Summary Cardiovascular disease (CVD) is the primary cause of mortality worldwide. Cardiac autonomic dysfunction seems to be related to the genesis of several CVDs and is also linked to the increased risk of mortality in CVD patients. The quantification of heart rate decrement after exercise – known as heart rate recovery (HRR) – is a simple tool for assessing cardiac autonomic activity in healthy and CVD patients. Furthermore, since The Cleveland Clinic studies, HRR has also been used as a powerful index for predicting mortality. For these reasons, in recent years, the scientific community has been interested in proposing methods and protocols to investigate HRR and understand its underlying mechanisms. The aim of this review is to discuss current knowledge about HRR, including its potential primary and secondary physiological determinants, as well as its role in predicting mortality. Published data show that HRR can be modelled by an exponential curve, with a fast and a slow decay component. HRR may be influenced by population and exercise characteristics. The fast component mainly seems to be dictated by the cardiac parasympathetic reactivation, probably promoted by the deactivation of central command and mechanoreflex inputs immediately after exercise cessation. On the other hand, the slow phase of HRR may be determined by cardiac sympathetic withdrawal, possibly via the deactivation of metaboreflex and thermoregulatory mechanisms. All these pathways seem to be impaired in CVD, helping to explain the slower HRR in such patients and the increased rate of mortality in individuals who present a slower HRR. |
Author | Peçanha, Tiago Forjaz, Cláudia Lúcia de Moraes Silva-Júnior, Natan Daniel |
Author_xml | – sequence: 1 givenname: Tiago surname: Peçanha fullname: Peçanha, Tiago email: Tiago Peçanha, Av. Prof. Melo Moraes, 65 - Butantã - São Paulo, SP - 05508-030, Brazil, tiagopecanha@usp.br organization: Exercise Hemodynamic Laboratory, School of Physical Education and Sport, University of Sao Paulo, São Paulo, Brazil – sequence: 2 givenname: Natan Daniel surname: Silva-Júnior fullname: Silva-Júnior, Natan Daniel organization: Exercise Hemodynamic Laboratory, School of Physical Education and Sport, University of Sao Paulo, São Paulo, Brazil – sequence: 3 givenname: Cláudia Lúcia de Moraes surname: Forjaz fullname: Forjaz, Cláudia Lúcia de Moraes organization: Exercise Hemodynamic Laboratory, School of Physical Education and Sport, University of Sao Paulo, São Paulo, Brazil |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24237859$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kctu1DAUhi1URC-w4AWQJTYgkdZO4tjTHRrRFhgBEtCys844J6pLYg-20zIL3h3PrYsKvLGP_P3_uR2SPecdEvKcs2Oez4lZdMe85Kx8RA54LUXBJvLH3v274fvkMMYbxrisavmE7Jd1WUklJgfkzwVCSDRAQhrQ-FsMy1MKY_LOD9bQFhOGwTpwKb6hA6Zr30bqOwoxYowDukTBtavQGwvJekfvbLqmgw8JepuW628DobX-FqIZewi0tREh65-Sxx30EZ9t7yPy_ezdt-lFMft8_n76dlaYOpdaCCZYaeS8m0DuTAmpzJw1vGGqMnOOps2RVK0AZFUeA2_mXVuqpqmYrAGUqo7Iq43vIvhfI8akBxsN9j049GPUXAglSi5ZndGXD9AbPwaXq1tRYqJUzpWpF1tqnA_Y6kWwA4Sl3g02AycbwAQfY8BOG5vW40kBbK8506vV6bw6vV5dVrx-oNiZ_ovdut_ZHpf_B_X0y9lOUWwUNib8fa-A8FPndqTQV5_O9Wz29cNVfXmpP1Z_AZEjt_k |
CODEN | CPFICA |
CitedBy_id | crossref_primary_10_31189_2165_6193_12_3_72 crossref_primary_10_3389_fnins_2023_1147299 crossref_primary_10_3389_fpsyg_2019_02950 crossref_primary_10_1152_japplphysiol_00161_2023 crossref_primary_10_1183_23120541_00694_2024 crossref_primary_10_1080_10641963_2016_1246560 crossref_primary_10_19141_2237_3756_lifestyle_v11_n00_pe1600 crossref_primary_10_2196_17326 crossref_primary_10_1016_j_bjpt_2016_10_001 crossref_primary_10_1590_1980_0037_2021v23e83295 crossref_primary_10_1007_s10484_017_9359_z crossref_primary_10_1055_a_1297_4475 crossref_primary_10_1089_jwh_2015_5246 crossref_primary_10_1088_1361_6579_aac24a crossref_primary_10_1111_cpf_12824 crossref_primary_10_1371_journal_pone_0244312 crossref_primary_10_3390_jcm9061897 crossref_primary_10_1002_cncr_30859 crossref_primary_10_1038_s41598_018_34246_5 crossref_primary_10_1136_bmjsem_2019_000672 crossref_primary_10_1186_s12933_020_01109_1 crossref_primary_10_4236_wjcd_2019_93015 crossref_primary_10_3390_ijerph18010109 crossref_primary_10_1249_MSS_0000000000002136 crossref_primary_10_3389_fcvm_2023_1082019 crossref_primary_10_1007_s10286_017_0411_0 crossref_primary_10_1186_s12887_023_04157_0 crossref_primary_10_1080_07853890_2017_1292044 crossref_primary_10_1186_s12872_024_04081_w crossref_primary_10_3389_fphys_2021_632883 crossref_primary_10_1080_07435800_2021_2011908 crossref_primary_10_1016_j_preghy_2018_05_002 crossref_primary_10_4236_wjcd_2022_126028 crossref_primary_10_1111_cpf_12612 crossref_primary_10_3390_jcm13113328 crossref_primary_10_1055_a_1529_6480 crossref_primary_10_56984_8ZG20At5I crossref_primary_10_1111_cpf_12452 crossref_primary_10_20945_2359_3997000000243 crossref_primary_10_3233_WOR_220216 crossref_primary_10_3390_healthcare11192668 crossref_primary_10_1142_S0219519422500191 crossref_primary_10_31189_2165_6193_13_1_3 crossref_primary_10_1016_j_jbmt_2022_12_001 crossref_primary_10_1159_000520314 crossref_primary_10_1111_psyg_12625 crossref_primary_10_1371_journal_pone_0282058 crossref_primary_10_1152_ajpheart_00468_2019 crossref_primary_10_1007_s10103_019_02815_3 crossref_primary_10_1177_10815589231158040 crossref_primary_10_3390_diseases4010004 crossref_primary_10_1016_j_diabres_2019_03_007 crossref_primary_10_1093_annweh_wxab088 crossref_primary_10_1590_s1980_6574201900010021 crossref_primary_10_3389_fphys_2021_596060 crossref_primary_10_3390_jcm11061648 crossref_primary_10_1016_j_autneu_2019_102582 crossref_primary_10_18087_cardio_2022_4_n1897 crossref_primary_10_1007_s11695_020_05053_7 crossref_primary_10_1111_jch_13180 crossref_primary_10_1016_j_dsx_2023_102778 crossref_primary_10_1111_and_13573 crossref_primary_10_1007_s10880_019_09683_7 crossref_primary_10_1089_acm_2020_0346 crossref_primary_10_1080_13506129_2020_1722098 crossref_primary_10_1177_2047487318796296 crossref_primary_10_1097_HCR_0000000000000679 crossref_primary_10_1111_anec_12521 crossref_primary_10_12968_ukve_2024_8_4_189 crossref_primary_10_1111_sms_13932 crossref_primary_10_3389_fnins_2018_00460 crossref_primary_10_1371_journal_pone_0290061 crossref_primary_10_1016_j_physbeh_2020_113292 crossref_primary_10_3389_fphys_2018_01465 crossref_primary_10_3390_fire8010020 crossref_primary_10_3390_s19092113 crossref_primary_10_25259_IJPP_122_2022 crossref_primary_10_1111_eci_14285 crossref_primary_10_1080_00913847_2017_1376571 crossref_primary_10_3390_diagnostics13132229 crossref_primary_10_3390_ijerph20064678 crossref_primary_10_36660_abc_20240435 crossref_primary_10_1016_j_jacc_2023_04_054 crossref_primary_10_1007_s10103_022_03533_z crossref_primary_10_1007_s40618_022_01882_8 crossref_primary_10_3389_fphys_2018_00533 crossref_primary_10_1016_j_amjcard_2018_11_017 crossref_primary_10_1080_1750984X_2022_2145573 crossref_primary_10_54393_pbmj_v5i5_415 crossref_primary_10_1038_s41390_023_02676_1 crossref_primary_10_1016_j_kint_2022_01_032 crossref_primary_10_1109_JBHI_2023_3244005 crossref_primary_10_1016_j_autneu_2021_102897 crossref_primary_10_1016_j_earlhumdev_2016_09_010 crossref_primary_10_1519_JSC_0000000000002948 crossref_primary_10_3389_fped_2019_00065 crossref_primary_10_1016_j_hlc_2022_11_014 crossref_primary_10_1038_s41598_021_89840_x crossref_primary_10_3389_fnins_2017_00727 crossref_primary_10_1186_s12872_023_03194_y crossref_primary_10_1111_cpf_12464 crossref_primary_10_1519_JSC_0000000000004581 crossref_primary_10_1016_j_ijchp_2024_100457 crossref_primary_10_1007_s00392_018_1292_5 crossref_primary_10_3390_ijerph191710463 crossref_primary_10_2147_IJWH_S497927 crossref_primary_10_1007_s11357_023_00951_x crossref_primary_10_1038_s41598_020_58031_5 crossref_primary_10_1186_s13102_020_00192_x crossref_primary_10_3390_jcdd9050131 crossref_primary_10_1113_JP272851 crossref_primary_10_1111_anec_12304 crossref_primary_10_1080_02701367_2021_1917756 crossref_primary_10_4250_jcvi_2019_27_e39 crossref_primary_10_1097_JWH_0000000000000262 crossref_primary_10_1016_j_ijcard_2016_06_274 crossref_primary_10_1186_s40798_022_00537_5 crossref_primary_10_1016_j_ijcard_2016_10_057 crossref_primary_10_3389_fphys_2017_00301 crossref_primary_10_1161_JAHA_120_019460 crossref_primary_10_1113_JP277190 crossref_primary_10_1186_s40885_017_0080_2 crossref_primary_10_1111_dme_13517 crossref_primary_10_3390_sports12120323 crossref_primary_10_15836_ccar2019_233 crossref_primary_10_3390_jcm10081691 crossref_primary_10_4085_1062_6050_0426_19 crossref_primary_10_1016_j_heliyon_2024_e27169 crossref_primary_10_15616_BSL_2018_24_3_245 crossref_primary_10_3389_fvets_2021_641871 crossref_primary_10_3390_ijerph192113899 crossref_primary_10_12965_jer_2448598_299 crossref_primary_10_1007_s11897_017_0330_3 crossref_primary_10_1089_caff_2021_0005 crossref_primary_10_3109_07420528_2015_1096277 crossref_primary_10_1088_1361_6579_aa52b3 crossref_primary_10_15314_tsed_1507128 crossref_primary_10_1002_pbc_28388 crossref_primary_10_1016_j_pmr_2020_07_003 crossref_primary_10_3390_nu16234067 crossref_primary_10_36660_abc_20240435i crossref_primary_10_1177_03000605241266591 crossref_primary_10_25259_IJPP_373_2020 crossref_primary_10_1016_j_jff_2024_106435 crossref_primary_10_1111_pace_13179 crossref_primary_10_1016_j_ijcard_2017_06_067 crossref_primary_10_3389_fphys_2021_702418 crossref_primary_10_1038_s41598_020_67577_3 crossref_primary_10_1055_a_1393_6472 crossref_primary_10_1038_s41598_025_93654_6 crossref_primary_10_1080_08958378_2022_2149905 crossref_primary_10_1177_0269215519840388 crossref_primary_10_1038_s41598_021_91565_w crossref_primary_10_1186_s12890_020_01355_9 crossref_primary_10_32596_ejcm_galenos_2023_2023_02_014 crossref_primary_10_1080_02701367_2021_2008293 crossref_primary_10_38025_2078_1962_2020_99_5_120_126 crossref_primary_10_1093_milmed_usab540 crossref_primary_10_1016_j_plefa_2020_102206 crossref_primary_10_1161_JAHA_117_005505 crossref_primary_10_3390_physiologia3040036 crossref_primary_10_3389_fpsyt_2019_00980 crossref_primary_10_1249_MSS_0000000000003604 crossref_primary_10_28982_josam_7751 crossref_primary_10_1007_s10286_020_00687_0 crossref_primary_10_1249_MSS_0000000000003602 |
Cites_doi | 10.1001/jama.290.12.1600 10.1139/H09-140 10.1007/s10741-012-9314-2 10.1590/S0100-879X2004000300019 10.1016/0735-1097(89)90414-2 10.1016/j.amjcard.2003.09.004 10.1111/j.1475-097X.2012.01125.x 10.1152/ajpheart.00008.2006 10.1016/S0002-9149(02)02607-3 10.1111/j.1365-2796.2011.02452.x 10.1111/j.1600-0838.1997.tb00152.x 10.1016/S0002-9149(03)00733-1 10.1016/S0008-6363(00)00027-4 10.1016/S0008-6363(01)00508-9 10.1054/jcaf.2003.47 10.1055/s-0031-1275356 10.1016/0735-1097(94)90150-3 10.1016/j.jsams.2011.02.012 10.1152/ajpheart.01365.2007 10.1113/jphysiol.1989.sp017560 10.1152/ajpheart.2001.281.2.H469 10.3346/jkms.2006.21.4.621 10.1016/S0735-1097(03)00833-7 10.1161/01.HYP.15.5.505 10.1161/CIRCULATIONAHA.106.634949 10.1249/01.MSS.0000099180.80952.83 10.1016/j.ijcard.2005.10.032 10.1161/01.CIR.84.5.2034 10.1152/jappl.1982.53.6.1572 10.1161/01.CIR.0000147615.62634.48 10.1016/S0733-8651(05)70223-X 10.1016/j.amjhyper.2006.02.001 10.1152/japplphysiol.01370.2003 10.2337/dc10-1424 10.1177/0003319706290624 10.1136/jim-52-06-34 10.1016/j.ijcard.2004.08.026 10.1042/CS20060276 10.1016/0165-1838(88)90078-1 10.1111/j.1464-5491.2012.03719.x 10.1152/jappl.1978.45.4.574 10.1161/01.CIR.0000140765.71014.1C 10.1007/s10286-010-0094-2 10.1111/j.1542-474X.2011.00464.x 10.1152/ajpheart.00335.2007 10.1016/S0002-9149(02)03014-X 10.1016/j.ahj.2004.08.008 10.1007/BF00418477 10.1016/j.biopsycho.2005.11.013 10.1016/j.ahj.2005.09.012 10.1056/NEJM199910283411804 10.1249/mss.0b013e31815aa2ee 10.1161/CIR.0b013e31828124ad 10.1586/erc.11.149 10.1016/S0165-1838(00)00090-4 10.1152/jappl.2001.91.4.1902 10.4070/kcj.2002.32.5.420 10.1161/01.HYP.17.4_Suppl.III36 10.1370/afm.37 10.1001/jama.284.11.1392 10.1093/eurjhf/hfs216 10.1016/0165-1838(94)00141-6 10.1007/s00392-008-0723-0 10.1161/circ.104.16.1911 10.1007/s12017-008-8034-1 10.1249/mss.0b013e31815c4844 10.1113/expphysiol.2009.048041 10.1161/01.CIR.78.4.816 10.1152/ajpheart.00148.2011 10.1111/j.0954-6820.1970.tb02901.x 10.1111/j.1469-445X.2002.tb00055.x 10.1097/HCR.0b013e3181d0c1ad 10.1111/j.1469-8986.2011.01232.x 10.2337/diacare.24.10.1793 10.1152/ajpheart.2000.279.5.H2486 10.1007/s004210050036 10.1002/clc.4960140208 10.1016/j.amjcard.2003.10.039 10.1016/j.ijcard.2010.04.079 10.1113/expphysiol.2009.047548 10.1007/s00421-008-0896-2 10.1007/s00421-009-1276-2 10.1016/j.ahj.2007.02.038 10.1055/s-2007-965162 10.1272/jnms.76.76 10.1016/j.amjcard.2005.01.045 10.1016/j.ijcard.2009.09.562 10.1136/hrt.72.2.150 10.1152/jappl.1999.87.4.1463 10.1016/j.ahj.2008.05.025 10.1016/S0002-9149(02)03410-0 10.2337/diabetes.51.3.803 10.1016/j.rmed.2004.11.012 10.1016/S0002-9149(02)02706-6 10.1056/NEJMoa043012 10.1016/j.sleep.2007.08.016 10.4070/kcj.2007.37.9.432 10.1152/ajpregu.90936.2008 10.1016/S0735-1097(01)01652-7 10.1007/s00421-001-0538-4 10.1097/01.psy.0000130492.03488.e7 10.1111/j.1542-474X.2006.00097.x 10.1002/clc.20548 10.1007/BF00634299 10.1007/s00421-008-0952-y 10.1152/ajpheart.00062.2007 10.1007/BF01824209 10.1016/S0140-6736(06)68770-9 10.1007/s00421-008-0910-8 10.1016/j.cardfail.2009.06.437 10.2337/diacare.26.7.2052 10.1056/NEJM197110142851602 10.1007/BF02332222 10.1016/j.ijcard.2012.04.108 10.1152/ajpheart.00748.2006 10.1097/HCR.0b013e31824f9ddf 10.7326/0003-4819-132-7-200004040-00007 10.1590/S0066-782X2012005000069 10.1016/j.ijcard.2008.08.010 10.1161/01.CIR.0000147188.46287.1B 10.3389/fphys.2012.00289 10.1161/HYPERTENSIONAHA.106.085548 10.1161/CIRCULATIONAHA.105.566745 10.1056/NEJM199108293250905 |
