Coupling a firefly algorithm with support vector regression to predict evaporation in northern Iran
Evaporation accounts for varying shares of water balance under different climatic conditions, and its correct prediction poses a significant challenge before water resources management in watersheds. Given the complex and nonlinear behavior of the evaporation component, and according to the fact tha...
Saved in:
Published in | Engineering applications of computational fluid mechanics Vol. 12; no. 1; pp. 584 - 597 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Taylor & Francis
01.01.2018
Taylor & Francis Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Evaporation accounts for varying shares of water balance under different climatic conditions, and its correct prediction poses a significant challenge before water resources management in watersheds. Given the complex and nonlinear behavior of the evaporation component, and according to the fact that this parameter is not measured at many meteorological stations, at least during some timeframes, and that the meteorological stations measuring this component are not properly distributed in many developing countries, including Iran, the main objective of this work was to predict the evaporation component at two meteorological stations (Rasht and Lahijan) located in Gilan province in northern Iran over the 2006-2016 time period. To that end, those meteorological parameters recorded at the two stations which had the highest impact on evaporation prediction were identified using Pearson correlation coefficient. Selected parameters were then used, under separate scenarios, as inputs to support vector regression (SVR) and SVR model coupled with firefly algorithm (SVR-FA) in order to simulate evaporation values on a daily scale. Evaporation amounts showed the highest correlation with net solar radiation and saturation vapor pressure deficit at Lahijan and Rasht stations, respectively. Root mean square error values of evaporation prediction at testing phase of SVR and SVR-FA ranged from 1.05 to 1.43 and 1.02 to 1.31 mm, respectively, at Lahijan station and from 1.02 to 1.28 and 0.88 to 1.17 mm, respectively, at Rasht station for various scenarios. For underpredicted evaporation data set, the magnitude of RMSE reduction from SVR1 to SVR7 was 27% at Lahijan and 18% at Rasht station; whereas RMSE decrement from SVR-FA1 to SVR-FA7 was 18 and 26 percent at Lahijan and Rasht stations, respectively. This means that for the underpredicted data set, the role of increasing the number of SVR and SVR-FA input parameters in decreasing evaporation prediction error has been more conspicuous at Lahijan and Rasht stations, respectively. Analysis of SVR and SVR-FA performance at various 2-mm intervals of measured evaporation showed that prediction error has generally been increasing with increment of evaporation values, with the highest errors observed at the 8-10 mm interval for both Lahijan and Rasht stations (error rates of 3.42 and 2.42 mm/day at Lahijan and 6.13 and 5.84 mm/day at Rasht station, with SVR1 and SVR-FA1 models, respectively). |
---|---|
