Coupling a firefly algorithm with support vector regression to predict evaporation in northern Iran

Evaporation accounts for varying shares of water balance under different climatic conditions, and its correct prediction poses a significant challenge before water resources management in watersheds. Given the complex and nonlinear behavior of the evaporation component, and according to the fact tha...

Full description

Saved in:
Bibliographic Details
Published inEngineering applications of computational fluid mechanics Vol. 12; no. 1; pp. 584 - 597
Main Authors Moazenzadeh, Roozbeh, Mohammadi, Babak, Shamshirband, Shahaboddin, Chau, Kwok-wing
Format Journal Article
LanguageEnglish
Published Taylor & Francis 01.01.2018
Taylor & Francis Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Evaporation accounts for varying shares of water balance under different climatic conditions, and its correct prediction poses a significant challenge before water resources management in watersheds. Given the complex and nonlinear behavior of the evaporation component, and according to the fact that this parameter is not measured at many meteorological stations, at least during some timeframes, and that the meteorological stations measuring this component are not properly distributed in many developing countries, including Iran, the main objective of this work was to predict the evaporation component at two meteorological stations (Rasht and Lahijan) located in Gilan province in northern Iran over the 2006-2016 time period. To that end, those meteorological parameters recorded at the two stations which had the highest impact on evaporation prediction were identified using Pearson correlation coefficient. Selected parameters were then used, under separate scenarios, as inputs to support vector regression (SVR) and SVR model coupled with firefly algorithm (SVR-FA) in order to simulate evaporation values on a daily scale. Evaporation amounts showed the highest correlation with net solar radiation and saturation vapor pressure deficit at Lahijan and Rasht stations, respectively. Root mean square error values of evaporation prediction at testing phase of SVR and SVR-FA ranged from 1.05 to 1.43 and 1.02 to 1.31 mm, respectively, at Lahijan station and from 1.02 to 1.28 and 0.88 to 1.17 mm, respectively, at Rasht station for various scenarios. For underpredicted evaporation data set, the magnitude of RMSE reduction from SVR1 to SVR7 was 27% at Lahijan and 18% at Rasht station; whereas RMSE decrement from SVR-FA1 to SVR-FA7 was 18 and 26 percent at Lahijan and Rasht stations, respectively. This means that for the underpredicted data set, the role of increasing the number of SVR and SVR-FA input parameters in decreasing evaporation prediction error has been more conspicuous at Lahijan and Rasht stations, respectively. Analysis of SVR and SVR-FA performance at various 2-mm intervals of measured evaporation showed that prediction error has generally been increasing with increment of evaporation values, with the highest errors observed at the 8-10 mm interval for both Lahijan and Rasht stations (error rates of 3.42 and 2.42 mm/day at Lahijan and 6.13 and 5.84 mm/day at Rasht station, with SVR1 and SVR-FA1 models, respectively).