ContentType | Journal Article |
Copyright | 2013 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd 2013 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd. Copyright © 2014 Scandinavian Society of Clinical Physiology and Nuclear Medicine |
Copyright_xml | – notice: 2013 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd – notice: 2013 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd. – notice: Copyright © 2014 Scandinavian Society of Clinical Physiology and Nuclear Medicine |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7TS 7U5 8FD K9. L7M 7X8 |
DOI | 10.1111/cpf.12102 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Physical Education Index Solid State and Superconductivity Abstracts Technology Research Database ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Solid State and Superconductivity Abstracts Technology Research Database Calcium & Calcified Tissue Abstracts Advanced Technologies Database with Aerospace Physical Education Index MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1475-097X |
EndPage | 339 |
ExternalDocumentID | 3412947821 24237859 10_1111_cpf_12102 CPF12102 ark_67375_WNG_LLSJW4VV_K |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: FAPESP |
GroupedDBID | --- .3N .GA .GJ .Y3 05W 0R~ 10A 1OC 29B 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAKAS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZCM ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBS EJD EMOBN ESX EX3 F00 F01 F04 F5P FEDTE FUBAC G-S G.N GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PQQKQ Q.N Q11 QB0 R.K RJQFR ROL RX1 SUPJJ TEORI UB1 V8K W8V W99 WBKPD WHWMO WIH WIJ WIK WOHZO WOW WQJ WRC WVDHM WXI WXSBR XG1 ~IA ~WT AAHQN AAIPD AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7QP 7TS 7U5 8FD K9. L7M 7X8 |
ID | FETCH-LOGICAL-c4242-50502c7bf9a0978578cb0616083cb1ecdb0678d5ae0321016bfd28663074aa883 |
IEDL.DBID | DR2 |
ISSN | 1475-0961 1475-097X |
IngestDate | Fri Jul 11 05:04:35 EDT 2025 Sun Jul 13 04:59:53 EDT 2025 Mon Jul 21 05:42:18 EDT 2025 Thu Apr 24 22:58:47 EDT 2025 Tue Jul 01 01:42:44 EDT 2025 Wed Jan 22 16:38:33 EST 2025 Wed Oct 30 09:52:28 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | exercise heart rate autonomic nervous system parasympathetic nervous system sympathetic nervous system |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2013 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4242-50502c7bf9a0978578cb0616083cb1ecdb0678d5ae0321016bfd28663074aa883 |
Notes | istex:0B2DADB6E94BE9FBA9C82DC7878D3A84A0F83F4A FAPESP ark:/67375/WNG-LLSJW4VV-K ArticleID:CPF12102 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
PMID | 24237859 |
PQID | 1555988067 |
PQPubID | 1006519 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_1558521704 proquest_journals_1555988067 pubmed_primary_24237859 crossref_citationtrail_10_1111_cpf_12102 crossref_primary_10_1111_cpf_12102 wiley_primary_10_1111_cpf_12102_CPF12102 istex_primary_ark_67375_WNG_LLSJW4VV_K |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2014 |
PublicationDateYYYYMMDD | 2014-09-01 |
PublicationDate_xml | – month: 09 year: 2014 text: September 2014 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Clinical physiology and functional imaging |
PublicationTitleAlternate | Clin Physiol Funct Imaging |
PublicationYear | 2014 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Davies TS, Frenneaux MP, Campbell RI, White MJ. Human arterial responses to isometric exercise: the role of the muscle metaboreflex. Clin Sci (Lond) (2007); 112: 441-447. Ushijima A, Fukuma N, Kato Y, Aisu N, Mizuno K. Sympathetic excitation during exercise as a cause of attenuated heart rate recovery in patients with myocardial infarction. J Nippon Med Sch (2009); 76: 76-83. Kenny GP, Niedre PC. The effect of exercise intensity on the post-exercise esophageal temperature response. Eur J Appl Physiol (2002); 86: 342-346. Evrengul H, Tanriverdi H, Kose S, Amasyali B, Kilic A, Celik T, Turhan H. The relationship between heart rate recovery and heart rate variability in coronary artery disease. Ann Noninvasive Electrocardiol (2006); 11: 154-162. Kline CE, Crowley EP, Ewing GB, Burch JB, Blair SN, Durstine JL, Davis JM, Youngstedt SD. Blunted heart rate recovery is improved following exercise training in overweight adults with obstructive sleep apnea. Int J Cardiol (2013); 167: 1610-1615. Carter R 3rd, Watenpaugh DE, Wasmund WL, Wasmund SL, Smith ML. Muscle pump and central command during recovery from exercise in humans. J Appl Physiol (1999); 87: 1463-1469. Akgoz H, Gurkan U, Dayi SU, Terzi S, Akbulut T, Torun A, Tayyareci G. The relationship between beta-receptor sensitivity and nocturnal blood pressure and heart rate recovery in normotensive people. Angiology (2006); 57: 495-500. Barak OF, Jakovljevic DG, Gacesa JZP, Ovcin ZB, Brodie DA, Grujic NG. Heart rate variability before and after cycle exercise in relation to different body positions. J Sports Sci Med (2010); 9: 176-182. Legramante JM, Iellamo F, Massaro M, Sacco S, Galante A. Effects of residential exercise training on heart rate recovery in coronary artery patients. Am J Physiol Heart Circ Physiol (2007); 292: H510-H515. Maddox TM, Ross C, Ho PM, Masoudi FA, Magid D, Daugherty SL, Peterson P, Rumsfeld JS. The prognostic importance of abnormal heart rate recovery and chronotropic response among exercise treadmill test patients. Am Heart J (2008); 156: 736-744. Achugbue FS. The effects of therapeutic passive movement on cardiovascular response in stroke patients. Res J Med Sci (2009); 3: 12-15. McArdle WD, Katch FI, Katch VL. Exercise Physiology: Nutrition, Energy, and Human Performance (2010). Wolters Kluwer/Lippincott Williams & Wilkins Health, Philadelphia, PA. Arena R, Myers J, Abella J, Peberdy MA, Bensimhon D, Chase P, Guazzi M. The prognostic value of the heart rate response during exercise and recovery in patients with heart failure: influence of beta-blockade. Int J Cardiol (2010a); 138: 166-173. Al Haddad H, Mendez-Villanueva A, Bourdon PC, Buchheit M. Effect of acute hypoxia on post-exercise parasympathetic reactivation in healthy men. Front Physiol (2012); 3: 289. Morshedi-Meibodi A, Larson MG, Levy D, O'Donnell CJ, Vasan RS. Heart rate recovery after treadmill exercise testing and risk of cardiovascular disease events (The Framingham Heart Study). Am J Cardiol (2002); 90: 848-852. Journeay WS, Carter R 3rd, Kenny GP. Thermoregulatory control following dynamic exercise. Aviat Space Environ Med (2006); 77: 1174-1182. Cahalin LP, Arena R, Labate V, Bandera F, Guazzi M. Predictors of abnormal heart rate recovery in patients with heart failure reduced and preserved ejection fraction. Eur J Prev Cardiol (2013a); [Epub ahead of print]. Kannankeril PJ, Le FK, Kadish AH, Goldberger JJ. Parasympathetic effects on heart rate recovery after exercise. J Investig Med (2004); 52: 394-401. Okutucu S, Karakulak UN, Aytemir K, Oto A. Heart rate recovery: a practical clinical indicator of abnormal cardiac autonomic function. Expert Rev Cardiovasc Ther (2011); 9: 1417-1430. Ritt LE, Oliveira RB, Myers J, Arena R, Peberdy MA, Bensimhon D, Chase P, Forman D, Guazzi M. Patients with heart failure in the "intermediate range" of peak oxygen uptake: additive value of heart rate recovery and the minute ventilation/carbon dioxide output slope in predicting mortality. J Cardiopulm Rehabil Prev (2012); 32: 141-146. Lampert R, Ickovics J, Horwitz R, Lee F. Depressed autonomic nervous system function in African Americans and individuals of lower social class: a potential mechanism of race- and class-related disparities in health outcomes. Am Heart J (2005); 150: 153-160. Thayer JF, Lane RD. The role of vagal function in the risk for cardiovascular disease and mortality. Biol Psychol (2007); 74: 224-242. Borg G, Linderholm H. Exercise performance and perceived exertion in patients with coronary insufficiency, arterial hypertension and vasoregulatory asthenia. Acta Med Scand (1970); 187: 17-26. Gordon JL, Ditto B, Lavoie KL, Pelletier R, Campbell TS, Arsenault A, Bacon SL. The effect of major depression on postexercise cardiovascular recovery. Psychophysiology (2011); 48: 1605-1610. Negrão CE, Trombetta IC, Batalha LT, Ribeiro MM, Rondon MU, Tinucci T, Forjaz CL, Barretto AC, Halpern A, Villares SM. Muscle metaboreflex control is diminished in normotensive obese women. Am J Physiol Heart Circ Physiol (2001); 281: H469-H475. Eckberg DL, Drabinsky M, Braunwald E. Defective cardiac parasympathetic control in patients with heart disease. N Engl J Med (1971); 285: 877-883. Heffernan KS, Jae SY, Vieira VJ, Iwamoto GA, Wilund KR, Woods JA, Fernhall B. C-reactive protein and cardiac vagal activity following resistance exercise training in young African-American and white men. Am J Physiol Regul Integr Comp Physiol (2009); 296: R1098-R1105. Dimkpa U, Oji JO. Association of heart rate recovery after exercise with indices of obesity in healthy, non-obese adults. Eur J Appl Physiol (2010); 108: 695-699. Coote JH. Recovery of heart rate following intense dynamic exercise. Exp Physiol (2010); 95: 431-440. Nanas S, Anastasiou-Nana M, Dimopoulos S, Sakellariou D, Alexopoulos G, Kapsimalakou S, Papazoglou P, Tsolakis E, Papazachou O, Roussos C, Nanas J. Early heart rate recovery after exercise predicts mortality in patients with chronic heart failure. Int J Cardiol (2006); 110: 393-400. Smith SA, Mitchell JH, Naseem RH, Garry MG. Mechanoreflex mediates the exaggerated exercise pressor reflex in heart failure. Circulation (2005); 112: 2293-2300. Spies C, Otte C, Kanaya A, Pipkin SS, Schiller NB, Whooley MA. Association of metabolic syndrome with exercise capacity and heart rate recovery in patients with coronary heart disease in the heart and soul study. Am J Cardiol (2005); 95: 1175-1179. Vivekananthan DP, Blackstone EH, Pothier CE, Lauer MS. Heart rate recovery after exercise is a predictor of mortality, independent of the angiographic severity of coronary disease. J Am Coll Cardiol (2003); 42: 831-838. Lauer MS. Heart rate recovery: what now? J Intern Med (2011); 270: 597-599. Nobrega AC, Castro CL, Araujo CG. Relative roles of the sympathetic and parasympathetic systems in the 4-s exercise test. Braz J Med Biol Res (1990); 23: 1259-1262. Panzer C, Lauer MS, Brieke A, Blackstone E, Hoogwerf B. Association of fasting plasma glucose with heart rate recovery in healthy adults: a population-based study. Diabetes (2002); 51: 803-807. Wang NC, Chicos A, Banthia S, Bergner DW, Lahiri MK, Ng J, Subacius H, Kadish AH, Goldberger JJ. Persistent sympathoexcitation long after submaximal exercise in subjects with and without coronary artery disease. Am J Physiol Heart Circ Physiol (2011); 301: H912-H920. Bosquet L, Gamelin FX, Berthoin S. Reliability of postexercise heart rate recovery. Int J Sports Med (2008); 29: 238-243. Buchheit M, Millet GP, Parisy A, Pourchez S, Laursen PB, Ahmaidi S. Supramaximal training and postexercise parasympathetic reactivation in adolescents. Med Sci Sports Exerc (2008); 40: 362-371. Sterns DA, Ettinger SM, Gray KS, Whisler SK, Mosher TJ, Smith MB, Sinoway LI. Skeletal muscle metaboreceptor exercise responses are attenuated in heart failure. Circulation (1991); 84: 