AbstractList | Evaporation accounts for varying shares of water balance under different climatic conditions, and its correct prediction poses a significant challenge before water resources management in watersheds. Given the complex and nonlinear behavior of the evaporation component, and according to the fact that this parameter is not measured at many meteorological stations, at least during some timeframes, and that the meteorological stations measuring this component are not properly distributed in many developing countries, including Iran, the main objective of this work was to predict the evaporation component at two meteorological stations (Rasht and Lahijan) located in Gilan province in northern Iran over the 2006–2016 time period. To that end, those meteorological parameters recorded at the two stations which had the highest impact on evaporation prediction were identified using Pearson correlation coefficient. Selected parameters were then used, under separate scenarios, as inputs to support vector regression (SVR) and SVR model coupled with firefly algorithm (SVR-FA) in order to simulate evaporation values on a daily scale. Evaporation amounts showed the highest correlation with net solar radiation and saturation vapor pressure deficit at Lahijan and Rasht stations, respectively. Root mean square error values of evaporation prediction at testing phase of SVR and SVR-FA ranged from 1.05 to 1.43 and 1.02 to 1.31 mm, respectively, at Lahijan station and from 1.02 to 1.28 and 0.88 to 1.17 mm, respectively, at Rasht station for various scenarios. For underpredicted evaporation data set, the magnitude of RMSE reduction from SVR1 to SVR7 was 27% at Lahijan and 18% at Rasht station; whereas RMSE decrement from SVR-FA1 to SVR-FA7 was 18 and 26 percent at Lahijan and Rasht stations, respectively. This means that for the underpredicted data set, the role of increasing the number of SVR and SVR-FA input parameters in decreasing evaporation prediction error has been more conspicuous at Lahijan and Rasht stations, respectively. Analysis of SVR and SVR-FA performance at various 2-mm intervals of measured evaporation showed that prediction error has generally been increasing with increment of evaporation values, with the highest errors observed at the 8-10 mm interval for both Lahijan and Rasht stations (error rates of 3.42 and 2.42 mm/day at Lahijan and 6.13 and 5.84 mm/day at Rasht station, with SVR1 and SVR-FA1 models, respectively). |
Author | Moazenzadeh, Roozbeh Mohammadi, Babak Shamshirband, Shahaboddin Chau, Kwok-wing |
Author_xml | – sequence: 1 givenname: Roozbeh orcidid: 0000-0002-1057-3801 surname: Moazenzadeh fullname: Moazenzadeh, Roozbeh organization: Department of Water Engineering, Shahrood University of Technology – sequence: 2 givenname: Babak orcidid: 0000-0001-8427-5965 surname: Mohammadi fullname: Mohammadi, Babak organization: Department of Irrigation and Reclamation, Faculty of Agricultural Engineering and Technology, University of Tehran – sequence: 3 givenname: Shahaboddin orcidid: 0000-0002-6605-498X surname: Shamshirband fullname: Shamshirband, Shahaboddin email: shahaboddin.shamshirband@tdt.edu.vn organization: Faculty of Information Technology, Ton Duc Thang University – sequence: 4 givenname: Kwok-wing surname: Chau fullname: Chau, Kwok-wing organization: Department of Civil and Environmental Engineering, Hong Kong Polytechnic University |