AbstractList Evaporation accounts for varying shares of water balance under different climatic conditions, and its correct prediction poses a significant challenge before water resources management in watersheds. Given the complex and nonlinear behavior of the evaporation component, and according to the fact that this parameter is not measured at many meteorological stations, at least during some timeframes, and that the meteorological stations measuring this component are not properly distributed in many developing countries, including Iran, the main objective of this work was to predict the evaporation component at two meteorological stations (Rasht and Lahijan) located in Gilan province in northern Iran over the 2006–2016 time period. To that end, those meteorological parameters recorded at the two stations which had the highest impact on evaporation prediction were identified using Pearson correlation coefficient. Selected parameters were then used, under separate scenarios, as inputs to support vector regression (SVR) and SVR model coupled with firefly algorithm (SVR-FA) in order to simulate evaporation values on a daily scale. Evaporation amounts showed the highest correlation with net solar radiation and saturation vapor pressure deficit at Lahijan and Rasht stations, respectively. Root mean square error values of evaporation prediction at testing phase of SVR and SVR-FA ranged from 1.05 to 1.43 and 1.02 to 1.31 mm, respectively, at Lahijan station and from 1.02 to 1.28 and 0.88 to 1.17 mm, respectively, at Rasht station for various scenarios. For underpredicted evaporation data set, the magnitude of RMSE reduction from SVR1 to SVR7 was 27% at Lahijan and 18% at Rasht station; whereas RMSE decrement from SVR-FA1 to SVR-FA7 was 18 and 26 percent at Lahijan and Rasht stations, respectively. This means that for the underpredicted data set, the role of increasing the number of SVR and SVR-FA input parameters in decreasing evaporation prediction error has been more conspicuous at Lahijan and Rasht stations, respectively. Analysis of SVR and SVR-FA performance at various 2-mm intervals of measured evaporation showed that prediction error has generally been increasing with increment of evaporation values, with the highest errors observed at the 8-10 mm interval for both Lahijan and Rasht stations (error rates of 3.42 and 2.42 mm/day at Lahijan and 6.13 and 5.84 mm/day at Rasht station, with SVR1 and SVR-FA1 models, respectively).
Author Moazenzadeh, Roozbeh
Mohammadi, Babak
Shamshirband, Shahaboddin
Chau, Kwok-wing
Author_xml – sequence: 1
  givenname: Roozbeh
  orcidid: 0000-0002-1057-3801
  surname: Moazenzadeh
  fullname: Moazenzadeh, Roozbeh
  organization: Department of Water Engineering, Shahrood University of Technology
– sequence: 2
  givenname: Babak
  orcidid: 0000-0001-8427-5965
  surname: Mohammadi
  fullname: Mohammadi, Babak
  organization: Department of Irrigation and Reclamation, Faculty of Agricultural Engineering and Technology, University of Tehran
– sequence: 3
  givenname: Shahaboddin
  orcidid: 0000-0002-6605-498X
  surname: Shamshirband
  fullname: Shamshirband, Shahaboddin
