Improving Case Definition of Crohnʼs Disease and Ulcerative Colitis in Electronic Medical Records Using Natural Language Processing A Novel Informatics Approach
Previous studies identifying patients with inflammatory bowel disease using administrative codes have yielded inconsistent results. Our objective was to develop a robust electronic medical record-based model for classification of inflammatory bowel disease leveraging the combination of codified data...
Saved in:
Published in | Inflammatory bowel diseases Vol. 19; no. 7; pp. 1411 - 1420 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
01.06.2013
|
Subjects | |
Online Access | Get full text |
ISSN | 1078-0998 1536-4844 1536-4844 |
DOI | 10.1097/MIB.0b013e31828133fd |
Cover
Loading…
Abstract | Previous studies identifying patients with inflammatory bowel disease using administrative codes have yielded inconsistent results. Our objective was to develop a robust electronic medical record-based model for classification of inflammatory bowel disease leveraging the combination of codified data and information from clinical text notes using natural language processing.
Using the electronic medical records of 2 large academic centers, we created data marts for Crohn's disease (CD) and ulcerative colitis (UC) comprising patients with ≥1 International Classification of Diseases, 9th edition, code for each disease. We used codified (i.e., International Classification of Diseases, 9th edition codes, electronic prescriptions) and narrative data from clinical notes to develop our classification model. Model development and validation was performed in a training set of 600 randomly selected patients for each disease with medical record review as the gold standard. Logistic regression with the adaptive LASSO penalty was used to select informative variables.
We confirmed 399 CD cases (67%) in the CD training set and 378 UC cases (63%) in the UC training set. For both, a combined model including narrative and codified data had better accuracy (area under the curve for CD 0.95; UC 0.94) than models using only disease International Classification of Diseases, 9th edition codes (area under the curve 0.89 for CD; 0.86 for UC). Addition of natural language processing narrative terms to our final model resulted in classification of 6% to 12% more subjects with the same accuracy.
Inclusion of narrative concepts identified using natural language processing improves the accuracy of electronic medical records case definition for CD and UC while simultaneously identifying more subjects compared with models using codified data alone. |
---|---|
AbstractList | Previous studies identifying patients with inflammatory bowel disease using administrative codes have yielded inconsistent results. Using the electronic medical records of 2 large academic centers, we created data marts for Crohn's disease (CD) and ulcerative colitis (UC) comprising patients with greater than or equal to 1 International Classification of Diseases, 9th edition, code for each disease. We used codified (i.e., International Classification of Diseases, 9th edition codes, electronic prescriptions) and narrative data from clinical notes to develop our classification model. Model development and validation was performed in a training set of 600 randomly selected patients for each disease with medical record review as the gold standard. Logistic regression with the adaptive LASSO penalty was used to select informative variables. We confirmed 399 CD cases (67%) in the CD training set and 378 UC cases (63%) in the UC training set. Addition of natural language processing narrative terms to our final model resulted in classification of 6% to 12% more subjects with the same accuracy. Previous studies identifying patients with inflammatory bowel disease using administrative codes have yielded inconsistent results. Our objective was to develop a robust electronic medical record-based model for classification of inflammatory bowel disease leveraging the combination of codified data and information from clinical text notes using natural language processing.BACKGROUNDPrevious studies identifying patients with inflammatory bowel disease using administrative codes have yielded inconsistent results. Our objective was to develop a robust electronic medical record-based model for classification of inflammatory bowel disease leveraging the combination of codified data and information from clinical text notes using natural language processing.Using the electronic medical records of 2 large academic centers, we created data marts for Crohn's disease (CD) and ulcerative colitis (UC) comprising patients with ≥1 International Classification of Diseases, 9th edition, code