Selected AI optimization techniques and applications in geotechnical engineering
In an age of depleting earth due to global warming impacting badly on the ozone layer of the earth system, the need to employ technologies to substitute those engineering practices which result in emissions contributing to the death of our earth has arisen. One of those technologies is one that can...
Saved in:
Published in | Cogent engineering Vol. 10; no. 1 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cogent
31.12.2023
Taylor & Francis Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In an age of depleting earth due to global warming impacting badly on the ozone layer of the earth system, the need to employ technologies to substitute those engineering practices which result in emissions contributing to the death of our earth has arisen. One of those technologies is one that can sufficiently replace overdependence on laboratory activities where oxides of carbon and other toxins are released. Also, it is one technology that brings precision to other engineering activities especially earthwork design and construction thereby reducing to lower ebb the release of carbon oxides due to inexact utilization of materials during geotechnical practices. In this review, the use of artificial intelligence techniques in geotechnics has been explored as a precise technique through which geotechnical engineering works don't impact on our planet due to precision. The intelligent learning algorithms of ANN, Fuzzy Logic, GEP, ANFIS, ANOVA and other nature-inspired algorithms have been reviewed as they are applied in the prediction of geotechnical and geoenvironmental problems and system. It is a complex exercise to conduct experimental protocols during the design and construction of earthwork infrastructures. Most times, such experimental exercises don't meet the required condition for sustainable design and construction. At other times, certain errors as a result of experimental set up or human misjudgment may mar the accuracy of measurements and release unexpected emissions. The employment of the evolutionary learning methods has solved most of the lapses encountered in repeated laboratory measurements. So, in this review work, the relevant computational intelligent techniques employed at different times, under different laboratory protocols and utilizing different materials, have been presented as a comprehensive guide to future researchers in this innovative and evolving field of artificial intelligence. With this extensive review, a researcher would not have to look far to get a technical and state of the art guide in the utilization of various intelligent techniques that would enable engineering models in a more efficient, precise and more sustainable approach to forestall multiple practices that release carbon emissions into the environment. |
---|---|
AbstractList | In an age of depleting earth due to global warming impacting badly on the ozone layer of the earth system, the need to employ technologies to substitute those engineering practices which result in emissions contributing to the death of our earth has arisen. One of those technologies is one that can sufficiently replace overdependence on laboratory activities where oxides of carbon and other toxins are released. Also, it is one technology that brings precision to other engineering activities especially earthwork design and construction thereby reducing to lower ebb the release of carbon oxides due to inexact utilization of materials during geotechnical practices. In this review, the use of artificial intelligence techniques in geotechnics has been explored as a precise technique through which geotechnical engineering works don't impact on our planet due to precision. The intelligent learning algorithms of ANN, Fuzzy Logic, GEP, ANFIS, ANOVA and other nature-inspired algorithms have been reviewed as they are applied in the prediction of geotechnical and geoenvironmental problems and system. It is a complex exercise to conduct experimental protocols during the design and construction of earthwork infrastructures. Most times, such experimental exercises don't meet the required condition for sustainable design and construction. At other times, certain errors as a result of experimental set up or human misjudgment may mar the accuracy of measurements and release unexpected emissions. The employment of the evolutionary learning methods has solved most of the lapses encountered in repeated laboratory measurements. So, in this review work, the relevant computational intelligent techniques employed at different times, under different laboratory protocols and utilizing different materials, have been presented as a comprehensive guide to future researchers in this innovative and evolving field of artificial intelligence. With this extensive review, a researcher would not have to look far to get a technical and