  email: shahaboddin.shamshirband@tdt.edu.vn
  organization: Faculty of Information Technology, Ton Duc Thang University
– sequence: 4
  givenname: Kwok-wing
  surname: Chau
  fullname: Chau, Kwok-wing
  organization: Department of Civil and Environmental Engineering, Hong Kong Polytechnic University
BookMark eNqFkM1qGzEURkVJoYmbRyjoBcaRRhpphmxSTJsaAtmk0J241o-jMpaGO0qC376ynXbRRbK5unzc7yDOBTlLOXlCvnC25KxnV3wYZMsUW7aM90su-1Zq9YGc11w3jIlfZ8ddNoejT-RynuOGdUwLzrU8J3aVn6Yxpi0FGiL6MO4pjNuMsTzu6EuddH6apoyFPntbMlL0W_SVkhMtmU7oXbSF-meoR1AOcUw01cKjx0TXCOkz-RhgnP3l67sgP79_e1j9aO7ub9err3eNla0ojW8FeKtgcC4A850E1zstdGdb3_ZSct2p-nU1WBuEClw5KTeht91mw5RQVizI-sR1GX6bCeMOcG8yRHMMMm4NYIl29KZvbdc74dSgnXSaD-BBcgDptXd24JXVnVgW8zxXL_94nJmDePNXvDmIN6_ia-_6v56N5ailIMTx3fbNqR1TyLiDl4yjMwX2Y8ZQTdo4G_E24g9YhqC-
CitedBy_id crossref_primary_10_1088_1742_6596_2890_1_012011
crossref_primary_10_2166_hydro_2019_012
crossref_primary_10_1109_ACCESS_2020_2970836
crossref_primary_10_1142_S0219622020500121
crossref_primary_10_1007_s00521_019_04474_5
crossref_primary_10_1007_s00500_023_07985_5
crossref_primary_10_1080_02626667_2021_1957105
crossref_primary_10_1080_19942060_2020_1720820
crossref_primary_10_1007_s11269_024_03860_6
crossref_primary_10_2166_aqua_2019_044
crossref_primary_10_1080_19942060_2019_1648322
crossref_primary_10_2166_ws_2019_065
crossref_primary_10_1080_19942060_2019_1647879
crossref_primary_10_2166_hydro_2019_010
crossref_primary_10_1007_s10772_020_09783_y
crossref_primary_10_1080_19942060_2019_1582109
crossref_primary_10_1109_ACCESS_2020_2984271
crossref_primary_10_1109_ACCESS_2020_2990439
crossref_primary_10_1007_s12517_021_06910_0
crossref_primary_10_1007_s11356_021_12792_2
crossref_primary_10_1007_s11600_023_01072_x
crossref_primary_10_1080_19942060_2019_1645045
crossref_primary_10_1007_s13762_022_04013_1
crossref_primary_10_1080_19942060_2018_1526119
crossref_primary_10_1080_19942060_2019_1680576
crossref_primary_10_1109_ACCESS_2020_2974406
crossref_primary_10_1007_s11356_020_08666_8
crossref_primary_10_2166_nh_2019_060
crossref_primary_10_1016_j_biosystemseng_2021_11_021
crossref_primary_10_1007_s00704_021_03760_4
crossref_primary_10_1007_s40710_021_00524_0
crossref_primary_10_1007_s11269_020_02554_z
crossref_primary_10_2166_wcc_2020_052
crossref_primary_10_1080_19942060_2021_1942990
crossref_primary_10_1080_19942060_2020_1774422
crossref_primary_10_2166_wcc_2020_205
crossref_primary_10_2166_wcc_2019_116
crossref_primary_10_1080_02626667_2023_2203824
crossref_primary_10_2166_wcc_2019_236
crossref_primary_10_1080_02626667_2019_1678750
crossref_primary_10_1155_2019_5710984
crossref_primary_10_1080_19942060_2019_1691054
crossref_primary_10_1080_19942060_2018_1560364
crossref_primary_10_2166_ws_2024_063
crossref_primary_10_1080_19942060_2020_1788644
crossref_primary_10_1080_02626667_2022_2157278
crossref_primary_10_1016_j_jclepro_2024_144612
crossref_primary_10_14302_issn_2643_2811_jmbr_20_3402
crossref_primary_10_1680_jwama_20_00044
crossref_primary_10_1016_j_scitotenv_2019_134474
crossref_primary_10_1007_s11356_020_07868_4
crossref_primary_10_1007_s40899_021_00506_y
crossref_primary_10_1007_s00366_019_00899_7
crossref_primary_10_1080_19942060_2019_1618396
