Improving Case Definition of Crohnʼs Disease and Ulcerative Colitis in Electronic Medical Records Using Natural Language Processing A Novel Informatics Approach

Previous studies identifying patients with inflammatory bowel disease using administrative codes have yielded inconsistent results. Our objective was to develop a robust electronic medical record-based model for classification of inflammatory bowel disease leveraging the combination of codified data...

Full description

Saved in:
Bibliographic Details
Published inInflammatory bowel diseases Vol. 19; no. 7; pp. 1411 - 1420
Main Authors Ananthakrishnan, Ashwin N., Cai, Tianxi, Savova, Guergana, Cheng, Su-Chun, Chen, Pei, Perez, Raul Guzman, Gainer, Vivian S., Murphy, Shawn N., Szolovits, Peter, Xia, Zongqi, Shaw, Stanley, Churchill, Susanne, Karlson, Elizabeth W., Kohane, Isaac, Plenge, Robert M., Liao, Katherine P.
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.06.2013
Subjects
Online AccessGet full text
ISSN1078-0998
1536-4844
1536-4844
DOI10.1097/MIB.0b013e31828133fd

Cover

Loading…
Abstract Previous studies identifying patients with inflammatory bowel disease using administrative codes have yielded inconsistent results. Our objective was to develop a robust electronic medical record-based model for classification of inflammatory bowel disease leveraging the combination of codified data and information from clinical text notes using natural language processing. Using the electronic medical records of 2 large academic centers, we created data marts for Crohn's disease (CD) and ulcerative colitis (UC) comprising patients with ≥1 International Classification of Diseases, 9th edition, code for each disease. We used codified (i.e., International Classification of Diseases, 9th edition codes, electronic prescriptions) and narrative data from clinical notes to develop our classification model. Model development and validation was performed in a training set of 600 randomly selected patients for each disease with medical record review as the gold standard. Logistic regression with the adaptive LASSO penalty was used to select informative variables. We confirmed 399 CD cases (67%) in the CD training set and 378 UC cases (63%) in the UC training set. For both, a combined model including narrative and codified data had better accuracy (area under the curve for CD 0.95; UC 0.94) than models using only disease International Classification of Diseases, 9th edition codes (area under the curve 0.89 for CD; 0.86 for UC). Addition of natural language processing narrative terms to our final model resulted in classification of 6% to 12% more subjects with the same accuracy. Inclusion of narrative concepts identified using natural language processing improves the accuracy of electronic medical records case definition for CD and UC while simultaneously identifying more subjects compared with models using codified data alone.
AbstractList Previous studies identifying patients with inflammatory bowel disease using administrative codes have yielded inconsistent results. Using the electronic medical records of 2 large academic centers, we created data marts for Crohn's disease (CD) and ulcerative colitis (UC) comprising patients with greater than or equal to 1 International Classification of Diseases, 9th edition, code for each disease. We used codified (i.e., International Classification of Diseases, 9th edition codes, electronic prescriptions) and narrative data from clinical notes to develop our classification model. Model development and validation was performed in a training set of 600 randomly selected patients for each disease with medical record review as the gold standard. Logistic regression with the adaptive LASSO penalty was used to select informative variables. We confirmed 399 CD cases (67%) in the CD training set and 378 UC cases (63%) in the UC training set. Addition of natural language processing narrative terms to our final model resulted in classification of 6% to 12% more subjects with the same accuracy.
Previous studies identifying patients with inflammatory bowel disease using administrative codes have yielded inconsistent results. Our objective was to develop a robust electronic medical record-based model for classification of inflammatory bowel disease leveraging the combination of codified data and information from clinical text notes using natural language processing.BACKGROUNDPrevious studies identifying patients with inflammatory bowel disease using administrative codes have yielded inconsistent results. Our objective was to develop a robust electronic medical record-based model for classification of inflammatory bowel disease leveraging the combination of codified data and information from clinical text notes using natural language processing.Using the electronic medical records of 2 large academic centers, we created data marts for Crohn's disease (CD) and ulcerative colitis (UC) comprising patients with ≥1 International Classification of Diseases, 9th edition, code for each disease. We used codified (i.e., International Classification of Diseases, 9th edition codes, electronic prescriptions) and narrative data from clinical notes to develop our classification model. Model development and validation was performed in a training set of 600 randomly selected patients for each disease with medical record review as the gold standard. Logistic regression with the adaptive LASSO penalty was used to select informative variables.METHODSUsing the electronic medical records of 2 large academic centers, we created data marts for Crohn's disease (CD) and ulcerative colitis (UC) comprising patients with ≥1 International Classification of Diseases, 9th edition, code for each disease. We used codified (i.e., International Classification of Diseases, 9th edition codes, electronic prescriptions) and narrative data from clinical notes to develop our classification model. Model development and validation was performed in a training set of 600 randomly selected patients for each disease with medical record review as the gold standard. Logistic regression with the adaptive LASSO penalty was used to select informative variables.We confirmed 399 CD cases (67%) in the CD training set and 378 UC cases (63%) in the UC training set. For both, a combined model including narrative and codified data had better accuracy (area under the curve for CD 0.95; UC 0.94) than models using only disease International Classification of Diseases, 9th edition codes (area under the curve 0.89 for CD; 0.86 for UC). Addition of natural language processing narrative terms to our final model resulted in classification of 6% to 12% more subjects with the same accuracy.RESULTSWe confirmed 399 CD cases (67%) in the CD training set and 378 UC cases (63%) in the UC training set. For both, a combined model including narrative and codified data had better accuracy (area under the curve for CD 0.95; UC 0.94) than models using only disease International Classification of Diseases, 9th edition codes (area under the curve 0.89 for CD; 0.86 for UC). Addition of natural language processing narrative terms to our final model resulted in classification of 6% to 12% more subjects with the same accuracy.Inclusion of narrative concepts identified using natural language processing improves the accuracy of electronic medical records case definition for CD and UC while simultaneously identifying more subjects compared with models using codified data alone.CONCLUSIONSInclusion of narrative concepts identified using natural language processing improves the accuracy of electronic medical records case definition for CD and UC while simultaneously identifying more subjects compared with models using codified data alone.