2034-2039. Arena R, Myers J, Abella J, Pinkstaff S, Peberdy MA, Bensimhon D, Chase P, Guazzi M. Prognostic characteristics of heart rate recovery according to sex in patients with heart failure. Int J Cardiol (2010b); 145: 293-294. Shibasaki M, Sakai M, Oda M, Crandall CG. Muscle mechanoreceptor modulation of sweat rate during recovery from moderate exercise. J Appl Physiol (2004); 96: 2115-2119. Bonde-Petersen F, Rowell LB, Murray RG, Blomqvist GG, White R, Karlsson E, Campbell W, Mitchell JH. Role of cardiac output in the pressor responses to graded muscle ischemia in man. J Appl Physiol (1978); 45: 574-580. Cole CR, Foody JM, Blackstone EH, Lauer MS. Heart rate recovery after submaximal exercise testing as a predictor of mortality in a cardiovascularly healthy cohort. Ann Intern Med (2000); 132: 552-555. Buchheit M, Al Haddad H, Laursen PB, Ahmaidi S. Effect of body posture on postexercise parasympathetic reactivation in men. Exp Physiol (2009); 94: 795-804. Perini R, Orizio C, Gamba A, Veicsteinas A. Kinetics of heart rate and catecholamines during exercise in humans. The effect of heart denervation. Eur J Appl Physiol Occup Physiol (1993); 66: 500-506. Guazzi M, Myers J, Peberdy MA, Bensimhon D, Chase P, Arena R. Cardiopulmonary exercise testing variables reflect the degree of diastolic dysfunction in patients with heart failure-normal ejection fraction. J Cardiopulm Rehabil Prev (2010b); 30: 165-172. Yawn BP, Ammar KA, Thomas R, Wollan PC. Test-retest reproducibility of heart rate recovery after treadmill exercise. Ann Fam Med (2003); 1: 236-241. Cheng YJ, Lauer MS, Earnest CP, Church TS, Kampert JB, Gibbons LW, Blair SN. Heart rate recovery following maximal exercise testing as a predictor of cardiovascular disease and all-cause mortality in men with diabetes. Diabetes Care (2003); 26: 2052-2057. Zeiher AM, Drexler H, Wollschlaeger H, Saurbier B, Just H. Coronary vasomotion in response to sympathetic stimulation in humans: importance of the functional integrity of the endothelium. J Am Coll Cardiol (1989); 14: 1181-1190. Ba A, Delliaux S, Bregeon F, Levy S, Jammes Y. Post-exercise heart rate recovery in healthy, obeses, and COPD subjects: relationshi 1991; 17 1991; 14 2010; 108 2010a; 138 2013; 127 1982; 53 1988; 78 2006; 291 2000; 132 1971; 285 2010b; 30 2007; 74 2007a; 293 2012; 99 1997; 7 2010; 22 2009; 98 2005; 100 2002; 86 2009; 94 2006; 21 2007; 292 2008; 29 2004; 37 2002; 87 2007b; 293 1991; 84 2012; 29 2002; 90 1994; 72 1992; 2 2003; 42 2009; 15 2010; 9 1995; 52 2010; 35 2005; 352 2006; 57 1989; 256 1989; 411 2001; 281 2005; 112 2003; 35 1999; 341 2006; 110 2003; 290 2013a 2009; 296 2001; 24 2012; 32 2011; 9 2004; 52 2011; 301 1990; 23 2009; 76 1978; 45 2007; 153 2005; 95 2003; 26 1988; 23 2000; 81 1995; 268 2000; 80 2001; 38 2008; 40 1991; 325 1989; 58 2005; 99 2009; 105 2001; 91 2004; 66 2013b; 15 1990; 15 2002; 53 2000; 46 2010a; 33 2006; 77 2002; 51 1993; 66 2013; 167 2008; 9 1999; 87 1994; 24 2011; 14 2011; 151 2011; 16 2011; 270 2001; 104 2007; 37 2013; 18 2003; 91 2003; 92 2003; 9 2001; 19 1988; 254 2000; 284 2011; 21 2003; 1 2008; 156 2006; 367 1970; 187 2005; 150 2000; 279 2010 2006; 11 2002; 32 2006; 151 2011; 32 1988; 57 2006; 19 2008; 10 2011; 34 2007; 115 2007; 112 2004; 110 2004; 96 2012; 3 2004; 93 2010b; 145 2011; 48 2009; 3 1989; 14 2008; 295 2010; 95 2007; 49 e_1_2_6_114_1 e_1_2_6_53_1 e_1_2_6_76_1 e_1_2_6_95_1 e_1_2_6_118_1 e_1_2_6_30_1 Journeay WS (e_1_2_6_58_1) 2006; 77 e_1_2_6_72_1 e_1_2_6_91_1 e_1_2_6_110_1 e_1_2_6_133_1 e_1_2_6_19_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_99_1 e_1_2_6_125_1 e_1_2_6_64_1 e_1_2_6_87_1 e_1_2_6_106_1 e_1_2_6_129_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_83_1 e_1_2_6_121_1 e_1_2_6_102_1 e_1_2_6_9_1 Barak OF (e_1_2_6_14_1) 2010; 9 e_1_2_6_5_1 Achugbue FS (e_1_2_6_2_1) 2009; 3 Darr KC (e_1_2_6_39_1) 1988; 254 e_1_2_6_49_1 e_1_2_6_22_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_68_1 e_1_2_6_73_1 e_1_2_6_54_1 e_1_2_6_96_1 e_1_2_6_117_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_92_1 e_1_2_6_132_1 e_1_2_6_113_1 Esco MR (e_1_2_6_46_1) 2010; 22 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_77_1 e_1_2_6_16_1 e_1_2_6_42_1 e_1_2_6_105_1 e_1_2_6_128_1 e_1_2_6_65_1 e_1_2_6_80_1 e_1_2_6_109_1 e_1_2_6_61_1 e_1_2_6_120_1 e_1_2_6_101_1 e_1_2_6_124_1 e_1_2_6_6_1 e_1_2_6_23_1 e_1_2_6_88_1 e_1_2_6_69_1 e_1_2_6_51_1 e_1_2_6_74_1 e_1_2_6_97_1 e_1_2_6_116_1 e_1_2_6_32_1 e_1_2_6_70_1 e_1_2_6_93_1 e_1_2_6_131_1 Nobrega AC (e_1_2_6_94_1) 1990; 23 e_1_2_6_112_1 e_1_2_6_135_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 Cahalin LP (e_1_2_6_27_1) 2013 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_78_1 e_1_2_6_62_1 e_1_2_6_85_1 e_1_2_6_104_1 e_1_2_6_43_1 e_1_2_6_127_1 e_1_2_6_81_1 e_1_2_6_20_1 e_1_2_6_108_1 e_1_2_6_100_1 e_1_2_6_123_1 e_1_2_6_24_1 e_1_2_6_3_1 Bonde‐Petersen F (e_1_2_6_15_1) 1978; 45 e_1_2_6_66_1 e_1_2_6_89_1 e_1_2_6_28_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_98_1 e_1_2_6_115_1 e_1_2_6_75_1 e_1_2_6_10_1 e_1_2_6_119_1 e_1_2_6_71_1 e_1_2_6_90_1 e_1_2_6_130_1 e_1_2_6_111_1 e_1_2_6_134_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_56_1 e_1_2_6_37_1 e_1_2_6_79_1 e_1_2_6_103_1 e_1_2_6_126_1 e_1_2_6_86_1 e_1_2_6_21_1 e_1_2_6_107_1 Arai Y (e_1_2_6_7_1) 1989; 256 e_1_2_6_40_1 e_1_2_6_82_1 e_1_2_6_122_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_25_1 e_1_2_6_48_1 Kinugawa T (e_1_2_6_63_1) 1995; 268 McArdle WD (e_1_2_6_84_1) 2010 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 |
References_xml | – reference: Seshadri N, Acharya N, Lauer MS. Association of diabetes mellitus with abnormal heart rate recovery in patients without known coronary artery disease. Am J Cardiol (2003); 91: 108-111. – reference: Huang PH, Leu HB, Chen JW, Cheng CM, Huang CY, Tuan TC, Ding PY, Lin SJ. Usefulness of attenuated heart rate recovery immediately after exercise to predict endothelial dysfunction in patients with suspected coronary artery disease. Am J Cardiol (2004); 93: 10-13. – reference: Orizio C, Perini R, Comande A, Castellano M, Beschi M, Veicsteinas A. Plasma catecholamines and heart rate at the beginning of muscular exercise in man. Eur J Appl Physiol Occup Physiol (1988); 57: 644-651. – reference: Bonde-Petersen F, Rowell LB, Murray RG, Blomqvist GG, White R, Karlsson E, Campbell W, Mitchell JH. Role of cardiac output in the pressor responses to graded muscle ischemia in man. J Appl Physiol (1978); 45: 574-580. – reference: Watanabe J, Thamilarasan M, Blackstone EH, Thomas JD, Lauer MS. Heart rate recovery immediately after treadmill exercise and left ventricular systolic dysfunction as predictors of mortality: the case of stress echocardiography. Circulation (2001); 104: 1911-1916. – reference: Maddox TM, Ross C, Ho PM, Masoudi FA, Magid D, Daugherty SL, Peterson P, Rumsfeld JS. The prognostic importance of abnormal heart rate recovery and chronotropic response among exercise treadmill test patients. Am Heart J (2008); 156: 736-744. – reference: Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES, Fox CS, Franco S, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Huffman MD, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Magid D, Marcus GM, Marelli A, Matchar DB, McGuire DK, Mohler ER, Moy CS, Mussolino ME, Nichol G, Paynter NP, Schreiner PJ, Sorlie PD, Stein J, Turan TN, Virani SS, Wong ND, Woo D, Turner MB. Heart disease and stroke statistics-2013 update: a report from the American Heart Association. Circulation (2013); 127: e6-e245. – reference: Jensen-Urstad K, Saltin B, Ericson M, Storck N, Jensen-Urstad M. Pronounced resting bradycardia in male elite runners is associated with high heart rate variability. Scand J Med Sci Sports (1997); 7: 274-278. – reference: Racine N, Blanchet M, Ducharme A, Marquis J, Boucher JM, Juneau M, White M. Decreased heart rate recovery after exercise in patients with congestive heart failure: effect of beta-blocker therapy. J Card Fail (2003); 9: 296-302. – reference: Bull RK, Davies CT, Lind AR, White MJ. The human pressor response during and following voluntary and evoked isometric contraction with occluded local blood supply. J Physiol (1989); 411: 63-70. – reference: Lindvall K, Kahan T, de Faire U, Ostergren J, Hjemdahl P. Stress-induced changes in blood pressure and left ventricular function in mild hypertension. Clin Cardiol (1991); 14: 125-132. – reference: Panzer C, Lauer MS, Brieke A, Blackstone E, Hoogwerf B. Association of fasting plasma glucose with heart rate recovery in healthy adults: a population-based study. Diabetes (2002); 51: 803-807. – reference: Carter R 3rd, Watenpaugh DE, Wasmund WL, Wasmund SL, Smith ML. Muscle pump and central command during recovery from exercise in humans. J Appl Physiol (1999); 87: 1463-1469. – reference: Leal AK, Williams MA, Garry MG, Mitchell JH, Smith SA. Evidence for functional alterations in the skeletal muscle mechanoreflex and metaboreflex in hypertensive rats. Am J Physiol Heart Circ Physiol (2008); 295: H1429-H1438. – reference: Guazzi M, Myers J, Peberdy MA, Bensimhon D, Chase P, Arena R. Cardiopulmonary exercise testing variables reflect the degree of diastolic dysfunction in patients with heart failure-normal ejection fraction. J Cardiopulm Rehabil Prev (2010b); 30: 165-172. – reference: Coote JH. Recovery of heart rate following intense dynamic exercise. Exp Physiol (2010); 95: 431-440. – reference: Esco MR, Olson MS. Racial differences exist in cardiovascular parasympathetic modulation following maximal exercise. Age (yrs) (2010); 22: 23.20-23.23. – reference: Perini R, Orizio C, Comande A, Castellano M, Beschi M, Veicsteinas A. Plasma norepinephrine and heart rate dynamics during recovery from submaximal exercise in man. Eur J Appl Physiol Occup Physiol (1989); 58: 879-883. – reference: La Rovere MT, Specchia G, Mortara A, Schwartz PJ. Baroreflex sensitivity, clinical correlates, and cardiovascular mortality among patients with a first myocardial infarction. A prospective study. Circulation (1988); 78: 816-824. – reference: Mahon AD, Anderson CS, Hipp MJ, Hunt KA. Heart rate recovery from submaximal exercise in boys and girls. Med Sci Sports Exerc (2003); 35: 2093-2097. – reference: Davies TS, Frenneaux MP, Campbell RI, White MJ. Human arterial responses to isometric exercise: the role of the muscle metaboreflex. Clin Sci (Lond) (2007); 112: 441-447. – reference: Nissinen SI, Makikallio TH, Seppanen T, Tapanainen JM, Salo M, Tulppo MP, Huikuri HV. Heart rate recovery after exercise as a predictor of mortality among survivors of acute myocardial infarction. Am J Cardiol (2003); 91: 711-714. – reference: Laterza MC, de Matos LD, Trombetta IC, Braga AM, Roveda F, Alves MJ, Krieger EM, Negrao CE, Rondon MU. Exercise training restores baroreflex sensitivity in never-treated hypertensive patients. Hypertension (2007); 49: 1298-1306. – reference: Takahashi T, Okada A, Saitoh T, Hayano J, Miyamoto Y. Difference in human cardiovascular response between upright and supine recovery from upright cycle exercise. Eur J Appl Physiol (2000); 81: 233-239. – reference: Dimkpa U, Oji JO. Association of heart rate recovery after exercise with indices of obesity in healthy, non-obese adults. Eur J Appl Physiol (2010); 108: 695-699. – reference: Akgoz H, Gurkan U, Dayi SU, Terzi S, Akbulut T, Torun A, Tayyareci G. The relationship between beta-receptor sensitivity and nocturnal blood pressure and heart rate recovery in normotensive people. Angiology (2006); 57: 495-500. – reference: Bosquet L, Gamelin FX, Berthoin S. Reliability of postexercise heart rate recovery. Int J Sports Med (2008); 29: 238-243. – reference: Tang YD, Dewland TA, Wencker D, Katz SD. Post-exercise heart rate recovery independently predicts mortality risk in patients with chronic heart failure. J Card Fail (2009); 15: 850-855. – reference: Okutucu S, Karakulak UN, Aytemir K, Oto A. Heart rate recovery: a practical clinical indicator of abnormal cardiac autonomic function. Expert Rev Cardiovasc Ther (2011); 9: 1417-1430. – reference: Cahalin LP, Arena R, Labate V, Bandera F, Lavie CJ, Guazzi M. Heart rate recovery after the 6 min walk test rather than distance ambulated is a powerful prognostic indicator in heart failure with reduced and preserved ejection fraction: a comparison with cardiopulmonary exercise testing. Eur J Heart Fail (2013b); 15: 519-527. – reference: Cole CR, Foody JM, Blackstone EH, Lauer MS. Heart rate recovery after