crossref_primary_10_2166_wcc_2020_213
crossref_primary_10_2139_ssrn_4050027
crossref_primary_10_1007_s42979_020_0094_9
crossref_primary_10_1049_cds2_12078
crossref_primary_10_1155_2020_8642430
crossref_primary_10_1016_j_neunet_2019_01_009
crossref_primary_10_1007_s13201_022_01815_z
crossref_primary_10_1007_s11269_021_03002_2
crossref_primary_10_1007_s12517_022_10263_7
crossref_primary_10_1155_2021_5544133
crossref_primary_10_1007_s11356_019_04368_y
crossref_primary_10_1016_j_autcon_2019_102974
crossref_primary_10_1080_19942060_2019_1676314
crossref_primary_10_1109_ACCESS_2022_3155722
crossref_primary_10_3233_JHS_220682
crossref_primary_10_1007_s12145_024_01616_9
crossref_primary_10_2166_wcc_2019_014
crossref_primary_10_1016_j_eswa_2023_120027
crossref_primary_10_1080_19942060_2019_1679668
crossref_primary_10_1007_s10846_024_02213_0
crossref_primary_10_1080_02626667_2022_2082877
crossref_primary_10_1080_09715010_2019_1617796
crossref_primary_10_1007_s12053_019_09836_5
crossref_primary_10_1111_jfr3_12920
crossref_primary_10_1016_j_compag_2020_105418
crossref_primary_10_1007_s42107_023_00806_y
crossref_primary_10_1007_s12517_021_09300_8
crossref_primary_10_1007_s40710_022_00602_x
crossref_primary_10_1007_s40710_023_00669_0
crossref_primary_10_1007_s00521_019_04258_x
crossref_primary_10_1109_ACCESS_2020_2966549
crossref_primary_10_1080_19942060_2020_1715842
crossref_primary_10_1007_s11053_020_09638_y
crossref_primary_10_1007_s00704_020_03271_8
crossref_primary_10_3389_fpls_2022_821365
crossref_primary_10_2166_wcc_2020_281
crossref_primary_10_3389_feart_2022_906408
crossref_primary_10_1016_j_scitotenv_2020_140324
crossref_primary_10_1155_2021_7596694
crossref_primary_10_1007_s11859_019_1432_4
crossref_primary_10_1007_s00521_019_04356_w
crossref_primary_10_1080_19942060_2020_1722241
crossref_primary_10_1139_cgj_2024_0359
crossref_primary_10_2166_wcc_2020_157
crossref_primary_10_1007_s12145_024_01223_8
crossref_primary_10_1080_19942060_2019_1683076
crossref_primary_10_1515_jisys_2018_0231
crossref_primary_10_1016_j_eswa_2021_115728
crossref_primary_10_1002_int_22334
crossref_primary_10_1016_j_neunet_2019_05_010
crossref_primary_10_1007_s00477_022_02235_w
crossref_primary_10_1080_19942060_2019_1613448
crossref_primary_10_1007_s00521_020_05292_w
crossref_primary_10_1080_02626667_2020_1758703
crossref_primary_10_1007_s11356_024_33149_5
crossref_primary_10_1016_j_jafrearsci_2021_104191
crossref_primary_10_1080_19942060_2019_1620130
crossref_primary_10_1007_s12517_021_08735_3
crossref_primary_10_1080_19942060_2020_1773932
crossref_primary_10_1007_s00521_020_05035_x
crossref_primary_10_1088_1748_9326_ad40c3
crossref_primary_10_1007_s13201_022_01846_6
crossref_primary_10_1007_s00376_023_3013_x
crossref_primary_10_32604_cmes_2021_015528
crossref_primary_10_5194_hess_24_2343_2020
crossref_primary_10_1007_s10661_019_7256_z
crossref_primary_10_1007_s11356_021_17852_1
crossref_primary_10_1007_s11356_020_07837_x
crossref_primary_10_1080_19942060_2019_1639549
crossref_primary_10_1142_S0219622021500164
crossref_primary_10_1016_j_measurement_2020_108127
crossref_primary_10_2166_wcc_2020_259
crossref_primary_10_1080_02626667_2021_1994977