Previous studies identifying patients with inflammatory bowel disease using administrative codes have yielded inconsistent results. Our objective was to develop a robust electronic medical record-based model for classification of inflammatory bowel disease leveraging the combination of codified data and information from clinical text notes using natural language processing. Using the electronic medical records of 2 large academic centers, we created data marts for Crohn's disease (CD) and ulcerative colitis (UC) comprising patients with ≥1 International Classification of Diseases, 9th edition, code for each disease. We used codified (i.e., International Classification of Diseases, 9th edition codes, electronic prescriptions) and narrative data from clinical notes to develop our classification model. Model development and validation was performed in a training set of 600 randomly selected patients for each disease with medical record review as the gold standard. Logistic regression with the adaptive LASSO penalty was used to select informative variables. We confirmed 399 CD cases (67%) in the CD training set and 378 UC cases (63%) in the UC training set. For both, a combined model including narrative and codified data had better accuracy (area under the curve for CD 0.95; UC 0.94) than models using only disease International Classification of Diseases, 9th edition codes (area under the curve 0.89 for CD; 0.86 for UC). Addition of natural language processing narrative terms to our final model resulted in classification of 6% to 12% more subjects with the same accuracy. Inclusion of narrative concepts identified using natural language processing improves the accuracy of electronic medical records case definition for CD and UC while simultaneously identifying more subjects compared with models using codified data alone.
BackgroundPrevious studies identifying patients with inflammatory bowel disease using administrative codes have yielded inconsistent results. Our objective was to develop a robust electronic medical record–based model for classification of inflammatory bowel disease leveraging the combination of codified data and information from clinical text notes using natural language processing.MethodsUsing the electronic medical records of 2 large academic centers, we created data marts for Crohn’s disease (CD) and ulcerative colitis (UC) comprising patients with ≥1 International Classification of Diseases, 9th edition, code for each disease. We used codified (i.e., International Classification of Diseases, 9th edition codes, electronic prescriptions) and narrative data from clinical notes to develop our classification model. Model development and validation was performed in a training set of 600 randomly selected patients for each disease with medical record review as the gold standard. Logistic regression with the adaptive LASSO penalty was used to select informative variables.ResultsWe confirmed 399 CD cases (67%) in the CD training set and 378 UC cases (63%) in the UC training set. For both, a combined model including narrative and codified data had better accuracy (area under the curve for CD 0.95; UC 0.94) than models using only disease International Classification of Diseases, 9th edition codes (area under the curve 0.89 for CD; 0.86 for UC). Addition of natural language processing narrative terms to our final model resulted in classification of 6% to 12% more subjects with the same accuracy.ConclusionsInclusion of narrative concepts identified using natural language processing improves the accuracy of electronic medical records case definition for CD and UC while simultaneously identifying more subjects compared with models using codified data alone.
Author Cheng, Su-Chun
Savova, Guergana
Perez, Raul Guzman
Xia, Zongqi
Liao, Katherine P.
Churchill, Susanne
Plenge, Robert M.
Ananthakrishnan, Ashwin N.
Gainer, Vivian S.
Shaw, Stanley
Szolovits, Peter
Cai, Tianxi
Murphy, Shawn N.
Karlson, Elizabeth W.
Chen, Pei
Kohane, Isaac
AuthorAffiliation 3 Department of Biostatistics, Harvard School of Public Health, Boston, MA
5 Research Computing, Partners HealthCare, Charlestown, MA
6 Department of Neurology, Massachusetts General Hospital, Boston, MA
8 Department of Neurology, Brigham and Women’s Hospital, Boston, MA
2 Harvard Medical School, Boston, MA
11 Division of Rheumatology, Brigham and Women’s Hospital, Boston, MA
10 i2b2 National Center for Biomedical Computing, Brigham and Women’s Hospital, Boston, MA
4 Children’s Hospital Boston, Boston, MA
7 Massachusetts Institute of Technology, Cambridge, MA
1 Gastrointestinal Unit, Massachusetts General Hospital, Boston, MA
9 Division of Cardiology, Massachusetts General Hospital, Boston, MA
AuthorAffiliation_xml – name: 7 Massachusetts Institute of Technology, Cambridge, MA
– name: 5 Research Computing, Partners HealthCare, Charlestown, MA
– name: 2 Harvard Medical School, Boston, MA
– name: 3 Department of Biostatistics, Harvard School of Public Health, Boston, MA
– name: 1 Gastrointestinal Unit, Massachusetts General Hospital, Boston, MA
– name: 8 Department of Neurology, Brigham and Women’s Hospital, Boston, MA
– name: 11 Division of Rheumatology, Brigham and Women’s Hospital, Boston, MA
– name: 4 Children’s Hospital Boston, Boston, MA
– name: 6 Department of Neurology, Massachusetts General Hospital, Boston, MA
– name: 9 Division of Cardiology, Massachusetts General Hospital, Boston, MA
– name: 10 i2b2 National Center for Biomedical Computing, Brigham and Women’s Hospital, Boston, MA
Author_xml – sequence: 1
  givenname: Ashwin N.
  surname: Ananthakrishnan
  fullname: Ananthakrishnan, Ashwin N.