state of the art guide in the utilization of various intelligent techniques that would enable engineering models in a more efficient, precise and more sustainable approach to forestall multiple practices that release carbon emissions into the environment. AbstractIn an age of depleting earth due to global warming impacting badly on the ozone layer of the earth system, the need to employ technologies to substitute those engineering practices which result in emissions contributing to the death of our earth has arisen. One of those technologies is one that can sufficiently replace overdependence on laboratory activities where oxides of carbon and other toxins are released. Also, it is one technology that brings precision to other engineering activities especially earthwork design and construction thereby reducing to lower ebb the release of carbon oxides due to inexact utilization of materials during geotechnical practices. In this review, the use of artificial intelligence techniques in geotechnics has been explored as a precise technique through which geotechnical engineering works don’t impact on our planet due to precision. The intelligent learning algorithms of ANN, Fuzzy Logic, GEP, ANFIS, ANOVA and other nature-inspired algorithms have been reviewed as they are applied in the prediction of geotechnical and geoenvironmental problems and system. It is a complex exercise to conduct experimental protocols during the design and construction of earthwork infrastructures. Most times, such experimental exercises don’t meet the required condition for sustainable design and construction. At other times, certain errors as a result of experimental set up or human misjudgment may mar the accuracy of measurements and release unexpected emissions. The employment of the evolutionary learning methods has solved most of the lapses encountered in repeated laboratory measurements. So, in this review work, the relevant computational intelligent techniques employed at different times, under different laboratory protocols and utilizing different materials, have been presented as a comprehensive guide to future researchers in this innovative and evolving field of artificial intelligence. With this extensive review, a researcher would not have to look far to get a technical and state of the art guide in the utilization of various intelligent techniques that would enable engineering models in a more efficient, precise and more sustainable approach to forestall multiple practices that release carbon emissions into the environment. |
Author | Onyelowe, Kennedy C. Rezazadeh, Danial Rehman, Zia Ur Eberemu, Adrian O. Ikpa, Chidozie Mojtahedi, Farid F. Jalal, Fazal E. Ebid, Ahmed M. Obianyo, Ifeyinwa I. Osinubi, Kolawole J. Salahudeen, Bunyamin Iqbal, Mudassir Rezaei, Amirhossein Yohanna, Paul Onyia, Michael E. Gadzama, Emmanuel W. Jahangir, Hashem |
Author_xml | – sequence: 1 givenname: Kennedy C. orcidid: 0000-0001-5218-820X surname: Onyelowe fullname: Onyelowe, Kennedy C. email: kennedychibuzor@kiu.ac.ug, konyelowe@mouau.edu.ng, konyelowe@gmail.com organization: University of Peloponnese – sequence: 2 givenname: Farid F. surname: Mojtahedi fullname: Mojtahedi, Farid F. organization: University of Melbourne – sequence: 3 givenname: Ahmed M. surname: Ebid fullname: Ebid, Ahmed M. organization: Future University in Egypt – sequence: 4 givenname: Amirhossein surname: Rezaei fullname: Rezaei, Amirhossein organization: Tarbiat Modares University – sequence: 5 givenname: Kolawole J. surname: Osinubi fullname: Osinubi, Kolawole J. organization: Ahmadu Bello University – sequence: 6 givenname: Adrian O. surname: Eberemu fullname: Eberemu, Adrian O. organization: Ahmadu Bello University – sequence: 7 givenname: Bunyamin surname: Salahudeen fullname: Salahudeen, Bunyamin organization: University of Jos – sequence: 8 givenname: Emmanuel W. surname: Gadzama fullname: Gadzama, Emmanuel W. organization: Modibbo Adama University of Technololgy – sequence: 9 givenname: Danial surname: Rezazadeh fullname: Rezazadeh, Danial organization: Semnan University – sequence: 10 givenname: Hashem surname: Jahangir fullname: Jahangir, Hashem organization: University of Birjand – sequence: 11 givenname: Paul surname: Yohanna fullname: Yohanna, Paul organization: University of Jos – sequence: 12 givenname: Michael E. surname: Onyia fullname: Onyia, Michael E. organization: University of Nigeria – sequence: 13 givenname: Fazal E. surname: Jalal fullname: Jalal, Fazal E. organization: Shanghai Jiao Tong University – sequence: 14 givenname: Mudassir surname: Iqbal fullname: Iqbal, Mudassir organization: Shanghai Jiao Tong University – sequence: 15 givenname: Chidozie surname: Ikpa fullname: Ikpa, Chidozie organization: Alex Ekwueme Federal University – sequence: 16 givenname: Ifeyinwa I. surname: Obianyo fullname: Obianyo, Ifeyinwa I. organization: African University of Science and Technology – sequence: 17 givenname: Zia Ur surname: Rehman fullname: Rehman, Zia Ur organization: Tsinghua University |