crossref_primary_10_1007_s00521_020_05680_2
crossref_primary_10_1007_s12517_022_09900_y
crossref_primary_10_1080_19942060_2020_1803971
Cites_doi 10.1007/s11269-016-1452-1
10.1016/j.jhydrol.2015.06.052
10.1016/j.jhydrol.2005.05.019
10.1016/j.jhydrol.2006.03.015
10.1002/hyp.1096
10.1016/j.jhydrol.2016.11.059
10.1016/j.jhydrol.2008.12.024
10.1016/j.jhydrol.2015.09.028
10.1016/j.still.2017.04.009
10.1061/(ASCE)0733-9437(2002)128:4(224)
10.1029/2000JD900719
10.1007/s12665-015-5058-3
10.1016/j.eswa.2014.02.047
10.1002/(SICI)1099-1085(19970315)11:3<311::AID-HYP446>3.0.CO;2-Y
10.1007/s00271-009-0201-0
10.1007/s11269-013-0287-2
10.1016/j.compag.2016.01.026
10.1016/j.jhydrol.2007.09.004
10.1016/j.snb.2014.04.022
10.1016/j.amc.2015.08.085
10.1016/j.jhydrol.2013.11.008
10.1016/S0022-1694(01)00341-9
10.1002/hyp.6323
10.1002/hyp.1372
10.1016/j.jhydrol.2010.11.002
10.1016/j.engappai.2015.09.010
10.1007/s11269-009-9514-2
10.1504/IJSI.2013.055801
10.1007/978-3-319-67459-9_42
10.1016/j.jhydrol.2015.08.008
10.1504/IJEP.2006.011211
10.1007/s00271-010-0225-5
10.1007/s11269-015-0976-0
10.4236/jwarp.2014.64034
10.1016/j.advwatres.2008.10.005
10.1002/hyp.6251
10.1029/2007WR006737
ContentType Journal Article
Copyright 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2018
Copyright_xml – notice: 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2018
DBID 0YH
AAYXX
CITATION
DOA
DOI 10.1080/19942060.2018.1482476
DatabaseName Taylor & Francis Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 0YH
  name: Taylor & Francis Open Access
  url: https://www.tandfonline.com
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1997-003X
EndPage 597
ExternalDocumentID oai_doaj_org_article_82c58d3d697d4d719aea41aa4e7edc91
10_1080_19942060_2018_1482476
1482476
Genre Article
GroupedDBID 0YH
4.4
5VS
ACGFS
ADBBV
ADCVX
AENEX
ALMA_UNASSIGNED_HOLDINGS
ARCSS
BCNDV
EBS
EJD
GROUPED_DOAJ
H13
KQ8
M4Z
OK1
P2P
PROAC
RDKPK
TDBHL
TFMNY
TFW
8G5
AAYXX
ABUWG
ADMLS
AFKRA
AZQEC
BENPR
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GUQSH
IPNFZ
M2O
PHGZM
PHGZT
PQQKQ
RIG
ID FETCH-LOGICAL-c423t-e23aec6a9ddfa0e54ad8d7375c2e28441756b0569ccf36f16d44bf8c5bb0636c3
IEDL.DBID DOA
ISSN 1994-2060
IngestDate Wed Aug 27 01:22:32 EDT 2025
Thu Apr 24 22:55:24 EDT 2025
Tue Jul 01 01:30:36 EDT 2025
Wed Dec 25 09:08:32 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License open-access: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c423t-e23aec6a9ddfa0e54ad8d7375c2e28441756b0569ccf36f16d44bf8c5bb0636c3
ORCID 0000-0002-6605-498X
0000-0002-1057-3801
0000-0001-8427-5965
OpenAccessLink https://doaj.org/article/82c58d3d697d4d719aea41aa4e7edc91
PageCount 14
ParticipantIDs informaworld_taylorfrancis_310_1080_19942060_2018_1482476
crossref_primary_10_1080_19942060_2018_1482476
doaj_primary_oai_doaj_org_article_82c58d3d697d4d719aea41aa4e7edc91
crossref_citationtrail_10_1080_19942060_2018_1482476
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-01-01
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-01
  day: 01
PublicationDecade 2010
PublicationTitle Engineering applications of computational fluid mechanics
PublicationYear 2018
Publisher Taylor & Francis