– sequence: 2
  givenname: Tianxi
  surname: Cai
  fullname: Cai, Tianxi
– sequence: 3
  givenname: Guergana
  surname: Savova
  fullname: Savova, Guergana
– sequence: 4
  givenname: Su-Chun
  surname: Cheng
  fullname: Cheng, Su-Chun
– sequence: 5
  givenname: Pei
  surname: Chen
  fullname: Chen, Pei
– sequence: 6
  givenname: Raul Guzman
  surname: Perez
  fullname: Perez, Raul Guzman
– sequence: 7
  givenname: Vivian S.
  surname: Gainer
  fullname: Gainer, Vivian S.
– sequence: 8
  givenname: Shawn N.
  surname: Murphy
  fullname: Murphy, Shawn N.
– sequence: 9
  givenname: Peter
  surname: Szolovits
  fullname: Szolovits, Peter
– sequence: 10
  givenname: Zongqi
  surname: Xia
  fullname: Xia, Zongqi
– sequence: 11
  givenname: Stanley
  surname: Shaw
  fullname: Shaw, Stanley
– sequence: 12
  givenname: Susanne
  surname: Churchill
  fullname: Churchill, Susanne
– sequence: 13
  givenname: Elizabeth W.
  surname: Karlson
  fullname: Karlson, Elizabeth W.
– sequence: 14
  givenname: Isaac
  surname: Kohane
  fullname: Kohane, Isaac
– sequence: 15
  givenname: Robert M.
  surname: Plenge
  fullname: Plenge, Robert M.
– sequence: 16
  givenname: Katherine P.
  surname: Liao
  fullname: Liao, Katherine P.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23567779$$D View this record in MEDLINE/PubMed
BookMark eNqFUt2O1CAUbswa90ffwBgSb7zpCoVS8MJEu-s6yawa41wTSg-zbDowQjuJ9z6WT-BTSffH6FxoCOGE7ycfnHNcHPjgoSieEnxKsGxeXi7enuIOEwqUiEoQSm3_oDgiNeUlE4wd5Bo3osRSisPiOKVrjKu85KPisKI1b5pGHhXfF5ttDDvn16jVCdAZWOfd6IJHwaI2hiv_80dCZy7BDGvfo9VgIOrR7QC1YcjchJxH5wOYMQbvDLqE3hk9oM9gQuwTWqXZ_oMep5hvl9qvJ70G9CkGA2nGHhcPrR4SPLk7T4rVu_Mv7fty-fFi0b5ZloZVdCxtTtwRbokVXOBOVNrWvam4JKLW1namoaSpK4YxsQyMJDVmVnQAwGhnektPite3vtup20BvwI85kdpGt9Hxmwraqb8R767UOuwU5bxuOM4GL-4MYvg6QRrVxiUDw6A9hCkpknOxmpK8_0ulUlacciIy9fke9TpM0eefUJRw2UhGbwyf_Rn-d-r7XmbCq1uCiSGlCFYZN-q5lfktblAEq3lwVB4ctT84Wcz2xPf-_5T9AiLcyhk
CitedBy_id crossref_primary_10_1093_jamia_ocaa079
crossref_primary_10_1186_s13223_021_00541_6
crossref_primary_10_1080_14737159_2018_1439380
crossref_primary_10_1002_acr_24496
crossref_primary_10_1371_journal_pone_0136651
crossref_primary_10_1161_JAHA_120_016648
crossref_primary_10_1080_17474124_2023_2166928
crossref_primary_10_3390_electronics8111235
crossref_primary_10_1016_j_jbi_2019_103122
crossref_primary_10_1038_s41596_019_0227_6
crossref_primary_10_1371_journal_pone_0192360
crossref_primary_10_1007_s00439_014_1466_9
crossref_primary_10_1007_s40290_017_0216_4
crossref_primary_10_1136_gutjnl_2022_328802
crossref_primary_10_1016_j_jbi_2022_104190
crossref_primary_10_1097_MIB_0000000000000580
crossref_primary_10_1016_j_jbi_2014_08_012
crossref_primary_10_1111_jgh_15313
crossref_primary_10_1136_gutjnl_2022_328883
crossref_primary_10_1136_gutjnl_2019_320065
crossref_primary_10_1007_s10742_016_0149_5
crossref_primary_10_14309_ctg_0000000000000018
crossref_primary_10_1136_amiajnl_2014_002642
crossref_primary_10_3389_fphar_2021_720694
crossref_primary_10_1093_ibd_izae068
crossref_primary_10_1016_j_giec_2024_09_005
crossref_primary_10_1093_ibd_izx015
crossref_primary_10_1016_j_biopsych_2014_05_024
crossref_primary_10_1016_j_gastha_2024_10_003
crossref_primary_10_1093_ecco_jcc_jjad029
crossref_primary_10_1177_0272989X221103508
crossref_primary_10_1007_s11605_023_05861_z
crossref_primary_10_1016_j_cgh_2022_10_029
crossref_primary_10_1097_MEG_0000000000002317
crossref_primary_10_1111_nyas_13259
crossref_primary_10_1007_s10620_015_3952_x
crossref_primary_10_1097_MIB_0b013e3182902ad9
crossref_primary_10_1053_j_gastro_2021_12_238
crossref_primary_10_1016_j_procs_2020_11_026
crossref_primary_10_1093_jamia_ocx111
crossref_primary_10_1002_sim_9569
crossref_primary_10_1186_s13075_021_02615_7
crossref_primary_10_1093_ibd_izac109
crossref_primary_10_1111_rssb_12264
crossref_primary_10_1097_MIB_0000000000000524
crossref_primary_10_1016_j_artmed_2024_103032
crossref_primary_10_1093_jamia_ocaa288