BookMark | eNqFkNtKAzEQhoNUsNY-grAv0JrDZreLN5bioVBQUK_DbDKpKdukZiNSn96eFPFCrxJm5v9m-E5JxwePhJwzOmR0RC-4EIxVrBhyyvmQMylyVh2R7rY-2DY6P_4npN-2C0opE7mkFe2Sh0dsUCc02XiahVVyS_cByQWfJdQv3r2-YZuBNxmsVo3Tu1abOZ_NMewnNDQZ-rnziNH5-Rk5ttC02D-8PfJ8c_00uRvM7m-nk_FsoHMu0kAbizVwSTeHYEkLlEWhLTdVXpVMUl6OamFtqSUvLIBGXdUml0LX0hY5cBQ9Mt1zTYCFWkW3hLhWAZzaFUKcK4jJ6QaVwRFUZV3nTNicGgRraFFaTVHKarNww5J7lo6hbSPabx6jamtZfVlWW8vqYHmTu_yV0y7tFKUIrvk3fbVPO29DXMJ7iI1RCdZNiDaC165V4m_EJz-umN4 |
CitedBy_id | crossref_primary_10_1007_s42107_023_00800_4 crossref_primary_10_3389_fbuil_2024_1395448 crossref_primary_10_1080_17486025_2024_2321919 crossref_primary_10_1007_s12145_024_01398_0 crossref_primary_10_1016_j_kscej_2024_100052 crossref_primary_10_1016_j_prime_2024_100647 crossref_primary_10_3390_app13106074 crossref_primary_10_3390_a16060303 crossref_primary_10_3389_fevo_2023_1275703 crossref_primary_10_1016_j_rineng_2023_101637 crossref_primary_10_1007_s41024_023_00378_z crossref_primary_10_1016_j_jrmge_2023_11_042 crossref_primary_10_2139_ssrn_4681735 crossref_primary_10_1007_s40891_023_00508_0 crossref_primary_10_1007_s42107_025_01287_x crossref_primary_10_1016_j_geoai_2025_100014 crossref_primary_10_1038_s41598_024_79983_y crossref_primary_10_1007_s13369_024_08752_w crossref_primary_10_1016_j_trgeo_2024_101402 crossref_primary_10_1016_j_iswa_2024_200329 crossref_primary_10_1007_s41939_024_00397_4 crossref_primary_10_1007_s41939_023_00304_3 crossref_primary_10_3390_info15050280 crossref_primary_10_1007_s41939_023_00280_8 crossref_primary_10_17798_bitlisfen_1506446 crossref_primary_10_1016_j_egyr_2024_05_045 crossref_primary_10_3390_app132111966 crossref_primary_10_3390_en18051192 crossref_primary_10_1016_j_compag_2024_109221 crossref_primary_10_1007_s12145_024_01435_y crossref_primary_10_1038_s41598_024_52825_7 crossref_primary_10_1038_s41598_025_90468_4 crossref_primary_10_1007_s12145_024_01284_9 crossref_primary_10_26848_rbgf_v17_2_p1071_1085 crossref_primary_10_3389_fbuil_2024_1373092 |
Cites_doi | 10.1109/ICNN.1995.488108 10.1016/j.undsp.2019.12.001 10.1080/19475705.2020.1753824 10.1016/j.compgeo.2011.09.008 10.1016/j.enggeo.2008.03.001 10.1007/s00158-017-1653-0 10.28991/cej-2017-00000099 10.1016/j.procs.2019.06.039 10.7551/mitpress/3927.001.0001 10.5897/SRE12.297 10.1007/s00521-017-2939-2 10.1016/j.dss.2007.03.013 10.1016/S0092-8240(05)80006-0 10.1061/(ASCE)1090-0241(2005)131:1(84 10.1109/ICIECS.2009.5366444 10.1016/B978-0-12-398296-4.00008-8 10.1016/j.compgeo.2004.05.001 10.1016/S0266-352X(95)00013-Z 10.1061/(ASCE)0733-9364(1997)123:3(214 10.1007/s10706-020-01536-7 10.1139/t06-029 10.1002/nag.463 10.1088/1755-1315/189/2/022054 10.1002/nag.2714 10.1016/j.measurement.2017.10.032 10.5120/1123-1472 10.1111/j.1467-8667.1989.tb00026.x 10.1007/3-540-32498-4_2 10.1016/j.envsoft.2010.02.003 10.1016/j.conbuildmat.2020.120677 10.1016/j.compgeo.2006.10.012 10.1007/s12517-020-06050-x 10.1007/s40515-020-00113-y 10.1007/978-3-319-96433-1_6 10.1201/9781315169064-30 10.1007/978-3-662-46309-3_1 10.1061/(ASCE)0887-3801(2004)18:2(105 10.1007/s12665-009-0009-5 10.1016/j.tust.2013.05.002 10.1007/s11269-015-1016-9 10.20944/preprints201903.0049.v1 10.1111/j.1467-8667.2004.00354.x 10.1007/s12665-012-1836-3 10.4314/njt.v35i2.5 10.1623/hysj.54.2.247 10.1155/2018/8917059 10.1007/s00521-020-05244-4 10.1061/(ASCE)0887-3801(2008)22:4(272 10.1016/j.compgeo.2003.09.004 10.1007/s00500-019-04316-5 10.1061/(ASCE)0733-9410(1985)111:12(1425 10.1177/0734242X20952839 10.1007/s10064-008-0168-8 10.1061/(ASCE)0733-9410(1996)122:1(70 10.1109/CIMSA.2011.6059929 10.3390/sym12081295 10.1016/j.ecolind.2017.10.042 10.1007/s00366-020-00999-9 10.1155/2017/3741941 10.1016/S1364-8152(99)00007-9 10.1016/j.conbuildmat.2018.01.191 10.1007/s10845-016-1229-7 10.1111/0885-9507.00219 10.1109/TGRS.2010.2050328 10.1061/(ASCE)0733-9410(1994)120:9(1467 10.1007/s11069-019-03688-z 10.1016/j.matdes.2016.10.046 10.1007/s00521-016-2618-8 10.1007/s12649-012-9161-3 10.1016/j.autcon.2009.12.007 10.1061/(ASCE)0733-9364(2005)131:7(765 10.1007/s00254-008-1645-x 10.1109/21.256541 10.1016/j.istruc.2019.09.013 10.1016/j.compstruct.2016.11.068 10.1016/j.tust.2017.03.011 10.7764/RDLC.17.3.364 10.1016/j.ijrmms.2012.06.005 10.1007/s12665-019-8658-5 10.1016/j.asoc.2008.09.006 10.2113/EEG-2023 10.1007/s11709-016-0363-9 10.18517/ijaseit.2.2.174 10.1016/j.compgeo.2009.04.003 10.48550/arXiv.1106.1570 10.1016/j.wasman.2016.04.033 10.22115/SCCE.2018.128634.1059 10.1038/s41598-020-77567-0 10.1016/j.medengphy.2016.07.003 10.1016/S1364-8152(98)00020-6 10.1016/j.eswa.2009.04.008 10.1016/j.compstruct.2010.04.008 10.1016/S0266-352X(03)00012-0 10.1007/s00254-008-1300-6 10.1007/s42452-020-2727-y 10.1007/s00366-016-0447-0 10.3390/app10020472 10.15406/mojce.2018.04.00111 10.1080/15325008.2014.964813 10.1016/S1364-0321(01)00006-5 10.1631/jzus.A1000252 10.1016/j.jrmge.2017.03.011 10.32604/cmes.2019.07653 10.1016/j.conbuildmat.2013.01.016 10.1061/(ASCE)1090-0241(2002)128:9(785 10.33922/j.ujet_v6i1_9 10.1007/978-3-540-89924-2 10.1109/TSMC.1985.6313399 10.1186/s40703-017-0067-6 10.1016/j.sandf.2015.06.006 10.1016/j.jobe.2018.01.007 10.1016/j.compgeo.2008.07.002 10.1016/j.compgeo.2016.01.014 10.1007/s11831-020-09442-0 10.1016/j.measurement.2019.02.054 10.3390/app9214650 10.24200/sci.2016.2097 10.1007/s00158-016-1521-3 10.3208/sandf1972.28.2_49 10.1080/01446193.2019.1590615 10.1007/s00521-016-2190-2 10.3390/s20051313 10.33796/waberconference2019.19 10.1016/j.jrmge.2016.11.011 |