BookMark | eNqFkM1qGzEURkVJoYmbRyjoBcaRRhpphmxSTJsaAtmk0J241o-jMpaGO0qC376ynXbRRbK5unzc7yDOBTlLOXlCvnC25KxnV3wYZMsUW7aM90su-1Zq9YGc11w3jIlfZ8ddNoejT-RynuOGdUwLzrU8J3aVn6Yxpi0FGiL6MO4pjNuMsTzu6EuddH6apoyFPntbMlL0W_SVkhMtmU7oXbSF-meoR1AOcUw01cKjx0TXCOkz-RhgnP3l67sgP79_e1j9aO7ub9err3eNla0ojW8FeKtgcC4A850E1zstdGdb3_ZSct2p-nU1WBuEClw5KTeht91mw5RQVizI-sR1GX6bCeMOcG8yRHMMMm4NYIl29KZvbdc74dSgnXSaD-BBcgDptXd24JXVnVgW8zxXL_94nJmDePNXvDmIN6_ia-_6v56N5ailIMTx3fbNqR1TyLiDl4yjMwX2Y8ZQTdo4G_E24g9YhqC- |
CitedBy_id | crossref_primary_10_1088_1742_6596_2890_1_012011 crossref_primary_10_2166_hydro_2019_012 crossref_primary_10_1109_ACCESS_2020_2970836 crossref_primary_10_1142_S0219622020500121 crossref_primary_10_1007_s00521_019_04474_5 crossref_primary_10_1007_s00500_023_07985_5 crossref_primary_10_1080_02626667_2021_1957105 crossref_primary_10_1080_19942060_2020_1720820 crossref_primary_10_1007_s11269_024_03860_6 crossref_primary_10_2166_aqua_2019_044 crossref_primary_10_1080_19942060_2019_1648322 crossref_primary_10_2166_ws_2019_065 crossref_primary_10_1080_19942060_2019_1647879 crossref_primary_10_2166_hydro_2019_010 crossref_primary_10_1007_s10772_020_09783_y crossref_primary_10_1080_19942060_2019_1582109 crossref_primary_10_1109_ACCESS_2020_2984271 crossref_primary_10_1109_ACCESS_2020_2990439 crossref_primary_10_1007_s12517_021_06910_0 crossref_primary_10_1007_s11356_021_12792_2 crossref_primary_10_1007_s11600_023_01072_x crossref_primary_10_1080_19942060_2019_1645045 crossref_primary_10_1007_s13762_022_04013_1 crossref_primary_10_1080_19942060_2018_1526119 crossref_primary_10_1080_19942060_2019_1680576 crossref_primary_10_1109_ACCESS_2020_2974406 crossref_primary_10_1007_s11356_020_08666_8 crossref_primary_10_2166_nh_2019_060 crossref_primary_10_1016_j_biosystemseng_2021_11_021 crossref_primary_10_1007_s00704_021_03760_4 crossref_primary_10_1007_s40710_021_00524_0 crossref_primary_10_1007_s11269_020_02554_z crossref_primary_10_2166_wcc_2020_052 crossref_primary_10_1080_19942060_2021_1942990 crossref_primary_10_1080_19942060_2020_1774422 crossref_primary_10_2166_wcc_2020_205 crossref_primary_10_2166_wcc_2019_116 crossref_primary_10_1080_02626667_2023_2203824 crossref_primary_10_2166_wcc_2019_236 crossref_primary_10_1080_02626667_2019_1678750 crossref_primary_10_1155_2019_5710984 crossref_primary_10_1080_19942060_2019_1691054 crossref_primary_10_1080_19942060_2018_1560364 crossref_primary_10_2166_ws_2024_063 crossref_primary_10_1080_19942060_2020_1788644 crossref_primary_10_1080_02626667_2022_2157278 crossref_primary_10_1016_j_jclepro_2024_144612 crossref_primary_10_14302_issn_2643_2811_jmbr_20_3402 crossref_primary_10_1680_jwama_20_00044 crossref_primary_10_1016_j_scitotenv_2019_134474 crossref_primary_10_1007_s11356_020_07868_4 crossref_primary_10_1007_s40899_021_00506_y crossref_primary_10_1007_s00366_019_00899_7 crossref_primary_10_1080_19942060_2019_1618396 crossref_primary_10_2166_wcc_2020_213 crossref_primary_10_2139_ssrn_4050027 crossref_primary_10_1007_s42979_020_0094_9 crossref_primary_10_1049_cds2_12078 crossref_primary_10_1155_2020_8642430 crossref_primary_10_1016_j_neunet_2019_01_009 crossref_primary_10_1007_s13201_022_01815_z crossref_primary_10_1007_s11269_021_03002_2 crossref_primary_10_1007_s12517_022_10263_7 crossref_primary_10_1155_2021_5544133 