crossref_primary_10_1371_journal_pone_0186301
crossref_primary_10_1016_j_cgh_2019_08_005
crossref_primary_10_1136_ebmental_2020_300223
crossref_primary_10_1186_s12911_018_0617_7
crossref_primary_10_1136_amiajnl_2013_001999
crossref_primary_10_1136_bmjgast_2020_000378
crossref_primary_10_14309_ajg_0000000000001855
crossref_primary_10_1177_0962280219837676
crossref_primary_10_3390_ijms24032458
crossref_primary_10_1016_j_ijmedinf_2015_10_005
crossref_primary_10_1038_s41598_018_25312_z
crossref_primary_10_1093_ibd_izy127
crossref_primary_10_3934_mbe_2022640
crossref_primary_10_1111_jgh_15405
crossref_primary_10_1371_journal_pdig_0000003
crossref_primary_10_1093_jamia_ocv180
crossref_primary_10_1097_MIB_0000000000000754
crossref_primary_10_3389_fmed_2024_1512824
crossref_primary_10_1186_s12911_019_0783_2
crossref_primary_10_1007_s11894_024_00918_8
crossref_primary_10_1016_j_cgh_2013_12_030
crossref_primary_10_1016_j_semcancer_2021_03_037
crossref_primary_10_1007_s10620_021_06990_8
crossref_primary_10_1093_ibd_izac131
crossref_primary_10_1007_s10620_014_3353_6
crossref_primary_10_1371_journal_pone_0078927
crossref_primary_10_2196_30345
crossref_primary_10_1038_s41598_022_22585_3
crossref_primary_10_1053_j_gastro_2015_06_005
crossref_primary_10_2196_15589
crossref_primary_10_1371_journal_pone_0258537
crossref_primary_10_1186_s12859_019_2617_8
crossref_primary_10_1093_jamia_ocv034
crossref_primary_10_1016_j_cgh_2014_02_034
crossref_primary_10_1007_s11019_018_9845_y
crossref_primary_10_1093_jamia_ocab236
crossref_primary_10_1186_gb4175
crossref_primary_10_1111_apt_12706
crossref_primary_10_1136_ebmental_2020_300167
crossref_primary_10_1371_journal_pone_0159621
crossref_primary_10_1186_s12958_015_0115_z
crossref_primary_10_1016_j_cgh_2014_07_018
crossref_primary_10_1016_j_cgh_2013_10_011
crossref_primary_10_1016_j_patter_2023_100906
crossref_primary_10_1007_s10654_018_0470_0
crossref_primary_10_1097_GOX_0000000000003633
crossref_primary_10_1093_jamia_ocw135
crossref_primary_10_1093_rap_rkae120
crossref_primary_10_1111_apt_13195
crossref_primary_10_1097_BOR_000000000000061
crossref_primary_10_1016_j_cgh_2022_05_008
crossref_primary_10_1016_j_gastha_2022_02_025
crossref_primary_10_1177_1178222616685880
crossref_primary_10_1097_SHK_0000000000000742
crossref_primary_10_1007_s10620_020_06329_9
crossref_primary_10_3899_jrheum_140178
crossref_primary_10_1053_j_gastro_2020_02_032
crossref_primary_10_1007_s11938_023_00437_x
crossref_primary_10_1016_j_jbi_2022_104177
crossref_primary_10_1016_j_cgh_2014_05_013
crossref_primary_10_1186_s40164_022_00333_7
crossref_primary_10_1111_rssb_12502
crossref_primary_10_1515_jisys_2022_0040
crossref_primary_10_1053_j_gastro_2017_09_052
crossref_primary_10_1136_bmjgast_2020_000573
crossref_primary_10_1016_j_ijmedinf_2019_05_008
crossref_primary_10_2196_27460
crossref_primary_10_1186_s13326_018_0179_8
crossref_primary_10_1016_j_cgh_2016_02_017
crossref_primary_10_3390_computers10020024
crossref_primary_10_1093_jamia_ocv024
crossref_primary_10_3389_fsurg_2024_1403540
crossref_primary_10_3748_wjg_v29_i3_508
crossref_primary_10_1093_jamia_ocz066
crossref_primary_10_1093_ibd_izaa239
crossref_primary_10_1016_j_crohns_2014_01_019
Cites_doi 10.1016/j.ajhg.2011.09.008
10.3109/00365529609031980
10.1016/j.semarthrit.2010.05.002
10.1197/jamia.M3378
10.1016/j.ajhg.2010.12.007
10.1111/j.1478-3231.2011.02484.x
10.1136/jamia.2009.001560
10.1016/j.jbi.2010.07.011
10.1136/amiajnl-2011-000583
10.1198/016214506000000735
10.1136/amiajnl-2011-000295
10.1016/S0016-5085(98)70421-4
10.1111/j.1572-0241.2006.00330.x
10.1186/1472-6947-6-30
10.1002/ibd.20021
10.1197/jamia.M1794
10.1136/gut.2009.188383
10.1126/scitranslmed.3001807
10.1002/pds.1824
10.1136/gut.46.3.336
10.1007/s11605-010-1396-3
10.1002/acr.20184
10.1093/oxfordjournals.aje.a009735
10.1038/nrg2999
10.1055/s-0038-1634566
ContentType Journal Article
Copyright Copyright © 2013 Crohn's & Colitis Foundation of America, Inc.