submaximal exercise testing as a predictor of mortality in a cardiovascularly healthy cohort. Ann Intern Med (2000); 132: 552-555. – reference: Shetler K, Marcus R, Froelicher VF, Vora S, Kalisetti D, Prakash M, Do D, Myers J. Heart rate recovery: validation and methodologic issues. J Am Coll Cardiol (2001); 38: 1980-1987. – reference: Ushijima A, Fukuma N, Kato Y, Aisu N, Mizuno K. Sympathetic excitation during exercise as a cause of attenuated heart rate recovery in patients with myocardial infarction. J Nippon Med Sch (2009); 76: 76-83. – reference: Myers J, Hadley D, Oswald U, Bruner K, Kottman W, Hsu L, Dubach P. Effects of exercise training on heart rate recovery in patients with chronic heart failure. Am Heart J (2007); 153: 1056-1063. – reference: McArdle WD, Katch FI, Katch VL. Exercise Physiology: Nutrition, Energy, and Human Performance (2010). Wolters Kluwer/Lippincott Williams & Wilkins Health, Philadelphia, PA. – reference: Trevizani GA, Benchimol-Barbosa PR, Nadal J. Effects of age and aerobic fitness on heart rate recovery in adult men. Arq Bras Cardiol (2012); 99: 802-810. – reference: Zeiher AM, Drexler H, Wollschlaeger H, Saurbier B, Just H. Coronary vasomotion in response to sympathetic stimulation in humans: importance of the functional integrity of the endothelium. J Am Coll Cardiol (1989); 14: 1181-1190. – reference: Hao SC, Chai A, Kligfield P. Heart rate recovery response to symptom-limited treadmill exercise after cardiac rehabilitation in patients with coronary artery disease with and without recent events. Am J Cardiol (2002); 90: 763-765. – reference: Morise AP. Heart rate recovery: predictor of risk today and target of therapy tomorrow? Circulation (2004); 110: 2778-2780. – reference: Wichterle D, Simek J, La Rovere MT, Schwartz PJ, Camm AJ, Malik M. Prevalent low-frequency oscillation of heart rate: novel predictor of mortality after myocardial infarction. Circulation (2004); 110: 1183-1190. – reference: Eckberg DL, Drabinsky M, Braunwald E. Defective cardiac parasympathetic control in patients with heart disease. N Engl J Med (1971); 285: 877-883. – reference: Riley M, Porszasz J, Stanford CF, Nicholls DP. Gas exchange responses to constant work rate exercise in chronic cardiac failure. Br Heart J (1994); 72: 150-155. – reference: Evrengul H, Tanriverdi H, Kose S, Amasyali B, Kilic A, Celik T, Turhan H. The relationship between heart rate recovery and heart rate variability in coronary artery disease. Ann Noninvasive Electrocardiol (2006); 11: 154-162. – reference: Barak OF, Jakovljevic DG, Gacesa JZP, Ovcin ZB, Brodie DA, Grujic NG. Heart rate variability before and after cycle exercise in relation to different body positions. J Sports Sci Med (2010); 9: 176-182. – reference: Mora S, Redberg RF, Cui Y, Whiteman MK, Flaws JA, Sharrett AR, Blumenthal RS. Ability of exercise testing to predict cardiovascular and all-cause death in asymptomatic women: a 20-year follow-up of the lipid research clinics prevalence study. JAMA (2003); 290: 1600-1607. – reference: Achugbue FS. The effects of therapeutic passive movement on cardiovascular response in stroke patients. Res J Med Sci (2009); 3: 12-15. – reference: Carter R 3rd, Watenpaugh DE, Smith ML. Gender differences in cardiovascular regulation during recovery from exercise. J Appl Physiol (2001); 91: 1902-1907. – reference: Dupuy O, Mekary S, Berryman N, Bherer L, Audiffren M, Bosquet L. Reliability of heart rate measures used to assess post-exercise parasympathetic reactivation. Clin Physiol Funct Imaging (2012); 32: 296-304. – reference: Ribeiro GA, Rodrigues LO, Moreira MC, Silami-Garcia E, Pascoa MR, Camargos FF. Thermoregulation in hypertensive men exercising in the heat with water ingestion. Braz J Med Biol Res (2004); 37: 409-417. – reference: Araujo CG, Nobrega AC, Castro CL. Heart rate responses to deep breathing and 4-seconds of exercise before and after pharmacological blockade with atropine and propranolol. Clin Auton Res (1992); 2: 35-40. – reference: Gordon JL, Ditto B, Lavoie KL, Pelletier R, Campbell TS, Arsenault A, Bacon SL. The effect of major depression on postexercise cardiovascular recovery. Psychophysiology (2011); 48: 1605-1610. – reference: Smith SA, Mitchell JH, Naseem RH, Garry MG. Mechanoreflex mediates the exaggerated exercise pressor reflex in heart failure. Circulation (2005); 112: 2293-2300. – reference: Borg G, Linderholm H. Exercise performance and perceived exertion in patients with coronary insufficiency, arterial hypertension and vasoregulatory asthenia. Acta Med Scand (1970); 187: 17-26. – reference: Kinugawa T, Dibner-Dunlap ME. Altered vagal and sympathetic control of heart rate in left ventricular dysfunction and heart failure. Am J Physiol (1995); 268: R310-R316. – reference: Jouven X, Empana JP, Schwartz PJ, Desnos M, Courbon D, Ducimetiere P. Heart-rate profile during exercise as a predictor of sudden death. N Engl J Med (2005); 352: 1951-1958. – reference: Lacasse M, Maltais F, Poirier P, Lacasse Y, Marquis K, Jobin J, LeBlanc P. Post-exercise heart rate recovery and mortality in chronic obstructive pulmonary disease. Respir Med (2005); 99: 877-886. – reference: Ritt LE, Oliveira RB, Myers J, Arena R, Peberdy MA, Bensimhon D, Chase P, Forman D, Guazzi M. Patients with heart failure in the "intermediate range" of peak oxygen uptake: additive value of heart rate recovery and the minute ventilation/carbon dioxide output slope in predicting mortality. J Cardiopulm Rehabil Prev (2012); 32: 141-146. – reference: Dart AM, Du XJ, Kingwell BA. Gender, sex hormones and autonomic nervous control of the cardiovascular system. Cardiovasc Res (2002); 53: 678-687. – reference: Nobrega AC, Castro CL, Araujo CG. Relative roles of the sympathetic and parasympathetic systems in the 4-s exercise test. Braz J Med Biol Res (1990); 23: 1259-1262. – reference: Buchheit M, Gindre C. Cardiac parasympathetic regulation: respective associations with cardiorespiratory fitness and training load. Am J Physiol Heart Circ Physiol (2006); 291: H451-H458. – reference: Sausen MT, Delaney EP, Stillabower ME, Farquhar WB. Enhanced metaboreflex sensitivity in hypertensive humans. Eur J Appl Physiol (2009); 105: 351-356. – reference: Kannankeril PJ, Le FK, Kadish AH, Goldberger JJ. Parasympathetic effects on heart rate recovery after exercise. J Investig Med (2004); 52: 394-401. – reference: Thayer JF, Lane RD. The role of vagal function in the risk for cardiovascular disease and mortality. Biol Psychol (2007); 74: 224-242. – reference: Cahalin LP, Arena R, Labate V, Bandera F, Guazzi M. Predictors of abnormal heart rate recovery in patients with heart failure reduced and preserved ejection fraction. Eur J Prev Cardiol (2013a); [Epub ahead of print]. – reference: Li J, Sinoway AN, Gao Z, Maile MD, Pu M, Sinoway LI. Muscle mechanoreflex and metaboreflex responses after myocardial infarction in rats. Circulation (2004); 110: 3049-3054. – reference: Spies C, Otte C, Kanaya A, Pipkin SS, Schiller NB, Whooley MA. Association of metabolic syndrome with exercise capacity and heart rate recovery in patients with coronary heart disease in the heart and soul study. Am J Cardiol (2005); 95: 1175-1179. – reference: Choi S-H, Lee K-J, Lee K-H, Lee K-H, Choi Y-W, Seo K-W, Kim E-Y, Lee W-S, Kim S-W, Kim T-H, Kim C-J, Ryu W-S. The value of the first two minutes of heart rate recovery after exercise treadmill test in predicting the presence and severity of coronary artery disease. Korean Circ J (2007); 37: 432-436. – reference: Vivekananthan DP, Blackstone EH, Pothier CE, Lauer MS. Heart rate recovery after exercise is a predictor of mortality, independent of the angiographic severity of coronary disease. J Am Coll Cardiol (2003); 42: 831-838. – reference: Brack KE, Winter J, Ng GA. Mechanisms underlying the autonomic modulation of ventricular fibrillation initiation-tentative prophylactic properties of vagus nerve stimulation on malignant arrhythmias in heart failure. Heart Fail Rev (2013); 18: 389-408. – reference: Nanas S, Anastasiou-Nana M, Dimopoulos S, Sakellariou D, Alexopoulos G, Kapsimalakou S, Papazoglou P, Tsolakis E, Papazachou O, Roussos C, Nanas J. Early heart rate recovery after exercise predicts mortality in patients with chronic heart failure. Int J Cardiol (2006); 110: 393-400. – reference: Kenny GP, Niedre PC. The effect of exercise intensity on the post-exercise esophageal temperature response. Eur J Appl Physiol (2002); 86: 342-346. – reference: Akiyama T, Yamazaki T. Adrenergic inhibition of endogenous acetylcholine release on postganglionic cardiac vagal nerve terminals. Cardiovasc Res (2000); 46: 531-538. – reference: Buchheit M, Al Haddad H, Laursen PB, Ahmaidi S. Effect of body posture on postexercise parasympathetic reactivation in men. Exp Physiol (2009); 94: 795-804. – reference: Malliani A, Pagani M, Lombardi F, Furlan R, Guzzetti S, Cerutti S. Spectral analysis to assess increased sympathetic tone in arterial hypertension. Hypertension (1991); 17: III36-III42. – reference: Yawn BP, Ammar KA, Thomas R, Wollan PC. Test-retest reproducibility of heart rate recovery after treadmill exercise. Ann Fam Med (2003); 1: 236-241. – reference: Ranadive SM, Fahs CA, Yan H, Rossow LM, Agiovlasitis S, Fernhall B. Heart rate recovery following maximal arm and leg-ergometry. Clin Auton Res (2011); 21: 117-120. – reference: Gerritsen J, Dekker JM, TenVoorde BJ, Kostense PJ, Heine RJ, Bouter LM, Heethaar RM, Stehouwer CD. Impaired autonomic function is associated with increased mortality, especially in subjects with diabetes, hypertension, or a history of cardiovascular disease: the Hoorn Study. Diabetes Care (2001); 24: 1793-1798. – reference: Guazzi M, Myers J, Ann Peberdy M, Bensimhon D, Chase P, Pinkstaff S, Arena R. Heart rate recovery and tissue Doppler echocardiography in heart failure. Clin Cardiol (2010a); 33: E61-E64. – reference: Cole CR, Blackstone EH, Pashkow FJ, Snader CE, Lauer MS. Heart-rate recovery immediately after exercise as a predictor of mortality. N Engl J Med (1999); 341: 1351-1357. – reference: Pierpont GL, Stolpman DR, Gornick CC. Heart rate recovery post-exercise as an index of parasympathetic activity. J Auton Nerv Syst (2000); 80: 169-174. – reference: Shibasaki M, Sakai M, Oda M, Crandall CG. Muscle mechanoreceptor modulation of sweat rate during recovery from moderate exercise. J Appl Physiol (2004); 96: 2115-2119. – reference: Rondon MU, Laterza MC, de Matos LD, Trombetta IC, Braga AM, Roveda F, Alves MJ, Krieger EM, Negrao CE. Abnormal muscle metaboreflex control of sympathetic activity in never-treated hypertensive subjects. Am J Hypertens (2006); 19: 951-957. – reference: Arena R, Myers J, Abella J, Peberdy MA, Bensimhon D, Chase P, Guazzi M. The prognostic value of the heart rate response during exercise and recovery in patients with heart failure: influence of beta-blockade. Int J Cardiol (2010a); 138: 166-173. – reference: Buchheit M, Papelier Y, Laursen PB, Ahmaidi S. Noninvasive assessment of cardiac parasympathetic function: postexercise heart rate recovery or heart rate variability? Am J Physiol Heart Circ Physiol (2007b); 293: H8-H10. – reference: Kline CE, Crowley EP, Ewing GB, Burch JB, Blair SN, Durstine JL, Davis JM, Youngstedt SD. Blunted heart rate recovery is improved following exercise training in overweight adults with obstructive sleep apnea. Int J Cardiol (2013); 167: 1610-1615. – reference: Lampert R, Ickovics J, Horwitz R, Lee F. Depressed autonomic nervous system function in African Americans and individuals of lower social class: a potential mechanism of race- and class-related disparities in health outcomes. Am Heart J (2005); 150: 153-160. – reference: Maeder MT, Ammann P, Rickli H, Brunner-La Rocca HP. Impact of the exercise mode on heart rate recovery after maximal exercise. Eur J Appl Physiol (2009); 105: 247-255. – reference: Darr KC, Bassett DR, Morgan BJ, Thomas DP. Effects of age and training status on heart rate recovery after peak exercise. Am J Physiol (1988); 254: H340-H343. – reference: Chacko KM, Bauer TA, Dale RA, Dixon JA, Schrier RW, Estacio RO. Heart rate recovery predicts mortality and cardiovascular events in patients with type 2 diabetes. Med Sci Sports Exerc (2008); 40: 288-295. – reference: Arai Y, Saul JP, Albrecht P, Hartley LH, Lilly LS, Cohen RJ, Colucci WS. Modulation of cardiac autonomic activity during and immediately after exercise. Am J Physiol (1989); 256: H132-H141. – reference: Vinik AI, Ziegler D. Diabetic cardiovascular autonomic neuropathy. Circulation (2007); 115: 387-397. – reference: Lee KJ, Kim SW, Ahn JH, Song YB, Lee SY, Jo SW, Kim SM, Woo HJ, Kim TH, Kim CJ, Ryu WS. Heart rate recovery in coronary artery disease and the changes of exercise parameters after coronary stenting. Korean Circ J (2002); 32: 420-426. – reference: Meredith IT, Broughton A, Jennings GL, Esler MD. Evidence of a selective increase in cardiac sympathetic activity in patients with sustained ventricular arrhythmias. N Engl J Med (1991); 325: 618-624. – reference: Lamberts RP, Swart J, Noakes TD, Lambert MI. Changes in heart rate recovery after high-intensity training in well-trained cyclists. Eur J Appl Physiol (2009); 105: 705-713. – reference: Lauer MS. Heart rate recovery: what now? J Intern Med (2011); 270: 597-599. – reference: Sterns DA, Ettinger SM, Gray KS, Whisler SK, Mosher TJ, Smith MB, Sinoway LI. Skeletal muscle metaboreceptor exercise responses are attenuated in heart failure. Circulation (1991); 84: 2034-2039. – reference: Lipinski MJ, Vetrovec GW, Froelicher VF. Importance of the first two minutes of heart rate recovery after exercise treadmill testing in predicting mortality and the presence of coronary artery disease in men. Am J Cardiol (2004); 93: 445-449. – reference: Nishime EO, Cole CR, Blackstone EH, Pashkow FJ, Lauer MS. Heart rate recovery and treadmill exercise score as predictors of mortality in patients referred for exercise ECG. JAMA (2000); 284: 1392-1398. – reference: Arena R, Guazzi M, Myers J, Peberdy MA. Prognostic value of heart rate recovery in patients with heart failure. Am Heart J (2006); 151: 851.e7-e13. – reference: Buchheit M, Duche P, Laursen PB, Ratel S. Postexercise heart rate recovery in children: relationship with power output, blood pH, and lactate. Appl Physiol Nutr Metab (2010); 35: 142-150. – reference: Arena R, Myers J, Abella J, Pinkstaff S, Peberdy MA, Bensimhon D, Chase P, Guazzi M. Prognostic characteristics of heart rate recovery according to sex in patients with heart failure. Int J Cardiol (2010b); 145: 293-294. – reference: Imai K, Sato H, Hori M, Kusuoka H, Ozaki H, Yokoyama H, Takeda H, Inoue M, Kamada T. Vagally mediated heart rate recovery after exercise is accelerated in athletes but blunted in patients with chronic heart failure. J Am Coll Cardiol (1994); 24: 1529-1535. – reference: Sacre JW, Jellis CL, Coombes JS, Marwick TH. Diagnostic accuracy of heart-rate recovery after exercise in the assessment of diabetic cardiac autonomic neuropathy. Diabet Med (2012); 29: e312-e320. – reference: Strike PC, Magid K, Brydon L, Edwards S, McEwan JR, Steptoe A. Exaggerated platelet and hemodynamic reactivity to mental stress in men with coronary artery disease. Psychosom Med (2004); 66: 492-500. – reference: Yamada T, Yoshitama T, Makino K, Lee T, Saeki F. Heart rate recovery after exercise is a predictor of silent myocardial ischemia in patients with type 2 diabetes. Diabetes Care (2011); 34: 724-726. – reference: Heffernan KS, Jae SY, Vieira VJ, Iwamoto GA, Wilund KR, Woods JA, Fernhall B. C-reactive protein and cardiac vagal activity following resistance exercise training in young African-American and white men. Am J Physiol Regul Integr Comp Physiol (2009); 296: R1098-R1105. – reference: Cheng YJ, Lauer MS, Earnest CP, Church TS, Kampert JB, Gibbons LW, Blair SN. Heart rate recovery following maximal exercise testing as a predictor of cardiovascular disease and all-cause mortality in men with diabetes. Diabetes Care (2003); 26: 2052-2057. – reference: Kaye DM, Esler MD. Autonomic control of the aging heart. Neuromolecular Med (2008); 10: 179-186. – reference: Tulumen E, Khalilayeva I, Aytemir K, Ergun Baris Kaya FE, Sinan Deveci O, Aksoy H, Kocabas U, Okutucu S, Tokgozoglu L, Kabakci G, Ozkutlu H, Oto A. The reproducibility of heart rate recovery after treadmill exercise test. Ann Noninvasive Electrocardiol (2011); 16: 365-372. – reference: Buch A, Coote J, Townend J. Mortality, cardiac vagal control and physical training-what's the link? Exp Physiol (2002); 87: 423-435. – reference: Legramante JM, Iellamo F, Massaro M, Sacco S, Galante A. Effects of residential exercise training on heart rate recovery in coronary artery patients. Am J Physiol Heart Circ Physiol (2007); 292: H510-H515. – reference: Lopez AD, Mathers CD, Ezzati M, Jamison DT, Murray CJ. Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data. Lancet (2006); 367: 1747-1757. – reference: Negrão CE, Trombetta IC, Batalha LT, Ribeiro MM, Rondon MU, Tinucci T, Forjaz CL, Barretto AC, Halpern A, Villares SM. Muscle metaboreflex control is diminished in normotensive obese women. Am J Physiol Heart Circ Physiol (2001); 281: H469-H475. – reference: Journeay WS, Carter R 3rd, Kenny GP. Thermoregulatory control following dynamic exercise. Aviat Space Environ Med (2006); 77: 1174-1182. – reference: Buchheit M, Millet GP, Parisy A, Pourchez S, Laursen PB, Ahmaidi S. Supramaximal training and postexercise parasympathetic reactivation in adolescents. Med Sci Sports Exerc (2008); 40: 362-371. – reference: Erdogan D, Gonul E, Icli A, Yucel H, Arslan A, Akcay S, Ozaydin M. Effects of normal blood pressure, prehypertension, and hypertension on autonomic nervous system function. Int J Cardiol (2011); 151: 50-53. – reference: Arduini A, Gomez-Cabrera MC, Romagnoli M. Reliability of different models to assess heart rate recovery after submaximal bicycle exercise. J Sci Med Sport (2011); 14: 352-357. – reference: Warner MR. Time-course and frequency dependence of sympathetic stimulation-evoked inhibition of vagal effects at the sinus node. J Auton Nerv Syst (1995); 52: 23-33. – reference: Rowell LB. Hyperthermia: a hyperadrenergic state. Hypertension (1990); 15: 505-507. – reference: Maeder MT, Munzer T, Rickli H, Schoch OD, Korte W, Hurny C, Ammann P. Association between heart rate recovery and severity of obstructive sleep apnea syndrome. Sleep Med (2008); 9: 753-761. – reference: Pagani M, Malfatto G, Pierini S, Casati R, Masu AM, Poli M, Guzzetti S, Lombardi F, Cerutti S, Malliani A. Spectral analysis of heart rate variability in the assessment of autonomic diabetic neuropathy. J Auton Nerv Syst (1988); 23: 143-153. – reference: Morshedi-Meibodi A, Larson MG, Levy D, O'Donnell CJ, Vasan RS. Heart rate recovery after treadmill exercise testing and risk of cardiovascular disease events (The Framingham Heart Study). Am J Cardiol (2002); 90: 848-852. – reference: Sung J, Choi YH, Park JB. Metabolic syndrome is associated with delayed heart rate recovery after exercise. J Korean Med Sci (2006); 21: 621-626. – reference: Kligfield P, McCormick A, Chai A, Jacobson A, Feuerstadt P, Hao SC. Effect of age and gender on heart rate recovery after submaximal exercise during cardiac rehabilitation in patients with angina pectoris, recent acute myocardial infarction, or coronary bypass surgery. Am J Cardiol (2003); 92: 600-603. – reference: Al Haddad H, Laursen PB, Chollet D, Ahmaidi S, Buchheit M. Reliability of resting and postexercise heart rate measures. Int J Sports Med (2011); 32: 598-605. – reference: Buchheit M, Laursen PB, Ahmaidi S. Parasympathetic reactivation after repeated sprint exercise. Am J Physiol Heart Circ Physiol (2007a); 293: H133-H141. – reference: Ba A, Delliaux S, Bregeon F, Levy S, Jammes Y. Post-exercise heart rate recovery in healthy, obeses, and COPD subjects: relationships with blood lactic acid and PaO2 levels. Clin Res Cardiol (2009); 98: 52-58. – reference: Savin WM, Davidson DM, Haskell WL. Autonomic contribution to heart rate recovery from exercise in humans. J Appl Physiol (1982); 53: 1572-1575. – reference: Al Haddad H, Mendez-Villanueva A, Bourdon PC, Buchheit M. Effect of acute hypoxia on post-exercise parasympathetic reactivation in healthy men. Front Physiol (2012); 3: 289. – reference: Wang NC, Chicos A, Banthia S, Bergner DW, Lahiri MK, Ng J, Subacius H, Kadish AH, Goldberger JJ. Persistent sympathoexcitation long after submaximal exercise in subjects with and without coronary artery disease. Am J Physiol Heart Circ Physiol (2011); 301: H912-H920. – reference: Crandall CG, Zhang R, Levine BD. Effects of whole body heating on dynamic baroreflex regulation of heart rate in humans. Am J Physiol Heart Circ Physiol (2000); 279: H2486-H2492. – reference: Chiu YT, Chen YT, Lin NN, Cheng CC, Gong CL, Cheng FC, Hsu SL, Chi CS, Fu YC. Sympathetic activity and myocardial damage after stimulation of dorsal medulla and vagotomy in a novel animal model. Int J Cardiol (2005); 100: 401-407. – reference: Rosenwinkel ET, Bloomfield DM, Arwady MA, Goldsmith RL. Exercise and autonomic function in health and cardiovascular disease. Cardiol Clin (2001); 19: 369-387. – reference: Perini R, Orizio C, Gamba A, Veicsteinas A. Kinetics of heart rate and catecholamines during exercise in humans. The effect of heart denervation. Eur J Appl Physiol Occup Physiol (1993); 66: 500-506. – volume: 30 start-page: 165 year: 2010b end-page: 172 article-title: Cardiopulmonary exercise testing variables reflect the degree of diastolic dysfunction in patients with heart failure‐normal ejection fraction publication-title: J Cardiopulm Rehabil Prev – volume: 51 start-page: 803 year: 2002 end-page: 807 article-title: Association of fasting plasma glucose with heart rate recovery in healthy adults: a population‐based study publication-title: Diabetes – volume: 132 start-page: 552 year: 2000 end-page: 555 article-title: Heart rate recovery after submaximal exercise testing as a predictor of mortality in a cardiovascularly healthy cohort publication-title: Ann Intern Med – volume: 145 start-page: 293 year: 2010b end-page: 294 article-title: Prognostic characteristics of heart rate recovery according to sex in patients with heart failure publication-title: Int J Cardiol – volume: 341 start-page: 1351 year: 1999 end-page: 1357 article-title: Heart‐rate recovery immediately after exercise as a predictor of mortality publication-title: N Engl J Med – volume: 48 start-page: 1605 year: 2011 end-page: 1610 article-title: The effect of major depression on postexercise cardiovascular recovery publication-title: Psychophysiology – volume: 15 start-page: 519 year: 2013b end-page: 527 article-title: Heart rate recovery after the 6 min walk test rather than distance ambulated is a powerful prognostic indicator in heart failure with reduced and preserved ejection fraction: a comparison with cardiopulmonary exercise testing publication-title: Eur J Heart Fail – volume: 270 start-page: 597 year: 2011 end-page: 599 article-title: Heart rate recovery: what now? publication-title: J Intern Med – volume: 187 start-page: 17 year: 1970 end-page: 26 article-title: Exercise performance and perceived exertion in patients with coronary insufficiency, arterial hypertension and vasoregulatory asthenia publication-title: Acta Med Scand – volume: 292 start-page: H510 year: 2007 end-page: H515 article-title: Effects of residential exercise training on heart rate recovery in coronary artery patients publication-title: Am J Physiol Heart Circ Physiol – volume: 93 start-page: 10 year: 2004 end-page: 13 article-title: Usefulness of attenuated heart rate recovery immediately after exercise to predict endothelial dysfunction in patients with suspected coronary artery disease publication-title: Am J Cardiol – volume: 112 start-page: 2293 year: 2005 end-page: 2300 article-title: Mechanoreflex mediates the exaggerated exercise pressor reflex in heart failure publication-title: Circulation – volume: 256 start-page: H132 year: 1989 end-page: H141 article-title: Modulation of cardiac autonomic activity during and immediately after exercise publication-title: Am J Physiol – volume: 23 start-page: 143 year: 1988 end-page: 153 article-title: Spectral analysis of heart rate variability in the assessment of autonomic diabetic neuropathy publication-title: J Auton Nerv Syst – volume: 325 start-page: 618 year: 1991 end-page: 624 article-title: Evidence of a selective increase in cardiac sympathetic activity in patients with sustained ventricular arrhythmias publication-title: N Engl J Med – volume: 21 start-page: 117 year: 2011 end-page: 120 article-title: Heart rate recovery following maximal arm and leg‐ergometry publication-title: Clin Auton Res – volume: 293 start-page: H133 year: 2007a end-page: H141 article-title: Parasympathetic reactivation after repeated sprint