Taylor & Francis Group
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Group
References CIT00016
CIT00038
CIT00015
CIT00014
CIT00013
CIT00035
CIT00012
CIT00034
CIT00011
CIT00033
CIT00010
CIT00032
CIT00031
Mall R. K. (CIT00022) 2006; 90
CIT00019
CIT00018
Vapnik V. K. (CIT00036) 1974
CIT00017
CIT00039
Wang L. (CIT00037) 2016; 247
CIT00040
Yang X. S. (CIT00041) 2009; 5792
CIT00027
CIT00026
CIT00025
CIT00024
CIT0001
CIT00021
CIT00043
CIT00020
CIT00042
CIT00029
CIT00028
CIT0003
CIT00030
CIT0002
CIT0004
CIT0007
CIT0006
CIT0009
CIT0008
References_xml – ident: CIT0001
  doi: 10.1007/s11269-016-1452-1
– ident: CIT00018
  doi: 10.1016/j.jhydrol.2015.06.052
– ident: CIT0006
  doi: 10.1016/j.jhydrol.2005.05.019
– ident: CIT00017
  doi: 10.1016/j.jhydrol.2006.03.015
– ident: CIT00030
  doi: 10.1002/hyp.1096
– ident: CIT00038
  doi: 10.1016/j.jhydrol.2016.11.059
– volume: 5792
  start-page: 169
  year: 2009
  ident: CIT00041
  publication-title: In International Symposium on Stochastic Algorithms
– ident: CIT0007
  doi: 10.1016/j.jhydrol.2008.12.024
– ident: CIT00010
  doi: 10.1016/j.jhydrol.2015.09.028
– ident: CIT00011
  doi: 10.1016/j.still.2017.04.009
– ident: CIT00021
  doi: 10.1061/(ASCE)0733-9437(2002)128:4(224)
– ident: CIT00034
  doi: 10.1029/2000JD900719
– ident: CIT00027
  doi: 10.1007/s12665-015-5058-3
– ident: CIT00012
  doi: 10.1016/j.eswa.2014.02.047
– ident: CIT00029
  doi: 10.1002/(SICI)1099-1085(19970315)11:3<311::AID-HYP446>3.0.CO;2-Y
– ident: CIT00031
  doi: 10.1007/s00271-009-0201-0
– ident: CIT00016
  doi: 10.1007/s11269-013-0287-2
– ident: CIT00019
  doi: 10.1016/j.compag.2016.01.026
– ident: CIT0003
  doi: 10.1016/j.jhydrol.2007.09.004
– ident: CIT00014
  doi: 10.1016/j.snb.2014.04.022
– ident: CIT00020
  doi: 10.1016/j.amc.2015.08.085
– ident: CIT0002
  doi: 10.1016/j.jhydrol.2013.11.008
– ident: CIT00035
  doi: 10.1016/S0022-1694(01)00341-9
– ident: CIT00026
  doi: 10.1002/hyp.6323
– ident: CIT0009
  doi: 10.1002/hyp.1372
– ident: CIT00043
  doi: 10.1016/j.jhydrol.2010.11.002
– ident: CIT0004
  doi: 10.1016/j.engappai.2015.09.010
– ident: CIT00028
  doi: 10.1007/s11269-009-9514-2
– ident: CIT00042
  doi: 10.1504/IJSI.2013.055801
– ident: CIT00025
  doi: 10.1007/978-3-319-67459-9_42
– volume: 90
  start-page: 1610
  issue: 12
  year: 2006
  ident: CIT00022
  publication-title: Current Science
– ident: CIT00033
  doi: 10.1016/j.jhydrol.2015.08.008
– ident: CIT00039
  doi: 10.1504/IJEP.2006.011211
– ident: CIT00013
  doi: 10.1007/s00271-010-0225-5
– volume: 247
  start-page: 1
  year: 2016
  ident: CIT00037
  publication-title: Earth System Science Discussing Earth System Science
– ident: CIT00015
  doi: 10.1007/s11269-015-0976-0
– volume-title: Theory of pattern recognition
  year: 1974
  ident: CIT00036
– ident: CIT0008
  doi: 10.4236/jwarp.2014.64034
– ident: CIT00024
  doi: 10.1016/j.advwatres.2008.10.005
– ident: CIT00032
  doi: 10.1002/hyp.6251
– ident: CIT00040
  doi: 10.1029/2007WR006737
SSID ssib050731174
ssj0001753472
Score 2.5369613
Snippet Evaporation accounts for varying shares of water balance under different climatic conditions, and its correct prediction poses a significant challenge before...