ContentType | Journal Article |
Copyright | 2023 The Author(s). This open access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license. 2023 |
Copyright_xml | – notice: 2023 The Author(s). This open access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license. 2023 |
DBID | 0YH AAYXX CITATION DOA |
DOI | 10.1080/23311916.2022.2153419 |
DatabaseName | Taylor & Francis Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 0YH name: Taylor & Francis Open Access url: https://www.tandfonline.com sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2331-1916 |
ExternalDocumentID | oai_doaj_org_article_de8a97bb413f40deafd067fc0e559949 10_1080_23311916_2022_2153419 2153419 |
Genre | Review Article |
GroupedDBID | 0YH 5VS 8FE 8FG AAFWJ ABDBF ABJCF ACUHS ADBBV ADCVX AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BGLVJ CCPQU EAP EBS ESX GROUPED_DOAJ H13 HCIFZ HZ~ KQ8 L6V M4Z M7S M~E O9- OK1 PIMPY PROAC PTHSS TDBHL TFMNY TFW AAYXX ADMLS CITATION PHGZM PHGZT PQGLB PUEGO |
ID | FETCH-LOGICAL-c423t-cdfeba250345e706e566cf2d9497150278b3ff7c526faacec9bd453cb5f64a2e3 |
IEDL.DBID | 0YH |
ISSN | 2331-1916 |
IngestDate | Wed Aug 27 01:32:04 EDT 2025 Tue Jul 01 04:00:03 EDT 2025 Thu Apr 24 23:03:21 EDT 2025 Wed Dec 25 09:06:42 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | open-access: http://creativecommons.org/licenses/by/4.0/: You are free to: Share - copy and redistribute the material in any medium or format. Adapt - remix, transform, and build upon the material for any purpose, even commercially. The licensor cannot revoke these freedoms as long as you follow the license terms. Under the following terms: Attribution - You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. No additional restrictions You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c423t-cdfeba250345e706e566cf2d9497150278b3ff7c526faacec9bd453cb5f64a2e3 |
ORCID | 0000-0001-5218-820X |
OpenAccessLink | https://www.tandfonline.com/doi/abs/10.1080/23311916.2022.2153419 |
ParticipantIDs | crossref_primary_10_1080_23311916_2022_2153419 crossref_citationtrail_10_1080_23311916_2022_2153419 doaj_primary_oai_doaj_org_article_de8a97bb413f40deafd067fc0e559949 informaworld_taylorfrancis_310_1080_23311916_2022_2153419 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-31 |
PublicationDateYYYYMMDD | 2023-12-31 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-31 day: 31 |
PublicationDecade | 2020 |
PublicationTitle | Cogent engineering |
PublicationYear | 2023 |
Publisher | Cogent Taylor & Francis Group |
Publisher_xml | – name: Cogent – name: Taylor & Francis Group |
References | e_1_3_2_28_1 Rumelhart D. E. (e_1_3_2_137_1) 1986 e_1_3_2_20_1 e_1_3_2_66_1 e_1_3_2_130_1 e_1_3_2_43_1 e_1_3_2_85_1 e_1_3_2_24_1 e_1_3_2_47_1 e_1_3_2_89_1 e_1_3_2_100_1 e_1_3_2_146_1 Chandwani V. (e_1_3_2_27_1) 2014; 4 e_1_3_2_127_1 e_1_3_2_169_1 Kolay P. K. (e_1_3_2_94_1) 2008 e_1_3_2_62_1 e_1_3_2_104_1 e_1_3_2_142_1 e_1_3_2_81_1 e_1_3_2_165_1 Park H. I (e_1_3_2_128_1) 2011 Kaveh A. (e_1_3_2_86_1) 2015; 16 e_1_3_2_16_1 e_1_3_2_7_1 e_1_3_2_31_1 e_1_3_2_54_1 e_1_3_2_77_1 Benali A. (e_1_3_2_21_1) 2013; 5 e_1_3_2_35_1 e_1_3_2_58_1 e_1_3_2_96_1 e_1_3_2_3_1 Wang Y.-R. (e_1_3_2_172_1) 2009 e_1_3_2_92_1 e_1_3_2_135_1 Behfarnia K. (e_1_3_2_19_1) 2017; 7 e_1_3_2_158_1 e_1_3_2_50_1 e_1_3_2_73_1 e_1_3_2_131_1 e_1_3_2_177_1 e_1_3_2_112_1 e_1_3_2_154_1 e_1_3_2_139_1 Sugeno M. (e_1_3_2_163_1) 1988; 28 e_1_3_2_29_1 Tizpa P. (e_1_3_2_167_1) 2014 e_1_3_2_44_1 e_1_3_2_63_1 Kohestani V. R. (e_1_3_2_93_1) 2017; 5 Seyed H. I. (e_1_3_2_147_1) 2008 e_1_3_2_25_1 Ang A. H.-S. (e_1_3_2_12_1) 2006 e_1_3_2_126_1 e_1_3_2_168_1 Li L. (e_1_3_2_98_1) 2007; 26 Haykin S. (e_1_3_2_64_1) 2009 Sadi A. (e_1_3_2_138_1) 2001; 19 e_1_3_2_82_1 e_1_3_2_103_1 e_1_3_2_122_1 e_1_3_2_164_1 e_1_3_2_107_1 e_1_3_2_17_1 Haghshenas S. S. (e_1_3_2_60_1) 2017 Wang Y. X (e_1_3_2_171_1) 2010; 31 e_1_3_2_2_1 e_1_3_2_55_1 e_1_3_2_141_1 e_1_3_2_32_1 Salahudeen A. B. (e_1_3_2_145_1) 2020; 27 e_1_3_2_13_1 Eidgahee D. R. (e_1_3_2_39_1) 2015; 31 Fakharian P. (e_1_3_2_42_1) 2018 e_1_3_2_59_1 e_1_3_2_78_1 e_1_3_2_115_1 e_1_3_2_157_1 American Concrete Institute (ACI) (e_1_3_2_10_1) 2005 Naderpour H. (e_1_3_2_119_1) 2018; 16 e_1_3_2_51_1 e_1_3_2_111_1 e_1_3_2_134_1 e_1_3_2_176_1 Djamalddine B. (e_1_3_2_36_1) 2011; 8 e_1_3_2_70_1 Yohanna