crossref_primary_10_1007_s11356_019_04368_y crossref_primary_10_1016_j_autcon_2019_102974 crossref_primary_10_1080_19942060_2019_1676314 crossref_primary_10_1109_ACCESS_2022_3155722 crossref_primary_10_3233_JHS_220682 crossref_primary_10_1007_s12145_024_01616_9 crossref_primary_10_2166_wcc_2019_014 crossref_primary_10_1016_j_eswa_2023_120027 crossref_primary_10_1080_19942060_2019_1679668 crossref_primary_10_1007_s10846_024_02213_0 crossref_primary_10_1080_02626667_2022_2082877 crossref_primary_10_1080_09715010_2019_1617796 crossref_primary_10_1007_s12053_019_09836_5 crossref_primary_10_1111_jfr3_12920 crossref_primary_10_1016_j_compag_2020_105418 crossref_primary_10_1007_s42107_023_00806_y crossref_primary_10_1007_s12517_021_09300_8 crossref_primary_10_1007_s40710_022_00602_x crossref_primary_10_1007_s40710_023_00669_0 crossref_primary_10_1007_s00521_019_04258_x crossref_primary_10_1109_ACCESS_2020_2966549 crossref_primary_10_1080_19942060_2020_1715842 crossref_primary_10_1007_s11053_020_09638_y crossref_primary_10_1007_s00704_020_03271_8 crossref_primary_10_3389_fpls_2022_821365 crossref_primary_10_2166_wcc_2020_281 crossref_primary_10_3389_feart_2022_906408 crossref_primary_10_1016_j_scitotenv_2020_140324 crossref_primary_10_1155_2021_7596694 crossref_primary_10_1007_s11859_019_1432_4 crossref_primary_10_1007_s00521_019_04356_w crossref_primary_10_1080_19942060_2020_1722241 crossref_primary_10_1139_cgj_2024_0359 crossref_primary_10_2166_wcc_2020_157 crossref_primary_10_1007_s12145_024_01223_8 crossref_primary_10_1080_19942060_2019_1683076 crossref_primary_10_1515_jisys_2018_0231 crossref_primary_10_1016_j_eswa_2021_115728 crossref_primary_10_1002_int_22334 crossref_primary_10_1016_j_neunet_2019_05_010 crossref_primary_10_1007_s00477_022_02235_w crossref_primary_10_1080_19942060_2019_1613448 crossref_primary_10_1007_s00521_020_05292_w crossref_primary_10_1080_02626667_2020_1758703 crossref_primary_10_1007_s11356_024_33149_5 crossref_primary_10_1016_j_jafrearsci_2021_104191 crossref_primary_10_1080_19942060_2019_1620130 crossref_primary_10_1007_s12517_021_08735_3 crossref_primary_10_1080_19942060_2020_1773932 crossref_primary_10_1007_s00521_020_05035_x crossref_primary_10_1088_1748_9326_ad40c3 crossref_primary_10_1007_s13201_022_01846_6 crossref_primary_10_1007_s00376_023_3013_x crossref_primary_10_32604_cmes_2021_015528 crossref_primary_10_5194_hess_24_2343_2020 crossref_primary_10_1007_s10661_019_7256_z crossref_primary_10_1007_s11356_021_17852_1 crossref_primary_10_1007_s11356_020_07837_x crossref_primary_10_1080_19942060_2019_1639549 crossref_primary_10_1142_S0219622021500164 crossref_primary_10_1016_j_measurement_2020_108127 crossref_primary_10_2166_wcc_2020_259 crossref_primary_10_1080_02626667_2021_1994977 crossref_primary_10_1007_s00521_020_05680_2 crossref_primary_10_1007_s12517_022_09900_y crossref_primary_10_1080_19942060_2020_1803971 |