SourceID doaj
crossref
informaworld
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 584
SubjectTerms meteorological parameters
Pearson correlation
prediction error
Taylor diagram
water balance
SummonAdditionalLinks – databaseName: Taylor & Francis Open Access
  dbid: 0YH
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagXODAo4DY8pAPXFPi-JH42FatFiQ4UQlO0fi1VFqSVTZbqf--HsepFiTgwDFRPIo8M57P4_E3hLzXzEaYrEKhjeSFAMsKiLuMQvoS6QgDhHSC__mLWl6KT9_kXE24zWWVuIcOE1FEWqvRucFs54q4D0hnW5WqxMKs5hiJLEWt7pMHFVprNOny-3I2qYh2OGMZ4aS0S4TnIrV0SqS4KGa-1_Mnyb9ErETs_xut6V5AunhKHmckSU8m1T8j93x3SJ5kVEmzz24PyaM9ysHnxJ71O7yEu6JAQ1zuwvqGwnrVD1fjj58Us7J0u9sgKKfXKaFPB7-aamU7OvZ0M-DJzkj9NWyy9dCrjnZ4_OOHjn6Mse8Fubw4_3q2LHKjhcJGNDUWvuLgrQLtXIDSSwGucTWvpa18DF8iTpqKc6m0tYGrwJQTwoTGSmMiwlGWvyQHXd_5V4Q2jeUStBBlsMKooEVQWoPxRkIUWS2ImCeztZmFHJthrFuWyUpnHbSogzbrYEGO74ZtJhqOfw04RU3dfYws2ulFP6za7JRtU1nZOO6Urp1wNdPgQTAA4WvvrGYLovf13I4piRKmjict_-sPHP3H2NfkIT5OmZ435GAcdv5txD6jeZes-xbNXfbQ
  priority: 102
  providerName: Taylor & Francis
Title Coupling a firefly algorithm with support vector regression to predict evaporation in northern Iran
URI https://www.tandfonline.com/doi/abs/10.1080/19942060.2018.1482476
https://doaj.org/article/82c58d3d697d4d719aea41aa4e7edc91
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYop_ZQCm3V7QP50GsgiR-Jjy0CLUj0VCQ4RRM_tkjb7CpkkXrht3fG8aKoh3LhksMotkYzk8znsf0NY19NYREm65CZVolMgi0ywFVGpnxOdIQBQtzBv_yh51fy4lpdT1p90ZmwkR54NNxxXVpVO-G0qZx0VWHAgywApK-8s_Heeok5b7KYwkhCkCOKIgGbWG1BVC5jJ6fIhVvmOt9e56nzY5KRiE561UfEjCmJg2SSqCKf_z9sppM8dPaGvU4Akn8bFd9nO747YHsJTPL0qd4dsFcTpsG3zJ6sNnT3dsGBB_zLheUfDsvFqr8dfv3mVIzld5s1YXF-H-v4vPeL8Yhsx4cVX_e0oTNwfw_rFDT8tuMd7fr4vuPnmPLesauz058n8yz1V8gsgqgh86UAbzUY5wLkXklwtatEpWzpMWtJNJpGW2pjbRA6FNpJ2YbaqrZFYKOteM92u1XnPzBe11YoMFLmwcpWByODNgZa3yrAKcsZk1tjNjaRj1MPjGVTJI7SrQ8a8kGTfDBjR4_D1iP7xlMDvpOnHl8m8uwowJBqUkg1T4XUjJmpn5sh1k7C2OikEf9V4ONzKPCJvaQ5x0rPZ7Y79Bv_BbHP0B6yF_nN_DAGOz4vH07_AtFB_QE