Copyright_xml – notice: Copyright © 2013 Crohn's & Colitis Foundation of America, Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
BENPR
CCPQU
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
7T5
H94
5PM
DOI 10.1097/MIB.0b013e31828133fd
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central
ProQuest One Community College
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
Immunology Abstracts
AIDS and Cancer Research Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Central China
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
ProQuest Health & Medical Research Collection
Health Research Premium Collection
ProQuest Medical Library
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
Health & Medical Research Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Medical Library (Alumni)
ProQuest Central (Alumni)
MEDLINE - Academic
AIDS and Cancer Research Abstracts
Immunology Abstracts
DatabaseTitleList AIDS and Cancer Research Abstracts
MEDLINE - Academic
MEDLINE
ProQuest One Academic Middle East (New)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1536-4844
EndPage 1420
ExternalDocumentID PMC3665760
23567779
10_1097_MIB_0b013e31828133fd
Genre Multicenter Study
Randomized Controlled Trial
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: K08 NS079493
– fundername: NIAMS NIH HHS
  grantid: R01 AR059648
– fundername: NIGMS NIH HHS
  grantid: U01 GM092691
– fundername: NLM NIH HHS
  grantid: U54 LM008748
– fundername: NIAMS NIH HHS
  grantid: R01 AR057108
– fundername: NIGMS NIH HHS
  grantid: U01-GM092691
– fundername: NIAMS NIH HHS
  grantid: K24 AR052403
– fundername: NIDDK NIH HHS
  grantid: P30 DK043351
– fundername: NLM NIH HHS
  grantid: U54-LM008748
– fundername: NIAMS NIH HHS
  grantid: K08 AR060257
– fundername: National Library of Medicine : NLM
  grantid: U54 LM008748 || LM
– fundername: National Institute of General Medical Sciences : NIGMS
  grantid: U01 GM092691 || GM
– fundername: National Institute of Arthritis and Musculoskeletal and Skin Diseases : NIAMS
  grantid: R01 AR059648 || AR
– fundername: National Institute of Arthritis and Musculoskeletal and Skin Diseases : NIAMS
  grantid: K24 AR052403 || AR
– fundername: National Institute of Diabetes and Digestive and Kidney Diseases : NIDDK
  grantid: K23 DK097142 || DK
– fundername: National Institute of Arthritis and Musculoskeletal and Skin Diseases : NIAMS
  grantid: R01 AR057108 || AR
– fundername: National Institute of Arthritis and Musculoskeletal and Skin Diseases : NIAMS
  grantid: K08 AR060257 || AR
GroupedDBID ---
.Z2
0R~
1OC
31~
3WU
4.4
48X
53G
5GY
5VS
5WD
66C
7O~
7X7
8-0
8-1
88E
8F7
8FI
8FJ
8UM
AAAXR
AABZA
AACZT
AAJQQ
AAKAS
AAPGJ
AAPQZ
AAPXW
AARHZ
AARTV
AAUAY
AAUQX
AAVAP
AAWDT
AAYEP
AAYXX
ABBUW
ABDFA
ABEJV
ABGNP
ABJNI
ABNHQ
ABOCM
ABPQP
ABPTD
ABQNK
ABUWG
ABVGC
ABWST
ABXVJ
ABXVV
ABZAD
ACDDN
ACEWG
ACFRR
ACGFO
ACGFS
ACUTJ
ACVCV
ACWDW
ACWRI
ACXNZ
ACXQS
ACYHN
ACZBC
ADBBV
ADBIZ
ADGZP
ADIPN
ADMTO
ADNBA
ADQBN
ADRTK
ADVEK
ADZCM
AEMQT
AENEX
AETBJ
AFBPY
AFFQV
AFFZL
AFKRA
AFOFC
AFTRI
AFUWQ
AFXAL
AFYAG
AFZJQ
AGINJ
AGKRT
AGMDO
AGORE
AGQXC
AGUTN
AHGBF
AHMBA
AHMMS
AHRYX
AIJEX
AIZYK
AJAOE
AJBYB
AJDVS
AJEEA
AJNCP
AJNYG
ALMA_UNASSIGNED_HOLDINGS
ALXQX
APJGH
AQDSO
AQKUS
ATGXG
AVNTJ
BAYMD
BCRHZ
BENPR
BEYMZ
BOYCO
BTRTY
C45
CCPQU
CDBKE
CITATION
CS3
DAKXR
DR2
DU5
E.X
E3Z
EBS
EIHJH
EJD
ENERS
EX3
F5P
FECEO
FL-
FLUFQ
FOEOM
FOTVD
FQBLK
FYUFA
GAUVT
GJXCC
H0~
H13
HMCUK
HZ~
IAO
IHR
IN~
ITC
IX1
JXSIZ
KBUDW
KOP
KSI
KSN
LAW
LH4
LW6
M1P
MBLQV
MHKGH
NNB
NOMLY
NOYVH
NU-
NVLIB
N~7
N~B
O9-
OAUYM
OBFPC
OCUKA
OCZFY
ODMLO
OIG
OJZSN
OPAEJ
ORVUJ
OVD
OWPYF
P2P
PAFKI
PHGZM
PHGZT
PQQKQ
PSQYO
QRW
ROL
ROX
RUSNO
RX1
S4S
TEORI
TMA
UKHRP
V2E
W99
WOQ
WOW
XV2
Y6R
YAYTL
YKOAZ
YXANX
ZFV
AWKKM
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
7T5
H94
5PM
ID FETCH-LOGICAL-c423t-f779b16f1f8680b82af5dc269185affbc7317524001f4ec91504f8beee43bcdf3
IEDL.DBID 7X7
ISSN 1078-0998
1536-4844
IngestDate Thu Aug 21 18:22:02 EDT 2025
Thu Jul 10 16:43:31 EDT 2025
Tue Aug 05 10:27:15 EDT 2025
Fri Jul 25 21:51:19 EDT 2025
Wed Feb 19 02:41:16 EST 2025
Tue Jul 01 04:19:40 EDT 2025
Thu Apr 24 23:11:29 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c423t-f779b16f1f8680b82af5dc269185affbc7317524001f4ec91504f8beee43bcdf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Undefined-3
PMID 23567779
PQID 3169794345
PQPubID 996336
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3665760
proquest_miscellaneous_1680453145
proquest_miscellaneous_1399263618
proquest_journals_3169794345
pubmed_primary_23567779