P. (e_1_3_2_178_1) 2020 Li L. (e_1_3_2_97_1) 2005; 26 Azura M. Z. (e_1_3_2_18_1) 2019; 527 e_1_3_2_49_1 Muzzammil M (e_1_3_2_117_1) 2010; 12 Nihat S. I (e_1_3_2_121_1) 2009; 4 e_1_3_2_151_1 e_1_3_2_174_1 e_1_3_2_41_1 e_1_3_2_87_1 Smith M. J. D (e_1_3_2_159_1) 2018 Subasi S (e_1_3_2_161_1) 2009; 4 e_1_3_2_26_1 Feng J. (e_1_3_2_45_1) 2014 e_1_3_2_125_1 El-Khoja A. M. N. (e_1_3_2_40_1) 2018; 12 e_1_3_2_148_1 e_1_3_2_83_1 Murat M. B (e_1_3_2_116_1) 2003; 8 e_1_3_2_102_1 e_1_3_2_144_1 e_1_3_2_129_1 Ferreira C (e_1_3_2_46_1) 2001; 13 Ahmad S. S. S. (e_1_3_2_6_1) 2018; 96 Sodikov J (e_1_3_2_160_1) 2005; 6 e_1_3_2_9_1 e_1_3_2_33_1 e_1_3_2_52_1 e_1_3_2_75_1 Olowosulu A. T. (e_1_3_2_123_1) 2020 e_1_3_2_140_1 e_1_3_2_5_1 Margaret W. E. (e_1_3_2_108_1) 2002 e_1_3_2_14_1 e_1_3_2_37_1 e_1_3_2_56_1 e_1_3_2_79_1 e_1_3_2_114_1 e_1_3_2_179_1 e_1_3_2_110_1 e_1_3_2_156_1 e_1_3_2_71_1 e_1_3_2_90_1 e_1_3_2_133_1 e_1_3_2_175_1 Van Schelt W. (e_1_3_2_170_1) 1994 Ikizler S. B. (e_1_3_2_69_1) 2012 e_1_3_2_118_1 Wang C. (e_1_3_2_173_1) 2007 Tiile R. N (e_1_3_2_166_1) 2016 e_1_3_2_65_1 e_1_3_2_88_1 e_1_3_2_150_1 Besawa L. E. (e_1_3_2_22_1) 2006 e_1_3_2_23_1 Hubick K. T (e_1_3_2_67_1) 1992 e_1_3_2_80_1 e_1_3_2_101_1 e_1_3_2_124_1 e_1_3_2_61_1 e_1_3_2_84_1 e_1_3_2_105_1 e_1_3_2_120_1 e_1_3_2_143_1 Ikizler S. B. (e_1_3_2_68_1) 2009 Maizir H. (e_1_3_2_106_1) 2013 e_1_3_2_109_1 e_1_3_2_38_1 e_1_3_2_8_1 Sezer A. (e_1_3_2_149_1) 2010; 9 e_1_3_2_30_1 e_1_3_2_76_1 e_1_3_2_11_1 e_1_3_2_53_1 e_1_3_2_34_1 Su Q. (e_1_3_2_162_1) 2017; 2017 e_1_3_2_4_1 e_1_3_2_15_1 e_1_3_2_57_1 e_1_3_2_99_1 e_1_3_2_113_1 e_1_3_2_136_1 e_1_3_2_95_1 e_1_3_2_132_1 e_1_3_2_155_1 e_1_3_2_72_1 e_1_3_2_91_1 Shahin M. A. (e_1_3_2_153_1) 2001; 36 |
References_xml | – volume: 12 start-page: 1068 issue: 11 year: 2018 ident: e_1_3_2_40_1 article-title: Prediction of rubberised concrete strength by using artificial neural networks publication-title: International Journal of Structural and Construction Engineering – ident: e_1_3_2_125_1 doi: 10.1109/ICNN.1995.488108 – ident: e_1_3_2_70_1 doi: 10.1016/j.undsp.2019.12.001 – ident: e_1_3_2_148_1 doi: 10.1080/19475705.2020.1753824 – ident: e_1_3_2_24_1 doi: 10.1016/j.compgeo.2011.09.008 – ident: e_1_3_2_35_1 doi: 10.1016/j.enggeo.2008.03.001 – ident: e_1_3_2_51_1 doi: 10.1007/s00158-017-1653-0 – ident: e_1_3_2_59_1 doi: 10.28991/cej-2017-00000099 – ident: e_1_3_2_132_1 doi: 10.1016/j.procs.2019.06.039 – ident: e_1_3_2_111_1 doi: 10.7551/mitpress/3927.001.0001 – ident: e_1_3_2_77_1 doi: 10.5897/SRE12.297 – ident: e_1_3_2_73_1 doi: 10.1007/s00521-017-2939-2 – ident: e_1_3_2_9_1 doi: 10.1016/j.dss.2007.03.013 – volume: 13 start-page: 87 issue: 2 year: 2001 ident: e_1_3_2_46_1 article-title: Gene expression programming: A new adaptive algorithm for solving problems publication-title: Complex Systems – ident: e_1_3_2_109_1 doi: 10.1016/S0092-8240(05)80006-0 – start-page: 465 issue: 20 year: 2002 ident: e_1_3_2_108_1 article-title: Data modelling and the application of a neural network approach to the prediction of total construction costs publication-title: Construction Management and Economics – volume: 4 start-page: 2949 issue: 4 year: 2014 ident: e_1_3_2_27_1 article-title: Applications of Artificial Neural Networks in Modelling Compressive Strength of Concrete: A State of the Art Review publication-title: International Journal of Current Engineering and Technology – ident: e_1_3_2_56_1 doi: 10.1061/(ASCE)1090-0241(2005)131:1(84 – volume: 6 start-page: 1036 year: 2005 ident: e_1_3_2_160_1 article-title: Cost Estimation of Highway Projects In Developing CountriesArtificial Neural Network Approach publication-title: Journal ofthe Eastern Asia Society for Transportation Studies – ident: e_1_3_2_165_1 doi: 10.1109/ICIECS.2009.5366444 – volume: 4 start-page: 289 issue: 4 year: 2009 ident: e_1_3_2_161_1 article-title: Prediction of mechanical properties of cement containing class C fly ash by using artificial neural network and regression technique publication-title: Sci. Res. Essays – ident: e_1_3_2_150_1 doi: 10.1016/B978-0-12-398296-4.00008-8 – ident: e_1_3_2_57_1 doi: 10.1016/j.compgeo.2004.05.001 – ident: e_1_3_2_66_1 doi: 10.1016/S0266-352X(95)00013-Z – volume: 19 start-page: 234 issue: 5 year: 2001 ident: e_1_3_2_138_1 article-title: Themanagement of construction company overhead costs publication-title: International Journal of Project Management – volume: 8 start-page: 1. 