Cites_doi | 10.1007/s11269-016-1452-1 10.1016/j.jhydrol.2015.06.052 10.1016/j.jhydrol.2005.05.019 10.1016/j.jhydrol.2006.03.015 10.1002/hyp.1096 10.1016/j.jhydrol.2016.11.059 10.1016/j.jhydrol.2008.12.024 10.1016/j.jhydrol.2015.09.028 10.1016/j.still.2017.04.009 10.1061/(ASCE)0733-9437(2002)128:4(224) 10.1029/2000JD900719 10.1007/s12665-015-5058-3 10.1016/j.eswa.2014.02.047 10.1002/(SICI)1099-1085(19970315)11:3<311::AID-HYP446>3.0.CO;2-Y 10.1007/s00271-009-0201-0 10.1007/s11269-013-0287-2 10.1016/j.compag.2016.01.026 10.1016/j.jhydrol.2007.09.004 10.1016/j.snb.2014.04.022 10.1016/j.amc.2015.08.085 10.1016/j.jhydrol.2013.11.008 10.1016/S0022-1694(01)00341-9 10.1002/hyp.6323 10.1002/hyp.1372 10.1016/j.jhydrol.2010.11.002 10.1016/j.engappai.2015.09.010 10.1007/s11269-009-9514-2 10.1504/IJSI.2013.055801 10.1007/978-3-319-67459-9_42 10.1016/j.jhydrol.2015.08.008 10.1504/IJEP.2006.011211 10.1007/s00271-010-0225-5 10.1007/s11269-015-0976-0 10.4236/jwarp.2014.64034 10.1016/j.advwatres.2008.10.005 10.1002/hyp.6251 10.1029/2007WR006737 |
ContentType | Journal Article |
Copyright | 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2018 |
Copyright_xml | – notice: 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2018 |
DBID | 0YH AAYXX CITATION DOA |
DOI | 10.1080/19942060.2018.1482476 |
DatabaseName | Taylor & Francis Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 0YH name: Taylor & Francis Open Access url: https://www.tandfonline.com sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1997-003X |
EndPage | 597 |
ExternalDocumentID | oai_doaj_org_article_82c58d3d697d4d719aea41aa4e7edc91 10_1080_19942060_2018_1482476 1482476 |
Genre | Article |
GroupedDBID | 0YH 4.4 5VS ACGFS ADBBV ADCVX AENEX ALMA_UNASSIGNED_HOLDINGS ARCSS BCNDV EBS EJD GROUPED_DOAJ H13 KQ8 M4Z OK1 P2P PROAC RDKPK TDBHL TFMNY TFW 8G5 AAYXX ABUWG ADMLS AFKRA AZQEC BENPR BPHCQ CCPQU CITATION DWQXO GNUQQ GUQSH IPNFZ M2O PHGZM PHGZT PQQKQ RIG |
ID | FETCH-LOGICAL-c423t-e23aec6a9ddfa0e54ad8d7375c2e28441756b0569ccf36f16d44bf8c5bb0636c3 |
IEDL.DBID | DOA |
ISSN | 1994-2060 |
IngestDate | Wed Aug 27 01:22:32 EDT 2025 Thu Apr 24 22:55:24 EDT 2025 Tue Jul 01 01:30:36 EDT 2025 Wed Dec 25 09:08:32 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | open-access: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c423t-e23aec6a9ddfa0e54ad8d7375c2e28441756b0569ccf36f16d44bf8c5bb0636c3 |
ORCID | 0000-0002-6605-498X 0000-0002-1057-3801 0000-0001-8427-5965 |
OpenAccessLink | https://doaj.org/article/82c58d3d697d4d719aea41aa4e7edc91 |
PageCount | 14 |
ParticipantIDs | informaworld_taylorfrancis_310_1080_19942060_2018_1482476 crossref_primary_10_1080_19942060_2018_1482476 doaj_primary_oai_doaj_org_article_82c58d3d697d4d719aea41aa4e7edc91 crossref_citationtrail_10_1080_19942060_2018_1482476 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-01-01 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Engineering applications of computational fluid mechanics |
PublicationYear | 2018 |
Publisher | Taylor & Francis Taylor & Francis Group |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Group |
References | CIT00016 CIT00038 CIT00015 CIT00014 CIT00013 CIT00035 CIT00012 CIT00034 CIT00011 CIT00033 CIT00010 CIT00032 CIT00031 Mall R. K. (CIT00022) 2006; 90 CIT00019 CIT00018 Vapnik V. K. (CIT00036) 1974 CIT00017 CIT00039 Wang L. (CIT00037) 2016; 247 CIT00040 Yang X. S. (CIT00041) 2009; 5792 CIT00027 CIT00026 CIT00025 CIT00024 CIT0001 CIT00021 CIT00043 CIT00020 CIT00042 CIT00029 CIT00028 CIT0003 CIT00030 CIT0002 CIT0004 CIT0007 CIT0006 CIT0009 CIT0008 |