crossref_citationtrail_10_1097_MIB_0b013e31828133fd
crossref_primary_10_1097_MIB_0b013e31828133fd
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-06-00
2013-Jun
20130601
PublicationDateYYYYMMDD 2013-06-01
PublicationDate_xml – month: 06
  year: 2013
  text: 2013-06-00
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Baltimore
PublicationTitle Inflammatory bowel diseases
PublicationTitleAlternate Inflamm Bowel Dis
PublicationYear 2013
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Kohane (R8-11-20130523) 2011; 12
Liu (R12-11-20130523) 2009; 18
Molodecky (R31-11-20130523) 2011; 31
Kho (R33-11-20130523) 2011; 3
Riley (R32-11-20130523) 1991; 32
Fonager (R22-11-20130523) 1996; 31
Zou (R25-11-20130523) 2006; 101
Kurreeman (R4-11-20130523) 2011; 88
Melton (R15-11-20130523) 2005; 12
Love (R5-11-20130523) 2011; 40
Schildcrout (R34-11-20130523) 2010; 43
Denny (R2-11-20130523) 2011; 89
Xu (R19-11-20130523) 2010; 17
Savova (R17-11-20130523) 2012; 19
Meystre (R16-11-20130523) 2005; 116
Benchimol (R9-11-20130523) 2009; 58
Liao (R7-11-20130523) 2010; 62
Hripcsak (R14-11-20130523) 1998; 37
Herrinton (R11-11-20130523) 2007; 13
Bernstein (R30-11-20130523) 2006; 101
Bernstein (R10-11-20130523) 1999; 149
Jha (R3-11-20130523) 2011; 306
Murff (R6-11-20130523) 2011; 306
Ananthakrishnan (R29-11-20130523) 2011; 15
Loftus (R24-11-20130523) 1998; 114
Loftus (R23-11-20130523) 2000; 46
Carroll (R1-11-20130523) 2012; 19
Zeng (R20-11-20130523) 2006; 6
Savova (R21-11-20130523) 2010; 17
21457444 - Liver Int. 2011 May;31(5):712-20
10673294 - Gut. 2000 Mar;46(3):336-43
20235204 - Arthritis Care Res (Hoboken). 2010 Aug;62(8):1120-7
21862751 - JAMA. 2011 Aug 24;306(8):880-1
21981779 - Am J Hum Genet. 2011 Oct 7;89(4):529-42
21211616 - Am J Hum Genet. 2011 Jan 7;88(1):57-69
20688191 - J Biomed Inform. 2010 Dec;43(6):914-23
20819853 - J Am Med Inform Assoc. 2010 Sep-Oct;17(5):507-13
21587298 - Nat Rev Genet. 2011 Jun;12(6):417-28
16405542 - Am J Gastroenterol. 2006 Jan;101(1):110-8
15802475 - J Am Med Inform Assoc. 2005 Jul-Aug;12(4):448-57
21508311 - Sci Transl Med. 2011 Apr 20;3(79):79re1
1864537 - Gut. 1991 Feb;32(2):174-8
16872495 - BMC Med Inform Decis Mak. 2006;6:30
21862746 - JAMA. 2011 Aug 24;306(8):848-55
19651626 - Gut. 2009 Nov;58(11):1490-7
20064797 - J Am Med Inform Assoc. 2010 Jan-Feb;17(1):19-24
22140207 - J Am Med Inform Assoc. 2012 Jun;19(e1):e83-9
17219403 - Inflamm Bowel Dis. 2007 Apr;13(4):451-61
22374935 - J Am Med Inform Assoc. 2012 Jun;19(e1):e162-9
14728415 - AMIA Annu Symp Proc. 2003;:909
8658038 - Scand J Gastroenterol. 1996 Feb;31(2):154-9
20701955 - Semin Arthritis Rheum. 2011 Apr;40(5):413-20
9609752 - Gastroenterology. 1998 Jun;114(6):1161-8
10342800 - Am J Epidemiol. 1999 May 15;149(10):916-24
21108015 - J Gastrointest Surg. 2011 Feb;15(2):267-76
9550840 - Methods Inf Med. 1998 Jan;37(1):1-7
16160360 - Stud Health Technol Inform. 2005;116:823-8
19672855 - Pharmacoepidemiol Drug Saf. 2009 Nov;18(11):1086-93
21946242 - J Am Med Inform Assoc. 2011 Dec;18 Suppl 1:i144-9
References_xml – volume: 89
  start-page: 529
  year: 2011
  ident: R2-11-20130523
  publication-title: Am J Hum Genet
  doi: 10.1016/j.ajhg.2011.09.008
– volume: 31
  start-page: 154
  year: 1996
  ident: R22-11-20130523
  publication-title: Scand J Gastroenterol
  doi: 10.3109/00365529609031980
– volume: 40
  start-page: 413
  year: 2011
  ident: R5-11-20130523
  publication-title: Semin Arthritis Rheum
  doi: 10.1016/j.semarthrit.2010.05.002
– volume: 17
  start-page: 19
  year: 2010
  ident: R19-11-20130523
  publication-title: J Am Med Inform Assoc
  doi: 10.1197/jamia.M3378
– volume: 88
  start-page: 57
  year: 2011
  ident: R4-11-20130523
  publication-title: Am J Hum Genet
  doi: 10.1016/j.ajhg.2010.12.007
– volume: 31
  start-page: 712
  year: 2011
  ident: R31-11-20130523
  publication-title: Liver Int
  doi: 10.1111/j.1478-3231.2011.02484.x
– volume: 32
  start-page: 174
  year: 1991
  ident: R32-11-20130523
  publication-title: Microscopic activity in ulcerative colitis: what does it mean Gut
– volume: 17
  start-page: 507
  year: 2010
  ident: R21-11-20130523
  publication-title: J Am Med Inform Assoc
  doi: 10.1136/jamia.2009.001560
– volume: 43
  start-page: 914
  year: 2010
  ident: R34-11-20130523
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2010.07.011
– volume: 19
  start-page: e162
  year: 2012
  ident: R1-11-20130523
  publication-title: J Am Med Inform Assoc
  doi: 10.1136/amiajnl-2011-000583
– volume: 101
  start-page: 1418
  year: 2006
  ident: R25-11-20130523
  publication-title: J Am Stat Assoc