51 year: 2011 ident: e_1_3_2_36_1 article-title: Fuzzy-sets decision-support system for geotechnical site soundings publication-title: Acta geotechnica Slovenica – ident: e_1_3_2_34_1 doi: 10.1061/(ASCE)0733-9364(1997)123:3(214 – volume-title: chapter in Sustainable Issues in Infrastructure Engineering. First Online version year: 2020 ident: e_1_3_2_123_1 – volume-title: A proposed model for compressive strength prediction of FRP-confined rectangular column in terms of Genetic expression Programming (GEP) (in Persian) year: 2018 ident: e_1_3_2_42_1 – start-page: 386 volume-title: Proceedings of the Symposium on Time Domain Reflectometry in Environmental, Infrastructure, and Mining Applications year: 1994 ident: e_1_3_2_170_1 – ident: e_1_3_2_38_1 doi: 10.1007/s10706-020-01536-7 – ident: e_1_3_2_151_1 doi: 10.1139/t06-029 – ident: e_1_3_2_134_1 doi: 10.1002/nag.463 – volume: 36 start-page: 49 issue: 1 year: 2001 ident: e_1_3_2_153_1 article-title: Artificial neural network applications ingeotechnical engineering publication-title: Australian Geomechanics – ident: e_1_3_2_28_1 doi: 10.1088/1755-1315/189/2/022054 – ident: e_1_3_2_176_1 doi: 10.1002/nag.2714 – ident: e_1_3_2_49_1 doi: 10.1016/j.measurement.2017.10.032 – start-page: 6857 year: 2014 ident: e_1_3_2_45_1 article-title: Prediction of Railway Foundation Settlement Based on the BP Neural Network Model publication-title: Elecrtonic Journal of Geotechnical Engineering – ident: e_1_3_2_96_1 doi: 10.5120/1123-1472 – ident: e_1_3_2_3_1 doi: 10.1111/j.1467-8667.1989.tb00026.x – ident: e_1_3_2_47_1 doi: 10.1007/3-540-32498-4_2 – ident: e_1_3_2_105_1 doi: 10.1016/j.envsoft.2010.02.003 – ident: e_1_3_2_122_1 doi: 10.1016/j.conbuildmat.2020.120677 – start-page: 2007 year: 2007 ident: e_1_3_2_173_1 article-title: Particle swarm optimization technique for searching for non-circle critical slip surface in soil slopes publication-title: Sichuan Build Sci – ident: e_1_3_2_31_1 doi: 10.1016/j.compgeo.2006.10.012 – ident: e_1_3_2_168_1 doi: 10.1007/s12517-020-06050-x – volume: 5 start-page: 127 issue: 1 year: 2017 ident: e_1_3_2_93_1 article-title: Prediction of maximum surface settlement caused by earth pressure balance shield tunnelling using random forest publication-title: Journal of Artificial Intelligence and Data Mining – volume-title: Proceedings of the International MultiConference of Engineers and Computer Scientists Vol I. year: 2013 ident: e_1_3_2_106_1 – ident: e_1_3_2_158_1 doi: 10.1007/s40515-020-00113-y – start-page: 82 volume-title: 2ndInternational Conference on Sustainable Infrastructural Development (ICSID), Theme: Sustainable Infrastructural Development (Virtual), Track 5: Geotechnics and Transportation Infrastructure year: 2020 ident: e_1_3_2_178_1 – ident: e_1_3_2_20_1 doi: 10.1007/978-3-319-96433-1_6 – ident: e_1_3_2_17_1 doi: 10.1201/9781315169064-30 – ident: e_1_3_2_135_1 doi: 10.1007/978-3-662-46309-3_1 – ident: e_1_3_2_156_1 doi: 10.1061/(ASCE)0887-3801(2004)18:2(105 – ident: e_1_3_2_88_1 doi: 10.1007/s12665-009-0009-5 – volume: 28 start-page: 15 year: 1988 ident: e_1_3_2_163_1 article-title: Structure identification of fuzzy model publication-title: Proceedings of IEEE Transactions on Systems, Man and Cybernetics – ident: e_1_3_2_100_1 doi: 10.1016/j.tust.2013.05.002 – volume: 16 start-page: 751 issue: 6 year: 2015 ident: e_1_3_2_86_1 article-title: CBO and DPSO for optimum design of reinforced concrete cantilever retaining walls publication-title: Asian Journal of Civ Eng – volume: 27 start-page: 45 issue: 1 year: 2020 ident: e_1_3_2_145_1 article-title: Prediction of unconfined compressive strength of treated expansive clay using back-propagation artificial neural networks publication-title: Nigerian Journal of Engineering (NJE) – ident: e_1_3_2_4_1 doi: 10.1007/s11269-015-1016-9 – ident: e_1_3_2_115_1 doi: 10.20944/preprints201903.0049.v1 – ident: e_1_3_2_113_1 doi: 10.1111/j.1467-8667.2004.00354.x – ident: e_1_3_2_16_1 doi: 10.1007/s12665-012-1836-3 – start-page: 289 volume-title: IMCET 2017: new trends in mining—proceedings of 25th international mining congress of Turkey year: 2017 ident: e_1_3_2_60_1 – ident: e_1_3_2_71_1 doi: 10.4314/njt.v35i2.5 – ident: e_1_3_2_131_1 doi: 10.1623/hysj.54.2.247 – ident: e_1_3_2_82_1 doi: 10.1155/2018/8917059 – ident: e_1_3_2_13_1 doi: 10.1007/s00521-020-05244-4 – ident: e_1_3_2_32_1 doi: 10.1061/(ASCE)0887-3801(2008)22:4(272 – ident: e_1_3_2_155_1 doi: 10.1016/j.compgeo.2003.09.004 – ident: e_1_3_2_84_1 doi: 10.1007/s00500-019-04316-5 – ident: e_1_3_2_146_1 doi: 10.1061/(ASCE)0733-9410(1985)111:12(1425 – ident: e_1_3_2_26_1 doi: 10.1177/0734242X20952839 – volume: 12 start-page: 474 issue: 40 year: 2010 ident: e_1_3_2_117_1 article-title: ANFIS approach to the scour depth prediction at a bridge Abutment publication-title: Journal of Hydro informatics – ident: e_1_3_2_126_1 doi: 10.1007/s10064-008-0168-8 – ident: e_1_3_2_89_1 doi: 10.1007/s12665-009-0009-5 – ident: e_1_3_2_54_1 doi: 10.1061/(ASCE)0733-9410(1996)122:1(70 – ident: e_1_3_2_112_1 doi: 10.1109/CIMSA.2011.6059929 – start-page: 303 volume-title: Artificial Neural Networks - Application year: 2011 ident: e_1_3_2_128_1 – volume: 31 start-page: 105 issue: 1 year: 2015 ident: e_1_3_2_39_1 article-title: Optimized artificial neural network for amazing soil-waste rubber shred mixture (in Persian) publication-title: Sharif Journal of Civil Engineering – ident: e_1_3_2_43_1 doi: 