References_xml | – ident: CIT0001 doi: 10.1007/s11269-016-1452-1 – ident: CIT00018 doi: 10.1016/j.jhydrol.2015.06.052 – ident: CIT0006 doi: 10.1016/j.jhydrol.2005.05.019 – ident: CIT00017 doi: 10.1016/j.jhydrol.2006.03.015 – ident: CIT00030 doi: 10.1002/hyp.1096 – ident: CIT00038 doi: 10.1016/j.jhydrol.2016.11.059 – volume: 5792 start-page: 169 year: 2009 ident: CIT00041 publication-title: In International Symposium on Stochastic Algorithms – ident: CIT0007 doi: 10.1016/j.jhydrol.2008.12.024 – ident: CIT00010 doi: 10.1016/j.jhydrol.2015.09.028 – ident: CIT00011 doi: 10.1016/j.still.2017.04.009 – ident: CIT00021 doi: 10.1061/(ASCE)0733-9437(2002)128:4(224) – ident: CIT00034 doi: 10.1029/2000JD900719 – ident: CIT00027 doi: 10.1007/s12665-015-5058-3 – ident: CIT00012 doi: 10.1016/j.eswa.2014.02.047 – ident: CIT00029 doi: 10.1002/(SICI)1099-1085(19970315)11:3<311::AID-HYP446>3.0.CO;2-Y – ident: CIT00031 doi: 10.1007/s00271-009-0201-0 – ident: CIT00016 doi: 10.1007/s11269-013-0287-2 – ident: CIT00019 doi: 10.1016/j.compag.2016.01.026 – ident: CIT0003 doi: 10.1016/j.jhydrol.2007.09.004 – ident: CIT00014 doi: 10.1016/j.snb.2014.04.022 – ident: CIT00020 doi: 10.1016/j.amc.2015.08.085 – ident: CIT0002 doi: 10.1016/j.jhydrol.2013.11.008 – ident: CIT00035 doi: 10.1016/S0022-1694(01)00341-9 – ident: CIT00026 doi: 10.1002/hyp.6323 – ident: CIT0009 doi: 10.1002/hyp.1372 – ident: CIT00043 doi: 10.1016/j.jhydrol.2010.11.002 – ident: CIT0004 doi: 10.1016/j.engappai.2015.09.010 – ident: CIT00028 doi: 10.1007/s11269-009-9514-2 – ident: CIT00042 doi: 10.1504/IJSI.2013.055801 – ident: CIT00025 doi: 10.1007/978-3-319-67459-9_42 – volume: 90 start-page: 1610 issue: 12 year: 2006 ident: CIT00022 publication-title: Current Science – ident: CIT00033 doi: 10.1016/j.jhydrol.2015.08.008 – ident: CIT00039 doi: 10.1504/IJEP.2006.011211 – ident: CIT00013 doi: 10.1007/s00271-010-0225-5 – volume: 247 start-page: 1 year: 2016 ident: CIT00037 publication-title: Earth System Science Discussing Earth System Science – ident: CIT00015 doi: 10.1007/s11269-015-0976-0 – volume-title: Theory of pattern recognition year: 1974 ident: CIT00036 – ident: CIT0008 doi: 10.4236/jwarp.2014.64034 – ident: CIT00024 doi: 10.1016/j.advwatres.2008.10.005 – ident: CIT00032 doi: 10.1002/hyp.6251 – ident: CIT00040 doi: 10.1029/2007WR006737 |
SSID | ssib050731174 ssj0001753472 |
Score | 2.5369613 |
Snippet | Evaporation accounts for varying shares of water balance under different climatic conditions, and its correct prediction poses a significant challenge before... |
SourceID | doaj crossref informaworld |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 584 |
SubjectTerms | meteorological parameters Pearson correlation prediction error Taylor diagram water balance |
SummonAdditionalLinks | – databaseName: Taylor & Francis Open Access dbid: 0YH link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagXODAo4DY8pAPXFPi-JH42FatFiQ4UQlO0fi1VFqSVTZbqf--HsepFiTgwDFRPIo8M57P4_E3hLzXzEaYrEKhjeSFAMsKiLuMQvoS6QgDhHSC__mLWl6KT9_kXE24zWWVuIcOE1FEWqvRucFs54q4D0hnW5WqxMKs5hiJLEWt7pMHFVprNOny-3I2qYh2OGMZ4aS0S4TnIrV0SqS4KGa-1_Mnyb9ErETs_xut6V5AunhKHmckSU8m1T8j93x3SJ5kVEmzz24PyaM9ysHnxJ71O7yEu6JAQ1zuwvqGwnrVD1fjj58Us7J0u9sgKKfXKaFPB7-aamU7OvZ0M-DJzkj9NWyy9dCrjnZ4_OOHjn6Mse8Fubw4_3q2LHKjhcJGNDUWvuLgrQLtXIDSSwGucTWvpa18DF8iTpqKc6m0tYGrwJQTwoTGSmMiwlGWvyQHXd_5V4Q2jeUStBBlsMKooEVQWoPxRkIUWS2ImCeztZmFHJthrFuWyUpnHbSogzbrYEGO74ZtJhqOfw04RU3dfYws2ulFP6za7JRtU1nZOO6Urp1wNdPgQTAA4WvvrGYLovf13I4piRKmjict_-sPHP3H2NfkIT5OmZ435GAcdv5txD6jeZes-xbNXfbQ priority: 102 providerName: Taylor & Francis |