for each disease. We used codified (i.e., International Classification of Diseases, 9th edition codes, electronic prescriptions) and narrative data from clinical notes to develop our classification model. Model development and validation was performed in a training set of 600 randomly selected patients for each disease with medical record review as the gold standard. Logistic regression with the adaptive LASSO penalty was used to select informative variables.METHODSUsing the electronic medical records of 2 large academic centers, we created data marts for Crohn's disease (CD) and ulcerative colitis (UC) comprising patients with ≥1 International Classification of Diseases, 9th edition, code for each disease. We used codified (i.e., International Classification of Diseases, 9th edition codes, electronic prescriptions) and narrative data from clinical notes to develop our classification model. Model development and validation was performed in a training set of 600 randomly selected patients for each disease with medical record review as the gold standard. Logistic regression with the adaptive LASSO penalty was used to select informative variables.We confirmed 399 CD cases (67%) in the CD training set and 378 UC cases (63%) in the UC training set. For both, a combined model including narrative and codified data had better accuracy (area under the curve for CD 0.95; UC 0.94) than models using only disease International Classification of Diseases, 9th edition codes (area under the curve 0.89 for CD; 0.86 for UC). Addition of natural language processing narrative terms to our final model resulted in classification of 6% to 12% more subjects with the same accuracy.RESULTSWe confirmed 399 CD cases (67%) in the CD training set and 378 UC cases (63%) in the UC training set. For both, a combined model including narrative and codified data had better accuracy (area under the curve for CD 0.95; UC 0.94) than models using only disease International Classification of Diseases, 9th edition codes (area under the curve 0.89 for CD; 0.86 for UC). Addition of natural language processing narrative terms to our final model resulted in classification of 6% to 12% more subjects with the same accuracy.Inclusion of narrative concepts identified using natural language processing improves the accuracy of electronic medical records case definition for CD and UC while simultaneously identifying more subjects compared with models using codified data alone.CONCLUSIONSInclusion of narrative concepts identified using natural language processing improves the accuracy of electronic medical records case definition for CD and UC while simultaneously identifying more subjects compared with models using codified data alone. Previous studies identifying patients with inflammatory bowel disease using administrative codes have yielded inconsistent results. Our objective was to develop a robust electronic medical record-based model for classification of inflammatory bowel disease leveraging the combination of codified data and information from clinical text notes using natural language processing. Using the electronic medical records of 2 large academic centers, we created data marts for Crohn's disease (CD) and ulcerative colitis (UC) comprising patients with ≥1 International Classification of Diseases, 9th edition, code for each disease. We used codified (i.e., International Classification of Diseases, 9th edition codes, electronic prescriptions) and narrative data from clinical notes to develop our classification model. Model development and validation was performed in a training set of 600 randomly selected patients for each disease with medical record review as the gold standard. Logistic regression with the adaptive LASSO penalty was used to select informative variables. We confirmed 399 CD cases (67%) in the CD training set and 378 UC cases (63%) in the UC training set. For both, a combined model including narrative and codified data had better accuracy (area under the curve for CD 0.95; UC 0.94) than models using only disease International Classification of Diseases, 9th edition codes (area under the curve 0.89 for CD; 0.86 for UC). Addition of natural language processing narrative terms to our final model resulted in classification of 6% to 12% more subjects with the same accuracy. Inclusion of narrative concepts identified using natural language processing improves the accuracy of electronic medical records case definition for CD and UC while simultaneously identifying more subjects compared with models using codified data alone. BackgroundPrevious studies identifying patients with inflammatory bowel disease using administrative codes have yielded inconsistent results. Our