  doi: 10.1198/016214506000000735
– volume: 19
  start-page: e83
  year: 2012
  ident: R17-11-20130523
  publication-title: J Am Med Inform Assoc
  doi: 10.1136/amiajnl-2011-000295
– volume: 114
  start-page: 1161
  year: 1998
  ident: R24-11-20130523
  publication-title: Gastroenterology
  doi: 10.1016/S0016-5085(98)70421-4
– volume: 101
  start-page: 110
  year: 2006
  ident: R30-11-20130523
  publication-title: Am J Gastroenterol
  doi: 10.1111/j.1572-0241.2006.00330.x
– volume: 6
  start-page: 30
  year: 2006
  ident: R20-11-20130523
  publication-title: BMC Med Inform Decis Mak
  doi: 10.1186/1472-6947-6-30
– volume: 13
  start-page: 451
  year: 2007
  ident: R11-11-20130523
  publication-title: Inflamm Bowel Dis
  doi: 10.1002/ibd.20021
– volume: 12
  start-page: 448
  year: 2005
  ident: R15-11-20130523
  publication-title: J Am Med Inform Assoc
  doi: 10.1197/jamia.M1794
– volume: 58
  start-page: 1490
  year: 2009
  ident: R9-11-20130523
  publication-title: Gut
  doi: 10.1136/gut.2009.188383
– volume: 3
  start-page: 79re1
  year: 2011
  ident: R33-11-20130523
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.3001807
– volume: 18
  start-page: 1086
  year: 2009
  ident: R12-11-20130523
  publication-title: Pharmacoepidemiol Drug Saf
  doi: 10.1002/pds.1824
– volume: 46
  start-page: 336
  year: 2000
  ident: R23-11-20130523
  publication-title: Gut
  doi: 10.1136/gut.46.3.336
– volume: 15
  start-page: 267
  year: 2011
  ident: R29-11-20130523
  publication-title: J Gastrointest Surg
  doi: 10.1007/s11605-010-1396-3
– volume: 306
  start-page: 880
  year: 2011
  ident: R3-11-20130523
– volume: 306
  start-page: 848
  year: 2011
  ident: R6-11-20130523
  publication-title: JAMA
– volume: 62
  start-page: 1120
  year: 2010
  ident: R7-11-20130523
  publication-title: Arthritis Care Res (Hoboken)
  doi: 10.1002/acr.20184
– volume: 149
  start-page: 916
  year: 1999
  ident: R10-11-20130523
  publication-title: Am J Epidemiol
  doi: 10.1093/oxfordjournals.aje.a009735
– volume: 116
  start-page: 823
  year: 2005
  ident: R16-11-20130523
  publication-title: Stud Health Technol Inform
– volume: 12
  start-page: 417
  year: 2011
  ident: R8-11-20130523
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg2999
– volume: 37
  start-page: 1
  year: 1998
  ident: R14-11-20130523
  publication-title: Methods Inf Med
  doi: 10.1055/s-0038-1634566
– reference: 14728415 - AMIA Annu Symp Proc. 2003;:909
– reference: 21946242 - J Am Med Inform Assoc. 2011 Dec;18 Suppl 1:i144-9
– reference: 19651626 - Gut. 2009 Nov;58(11):1490-7
– reference: 21108015 - J Gastrointest Surg. 2011 Feb;15(2):267-76
– reference: 21862746 - JAMA. 2011 Aug 24;306(8):848-55
– reference: 21862751 - JAMA. 2011 Aug 24;306(8):880-1
– reference: 21981779 - Am J Hum Genet. 2011 Oct 7;89(4):529-42
– reference: 10342800 - Am J Epidemiol. 1999 May 15;149(10):916-24
– reference: 21211616 - Am J Hum Genet. 2011 Jan 7;88(1):57-69
– reference: 22140207 - J Am Med Inform Assoc. 2012 Jun;19(e1):e83-9
– reference: 9550840 - Methods Inf Med. 1998 Jan;37(1):1-7
– reference: 15802475 - J Am Med Inform Assoc. 2005 Jul-Aug;12(4):448-57
– reference: 10673294 - Gut. 2000 Mar;46(3):336-43
– reference: 8658038 - Scand J Gastroenterol. 1996 Feb;31(2):154-9
– reference: 16872495 - BMC Med Inform Decis Mak. 2006;6:30
– reference: 21457444 - Liver Int. 2011 May;31(5):712-20
– reference: 17219403 - Inflamm Bowel Dis. 2007 Apr;13(4):451-61
– reference: 22374935 - J Am Med Inform Assoc. 2012 Jun;19(e1):e162-9
– reference: 16405542 - Am J Gastroenterol. 2006 Jan;101(1):110-8
– reference: 16160360 - Stud Health Technol Inform. 2005;116:823-8
– reference: 20064797 - J Am Med Inform Assoc. 2010 Jan-Feb;17(1):19-24
– reference: 9609752 - Gastroenterology. 1998 Jun;114(6):1161-8
– reference: 21587298 - Nat Rev Genet. 2011 Jun;12(6):417-28
– reference: 20688191 - J Biomed Inform. 2010 Dec;43(6):914-23
– reference: 20701955 - Semin Arthritis Rheum. 2011 Apr;40(5):413-20
– reference: 20819853 - J Am Med Inform Assoc. 2010 Sep-Oct;17(5):507-13
– reference: 20235204 - Arthritis Care Res (Hoboken). 2010 Aug;62(8):1120-7
– reference: 19672855 - Pharmacoepidemiol Drug Saf. 2009 Nov;18(11):1086-93
– reference: 21508311 - Sci Transl Med. 2011 Apr 20;3(79):79re1
– reference: 1864537 - Gut. 1991 Feb;32(2):174-8
SSID ssj0020209
Score 2.4407957
SecondaryResourceType review_article
Snippet Previous studies identifying patients with inflammatory bowel disease using administrative codes have yielded inconsistent results. Our objective was to...