exercise publication-title: Am J Physiol Heart Circ Physiol – volume: 87 start-page: 1463 year: 1999 end-page: 1469 article-title: Muscle pump and central command during recovery from exercise in humans publication-title: J Appl Physiol – volume: 95 start-page: 431 year: 2010 end-page: 440 article-title: Recovery of heart rate following intense dynamic exercise publication-title: Exp Physiol – volume: 14 start-page: 352 year: 2011 end-page: 357 article-title: Reliability of different models to assess heart rate recovery after submaximal bicycle exercise publication-title: J Sci Med Sport – volume: 84 start-page: 2034 year: 1991 end-page: 2039 article-title: Skeletal muscle metaboreceptor exercise responses are attenuated in heart failure publication-title: Circulation – volume: 151 start-page: 50 year: 2011 end-page: 53 article-title: Effects of normal blood pressure, prehypertension, and hypertension on autonomic nervous system function publication-title: Int J Cardiol – volume: 127 start-page: e6 year: 2013 end-page: e245 article-title: Heart disease and stroke statistics–2013 update: a report from the American Heart Association publication-title: Circulation – volume: 58 start-page: 879 year: 1989 end-page: 883 article-title: Plasma norepinephrine and heart rate dynamics during recovery from submaximal exercise in man publication-title: Eur J Appl Physiol Occup Physiol – volume: 53 start-page: 1572 year: 1982 end-page: 1575 article-title: Autonomic contribution to heart rate recovery from exercise in humans publication-title: J Appl Physiol – volume: 3 start-page: 12 year: 2009 end-page: 15 article-title: The effects of therapeutic passive movement on cardiovascular response in stroke patients publication-title: Res J Med Sci – volume: 17 start-page: III36 year: 1991 end-page: III42 article-title: Spectral analysis to assess increased sympathetic tone in arterial hypertension publication-title: Hypertension – volume: 104 start-page: 1911 year: 2001 end-page: 1916 article-title: Heart rate recovery immediately after treadmill exercise and left ventricular systolic dysfunction as predictors of mortality: the case of stress echocardiography publication-title: Circulation – volume: 91 start-page: 1902 year: 2001 end-page: 1907 article-title: Gender differences in cardiovascular regulation during recovery from exercise publication-title: J Appl Physiol – volume: 32 start-page: 598 year: 2011 end-page: 605 article-title: Reliability of resting and postexercise heart rate measures publication-title: Int J Sports Med – volume: 290 start-page: 1600 year: 2003 end-page: 1607 article-title: Ability of exercise testing to predict cardiovascular and all‐cause death in asymptomatic women: a 20‐year follow‐up of the lipid research clinics prevalence study publication-title: JAMA – volume: 105 start-page: 351 year: 2009 end-page: 356 article-title: Enhanced metaboreflex sensitivity in hypertensive humans publication-title: Eur J Appl Physiol – volume: 90 start-page: 763 year: 2002 end-page: 765 article-title: Heart rate recovery response to symptom‐limited treadmill exercise after cardiac rehabilitation in patients with coronary artery disease with and without recent events publication-title: Am J Cardiol – volume: 352 start-page: 1951 year: 2005 end-page: 1958 article-title: Heart‐rate profile during exercise as a predictor of sudden death publication-title: N Engl J Med – volume: 23 start-page: 1259 year: 1990 end-page: 1262 article-title: Relative roles of the sympathetic and parasympathetic systems in the 4‐s exercise test publication-title: Braz J Med Biol Res – volume: 57 start-page: 644 year: 1988 end-page: 651 article-title: Plasma catecholamines and heart rate at the beginning of muscular exercise in man publication-title: Eur J Appl Physiol Occup Physiol – volume: 296 start-page: R1098 year: 2009 end-page: R1105 article-title: C‐reactive protein and cardiac vagal activity following resistance exercise training in young African‐American and white men publication-title: Am J Physiol Regul Integr Comp Physiol – volume: 34 start-page: 724 year: 2011 end-page: 726 article-title: Heart rate recovery after exercise is a predictor of silent myocardial ischemia in patients with type 2 diabetes publication-title: Diabetes Care – volume: 105 start-page: 247 year: 2009 end-page: 255 article-title: Impact of the exercise mode on heart rate recovery after maximal exercise publication-title: Eur J Appl Physiol – volume: 19 start-page: 369 year: 2001 end-page: 387 article-title: Exercise and autonomic function in health and cardiovascular disease publication-title: Cardiol Clin – volume: 110 start-page: 1183 year: 2004 end-page: 1190 article-title: Prevalent low‐frequency oscillation of heart rate: novel predictor of mortality after myocardial infarction publication-title: Circulation – volume: 9 start-page: 296 year: 2003 end-page: 302 article-title: Decreased heart rate recovery after exercise in patients with congestive heart failure: effect of beta‐blocker therapy publication-title: J Card Fail – volume: 29 start-page: 238 year: 2008 end-page: 243 article-title: Reliability of postexercise heart rate recovery publication-title: Int J Sports Med – volume: 37 start-page: 432 year: 2007 end-page: 436 article-title: The value of the first two minutes of heart rate recovery after exercise treadmill test in predicting the presence and severity of coronary artery disease publication-title: Korean Circ J – volume: 105 start-page: 705 year: 2009 end-page: 713 article-title: Changes in heart rate recovery after high‐intensity training in well‐trained cyclists publication-title: Eur J Appl Physiol – volume: 37 start-page: 409 year: 2004 end-page: 417 article-title: Thermoregulation in hypertensive men exercising in the heat with water ingestion publication-title: Braz J Med Biol Res – year: 2013a article-title: Predictors of abnormal heart rate recovery in patients with heart failure reduced and preserved ejection fraction publication-title: Eur J Prev Cardiol – volume: 284 start-page: 1392 year: 2000 end-page: 1398 article-title: Heart rate recovery and treadmill exercise score as predictors of mortality in patients referred for exercise ECG publication-title: JAMA – volume: 16 start-page: 365 year: 2011 end-page: 372 article-title: The reproducibility of heart rate recovery after treadmill exercise test publication-title: Ann Noninvasive Electrocardiol – year: 2010 – volume: 38 start-page: 1980 year: 2001 end-page: 1987 article-title: Heart rate recovery: validation and methodologic issues publication-title: J Am Coll Cardiol – volume: 151 start-page: 851.e7 year: 2006 end-page: e13 article-title: Prognostic value of heart rate recovery in patients with heart failure publication-title: Am Heart J – volume: 87 start-page: 423 year: 2002 end-page: 435 article-title: Mortality, cardiac vagal control and physical training–what's the link? publication-title: Exp Physiol – volume: 32 start-page: 420 year: 2002 end-page: 426 article-title: Heart rate recovery in coronary artery disease and the changes of exercise parameters after coronary stenting publication-title: Korean Circ J – volume: 9 start-page: 176 year: 2010 end-page: 182 article-title: Heart rate variability before and after cycle exercise in relation to different body positions publication-title: J Sports Sci Med – volume: 15 start-page: 505 year: 1990 end-page: 507 article-title: Hyperthermia: a hyperadrenergic state publication-title: Hypertension – volume: 96 start-page: 2115 year: 2004 end-page: 2119 article-title: Muscle mechanoreceptor modulation of sweat rate during recovery from moderate exercise publication-title: J Appl Physiol – volume: 11 start-page: 154 year: 2006 end-page: 162 article-title: The relationship between heart rate recovery and heart rate variability in coronary artery disease publication-title: Ann Noninvasive Electrocardiol – volume: 24 start-page: 1529 year: 1994 end-page: 1535 article-title: Vagally mediated heart rate recovery after exercise is accelerated in athletes but blunted in patients with chronic heart failure publication-title: J Am Coll Cardiol – volume: 115 start-page: 387 year: 2007 end-page: 397 article-title: Diabetic cardiovascular autonomic neuropathy publication-title: Circulation – volume: 33 start-page: E61 year: 2010a end-page: E64 article-title: Heart rate recovery and tissue Doppler echocardiography in heart failure publication-title: Clin Cardiol – volume: 42 start-page: 831 year: 2003 end-page: 838 article-title: Heart rate recovery after exercise is a predictor of mortality, independent of the angiographic severity of coronary disease publication-title: J Am Coll Cardiol – volume: 90 start-page: 848 year: 2002 end-page: 852 article-title: Heart rate recovery after treadmill exercise testing and risk of cardiovascular disease events (The Framingham Heart Study) publication-title: Am J Cardiol – volume: 81 start-page: 233 year: 2000 end-page: 239 article-title: Difference in human cardiovascular response between upright and supine recovery from upright cycle exercise publication-title: Eur J Appl Physiol – volume: 281 start-page: H469 year: 2001 end-page: H475 article-title: Muscle metaboreflex control is diminished in normotensive obese women publication-title: Am J Physiol Heart Circ Physiol – volume: 99 start-page: 877 year: 2005 end-page: 886 article-title: Post‐exercise heart rate recovery and mortality in chronic obstructive pulmonary disease publication-title: Respir Med – volume: 1 start-page: 236 year: 2003 end-page: 241 article-title: Test–retest reproducibility of heart rate recovery after treadmill exercise publication-title: Ann Fam Med – volume: 291 start-page: H451 year: 2006 end-page: H458 article-title: Cardiac parasympathetic regulation: respective associations with cardiorespiratory fitness and training load publication-title: Am J Physiol Heart Circ Physiol – volume: 3 start-page: 289 year: 2012 article-title: Effect of acute hypoxia on post‐exercise parasympathetic reactivation in healthy men publication-title: Front Physiol – volume: 110 start-page: 3049 year: 2004 end-page: 3054 article-title: Muscle mechanoreflex and metaboreflex responses after myocardial infarction in rats publication-title: Circulation – volume: 76 start-page: 76 year: 2009 end-page: 83 article-title: Sympathetic excitation during exercise as a cause of attenuated heart rate recovery in patients with myocardial infarction publication-title: J Nippon Med Sch – volume: 112 start-page: 441 year: 2007 end-page: 447 article-title: Human arterial responses to isometric exercise: the role of the muscle metaboreflex publication-title: Clin Sci (Lond) – volume: 57 start-page: 495 year: 2006 end-page: 500 article-title: The relationship between beta‐receptor sensitivity and nocturnal blood pressure and heart rate recovery in normotensive people publication-title: Angiology – volume: 66 start-page: 500 year: 1993 end-page: 506 article-title: Kinetics of heart rate and catecholamines during exercise in humans. The effect of heart denervation publication-title: Eur J Appl Physiol Occup Physiol – volume: 32 start-page: 296 year: 2012 end-page: 304 article-title: Reliability of heart rate measures used to assess post‐exercise parasympathetic reactivation publication-title: Clin Physiol Funct Imaging – volume: 367 start-page: 1747 year: 2006 end-page: 1757 article-title: Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data publication-title: Lancet – volume: 40 start-page: 288 year: 2008 end-page: 295 article-title: Heart rate recovery predicts mortality and cardiovascular events in patients with type 2 diabetes publication-title: Med Sci Sports Exerc – volume: 268 start-page: R310 year: 1995 end-page: R316 article-title: Altered vagal and sympathetic control of heart rate in left ventricular dysfunction and heart failure publication-title: Am J Physiol – volume: 110 start-page: 393 year: 2006 end-page: 400 article-title: Early heart rate recovery after exercise predicts mortality in patients with chronic heart failure publication-title: Int J Cardiol – volume: 9 start-page: 1417 year: 2011 end-page: 1430 article-title: Heart rate recovery: a practical clinical indicator of abnormal cardiac autonomic function publication-title: Expert Rev Cardiovasc Ther – volume: 7 start-page: 274 year: 1997 end-page: 278 article-title: Pronounced resting bradycardia in male