objective was to develop a robust electronic medical record–based model for classification of inflammatory bowel disease leveraging the combination of codified data and information from clinical text notes using natural language processing.MethodsUsing the electronic medical records of 2 large academic centers, we created data marts for Crohn’s disease (CD) and ulcerative colitis (UC) comprising patients with ≥1 International Classification of Diseases, 9th edition, code for each disease. We used codified (i.e., International Classification of Diseases, 9th edition codes, electronic prescriptions) and narrative data from clinical notes to develop our classification model. Model development and validation was performed in a training set of 600 randomly selected patients for each disease with medical record review as the gold standard. Logistic regression with the adaptive LASSO penalty was used to select informative variables.ResultsWe confirmed 399 CD cases (67%) in the CD training set and 378 UC cases (63%) in the UC training set. For both, a combined model including narrative and codified data had better accuracy (area under the curve for CD 0.95; UC 0.94) than models using only disease International Classification of Diseases, 9th edition codes (area under the curve 0.89 for CD; 0.86 for UC). Addition of natural language processing narrative terms to our final model resulted in classification of 6% to 12% more subjects with the same accuracy.ConclusionsInclusion of narrative concepts identified using natural language processing improves the accuracy of electronic medical records case definition for CD and UC while simultaneously identifying more subjects compared with models using codified data alone. |
Author | Cheng, Su-Chun Savova, Guergana Perez, Raul Guzman Xia, Zongqi Liao, Katherine P. Churchill, Susanne Plenge, Robert M. Ananthakrishnan, Ashwin N. Gainer, Vivian S. Shaw, Stanley Szolovits, Peter Cai, Tianxi Murphy, Shawn N. Karlson, Elizabeth W. Chen, Pei Kohane, Isaac |
AuthorAffiliation | 3 Department of Biostatistics, Harvard School of Public Health, Boston, MA 5 Research Computing, Partners HealthCare, Charlestown, MA 6 Department of Neurology, Massachusetts General Hospital, Boston, MA 8 Department of Neurology, Brigham and Women’s Hospital, Boston, MA 2 Harvard Medical School, Boston, MA 11 Division of Rheumatology, Brigham and Women’s Hospital, Boston, MA 10 i2b2 National Center for Biomedical Computing, Brigham and Women’s Hospital, Boston, MA 4 Children’s Hospital Boston, Boston, MA 7 Massachusetts Institute of Technology, Cambridge, MA 1 Gastrointestinal Unit, Massachusetts General Hospital, Boston, MA 9 Division of Cardiology, Massachusetts General Hospital, Boston, MA |
AuthorAffiliation_xml | – name: 7 Massachusetts Institute of Technology, Cambridge, MA – name: 5 Research Computing, Partners HealthCare, Charlestown, MA – name: 2 Harvard Medical School, Boston, MA – name: 3 Department of Biostatistics, Harvard School of Public Health, Boston, MA – name: 1 Gastrointestinal Unit, Massachusetts General Hospital, Boston, MA – name: 8 Department of Neurology, Brigham and Women’s Hospital, Boston, MA – name: 11 Division of Rheumatology, Brigham and Women’s Hospital, Boston, MA – name: 4 Children’s Hospital Boston, Boston, MA – name: 6 Department of Neurology, Massachusetts General Hospital, Boston, MA – name: 9 Division of Cardiology, Massachusetts General Hospital, Boston, MA – name: 10 i2b2 National Center for Biomedical Computing, Brigham and Women’s Hospital, Boston, MA |
Author_xml | – sequence: 1 givenname: Ashwin N. surname: Ananthakrishnan fullname: Ananthakrishnan, Ashwin N. – sequence: 2 givenname: Tianxi surname: Cai fullname: Cai, Tianxi – sequence: 3 givenname: Guergana surname: Savova fullname: Savova, Guergana – sequence: 4 givenname: Su-Chun surname: Cheng fullname: Cheng, Su-Chun – sequence: 5 givenname: Pei surname: Chen fullname: Chen, Pei – sequence: 6 givenname: Raul Guzman surname: Perez fullname: Perez, Raul Guzman – sequence: 7 givenname: Vivian S. surname: Gainer fullname: Gainer, Vivian S. – sequence: 8 givenname: Shawn N. surname: Murphy fullname: Murphy, Shawn N. – sequence: 9 givenname: Peter surname: Szolovits fullname: Szolovits, Peter – sequence: 10 givenname: Zongqi surname: Xia fullname: Xia, Zongqi – sequence: 11 givenname: Stanley surname: Shaw fullname: Shaw, Stanley – sequence: 12 givenname: Susanne surname: Churchill fullname: Churchill, Susanne – sequence: 13 givenname: Elizabeth W. surname: Karlson fullname: Karlson, Elizabeth W. – sequence: 14 givenname: Isaac surname: Kohane fullname: Kohane, Isaac – sequence: 15 givenname: Robert M. surname: Plenge fullname: Plenge, Robert M. – sequence: 16 givenname: Katherine P. surname: Liao fullname: Liao, Katherine P. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23567779$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUt2O1CAUbswa90ffwBgSb7zpCoVS8MJEu-s6yawa41wTSg-zbDowQjuJ9z6WT-BTSffH6FxoCOGE7ycfnHNcHPjgoSieEnxKsGxeXi7enuIOEwqUiEoQSm3_oDgiNeUlE4wd5Bo3osRSisPiOKVrjKu85KPisKI1b5pGHhXfF5ttDDvn16jVCdAZWOfd6IJHwaI2hiv_80dCZy7BDGvfo9VgIOrR7QC1YcjchJxH5wOYMQbvDLqE3hk9oM9gQuwTWqXZ_oMep5hvl9qvJ70G9CkGA2nGHhcPrR4SPLk7T4rVu_Mv7fty-fFi0b5ZloZVdCxtTtwRbokVXOBOVNrWvam4JKLW1namoaSpK4YxsQyMJDVmVnQAwGhnektPite3vtup20BvwI85kdpGt9Hxmwraqb8R767UOuwU5bxuOM4GL-4MYvg6QRrVxiUDw6A9hCkpknOxmpK8_0ulUlacciIy9fke9TpM0eefUJRw2UhGbwyf_Rn-d-r7XmbCq1uCiSGlCFYZN-q5lfktblAEq3lwVB4ctT84Wcz2xPf-_5T9AiLcyhk |
CitedBy_id | crossref_primary_10_1093_jamia_ocaa079 crossref_primary_10_1186_s13223_021_00541_6 crossref_primary_10_1080_14737159_2018_1439380 crossref_primary_10_1002_acr_24496 crossref_primary_10_1371_journal_pone_0136651 crossref_primary_10_1161_JAHA_120_016648 crossref_primary_10_1080_17474124_2023_2166928 crossref_primary_10_3390_electronics8111235 crossref_primary_10_1016_j_jbi_2019_103122 crossref_primary_10_1038_s41596_019_0227_6 crossref_primary_10_1371_journal_pone_0192360 crossref_primary_10_1007_s00439_014_1466_9 crossref_primary_10_1007_s40290_017_0216_4 crossref_primary_10_1136_gutjnl_2022_328802 crossref_primary_10_1016_j_jbi_2022_104190 crossref_primary_10_1097_MIB_0000000000000580 crossref_primary_10_1016_j_jbi_2014_08_012 crossref_primary_10_1111_jgh_15313 crossref_primary_10_1136_gutjnl_2022_328883 crossref_primary_10_1136_gutjnl_2019_320065 crossref_primary_10_1007_s10742_016_0149_5 crossref_primary_10_14309_ctg_0000000000000018 crossref_primary_10_1136_amiajnl_2014_002642 crossref_primary_10_3389_fphar_2021_720694 crossref_primary_10_1093_ibd_izae068 crossref_primary_10_1016_j_giec_2024_09_005 crossref_primary_10_1093_ibd_izx015 crossref_primary_10_1016_j_biopsych_2014_05_024 crossref_primary_10_1016_j_gastha_2024_10_003 crossref_primary_10_1093_ecco_jcc_jjad029 crossref_primary_10_1177_0272989X221103508 crossref_primary_10_1007_s11605_023_05861_z crossref_primary_10_1016_j_cgh_2022_10_029 crossref_primary_10_1097_MEG_0000000000002317 crossref_primary_10_1111_nyas_13259 crossref_primary_10_1007_s10620_015_3952_x crossref_primary_10_1097_MIB_0b013e3182902ad9 crossref_primary_10_1053_j_gastro_2021_12_238 crossref_primary_10_1016_j_procs_2020_11_026 crossref_primary_10_1093_jamia_ocx111 crossref_primary_10_1002_sim_9569 crossref_primary_10_1186_s13075_021_02615_7 crossref_primary_10_1093_ibd_izac109 crossref_primary_10_1111_rssb_12264 crossref_primary_10_1097_MIB_0000000000000524 crossref_primary_10_1016_j_artmed_2024_103032 crossref_primary_10_1093_jamia_ocaa288 crossref_primary_10_1371_journal_pone_0186301 crossref_primary_10_1016_j_cgh_2019_08_005 crossref_primary_10_1136_ebmental_2020_300223 crossref_primary_10_1186_s12911_018_0617_7 crossref_primary_10_1136_amiajnl_2013_001999 crossref_primary_10_1136_bmjgast_2020_000378 crossref_primary_10_14309_ajg_0000000000001855 crossref_primary_10_1177_0962280219837676 crossref_primary_10_3390_ijms24032458 crossref_primary_10_1016_j_ijmedinf_2015_10_005 crossref_primary_10_1038_s41598_018_25312_z crossref_primary_10_1093_ibd_izy127 crossref_primary_10_3934_mbe_2022640 crossref_primary_10_1111_jgh_15405 crossref_primary_10_1371_journal_pdig_0000003 crossref_primary_10_1093_jamia_ocv180 crossref_primary_10_1097_MIB_0000000000000754 crossref_primary_10_3389_fmed_2024_1512824 crossref_primary_10_1186_s12911_019_0783_2 crossref_primary_10_1007_s11894_024_00918_8 crossref_primary_10_1016_j_cgh_2013_12_030 crossref_primary_10_1016_j_semcancer_2021_03_037 crossref_primary_10_1007_s10620_021_06990_8 crossref_primary_10_1093_ibd_izac131 crossref_primary_10_1007_s10620_014_3353_6 crossref_primary_10_1371_journal_pone_0078927 crossref_primary_10_2196_30345 crossref_primary_10_1038_s41598_022_22585_3 crossref_primary_10_1053_j_gastro_2015_06_005 crossref_primary_10_2196_15589 crossref_primary_10_1371_journal_pone_0258537 crossref_primary_10_1186_s12859_019_2617_8 crossref_primary_10_1093_jamia_ocv034 crossref_primary_10_1016_j_cgh_2014_02_034 crossref_primary_10_1007_s11019_018_9845_y crossref_primary_10_1093_jamia_ocab236 crossref_primary_10_1186_gb4175 crossref_primary_10_1111_apt_12706 crossref_primary_10_1136_ebmental_2020_300167 crossref_primary_10_1371_journal_pone_0159621 crossref_primary_10_1186_s12958_015_0115_z crossref_primary_10_1016_j_cgh_2014_07_018 crossref_primary_10_1016_j_cgh_2013_10_011 crossref_primary_10_1016_j_patter_2023_100906 crossref_primary_10_1007_s10654_018_0470_0 crossref_primary_10_1097_GOX_0000000000003633 crossref_primary_10_1093_jamia_ocw135 