10.3390/sym12081295 – volume: 96 start-page: 7973 year: 2018 ident: e_1_3_2_6_1 article-title: Modeling of Concrete Strength Prediction using Fuzzy Type-2 Techniques publication-title: Journal of Theoretical and Applied Information. Technology – ident: e_1_3_2_136_1 doi: 10.1016/j.ecolind.2017.10.042 – volume: 8 start-page: 221 issue: 2 year: 2003 ident: e_1_3_2_116_1 article-title: Neuromodex: Neural network system for modular construction decision publication-title: Journal of Computing in Civil Engineering, ASCE – ident: e_1_3_2_85_1 doi: 10.1007/s00366-020-00999-9 – volume: 2017 start-page: 1 year: 2017 ident: e_1_3_2_162_1 article-title: Application of Variance Analyses Comparison in Seismic Damage Assessment of Masonry Buildings Using Three Simplified Indexes publication-title: Math. Probl. Eng doi: 10.1155/2017/3741941 – ident: e_1_3_2_104_1 doi: 10.1016/S1364-8152(99)00007-9 – volume-title: Building code requirements for structural concrete and commentary (ACI 318-05) year: 2005 ident: e_1_3_2_10_1 – ident: e_1_3_2_72_1 doi: 10.1016/j.conbuildmat.2018.01.191 – ident: e_1_3_2_92_1 doi: 10.1007/s10845-016-1229-7 – start-page: 210 volume-title: “Application of Artificial Neural Network to Forecast Actual Cost of a Project to Improve Earned Value Management year: 2008 ident: e_1_3_2_147_1 – ident: e_1_3_2_2_1 doi: 10.1111/0885-9507.00219 – ident: e_1_3_2_130_1 doi: 10.1109/TGRS.2010.2050328 – ident: e_1_3_2_53_1 doi: 10.1061/(ASCE)0733-9410(1994)120:9(1467 – ident: e_1_3_2_110_1 doi: 10.1007/s11069-019-03688-z – start-page: 318 volume-title: Learning internal representation by error propagation, in Parallel distributed processing: explorations in the microstructure of congestion year: 1986 ident: e_1_3_2_137_1 – ident: e_1_3_2_99_1 doi: 10.1016/j.matdes.2016.10.046 – ident: e_1_3_2_14_1 doi: 10.1007/s00521-016-2618-8 – ident: e_1_3_2_37_1 doi: 10.1007/s12649-012-9161-3 – volume: 26 start-page: 1393 issue: 9 year: 2007 ident: e_1_3_2_98_1 article-title: Modified particle swarm optimization algorithmand its application to the search for the critical slip surface of soil slopes publication-title: J Disaster Prev Mitig Eng – ident: e_1_3_2_174_1 doi: 10.1016/j.autcon.2009.12.007 – ident: e_1_3_2_33_1 doi: 10.1061/(ASCE)0733-9364(2005)131:7(765 – ident: e_1_3_2_80_1 doi: 10.1007/s00254-008-1645-x – ident: e_1_3_2_75_1 doi: 10.1109/21.256541 – ident: e_1_3_2_79_1 doi: 10.1016/j.istruc.2019.09.013 – volume-title: Statistical Analysis Handbook year: 2018 ident: e_1_3_2_159_1 – ident: e_1_3_2_175_1 doi: 10.1016/j.compstruct.2016.11.068 – ident: e_1_3_2_23_1 doi: 10.1016/j.tust.2017.03.011 – ident: e_1_3_2_169_1 doi: 10.7764/RDLC.17.3.364 – volume: 5 issue: 1 year: 2013 ident: e_1_3_2_21_1 article-title: Principal component analysis and Neural Networks for predicting the pile capacity using SPT publication-title: International Journal of Engineering and Technology – ident: e_1_3_2_101_1 doi: 10.1016/j.ijrmms.2012.06.005 – ident: e_1_3_2_140_1 doi: 10.1007/s12665-019-8658-5 – ident: e_1_3_2_179_1 doi: 10.1016/j.asoc.2008.09.006 – ident: e_1_3_2_124_1 doi: 10.2113/EEG-2023 – ident: e_1_3_2_90_1 doi: 10.1007/s11709-016-0363-9 – ident: e_1_3_2_114_1 doi: 10.18517/ijaseit.2.2.174 – ident: e_1_3_2_129_1 doi: 10.1016/j.compgeo.2009.04.003 – start-page: 7571 volume-title: Artificial neural network approach to predict blast-induced ground vibration, airblast and rock fragmentation year: 2016 ident: e_1_3_2_166_1 – ident: e_1_3_2_41_1 doi: 10.48550/arXiv.1106.1570 – ident: e_1_3_2_177_1 doi: 10.1016/j.wasman.2016.04.033 – start-page: 1843 volume-title: The 12th International Conference of International Association for Computer Methods and Advances in Geomechanics (IACMAG) year: 2008 ident: e_1_3_2_94_1 – ident: e_1_3_2_143_1 doi: 10.22115/SCCE.2018.128634.1059 – ident: e_1_3_2_52_1 doi: 10.1038/s41598-020-77567-0 – ident: e_1_3_2_120_1 doi: 10.1016/j.medengphy.2016.07.003 – volume-title: Probability Concepts in Engineering_ Emphasis on Applications to Civil and Environmental Engineering year: 2006 ident: e_1_3_2_12_1 – ident: e_1_3_2_103_1 doi: 10.1016/S1364-8152(98)00020-6 – year: 2009 ident: e_1_3_2_68_1 article-title: Prediction of swelling pressures of expansive soils using artificial neural networks publication-title: Advances in Engineering Software – ident: e_1_3_2_87_1 doi: 10.1016/j.eswa.2009.04.008 – volume-title: Artificial neural networks in Australia, Department of Industry, Technology and Commerce year: 1992 ident: e_1_3_2_67_1 – ident: e_1_3_2_118_1 doi: 10.1016/j.compstruct.2010.04.008 – ident: e_1_3_2_30_1 doi: 10.1016/S0266-352X(03)00012-0 – volume: 26 start-page: 1393 issue: 9 year: 2005 ident: e_1_3_2_97_1 article-title: Improved complex method based on particle swarm optimization algorithm and its application to slope stability analysis publication-title: Rock and Soil Mechanics Wuhan – volume: 4 start-page: 1047 issue: 10 year: 2009 