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYoPVAOtKWtuqWlPvQaGsePxEdARcvzBBKcLMePLdI2WYUsEv--HsdBWyTaQ69JPIo8Hs_nmfE3CH2TxASYLHwma04zpg3JdDhlZNzlQEfotY8Z_PMLMb1iJ9f8euUuDJRVwhnaD0QRca8G44Zg9FgS9x34bItc5FCZVe0BkyUrxQv0kgfnC-0b8pvpuKYC3KGEJIgT4y4Bn7PY0ymy4oKY8WLPc5L_cFmR2f8Jr-mKRzp6g7YSlMT7g-7fojXXbKPXCVbiZLR322hzhXPwHTKH7RJu4c6wxj7sd37-gPV81na3_c9fGMKy-G65AFSO72NEH3duNhTLNrhv8aKD1E6P3b1epOWDbxvcQP7HdQ0-Ds7vPbo6-nF5OM1Sp4XMBDjVZ66g2hmhpbVe544zbStb0pKbwgX_xcKkiTCXQhrjqfBEWMZqXxle1wHiCEM_oPWmbdxHhKvKUK4lY7k3rBZeMi-k1LWruQ4iiwli42Qqk2jIoRvGXJHEVjrqQIEOVNLBBO09DlsMPBz_GnAAmnr8GGi044O2m6lklaoqDK8stUKWltmSSO00I1ozVzprJJkguapn1ccoih9anij61x_49B9jv6KN6eX5mTo7vjjdQa_g1RD2-YzW-27pvgQg1Ne7caX_BkP8-kQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSAgOQAuIhbb4wDUljh-Jj9Cy2vKoeqASnCzHj6XSkkTZbCX-PR7HqRYkyqHXJB5FnhnP5_H4G4TeSGICTBY-kzWnGdOGZDrsMjLucqAj9NrHE_wvZ2JxwT5-41M14TqVVcIe2o9EEXGtBufurJ8q4t4CnW2RixwKs6ojILJkpbiL7vEqxPpg0vn3xWRSAe1QQhLCiWmXAM9ZbOkUSXFBzHSv51-S_4hYkdj_L1rTrYA0f4IeJSSJ342q30V3XLOHHidUiZPPrvfQwy3KwafIHLcbuIS7xBr7sNz51S-sV8u2vxx-_MSQlcXrTQegHF_FhD7u3XKslW3w0OKuh5OdAbsr3SXrwZcNbuD4x_UNPg2x7xm6mH_4erzIUqOFzAQ0NWSuoNoZoaW1XueOM20rW9KSm8KF8MXCpIkwl0Ia46nwRFjGal8ZXtcB4QhDn6Odpm3cC4SrylCuJWO5N6wWXjIvpNS1q7kOIosZYtNkKpNYyKEZxkqRRFY66UCBDlTSwQwdXQ_rRhqO_w14D5q6_hhYtOODtl-q5JSqKgyvLLVClpbZkkjtNCNaM1c6aySZIbmtZzXEJIofO54oeuMPvLzF2Nfo_vnJXH0-Pfv0Cj2AN2PSZx_tDP3GHQQYNNSH0dB_A8lO-XY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coupling+a+firefly+algorithm+with+support+vector+regression+to+predict+evaporation+in+northern+Iran&rft.jtitle=Engineering+applications+of+computational+fluid+mechanics&rft.au=Roozbeh+Moazenzadeh&rft.au=Babak+Mohammadi&rft.au=Shahaboddin+Shamshirband&rft.au=Kwok-wing+Chau&rft.date=2018-01-01&rft.pub=Taylor+%26+Francis+Group&rft.issn=1994-2060&rft.eissn=1997-003X&rft.volume=12&rft.issue=1&rft.spage=584&rft.epage=597&rft_id=info:doi/10.1080%2F19942060.2018.1482476&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_82c58d3d697d4d719aea41aa4e7edc91
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1994-2060&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1994-2060&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1994-2060&client=summon