BackgroundPrevious studies identifying patients with inflammatory bowel disease using administrative codes have yielded inconsistent results. Our objective was...
Previous studies identifying patients with inflammatory bowel disease using administrative codes have yielded inconsistent results. Using the electronic...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1411
SubjectTerms Accuracy
Adult
Algorithms
Classification
Codes
Colitis, Ulcerative - diagnosis
Crohn Disease - diagnosis
Crohn's disease
Electronic Health Records
Female
Follow-Up Studies
Humans
Inflammatory bowel disease
Male
Medical Informatics
Medical records
Natural Language Processing
Prognosis
Tertiary Care Centers
Subtitle A Novel Informatics Approach
Title Improving Case Definition of Crohnʼs Disease and Ulcerative Colitis in Electronic Medical Records Using Natural Language Processing
URI https://www.ncbi.nlm.nih.gov/pubmed/23567779
https://www.proquest.com/docview/3169794345
https://www.proquest.com/docview/1399263618
https://www.proquest.com/docview/1680453145
https://pubmed.ncbi.nlm.nih.gov/PMC3665760
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1ba9swFBZbC2MvY901W1c0GOxJNNbdT2NNUrrShFEWyJuRZIkGitzV6S_YH58ky87SQvdoJBujc6Rz-Y6-A8AXSoWwrJbIMuwQrYlBWhCGtNTKFthhmYjn5wt-tqTnK7bKCbc2l1X2Z2I6qOvGxBz5MSl4mcjM2Leb3yh2jYroam6h8RTsR-qyGHyJ1TbgGnclHiHCiRB_Kfurc6U4nv842eYAsQyRmqt3TdMDf_N-2eQ_duj0JXiRHUj4vZP4AXhi_SvwbJ4h8tfgz5AmgJNgoeDUurVPdVmwcXBy21z5ry2cdrgMVL6Gy2tjO_5vOEnVcC1cezgb-uPADObALlRtYSozgAuVKDvgRc54wnznIIy9AcvT2a_JGcqdFpAJ7tQGOSFKXXBXOMnlWEusHKsN5mWw5so5bUR0M2K5aeGoNWXwIqmT2lpLiTa1I2_Bnm-8fQ-gLYl0REirmKbSKcUZDtoqgmdFmWJ2BEi_yJXJNOSxG8Z11cPhQTTVfdGMABreuuloOP4z_7CXX5U3ZVttVWgEPg_DYTtFjER529y1VRGJejnhhXxkTlgjGs6u-J13nUoMP4UJ4yKs5giIHWUZJkQ6790Rv75KtN4kgmB8_OHxX_8InuOuIwcaF4dgb3N7Zz8Fv2ijj5LyH4H9k9ni52V4ml7ivwxhD4E
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LaxNBGP-oKaiX4tvUqiMonoZm570HEZukJDYJIg30ts7sztBA2a3dFPHs_-Pf6My-airUU88zOyzzvR_z-wDeMial5ZnClhOHWUZTbCTl2CijbUQcURXw_HwhJkv2-YSfbMHv9i1MaKtsdWKlqLMiDTnyfRqJuAIz4x_Pv-MwNSpUV9sRGjVbHNmfP3zIVn6Yjjx93xFyOD4eTnAzVQCn3nVYYydlbCLhIqeEGhhFtONZSkTsLZd2zqQymNTQWhk5ZtPYe0zMKWOtZdSkmaP-3Duwzah3FXqwfTBefPnahXiDuqnEx1ShqSBW7WO9WO7PpwdXWUeifGzosk1j-I-He71R8y_Ld_gAdhqXFX2qeewhbNn8EdydN0X5x_CrS0ygobeJaGTdKq86wVDh0PCiOM3fl2hUV4KQzjO0PEttjTiOhlX_XYlWORp3E3lQUz5CdXBcoqqxAS10BRKCZk2OFTWvHPzaE1jeChWeQi8vcvsckI2pclQqq7lhymktOPHyIb0vx7jmtg-0veQkbYDPw_yNs6QtwHvSJNdJ0wfcfXVeA3_8Z_9eS7-kUQNlcsW0fXjTLXsBDlUZndviskyiAA0sqIjUDXv8HTGvLcM5z2qW6H6KUC6kv80-yA1m6TYEAPHNlXx1WgGJ01B2E4Pdm3_9NdybHM9nyWy6OHoB90k9DwQPoj3orS8u7Uvvla3Nq0YUEHy7ben7A_TNS9U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+Case+Definition+of+Crohn%E2%80%99s+Disease+and+Ulcerative+Colitis+in+Electronic+Medical+Records+Using+Natural+Language+Processing%3A+A+Novel+Informatics+Approach&rft.jtitle=Inflammatory+bowel+diseases&rft.au=Ananthakrishnan%2C+Ashwin+N.&rft.au=Cai%2C+Tianxi&rft.au=Savova%2C+Guergana&rft.au=Cheng%2C+Su-Chun&rft.date=2013-06-01&rft.issn=1078-0998&rft.eissn=1536-4844&rft.volume=19&rft.issue=7&rft.spage=1411&rft.epage=1420&rft_id=info:doi/10.1097%2FMIB.0b013e31828133fd&rft_id=info%3Apmid%2F23567779&rft.externalDocID=PMC3665760
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1078-0998&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1078-0998&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1078-0998&client=summon