crossref_primary_10_1093_rap_rkae120 crossref_primary_10_1111_apt_13195 crossref_primary_10_1097_BOR_000000000000061 crossref_primary_10_1016_j_cgh_2022_05_008 crossref_primary_10_1016_j_gastha_2022_02_025 crossref_primary_10_1177_1178222616685880 crossref_primary_10_1097_SHK_0000000000000742 crossref_primary_10_1007_s10620_020_06329_9 crossref_primary_10_3899_jrheum_140178 crossref_primary_10_1053_j_gastro_2020_02_032 crossref_primary_10_1007_s11938_023_00437_x crossref_primary_10_1016_j_jbi_2022_104177 crossref_primary_10_1016_j_cgh_2014_05_013 crossref_primary_10_1186_s40164_022_00333_7 crossref_primary_10_1111_rssb_12502 crossref_primary_10_1515_jisys_2022_0040 crossref_primary_10_1053_j_gastro_2017_09_052 crossref_primary_10_1136_bmjgast_2020_000573 crossref_primary_10_1016_j_ijmedinf_2019_05_008 crossref_primary_10_2196_27460 crossref_primary_10_1186_s13326_018_0179_8 crossref_primary_10_1016_j_cgh_2016_02_017 crossref_primary_10_3390_computers10020024 crossref_primary_10_1093_jamia_ocv024 crossref_primary_10_3389_fsurg_2024_1403540 crossref_primary_10_3748_wjg_v29_i3_508 crossref_primary_10_1093_jamia_ocz066 crossref_primary_10_1093_ibd_izaa239 crossref_primary_10_1016_j_crohns_2014_01_019 |
Cites_doi | 10.1016/j.ajhg.2011.09.008 10.3109/00365529609031980 10.1016/j.semarthrit.2010.05.002 10.1197/jamia.M3378 10.1016/j.ajhg.2010.12.007 10.1111/j.1478-3231.2011.02484.x 10.1136/jamia.2009.001560 10.1016/j.jbi.2010.07.011 10.1136/amiajnl-2011-000583 10.1198/016214506000000735 10.1136/amiajnl-2011-000295 10.1016/S0016-5085(98)70421-4 10.1111/j.1572-0241.2006.00330.x 10.1186/1472-6947-6-30 10.1002/ibd.20021 10.1197/jamia.M1794 10.1136/gut.2009.188383 10.1126/scitranslmed.3001807 10.1002/pds.1824 10.1136/gut.46.3.336 10.1007/s11605-010-1396-3 10.1002/acr.20184 10.1093/oxfordjournals.aje.a009735 10.1038/nrg2999 10.1055/s-0038-1634566 |
ContentType | Journal Article |
Copyright | Copyright © 2013 Crohn's & Colitis Foundation of America, Inc. |
Copyright_xml | – notice: Copyright © 2013 Crohn's & Colitis Foundation of America, Inc. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA BENPR CCPQU FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 7T5 H94 5PM |
DOI | 10.1097/MIB.0b013e31828133fd |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central ProQuest One Community College Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Medical Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic Immunology Abstracts AIDS and Cancer Research Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Central China ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete ProQuest Health & Medical Research Collection Health Research Premium Collection ProQuest Medical Library ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) Health & Medical Research Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Medical Library (Alumni) ProQuest Central (Alumni) MEDLINE - Academic AIDS and Cancer Research Abstracts Immunology Abstracts |
DatabaseTitleList | AIDS and Cancer Research Abstracts MEDLINE - Academic MEDLINE ProQuest One Academic Middle East (New) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1536-4844 |
EndPage | 1420 |
ExternalDocumentID | PMC3665760 23567779 10_1097_MIB_0b013e31828133fd |
Genre | Multicenter Study Randomized Controlled Trial Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: K08 NS079493 – fundername: NIAMS NIH HHS grantid: R01 AR059648 – fundername: NIGMS NIH HHS grantid: U01 GM092691 – fundername: NLM NIH HHS grantid: U54 LM008748 – fundername: NIAMS NIH HHS grantid: R01 AR057108 – fundername: NIGMS NIH HHS grantid: U01-GM092691 – fundername: NIAMS NIH HHS grantid: K24 AR052403 – fundername: NIDDK NIH HHS grantid: P30 DK043351 – fundername: NLM NIH HHS grantid: U54-LM008748 – fundername: NIAMS NIH HHS grantid: K08 AR060257 – fundername: National Library of Medicine : NLM grantid: U54 LM008748 || LM – fundername: National Institute of General Medical Sciences : NIGMS grantid: U01 GM092691 || GM – fundername: National Institute of Arthritis and Musculoskeletal and Skin Diseases : NIAMS grantid: R01 AR059648 || AR – fundername: National Institute of Arthritis and Musculoskeletal and Skin Diseases : NIAMS grantid: K24 AR052403 || AR – fundername: National Institute of Diabetes and Digestive and Kidney Diseases : NIDDK grantid: K23 DK097142 || DK – fundername: National Institute of Arthritis and Musculoskeletal and Skin Diseases : NIAMS grantid: R01 AR057108 || AR – fundername: National Institute of Arthritis and Musculoskeletal and Skin Diseases : NIAMS grantid: K08 AR060257 || AR |