Title | Coupling a firefly algorithm with support vector regression to predict evaporation in northern Iran |
URI | https://www.tandfonline.com/doi/abs/10.1080/19942060.2018.1482476 https://doaj.org/article/82c58d3d697d4d719aea41aa4e7edc91 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYop_ZQCm3V7QP50GsgiR-Jjy0CLUj0VCQ4RRM_tkjb7CpkkXrht3fG8aKoh3LhksMotkYzk8znsf0NY19NYREm65CZVolMgi0ywFVGpnxOdIQBQtzBv_yh51fy4lpdT1p90ZmwkR54NNxxXVpVO-G0qZx0VWHAgywApK-8s_Heeok5b7KYwkhCkCOKIgGbWG1BVC5jJ6fIhVvmOt9e56nzY5KRiE561UfEjCmJg2SSqCKf_z9sppM8dPaGvU4Akn8bFd9nO747YHsJTPL0qd4dsFcTpsG3zJ6sNnT3dsGBB_zLheUfDsvFqr8dfv3mVIzld5s1YXF-H-v4vPeL8Yhsx4cVX_e0oTNwfw_rFDT8tuMd7fr4vuPnmPLesauz058n8yz1V8gsgqgh86UAbzUY5wLkXklwtatEpWzpMWtJNJpGW2pjbRA6FNpJ2YbaqrZFYKOteM92u1XnPzBe11YoMFLmwcpWByODNgZa3yrAKcsZk1tjNjaRj1MPjGVTJI7SrQ8a8kGTfDBjR4_D1iP7xlMDvpOnHl8m8uwowJBqUkg1T4XUjJmpn5sh1k7C2OikEf9V4ONzKPCJvaQ5x0rPZ7Y79Bv_BbHP0B6yF_nN_DAGOz4vH07_AtFB_QE |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYoPVAOtKWtuqWlPvQaGsePxEdARcvzBBKcLMePLdI2WYUsEv--HsdBWyTaQ69JPIo8Hs_nmfE3CH2TxASYLHwma04zpg3JdDhlZNzlQEfotY8Z_PMLMb1iJ9f8euUuDJRVwhnaD0QRca8G44Zg9FgS9x34bItc5FCZVe0BkyUrxQv0kgfnC-0b8pvpuKYC3KGEJIgT4y4Bn7PY0ymy4oKY8WLPc5L_cFmR2f8Jr-mKRzp6g7YSlMT7g-7fojXXbKPXCVbiZLR322hzhXPwHTKH7RJu4c6wxj7sd37-gPV81na3_c9fGMKy-G65AFSO72NEH3duNhTLNrhv8aKD1E6P3b1epOWDbxvcQP7HdQ0-Ds7vPbo6-nF5OM1Sp4XMBDjVZ66g2hmhpbVe544zbStb0pKbwgX_xcKkiTCXQhrjqfBEWMZqXxle1wHiCEM_oPWmbdxHhKvKUK4lY7k3rBZeMi-k1LWruQ4iiwli42Qqk2jIoRvGXJHEVjrqQIEOVNLBBO09DlsMPBz_GnAAmnr8GGi044O2m6lklaoqDK8stUKWltmSSO00I1ozVzprJJkguapn1ccoih9anij61x_49B9jv6KN6eX5mTo7vjjdQa_g1RD2-YzW-27pvgQg1Ne7caX_BkP8-kQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSAgOQAuIhbb4wDUljh-Jj9Cy2vKoeqASnCzHj6XSkkTZbCX-PR7HqRYkyqHXJB5FnhnP5_H4G4TeSGICTBY-kzWnGdOGZDrsMjLucqAj9NrHE_wvZ2JxwT5-41M14TqVVcIe2o9EEXGtBufurJ8q4t4CnW2RixwKs6ojILJkpbiL7vEqxPpg0vn3xWRSAe1QQhLCiWmXAM9ZbOkUSXFBzHSv51-S_4hYkdj_L1rTrYA0f4IeJSSJ342q30V3XLOHHidUiZPPrvfQwy3KwafIHLcbuIS7xBr7sNz51S-sV8u2vxx-_MSQlcXrTQegHF_FhD7u3XKslW3w0OKuh5OdAbsr3SXrwZcNbuD4x_UNPg2x7xm6mH_4erzIUqOFzAQ0NWSuoNoZoaW1XueOM20rW9KSm8KF8MXCpIkwl0Ia46nwRFjGal8ZXtcB4QhDn6Odpm3cC4SrylCuJWO5N6wWXjIvpNS1q7kOIosZYtNkKpNYyKEZxkqRRFY66UCBDlTSwQwdXQ_rRhqO_w14D5q6_hhYtOODtl-q5JSqKgyvLLVClpbZkkjtNCNaM1c6aySZIbmtZzXEJIofO54oeuMPvLzF2Nfo_vnJXH0-Pfv0Cj2AN2PSZx_tDP3GHQQYNNSH0dB_A8lO-XY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coupling+a+firefly+algorithm+with+support+vector+regression+to+predict+evaporation+in+northern+Iran&rft.jtitle=Engineering+applications+of+computational+fluid+mechanics&rft.au=Roozbeh+Moazenzadeh&rft.au=Babak+Mohammadi&rft.au=Shahaboddin+Shamshirband&rft.au=Kwok-wing+Chau&rft.date=2018-01-01&rft.pub=Taylor+%26+Francis+Group&rft.issn=1994-2060&rft.eissn=1997-003X&rft.volume=12&rft.issue=1&rft.spage=584&rft.epage=597&rft_id=info:doi/10.1080%2F19942060.2018.1482476&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_82c58d3d697d4d719aea41aa4e7edc91 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1994-2060&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1994-2060&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1994-2060&client=summon |