elite runners is associated with high heart rate variability publication-title: Scand J Med Sci Sports – volume: 10 start-page: 179 year: 2008 end-page: 186 article-title: Autonomic control of the aging heart publication-title: Neuromolecular Med – volume: 279 start-page: H2486 year: 2000 end-page: H2492 article-title: Effects of whole body heating on dynamic baroreflex regulation of heart rate in humans publication-title: Am J Physiol Heart Circ Physiol – volume: 9 start-page: 753 year: 2008 end-page: 761 article-title: Association between heart rate recovery and severity of obstructive sleep apnea syndrome publication-title: Sleep Med – volume: 108 start-page: 695 year: 2010 end-page: 699 article-title: Association of heart rate recovery after exercise with indices of obesity in healthy, non‐obese adults publication-title: Eur J Appl Physiol – volume: 93 start-page: 445 year: 2004 end-page: 449 article-title: Importance of the first two minutes of heart rate recovery after exercise treadmill testing in predicting mortality and the presence of coronary artery disease in men publication-title: Am J Cardiol – volume: 53 start-page: 678 year: 2002 end-page: 687 article-title: Gender, sex hormones and autonomic nervous control of the cardiovascular system publication-title: Cardiovasc Res – volume: 45 start-page: 574 year: 1978 end-page: 580 article-title: Role of cardiac output in the pressor responses to graded muscle ischemia in man publication-title: J Appl Physiol – volume: 94 start-page: 795 year: 2009 end-page: 804 article-title: Effect of body posture on postexercise parasympathetic reactivation in men publication-title: Exp Physiol – volume: 40 start-page: 362 year: 2008 end-page: 371 article-title: Supramaximal training and postexercise parasympathetic reactivation in adolescents publication-title: Med Sci Sports Exerc – volume: 52 start-page: 394 year: 2004 end-page: 401 article-title: Parasympathetic effects on heart rate recovery after exercise publication-title: J Investig Med – volume: 15 start-page: 850 year: 2009 end-page: 855 article-title: Post‐exercise heart rate recovery independently predicts mortality risk in patients with chronic heart failure publication-title: J Card Fail – volume: 74 start-page: 224 year: 2007 end-page: 242 article-title: The role of vagal function in the risk for cardiovascular disease and mortality publication-title: Biol Psychol – volume: 110 start-page: 2778 year: 2004 end-page: 2780 article-title: Heart rate recovery: predictor of risk today and target of therapy tomorrow? publication-title: Circulation – volume: 167 start-page: 1610 year: 2013 end-page: 1615 article-title: Blunted heart rate recovery is improved following exercise training in overweight adults with obstructive sleep apnea publication-title: Int J Cardiol – volume: 35 start-page: 2093 year: 2003 end-page: 2097 article-title: Heart rate recovery from submaximal exercise in boys and girls publication-title: Med Sci Sports Exerc – volume: 153 start-page: 1056 year: 2007 end-page: 1063 article-title: Effects of exercise training on heart rate recovery in patients with chronic heart failure publication-title: Am Heart J – volume: 78 start-page: 816 year: 1988 end-page: 824 article-title: Baroreflex sensitivity, clinical correlates, and cardiovascular mortality among patients with a first myocardial infarction. A prospective study publication-title: Circulation – volume: 14 start-page: 1181 year: 1989 end-page: 1190 article-title: Coronary vasomotion in response to sympathetic stimulation in humans: importance of the functional integrity of the endothelium publication-title: J Am Coll Cardiol – volume: 49 start-page: 1298 year: 2007 end-page: 1306 article-title: Exercise training restores baroreflex sensitivity in never‐treated hypertensive patients publication-title: Hypertension – volume: 24 start-page: 1793 year: 2001 end-page: 1798 article-title: Impaired autonomic function is associated with increased mortality, especially in subjects with diabetes, hypertension, or a history of cardiovascular disease: the Hoorn Study publication-title: Diabetes Care – volume: 77 start-page: 1174 year: 2006 end-page: 1182 article-title: Thermoregulatory control following dynamic exercise publication-title: Aviat Space Environ Med – volume: 156 start-page: 736 year: 2008 end-page: 744 article-title: The prognostic importance of abnormal heart rate recovery and chronotropic response among exercise treadmill test patients publication-title: Am Heart J – volume: 293 start-page: H8 year: 2007b end-page: H10 article-title: Noninvasive assessment of cardiac parasympathetic function: postexercise heart rate recovery or heart rate variability? publication-title: Am J Physiol Heart Circ Physiol – volume: 2 start-page: 35 year: 1992 end-page: 40 article-title: Heart rate responses to deep breathing and 4‐seconds of exercise before and after pharmacological blockade with atropine and propranolol publication-title: Clin Auton Res – volume: 14 start-page: 125 year: 1991 end-page: 132 article-title: Stress‐induced changes in blood pressure and left ventricular function in mild hypertension publication-title: Clin Cardiol – volume: 66 start-page: 492 year: 2004 end-page: 500 article-title: Exaggerated platelet and hemodynamic reactivity to mental stress in men with coronary artery disease publication-title: Psychosom Med – volume: 18 start-page: 389 year: 2013 end-page: 408 article-title: Mechanisms underlying the autonomic modulation of ventricular fibrillation initiation–tentative prophylactic properties of vagus nerve stimulation on malignant arrhythmias in heart failure publication-title: Heart Fail Rev – volume: 150 start-page: 153 year: 2005 end-page: 160 article-title: Depressed autonomic nervous system function in African Americans and individuals of lower social class: a potential mechanism of race‐ and class‐related disparities in health outcomes publication-title: Am Heart J – volume: 301 start-page: H912 year: 2011 end-page: H920 article-title: Persistent sympathoexcitation long after submaximal exercise in subjects with and without coronary artery disease publication-title: Am J Physiol Heart Circ Physiol – volume: 98 start-page: 52 year: 2009 end-page: 58 article-title: Post‐exercise heart rate recovery in healthy, obeses, and COPD subjects: relationships with blood lactic acid and PaO2 levels publication-title: Clin Res Cardiol – volume: 91 start-page: 108 year: 2003 end-page: 111 article-title: Association of diabetes mellitus with abnormal heart rate recovery in patients without known coronary artery disease publication-title: Am J Cardiol – volume: 92 start-page: 600 year: 2003 end-page: 603 article-title: Effect of age and gender on heart rate recovery after submaximal exercise during cardiac rehabilitation in patients with angina pectoris, recent acute myocardial infarction, or coronary bypass surgery publication-title: Am J Cardiol – volume: 26 start-page: 2052 year: 2003 end-page: 2057 article-title: Heart rate recovery following maximal exercise testing as a predictor of cardiovascular disease and all‐cause mortality in men with diabetes publication-title: Diabetes Care – volume: 22 start-page: 23.20 year: 2010 end-page: 23.23 article-title: Racial differences exist in cardiovascular parasympathetic modulation following maximal exercise publication-title: Age (yrs) – volume: 91 start-page: 711 year: 2003 end-page: 714 article-title: Heart rate recovery after exercise as a predictor of mortality among survivors of acute myocardial infarction publication-title: Am J Cardiol – volume: 95 start-page: 1175 year: 2005 end-page: 1179 article-title: Association of metabolic syndrome with exercise capacity and heart rate recovery in patients with coronary heart disease in the heart and soul study publication-title: Am J Cardiol – volume: 138 start-page: 166 year: 2010a end-page: 173 article-title: The prognostic value of the heart rate response during exercise and recovery in patients with heart failure: influence of beta‐blockade publication-title: Int J Cardiol – volume: 100 start-page: 401 year: 2005 end-page: 407 article-title: Sympathetic activity and myocardial damage after stimulation of dorsal medulla and vagotomy in a novel animal model publication-title: Int J Cardiol – volume: 21 start-page: 621 year: 2006 end-page: 626 article-title: Metabolic syndrome is associated with delayed heart rate recovery after exercise publication-title: J Korean Med Sci – volume: 32 start-page: 141 year: 2012 end-page: 146 article-title: Patients with heart failure in the “intermediate range” of peak oxygen uptake: additive value of heart rate recovery and the minute ventilation/carbon dioxide output slope in predicting mortality publication-title: J Cardiopulm Rehabil Prev – volume: 86 start-page: 342 year: 2002 end-page: 346 article-title: The effect of exercise intensity on the post‐exercise esophageal temperature response publication-title: Eur J Appl Physiol – volume: 35 start-page: 142 year: 2010 end-page: 150 article-title: Postexercise heart rate recovery in children: relationship with power output, blood pH, and lactate publication-title: Appl Physiol Nutr Metab – volume: 29 start-page: e312 year: 2012 end-page: e320 article-title: Diagnostic accuracy of heart‐rate recovery after exercise in the assessment of diabetic cardiac autonomic neuropathy publication-title: Diabet Med – volume: 254 start-page: H340 year: 1988 end-page: H343 article-title: Effects of age and training status on heart rate recovery after peak exercise publication-title: Am J Physiol – volume: 411 start-page: 63 year: 1989 end-page: 70 article-title: The human pressor response during and following voluntary and evoked isometric contraction with occluded local blood supply publication-title: J Physiol – volume: 295 start-page: H1429 year: 2008 end-page: H1438 article-title: Evidence for functional alterations in the skeletal muscle mechanoreflex and metaboreflex in hypertensive rats publication-title: Am J Physiol Heart Circ Physiol – volume: 99 start-page: 802 year: 2012 end-page: 810 article-title: Effects of age and aerobic fitness on heart rate recovery in adult men publication-title: Arq Bras Cardiol – volume: 285 start-page: 877 year: 1971 end-page: 883 article-title: Defective cardiac parasympathetic control in patients with heart disease publication-title: N Engl J Med – volume: 80 start-page: 169 year: 2000 end-page: 174 article-title: Heart rate recovery post‐exercise as an index of parasympathetic activity publication-title: J Auton Nerv Syst – volume: 19 start-page: 951 year: 2006 end-page: 957 article-title: Abnormal muscle metaboreflex control of sympathetic activity in never‐treated hypertensive subjects publication-title: Am J Hypertens – volume: 52 start-page: 23 year: 1995 end-page: 33 article-title: Time‐course and frequency dependence of sympathetic stimulation‐evoked inhibition of vagal effects at the sinus node publication-title: J Auton Nerv Syst – volume: 46 start-page: 531 year: 2000 end-page: 538 article-title: Adrenergic inhibition of endogenous acetylcholine release on postganglionic cardiac vagal nerve terminals publication-title: Cardiovasc Res – volume: 72 start-page: 150 year: 1994 end-page: 155 article-title: Gas exchange responses to constant work rate exercise in chronic cardiac failure publication-title: Br Heart J – ident: e_1_2_6_86_1 doi: 10.1001/jama.290.12.1600 – ident: e_1_2_6_25_1 doi: 10.1139/H09-140 – volume: 77 start-page: 1174 year: 2006 ident: e_1_2_6_58_1 article-title: Thermoregulatory control following dynamic exercise publication-title: Aviat Space Environ Med – ident: e_1_2_6_18_1 doi: 10.1007/s10741-012-9314-2 – year: 2013 ident: e_1_2_6_27_1 article-title: Predictors of abnormal heart rate recovery in patients with heart failure reduced and preserved ejection fraction publication-title: Eur J Prev Cardiol – ident: e_1_2_6_104_1 doi: 10.1590/S0100-879X2004000300019 – ident: e_1_2_6_135_1 doi: 10.1016/0735-1097(89)90414-2 – ident: e_1_2_6_55_1 doi: 10.1016/j.amjcard.2003.09.004 – ident: e_1_2_6_43_1 doi: 10.1111/j.1475-097X.2012.01125.x – ident: e_1_2_6_20_1 doi: 10.1152/ajpheart.00008.2006 – ident: e_1_2_6_53_1 doi: 10.1016/S0002-9149(02)02607-3 – ident: e_1_2_6_71_1 doi: 10.1111/j.1365-2796.2011.02452.x – ident: e_1_2_6_57_1 doi: 10.1111/j.1600-0838.1997.tb00152.x – volume: 22 start-page: 23.20 year: 2010 ident: e_1_2_6_46_1 article-title: Racial differences exist in cardiovascular parasympathetic modulation following maximal exercise publication-title: Age (yrs) – ident: e_1_2_6_64_1 doi: 10.1016/S0002-9149(03)00733-1 – ident: e_1_2_6_4_1 doi: 10.1016/S0008-6363(00)00027-4 – ident: e_1_2_6_40_1 doi: 10.1016/S0008-6363(01)00508-9 – ident: e_1_2_6_102_1 doi: 10.1054/jcaf.2003.47 – ident: e_1_2_6_5_1 doi: 10.1055/s-0031-1275356 – ident: e_1_2_6_56_1 doi: 10.1016/0735-1097(94)90150-3 – ident: e_1_2_6_9_1 doi: 10.1016/j.jsams.2011.02.012 – ident: e_1_2_6_72_1 doi: 10.1152/ajpheart.01365.2007 – ident: e_1_2_6_26_1 doi: 10.1113/jphysiol.1989.sp017560 – ident: e_1_2_6_91_1 doi: 10.1152/ajpheart.2001.281.2.H469 – ident: e_1_2_6_120_1 doi: 10.3346/jkms.2006.21.4.621 – ident: e_1_2_6_128_1 doi: 10.1016/S0735-1097(03)00833-7 – ident: e_1_2_6_109_1 doi: 10.1161/01.HYP.15.5.505 – ident: e_1_2_6_127_1 doi: 10.1161/CIRCULATIONAHA.106.634949 – ident: e_1_2_6_82_1 doi: 10.1249/01.MSS.0000099180.80952.83 – ident: e_1_2_6_90_1 doi: 10.1016/j.ijcard.2005.10.032 – volume: 23 start-page: 1259 year: 1990 ident: e_1_2_6_94_1 article-title: Relative roles of the sympathetic and parasympathetic systems in the 4‐s exercise test publication-title: Braz J Med Biol Res – ident: e_1_2_6_118_1 doi: 10.1161/01.CIR.84.5.2034 – ident: e_1_2_6_112_1 doi: 10.1152/jappl.1982.53.6.1572 – ident: e_1_2_6_87_1 doi: 10.1161/01.CIR.0000147615.62634.48 – ident: e_1_2_6_108_1 doi: 10.1016/S0733-8651(05)70223-X – ident: e_1_2_6_107_1 doi: 10.1016/j.amjhyper.2006.02.001 – ident: e_1_2_6_115_1 doi: 10.1152/japplphysiol.01370.2003 – ident: e_1_2_6_133_1 doi: 10.2337/dc10-1424 – ident: e_1_2_6_3_1 doi: 10.1177/0003319706290624 – ident: e_1_2_6_60_1 doi: 10.1136/jim-52-06-34 – ident: e_1_2_6_33_1 doi: 10.1016/j.ijcard.2004.08.026 – ident: e_1_2_6_41_1 doi: 10.1042/CS20060276 – ident: e_1_2_6_97_1 doi: 10.1016/0165-1838(88)90078-1 – ident: e_1_2_6_110_1 doi: 10.1111/j.1464-5491.2012.03719.x – volume: 45 start-page: 574 year: 1978 ident: e_1_2_6_15_1 article-title: Role of cardiac output in the pressor responses to graded muscle ischemia in man publication-title: J Appl Physiol doi: 10.1152/jappl.1978.45.4.574 – ident: e_1_2_6_132_1 doi: 10.1161/01.CIR.0000140765.71014.1C – ident: e_1_2_6_103_1 doi: 10.1007/s10286-010-0094-2 – ident: e_1_2_6_125_1 doi: 10.1111/j.1542-474X.2011.00464.x – ident: e_1_2_6_22_1 doi: 10.1152/ajpheart.00335.2007 – ident: e_1_2_6_113_1 doi: 10.1016/S0002-9149(02)03014-X – ident: e_1_2_6_69_1 doi: 10.1016/j.ahj.2004.08.008 – volume: 254 start-page: H340 year: 1988 ident: e_1_2_6_39_1 article-title: Effects of age and training status on heart rate recovery after peak exercise publication-title: Am J Physiol – ident: e_1_2_6_96_1 doi: 10.1007/BF00418477 – ident: e_1_2_6_123_1 doi: 10.1016/j.biopsycho.2005.11.013 – volume: 9 start-page: 176 year: 2010 ident: e_1_2_6_14_1 article-title: Heart rate variability before and after cycle exercise in relation to different body positions publication-title: J Sports Sci Med – ident: e_1_2_6_10_1 doi: 10.1016/j.ahj.2005.09.012 – ident: e_1_2_6_35_1 doi: 10.1056/NEJM199910283411804 – ident: e_1_2_6_23_1 doi: 10.1249/mss.0b013e31815aa2ee – ident: e_1_2_6_49_1 doi: 10.1161/CIR.0b013e31828124ad – ident: e_1_2_6_95_1 doi: 10.1586/erc.11.149 – ident: e_1_2_6_101_1 doi: 10.1016/S0165-1838(00)00090-4 – ident: e_1_2_6_30_1 doi: 10.1152/jappl.2001.91.4.1902 – ident: e_1_2_6_73_1 doi: 10.4070/kcj.2002.32.5.420 – ident: e_1_2_6_83_1 doi: 10.1161/01.HYP.17.4_Suppl.III36 – ident: e_1_2_6_134_1 doi: 10.1370/afm.37 – ident: e_1_2_6_92_1 doi: 10.1001/jama.284.11.1392 – ident: e_1_2_6_28_1 doi: 10.1093/eurjhf/hfs216 – ident: e_1_2_6_130_1 doi: 10.1016/0165-1838(94)00141-6 – ident: e_1_2_6_13_1 doi: 10.1007/s00392-008-0723-0 – ident: e_1_2_6_131_1 doi: 10.1161/circ.104.16.1911 – ident: e_1_2_6_61_1 doi: 10.1007/s12017-008-8034-1 – ident: e_1_2_6_31_1 doi: 10.1249/mss.0b013e31815c4844 – volume: 256 start-page: H132 year: 1989 ident: e_1_2_6_7_1 article-title: Modulation of cardiac autonomic activity during and immediately after exercise publication-title: Am J Physiol – ident: e_1_2_6_24_1 doi: 10.1113/expphysiol.2009.048041 – ident: e_1_2_6_66_1 doi: 10.1161/01.CIR.78.4.816 – ident: e_1_2_6_129_1 doi: 10.1152/ajpheart.00148.2011 – ident: e_1_2_6_16_1 doi: 10.1111/j.0954-6820.1970.tb02901.x – ident: e_1_2_6_19_1 doi: 10.1111/j.1469-445X.2002.tb00055.x – ident: e_1_2_6_52_1 doi: 10.1097/HCR.0b013e3181d0c1ad – ident: e_1_2_6_50_1 doi: 10.1111/j.1469-8986.2011.01232.x – ident: e_1_2_6_48_1 doi: 10.2337/diacare.24.10.1793 – ident: e_1_2_6_38_1 doi: 10.1152/ajpheart.2000.279.5.H2486 – ident: e_1_2_6_121_1 doi: 10.1007/s004210050036 – ident: e_1_2_6_76_1 doi: 10.1002/clc.4960140208 – ident: e_1_2_6_77_1 doi: 10.1016/j.amjcard.2003.10.039 – ident: e_1_2_6_45_1 doi: 10.1016/j.ijcard.2010.04.079 – ident: e_1_2_6_37_1 doi: 10.1113/expphysiol.2009.047548 – ident: e_1_2_6_81_1 doi: 10.1007/s00421-008-0896-2 – ident: e_1_2_6_42_1 doi: 10.1007/s00421-009-1276-2 – ident: e_1_2_6_89_1 doi: 10.1016/j.ahj.2007.02.038 – ident: e_1_2_6_17_1 doi: 10.1055/s-2007-965162 – ident: e_1_2_6_126_1 doi: 10.1272/jnms.76.76 – ident: e_1_2_6_117_1 doi: 10.1016/j.amjcard.2005.01.045 – ident: e_1_2_6_12_1 doi: 10.1016/j.ijcard.2009.09.562 – ident: e_1_2_6_105_1 doi: 10.1136/hrt.72.2.150 – ident: e_1_2_6_29_1 doi: 10.1152/jappl.1999.87.4.1463 – ident: e_1_2_6_79_1 doi: 10.1016/j.ahj.2008.05.025 – ident: e_1_2_6_93_1 doi: 10.1016/S0002-9149(02)03410-0 – ident: e_1_2_6_98_1 doi: 10.2337/diabetes.51.3.803 – ident: e_1_2_6_67_1 doi: 10.1016/j.rmed.2004.11.012 – ident: e_1_2_6_88_1 doi: 10.1016/S0002-9149(02)02706-6 – ident: e_1_2_6_59_1 doi: 10.1056/NEJMoa043012 – ident: e_1_2_6_80_1 doi: 10.1016/j.sleep.2007.08.016 – volume-title: Exercise Physiology: Nutrition, Energy, and Human Performance year: 2010 ident: e_1_2_6_84_1 – ident: e_1_2_6_34_1 doi: 10.4070/kcj.2007.37.9.432 – ident: e_1_2_6_54_1 doi: 10.1152/ajpregu.90936.2008 – volume: 268 start-page: R310 year: 1995 ident: e_1_2_6_63_1 article-title: Altered vagal and sympathetic control of heart rate in left ventricular dysfunction and heart failure publication-title: Am J Physiol – ident: e_1_2_6_114_1 doi: 10.1016/S0735-1097(01)01652-7 – ident: e_1_2_6_62_1 doi: 10.1007/s00421-001-0538-4 – ident: e_1_2_6_119_1 doi: 10.1097/01.psy.0000130492.03488.e7 – ident: e_1_2_6_47_1 doi: 10.1111/j.1542-474X.2006.00097.x – ident: e_1_2_6_51_1 doi: 10.1002/clc.20548 – ident: e_1_2_6_100_1 doi: 10.1007/BF00634299 – ident: e_1_2_6_68_1 doi: 10.1007/s00421-008-0952-y – ident: e_1_2_6_21_1 doi: 10.1152/ajpheart.00062.2007 – ident: e_1_2_6_8_1 doi: 10.1007/BF01824209 – ident: e_1_2_6_78_1 doi: 10.1016/S0140-6736(06)68770-9 – ident: e_1_2_6_111_1 doi: 10.1007/s00421-008-0910-8 – ident: e_1_2_6_122_1 doi: 10.1016/j.cardfail.2009.06.437 – ident: e_1_2_6_32_1 doi: 10.2337/diacare.26.7.2052 – ident: e_1_2_6_44_1 doi: 10.1056/NEJM197110142851602 – ident: e_1_2_6_99_1 doi: 10.1007/BF02332222 – ident: e_1_2_6_65_1 doi: 10.1016/j.ijcard.2012.04.108 – volume: 3 start-page: 12 year: 2009 ident: e_1_2_6_2_1 article-title: The effects of therapeutic passive movement on cardiovascular response in stroke patients publication-title: Res J Med Sci – ident: e_1_2_6_74_1 doi: 10.1152/ajpheart.00748.2006 – ident: e_1_2_6_106_1 doi: 10.1097/HCR.0b013e31824f9ddf – ident: e_1_2_6_36_1 doi: 10.7326/0003-4819-132-7-200004040-00007 – ident: e_1_2_6_124_1 doi: 10.1590/S0066-782X2012005000069 – ident: e_1_2_6_11_1 doi: 10.1016/j.ijcard.2008.08.010 – ident: e_1_2_6_75_1 doi: 10.1161/01.CIR.0000147188.46287.1B – ident: e_1_2_6_6_1 doi: 10.3389/fphys.2012.00289 – ident: e_1_2_6_70_1 doi: 10.1161/HYPERTENSIONAHA.106.085548 – ident: e_1_2_6_116_1 doi: 10.1161/CIRCULATIONAHA.105.566745 – ident: e_1_2_6_85_1 doi: 10.1056/NEJM199108293250905 |
SSID | ssj0017347 |
Score | 2.4497688 |
SecondaryResourceType | review_article |
Snippet | Summary
Cardiovascular disease (CVD) is the primary cause of mortality worldwide. Cardiac autonomic dysfunction seems to be related to the genesis of several... Cardiovascular disease ( CVD ) is the primary cause of mortality worldwide. Cardiac autonomic dysfunction seems to be related to the genesis of several CVD s... Cardiovascular disease (CVD) is the primary cause of mortality worldwide. Cardiac autonomic dysfunction seems to be related to the genesis of several CVDs and... Summary Cardiovascular disease (CVD) is the primary cause of mortality worldwide. Cardiac autonomic dysfunction seems to be related to the genesis of several... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 327 |
SubjectTerms | autonomic nervous system Autonomic Nervous System - physiopathology Cardiovascular Diseases - diagnosis Cardiovascular Diseases - mortality Cardiovascular Diseases - physiopathology Electrocardiography Exercise Exercise Test Health risk assessment Heart - innervation Heart Rate Humans Methods Models, Biological Mortality parasympathetic nervous system Predictive Value of Tests Prognosis Recovery of Function Risk Factors sympathetic nervous system Time Factors |
Title | Heart rate recovery: autonomic determinants, methods of assessment and association with mortality and cardiovascular diseases |
URI | https://api.istex.fr/ark:/67375/WNG-LLSJW4VV-K/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcpf.12102 https://www.ncbi.nlm.nih.gov/pubmed/24237859 https://www.proquest.com/docview/1555988067 https://www.proquest.com/docview/1558521704 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS9xAFD6IhdKX1ta2plqZipQ-NMvOZpLZ6JOI28WqSFsvD4VhbnmxzYqbhSr43z1ncsEVC6VvCXNCMpNz-WbmzHcANhEBZH3jeeyEKGLBeRKbNPextcJx4aQzjhb0D4-y8YnYP0_PF2C7PQtT80N0C25kGcFfk4FrM71n5Pay6AX2K_S_lKtFgOhbRx3FZRKKi3Eh05jKmjSsQpTF0z05F4ue0LD-eQxozuPWEHhGL-Bn-8l1vslFb1aZnr15wOb4n31agucNIGU7tQa9hAVfvoKnh82W-zLcjtEWKkaMEoxmz6j611tMz6r6QDNz9_JpPrO6IPWUTQqmO85PpktHt60eMFr8Zb8D8MdJQGi2c3mxrNk3mr6Gk9Hej91x3NRsiK3AaB8joOoPrDRFrumECPoDaxAyZIj0rOHeOkPh0aXa9-n0EM9M4QZDhD0IZbQeDpM3sFhOSr8CTA6Mdlx6yQti0BF5oSX3hUalS1ya-Ag-tX9P2YbQnOpq_FLtxAaHU4XhjGCjE72sWTweE_oYVKCT0FcXlPYmU3V29EUdHHzfPxOnp-prBGutjqjG4qcKcVmaozPMZAQfuma0VdqA0aWfzILMEOGS7IsI3ta61b2McC2OV469Chry9-9Uu8ejcPHu30VX4RkiPVEnx63BYnU18-8RTVVmPZjNHb5wG1M |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVgIuvKGBAgYhxKFZrTdOvEFcUGFZ2t0Vgr4uyPIrl5Zs1c1KgMR_Z8Z5qIuKhLgl8kSJnRnPZ3vmG4AXiACyvvE8dkIUseA8iU2a-9ha4bhw0hlHG_rTWTY-ELvH6fEavGlzYWp-iG7DjSwjzNdk4LQhfcHK7VnRC_RXV2CDKnoTc_67zx15FJdJKC_GhUxjKmzS8ApRHE_36Io32qCB_X4Z1FxFrsH1jG7C1_aj64iTk96yMj378w8-x__t1S240WBS9rZWotuw5ss7cHXanLrfhV9jNIeKEakEowU0av-P10wvqzqnmbkLITXbrK5JvWDzgumO9pPp0tFtqwqM9n_Zt4D9cR0Qmu1KaCxrjo4W9-Bg9H5_Zxw3ZRtiK9Dhx4ip-gMrTZFrShLBKcEaRA0Zgj1ruLfOkId0qfZ9SiDimSncYIjIB9GM1sNhch_Wy3npN4HJgdGOSy95QSQ6Ii-05L7QqHeJSxMfwav29ynbcJpTaY1T1a5tcDhVGM4InneiZzWRx2VCL4MOdBL6_IQi32SqjmYf1GTyZfdIHB6qvQi2WiVRjdEvFEKzNMf5MJMRPOua0VzpDEaXfr4MMkNETLIvInhQK1f3MoK2OF459iqoyN-_U-18GoWLh_8u-hSujfenEzX5ONt7BNcR-Ik6Vm4L1qvzpX-M4KoyT4IN_QZcwh9v |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVqq48H4EChiEEAeyijdOvIETalmWdruqgD4OSJZfubTdXXWzEiDx35lxHuqiIiFuiTxR4smM_dme-QbgJSKAPDGex06IMhacp7HJCh9bKxwXTjrjaEN_f5KPDsXuSXayBu_aXJiaH6LbcCPPCOM1OfjclZec3M7LXmC_ugYbIk8Kqtuw87njjuIyDdXFuJBZTHVNGlohCuPpHl2ZjDZIr9-vQpqrwDXMPMOb8K395jrg5LS3rEzP_vyDzvE_O3ULbjSIlL2vTeg2rPnpHdjcb87c78KvETpDxYhSgtHyGW3_x1uml1Wd0czcpYCaN6yuSL1gs5LpjvST6amj29YQGO3-svOA_HEVEJrtSmAsaw6OFvfgcPjh6_Yoboo2xFbgdB8jokr6Vpqy0JQiggOCNYgZcoR61nBvnaH50WXaJ5Q-xHNTuv4AcQ9iGa0Hg_Q-rE9nU_8QmOwb7bj0kpdEoSOKUkvuS41Wl7os9RG8bv-esg2jORXWOFPtygbVqYI6I3jRic5rGo-rhF4FE-gk9MUpxb3JTB1PPqrx-MvusTg6UnsRbLU2ohqXXygEZlmBo2EuI3jeNaOz0gmMnvrZMsgMEC_JRETwoLat7mUEbFFfBfYqWMjfv1NtHwzDxaN_F30Gmwc7QzX-NNl7DNcR9Yk6UG4L1quLpX-CyKoyT4MH_Qbrpx4e |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heart+rate+recovery%3A+autonomic+determinants%2C+methods+of+assessment+and+association+with+mortality+and+cardiovascular+diseases&rft.jtitle=Clinical+physiology+and+functional+imaging&rft.au=Pe%C3%A7anha%2C+Tiago&rft.au=Silva-J%C3%BAnior%2C+Natan+Daniel&rft.au=Forjaz%2C+Cl%C3%A1udia+L%C3%BAcia+de+Moraes&rft.date=2014-09-01&rft.eissn=1475-097X&rft.volume=34&rft.issue=5&rft.spage=327&rft_id=info:doi/10.1111%2Fcpf.12102&rft_id=info%3Apmid%2F24237859&rft.externalDocID=24237859 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1475-0961&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1475-0961&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1475-0961&client=summon |