GroupedDBID | --- .Z2 0R~ 1OC 31~ 3WU 4.4 48X 53G 5GY 5VS 5WD 66C 7O~ 7X7 8-0 8-1 88E 8F7 8FI 8FJ 8UM AAAXR AABZA AACZT AAJQQ AAKAS AAPGJ AAPQZ AAPXW AARHZ AARTV AAUAY AAUQX AAVAP AAWDT AAYEP AAYXX ABBUW ABDFA ABEJV ABGNP ABJNI ABNHQ ABOCM ABPQP ABPTD ABQNK ABUWG ABVGC ABWST ABXVJ ABXVV ABZAD ACDDN ACEWG ACFRR ACGFO ACGFS ACUTJ ACVCV ACWDW ACWRI ACXNZ ACXQS ACYHN ACZBC ADBBV ADBIZ ADGZP ADIPN ADMTO ADNBA ADQBN ADRTK ADVEK ADZCM AEMQT AENEX AETBJ AFBPY AFFQV AFFZL AFKRA AFOFC AFTRI AFUWQ AFXAL AFYAG AFZJQ AGINJ AGKRT AGMDO AGORE AGQXC AGUTN AHGBF AHMBA AHMMS AHRYX AIJEX AIZYK AJAOE AJBYB AJDVS AJEEA AJNCP AJNYG ALMA_UNASSIGNED_HOLDINGS ALXQX APJGH AQDSO AQKUS ATGXG AVNTJ BAYMD BCRHZ BENPR BEYMZ BOYCO BTRTY C45 CCPQU CDBKE CITATION CS3 DAKXR DR2 DU5 E.X E3Z EBS EIHJH EJD ENERS EX3 F5P FECEO FL- FLUFQ FOEOM FOTVD FQBLK FYUFA GAUVT GJXCC H0~ H13 HMCUK HZ~ IAO IHR IN~ ITC IX1 JXSIZ KBUDW KOP KSI KSN LAW LH4 LW6 M1P MBLQV MHKGH NNB NOMLY NOYVH NU- NVLIB N~7 N~B O9- OAUYM OBFPC OCUKA OCZFY ODMLO OIG OJZSN OPAEJ ORVUJ OVD OWPYF P2P PAFKI PHGZM PHGZT PQQKQ PSQYO QRW ROL ROX RUSNO RX1 S4S TEORI TMA UKHRP V2E W99 WOQ WOW XV2 Y6R YAYTL YKOAZ YXANX ZFV AWKKM CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 7T5 H94 5PM |
ID | FETCH-LOGICAL-c423t-f779b16f1f8680b82af5dc269185affbc7317524001f4ec91504f8beee43bcdf3 |
IEDL.DBID | 7X7 |
ISSN | 1078-0998 1536-4844 |
IngestDate | Thu Aug 21 18:22:02 EDT 2025 Thu Jul 10 16:43:31 EDT 2025 Tue Aug 05 10:27:15 EDT 2025 Fri Jul 25 21:51:19 EDT 2025 Wed Feb 19 02:41:16 EST 2025 Tue Jul 01 04:19:40 EDT 2025 Thu Apr 24 23:11:29 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c423t-f779b16f1f8680b82af5dc269185affbc7317524001f4ec91504f8beee43bcdf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Undefined-3 |
PMID | 23567779 |
PQID | 3169794345 |
PQPubID | 996336 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3665760 proquest_miscellaneous_1680453145 proquest_miscellaneous_1399263618 proquest_journals_3169794345 pubmed_primary_23567779 crossref_citationtrail_10_1097_MIB_0b013e31828133fd crossref_primary_10_1097_MIB_0b013e31828133fd |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-06-00 2013-Jun 20130601 |
PublicationDateYYYYMMDD | 2013-06-01 |
PublicationDate_xml | – month: 06 year: 2013 text: 2013-06-00 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Baltimore |
PublicationTitle | Inflammatory bowel diseases |
PublicationTitleAlternate | Inflamm Bowel Dis |
PublicationYear | 2013 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Kohane (R8-11-20130523) 2011; 12 Liu (R12-11-20130523) 2009; 18 Molodecky (R31-11-20130523) 2011; 31 Kho (R33-11-20130523) 2011; 3 Riley (R32-11-20130523) 1991; 32 Fonager (R22-11-20130523) 1996; 31 Zou (R25-11-20130523) 2006; 101 Kurreeman (R4-11-20130523) 2011; 88 Melton (R15-11-20130523) 2005; 12 Love (R5-11-20130523) 2011; 40 Schildcrout (R34-11-20130523) 2010; 43 Denny (R2-11-20130523) 2011; 89 Xu (R19-11-20130523) 2010; 17 Savova (R17-11-20130523) 2012; 19 Meystre (R16-11-20130523) 2005; 116 Benchimol (R9-11-20130523) 2009; 58 Liao (R7-11-20130523) 2010; 62 Hripcsak (R14-11-20130523) 1998; 37 Herrinton (R11-11-20130523) 2007; 13 Bernstein (R30-11-20130523) 2006; 101 Bernstein (R10-11-20130523) 1999; 149 Jha (R3-11-20130523) 2011; 306 Murff (R6-11-20130523) 2011; 306 Ananthakrishnan (R29-11-20130523) 2011; 15 Loftus (R24-11-20130523) 1998; 114 Loftus (R23-11-20130523) 2000; 46 Carroll (R1-11-20130523) 2012; 19 Zeng (R20-11-20130523) 2006; 6 Savova (R21-11-20130523) 2010; 17 21457444 - Liver Int. 2011 May;31(5):712-20 10673294 - Gut. 2000 Mar;46(3):336-43 20235204 - Arthritis Care Res (Hoboken). 2010 Aug;62(8):1120-7 21862751 - JAMA. 2011 Aug 24;306(8):880-1 21981779 - Am J Hum Genet. 2011 Oct 7;89(4):529-42 21211616 - Am J Hum Genet. 2011 Jan 7;88(1):57-69 20688191 - J Biomed Inform. 2010 Dec;43(6):914-23 20819853 - J Am Med Inform Assoc. 2010 Sep-Oct;17(5):507-13 21587298 - Nat Rev Genet. 2011 Jun;12(6):417-28 16405542 - Am J Gastroenterol. 2006 Jan;101(1):110-8 15802475 - J Am Med Inform Assoc. 2005 Jul-Aug;12(4):448-57 21508311 - Sci Transl Med. 2011 Apr 20;3(79):79re1 1864537 - Gut. 1991 Feb;32(2):174-8 16872495 - BMC Med Inform Decis Mak. 2006;6:30 21862746 - JAMA. 2011 Aug 24;306(8):848-55 19651626 - Gut. 2009 Nov;58(11):1490-7 20064797 - J Am Med Inform Assoc. 2010 Jan-Feb;17(1):19-24 22140207 - J Am Med Inform Assoc. 2012 Jun;19(e1):e83-9 17219403 - Inflamm Bowel Dis. 2007 Apr;13(4):451-61 22374935 - J Am Med Inform Assoc. 2012 Jun;19(e1):e162-9 14728415 - AMIA Annu Symp Proc. 2003;:909 8658038 - Scand J Gastroenterol. 1996 Feb;31(2):154-9 20701955 - Semin Arthritis Rheum. 2011 Apr;40(5):413-20 9609752 - Gastroenterology. 1998 Jun;114(6):1161-8 10342800 - Am J Epidemiol. 1999 May 15;149(10):916-24 21108015 - J Gastrointest Surg. 2011 Feb;15(2):267-76 9550840 - Methods Inf Med. 1998 Jan;37(1):1-7 16160360 - Stud Health Technol Inform. 2005;116:823-8 19672855 - Pharmacoepidemiol Drug Saf. 2009 Nov;18(11):1086-93 21946242 - J Am Med Inform Assoc. 2011 Dec;18 Suppl 1:i144-9 |
References_xml | – volume: 89 start-page: 529 year: 2011 ident: R2-11-20130523 publication-title: Am J Hum Genet doi: 10.1016/j.ajhg.2011.09.008 – volume: 31 start-page: 154 year: 1996 ident: R22-11-20130523 publication-title: Scand J Gastroenterol doi: 10.3109/00365529609031980 – volume: 40 start-page: 413 year: 2011 ident: R5-11-20130523 publication-title: Semin Arthritis Rheum doi: 10.1016/j.semarthrit.2010.05.002 – volume: 17 start-page: 19 year: 2010 ident: R19-11-20130523 publication-title: J Am Med Inform Assoc doi: 10.1197/jamia.M3378 – volume: 88 start-page: 57 year: 2011 ident: R4-11-20130523 publication-title: Am J Hum Genet doi: 10.1016/j.ajhg.2010.12.007 – volume: 31 start-page: 712 year: 2011 ident: R31-11-20130523 publication-title: Liver Int doi: 10.1111/j.1478-3231.2011.02484.x – volume: 32 start-page: 174 year: 1991 ident: R32-11-20130523 publication-title: Microscopic activity in ulcerative colitis: what does it mean Gut – volume: 17 start-page: 507 year: 2010 ident: R21-11-20130523 publication-title: J Am Med Inform Assoc doi: 10.1136/jamia.2009.001560 – volume: 43 start-page: 914 year: 2010 ident: R34-11-20130523 publication-title: J Biomed Inform doi: 10.1016/j.jbi.2010.07.011 – volume: 19 start-page: e162 year: 2012 ident: R1-11-20130523 publication-title: J Am Med Inform Assoc doi: 10.1136/amiajnl-2011-000583 – volume: 101 start-page: 1418 year: 2006 ident: R25-11-20130523 publication-title: J Am Stat Assoc doi: 10.1198/016214506000000735 – volume: 19 start-page: e83 year: 2012 ident: R17-11-20130523 publication-title: J Am Med Inform Assoc doi: 10.1136/amiajnl-2011-000295 – volume: 114 start-page: 1161 year: 1998 ident: R24-11-20130523 publication-title: Gastroenterology doi: 10.1016/S0016-5085(98)70421-4 – volume: 101 start-page: 110 year: 2006 ident: R30-11-20130523 publication-title: Am J Gastroenterol doi: 10.1111/j.1572-0241.2006.00330.x – volume: 6 start-page: 30 year: 2006 ident: R20-11-20130523 publication-title: BMC Med Inform Decis Mak doi: 10.1186/1472-6947-6-30 – volume: 13 start-page: 451 year: 2007 ident: R11-11-20130523 publication-title: Inflamm Bowel Dis doi: 10.1002/ibd.20021 – volume: 12 start-page: 448 year: 2005 ident: R15-11-20130523 publication-title: J Am Med Inform Assoc doi: 10.1197/jamia.M1794 – volume: 58 start-page: 1490 year: 2009 ident: R9-11-20130523 publication-title: Gut doi: 10.1136/gut.2009.188383 – volume: 3 start-page: 79re1 year: 2011 ident: R33-11-20130523 publication-title: Sci Transl Med doi: 10.1126/scitranslmed.3001807 – volume: 18 start-page: 1086 year: 2009 ident: R12-11-20130523 publication-title: Pharmacoepidemiol Drug Saf doi: 10.1002/pds.1824 – volume: 46 start-page: 336 year: 2000 ident: R23-11-20130523 publication-title: Gut doi: 10.1136/gut.46.3.336 – volume: 15 start-page: 267 year: 2011 ident: R29-11-20130523 publication-title: J Gastrointest Surg doi: 10.1007/s11605-010-1396-3 – volume: 306 start-page: 880 year: 2011 ident: R3-11-20130523 – volume: 306 start-page: 848 year: 2011 ident: R6-11-20130523 publication-title: JAMA – volume: 62 start-page: 1120 year: 2010 ident: R7-11-20130523 publication-title: Arthritis Care Res (Hoboken) doi: 10.1002/acr.20184 – volume: 149 start-page: 916 year: 1999 ident: R10-11-20130523 publication-title: Am J Epidemiol doi: 10.1093/oxfordjournals.aje.a009735 – volume: 116 start-page: 823 year: 2005 ident: R16-11-20130523 publication-title: Stud Health Technol Inform – volume: 12 start-page: 417 year: 2011 ident: R8-11-20130523 publication-title: Nat Rev Genet doi: 10.1038/nrg2999 – volume: 37 start-page: 1 year: 1998 ident: R14-11-20130523 publication-title: Methods Inf Med doi: 10.1055/s-0038-1634566 – reference: 14728415 - AMIA Annu Symp Proc. 2003;:909 – reference: 21946242 - J Am Med Inform Assoc. 2011 Dec;18 Suppl 1:i144-9 – reference: 19651626 - Gut. 2009 Nov;58(11):1490-7 – reference: 21108015 - J Gastrointest Surg. 2011 Feb;15(2):267-76 – reference: 21862746 - JAMA. 2011 Aug 24;306(8):848-55 – reference: 21862751 - JAMA. 2011 Aug 24;306(8):880-1 – reference: 21981779 - Am J Hum Genet. 2011 Oct 7;89(4):529-42 – reference: 10342800 - Am J Epidemiol. 1999 May 15;149(10):916-24 – reference: 21211616 - Am J Hum Genet. 2011 Jan 7;88(1):57-69 – reference: 22140207 - J Am Med Inform Assoc. 2012 Jun;19(e1):e83-9 – reference: 9550840 - Methods Inf Med. 1998 Jan;37(1):1-7 – reference: 15802475 - J Am Med Inform Assoc. 2005 Jul-Aug;12(4):448-57 – reference: 10673294 - Gut. 2000 Mar;46(3):336-43 – reference: 8658038 - Scand J Gastroenterol. 1996 Feb;31(2):154-9 – reference: 16872495 - BMC Med Inform Decis Mak. 2006;6:30 – reference: 21457444 - Liver Int. 2011 May;31(5):712-20 – reference: 17219403 - Inflamm Bowel Dis. 2007 Apr;13(4):451-61 – reference: 22374935 - J Am Med Inform Assoc. 2012 Jun;19(e1):e162-9 – reference: 16405542 - Am J Gastroenterol. 2006 Jan;101(1):110-8 – reference: 16160360 - Stud Health Technol Inform. 2005;116:823-8 – reference: 20064797 - J Am Med Inform Assoc. 2010 Jan-Feb;17(1):19-24 – reference: 9609752 - Gastroenterology. 1998 Jun;114(6):1161-8 – reference: 21587298 - Nat Rev Genet. 2011 Jun;12(6):417-28 – reference: 20688191 - J Biomed Inform. 2010 Dec;43(6):914-23 – reference: 20701955 - Semin Arthritis Rheum. 2011 Apr;40(5):413-20 – reference: 20819853 - J Am Med Inform Assoc. 2010 Sep-Oct;17(5):507-13 – reference: 20235204 - Arthritis Care Res (Hoboken). 2010 Aug;62(8):1120-7 – reference: 19672855 - Pharmacoepidemiol Drug Saf. 2009 Nov;18(11):1086-93 – reference: 21508311 - Sci Transl Med. 2011 Apr 20;3(79):79re1 – reference: 1864537 - Gut. 1991 Feb;32(2):174-8 |
SSID | ssj0020209 |
Score | 2.4407957 |
SecondaryResourceType | review_article |
Snippet | Previous studies identifying patients with inflammatory bowel disease using administrative codes have yielded inconsistent results. Our objective was to... BackgroundPrevious studies identifying patients with inflammatory bowel disease using administrative codes have yielded inconsistent results. Our objective was... Previous studies identifying patients with inflammatory bowel disease using administrative codes have yielded inconsistent results. Using the electronic... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1411 |
SubjectTerms | Accuracy Adult Algorithms Classification Codes Colitis, Ulcerative - diagnosis Crohn Disease - diagnosis Crohn's disease Electronic Health Records Female Follow-Up Studies Humans Inflammatory bowel disease Male Medical Informatics Medical records Natural Language Processing Prognosis Tertiary Care Centers |
Subtitle | A Novel Informatics Approach |
Title | Improving Case Definition of Crohnʼs Disease and Ulcerative Colitis in Electronic Medical Records Using Natural Language Processing |
URI | https://www.ncbi.nlm.nih.gov/pubmed/23567779 https://www.proquest.com/docview/3169794345 https://www.proquest.com/docview/1399263618 https://www.proquest.com/docview/1680453145 https://pubmed.ncbi.nlm.nih.gov/PMC3665760 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1ba9swFBZbC2MvY901W1c0GOxJNNbdT2NNUrrShFEWyJuRZIkGitzV6S_YH58ky87SQvdoJBujc6Rz-Y6-A8AXSoWwrJbIMuwQrYlBWhCGtNTKFthhmYjn5wt-tqTnK7bKCbc2l1X2Z2I6qOvGxBz5MSl4mcjM2Leb3yh2jYroam6h8RTsR-qyGHyJ1TbgGnclHiHCiRB_Kfurc6U4nv842eYAsQyRmqt3TdMDf_N-2eQ_duj0JXiRHUj4vZP4AXhi_SvwbJ4h8tfgz5AmgJNgoeDUurVPdVmwcXBy21z5ry2cdrgMVL6Gy2tjO_5vOEnVcC1cezgb-uPADObALlRtYSozgAuVKDvgRc54wnznIIy9AcvT2a_JGcqdFpAJ7tQGOSFKXXBXOMnlWEusHKsN5mWw5so5bUR0M2K5aeGoNWXwIqmT2lpLiTa1I2_Bnm-8fQ-gLYl0REirmKbSKcUZDtoqgmdFmWJ2BEi_yJXJNOSxG8Z11cPhQTTVfdGMABreuuloOP4z_7CXX5U3ZVttVWgEPg_DYTtFjER529y1VRGJejnhhXxkTlgjGs6u-J13nUoMP4UJ4yKs5giIHWUZJkQ6790Rv75KtN4kgmB8_OHxX_8InuOuIwcaF4dgb3N7Zz8Fv2ijj5LyH4H9k9ni52V4ml7ivwxhD4E |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LaxNBGP-oKaiX4tvUqiMonoZm570HEZukJDYJIg30ts7sztBA2a3dFPHs_-Pf6My-airUU88zOyzzvR_z-wDeMial5ZnClhOHWUZTbCTl2CijbUQcURXw_HwhJkv2-YSfbMHv9i1MaKtsdWKlqLMiDTnyfRqJuAIz4x_Pv-MwNSpUV9sRGjVbHNmfP3zIVn6Yjjx93xFyOD4eTnAzVQCn3nVYYydlbCLhIqeEGhhFtONZSkTsLZd2zqQymNTQWhk5ZtPYe0zMKWOtZdSkmaP-3Duwzah3FXqwfTBefPnahXiDuqnEx1ShqSBW7WO9WO7PpwdXWUeifGzosk1j-I-He71R8y_Ld_gAdhqXFX2qeewhbNn8EdydN0X5x_CrS0ygobeJaGTdKq86wVDh0PCiOM3fl2hUV4KQzjO0PEttjTiOhlX_XYlWORp3E3lQUz5CdXBcoqqxAS10BRKCZk2OFTWvHPzaE1jeChWeQi8vcvsckI2pclQqq7lhymktOPHyIb0vx7jmtg-0veQkbYDPw_yNs6QtwHvSJNdJ0wfcfXVeA3_8Z_9eS7-kUQNlcsW0fXjTLXsBDlUZndviskyiAA0sqIjUDXv8HTGvLcM5z2qW6H6KUC6kv80-yA1m6TYEAPHNlXx1WgGJ01B2E4Pdm3_9NdybHM9nyWy6OHoB90k9DwQPoj3orS8u7Uvvla3Nq0YUEHy7ben7A_TNS9U |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+Case+Definition+of+Crohn%E2%80%99s+Disease+and+Ulcerative+Colitis+in+Electronic+Medical+Records+Using+Natural+Language+Processing%3A+A+Novel+Informatics+Approach&rft.jtitle=Inflammatory+bowel+diseases&rft.au=Ananthakrishnan%2C+Ashwin+N.&rft.au=Cai%2C+Tianxi&rft.au=Savova%2C+Guergana&rft.au=Cheng%2C+Su-Chun&rft.date=2013-06-01&rft.issn=1078-0998&rft.eissn=1536-4844&rft.volume=19&rft.issue=7&rft.spage=1411&rft.epage=1420&rft_id=info:doi/10.1097%2FMIB.0b013e31828133fd&rft_id=info%3Apmid%2F23567779&rft.externalDocID=PMC3665760 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1078-0998&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1078-0998&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1078-0998&client=summon |