ident: e_1_3_2_121_1 article-title: Estimation of swell index of fine grained soils using regression equations and artificial neural networks publication-title: Scientific Research and Essay – volume-title: Prediction of swellingpressures of expansive soils using soft computing methods year: 2012 ident: e_1_3_2_69_1 – volume: 527 issue: 2019 year: 2019 ident: e_1_3_2_18_1 article-title: An overview of traditional and non-traditional stabilizer for soft soil publication-title: Materials Science and Engineering – ident: e_1_3_2_58_1 doi: 10.1007/s00254-008-1300-6 – ident: e_1_3_2_15_1 doi: 10.1007/s42452-020-2727-y – ident: e_1_3_2_63_1 doi: 10.1007/s00366-016-0447-0 – volume-title: Application of an Artificial Neural Network for Analysis of Subsurface Contamination at the Schuyler Falls year: 2006 ident: e_1_3_2_22_1 – ident: e_1_3_2_102_1 doi: 10.3390/app10020472 – start-page: 199 volume-title: Applying Neural Network Ensemble Concepts for Modelling Project Success “proceeding of 26th International Symposium on Automation and Robotics in Construction (ISARC 2009) year: 2009 ident: e_1_3_2_172_1 – ident: e_1_3_2_11_1 doi: 10.15406/mojce.2018.04.00111 – ident: e_1_3_2_62_1 doi: 10.1080/15325008.2014.964813 – ident: e_1_3_2_81_1 doi: 10.1016/S1364-0321(01)00006-5 – ident: e_1_3_2_91_1 doi: 10.1631/jzus.A1000252 – ident: e_1_3_2_55_1 doi: 10.1016/j.jrmge.2017.03.011 – ident: e_1_3_2_65_1 doi: 10.32604/cmes.2019.07653 – ident: e_1_3_2_78_1 – ident: e_1_3_2_139_1 doi: 10.1016/j.conbuildmat.2013.01.016 – ident: e_1_3_2_154_1 doi: 10.1061/(ASCE)1090-0241(2002)128:9(785 – ident: e_1_3_2_8_1 doi: 10.33922/j.ujet_v6i1_9 – ident: e_1_3_2_25_1 doi: 10.1007/978-3-540-89924-2 – ident: e_1_3_2_164_1 doi: 10.1109/TSMC.1985.6313399 – volume: 31 start-page: 3000 issue: 9 year: 2010 ident: e_1_3_2_171_1 article-title: Application of fuzzy mathematics to slope stability analysis publication-title: Rock and Soil Mechanics – ident: e_1_3_2_44_1 doi: 10.1186/s40703-017-0067-6 – ident: e_1_3_2_5_1 doi: 10.1016/j.sandf.2015.06.006 – volume: 16 start-page: 213 year: 2018 ident: e_1_3_2_119_1 article-title: Compressive strength predictionof environmentally friendly concrete using artificial neural networks publication-title: Journal of BuildingEngineering doi: 10.1016/j.jobe.2018.01.007 – volume-title: Neural Networks and Learning Machines year: 2009 ident: e_1_3_2_64_1 – ident: e_1_3_2_95_1 doi: 10.1016/j.compgeo.2008.07.002 – year: 2014 ident: e_1_3_2_167_1 article-title: ANN prediction of some geotechnical properties of soil from their index parameters publication-title: Arab J Geosci – ident: e_1_3_2_107_1 doi: 10.1016/j.compgeo.2016.01.014 – ident: e_1_3_2_142_1 doi: 10.1016/j.procs.2019.06.039 – ident: e_1_3_2_83_1 doi: 10.1007/s11831-020-09442-0 – ident: e_1_3_2_7_1 doi: 10.1016/j.measurement.2019.02.054 – ident: e_1_3_2_61_1 doi: 10.3390/app9214650 – volume: 7 start-page: 71 year: 2017 ident: e_1_3_2_19_1 article-title: Comprehensive study on the concrete compressive strength estimation using artificial neural network and adaptive neuro-fuzzy inference system publication-title: International Journal of Optimization in Civil Engineering – ident: e_1_3_2_76_1 doi: 10.24200/sci.2016.2097 – ident: e_1_3_2_50_1 doi: 10.1007/s00158-016-1521-3 – ident: e_1_3_2_157_1 doi: 10.3208/sandf1972.28.2_49 – ident: e_1_3_2_127_1 doi: 10.1080/01446193.2019.1590615 – volume: 9 start-page: 231 issue: 2 year: 2010 ident: e_1_3_2_149_1 article-title: Adaptive neuro-fuzzy approach for sand permeability estimation publication-title: Environmental Engineering andManagement Journal – ident: e_1_3_2_29_1 doi: 10.1007/s00521-016-2190-2 – ident: e_1_3_2_141_1 doi: 10.3390/s20051313 – ident: e_1_3_2_144_1 doi: 10.33796/waberconference2019.19 – ident: e_1_3_2_133_1 doi: 10.1016/j.jrmge.2016.11.011 |
SSID | ssj0001345090 |
Score | 2.4716582 |
SecondaryResourceType | review_article |
Snippet | In an age of depleting earth due to global warming impacting badly on the ozone layer of the earth system, the need to employ technologies to substitute those... AbstractIn an age of depleting earth due to global warming impacting badly on the ozone layer of the earth system, the need to employ technologies to... |
SourceID | doaj crossref informaworld |
SourceType | Open Website Enrichment Source Index Database Publisher |
SubjectTerms | artificial intelligence Computational intelligence eco-friendly geomaterials optimization geotechnics and earthworks machine learning precision optimization soft computing |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8sCa1rXjJB4LogIkEBJU6mb5cUZIkCII_59zkpbAQBfWyI6cu4vv8-O-j5AzdCoDJW1ivYkSZtkoUYXzCVeZxxVRCMzEDf3bu-xqmt7M5Kwj9RXvhDX0wI3hhh4Ko3JrcbINKfNggscJNjgGkSsrrUv3MOd1FlP17opIMROyRclOwYZciMhlFm8lcD7ARBeJzH4ko5qz_xdjaSfXTLbIZgsS6bgZ3DZZg3KHbHSoA3fJ_UMtYAOejq_pHP_717agki5ZWT-oKT3tnlDT55I-wbxpgc6h8P3KPTKdXD5eXCWtOkLiEAJVifMBrEEEg58KOcsAgZkL3KNNckR5PC-sCCF3kmfBGAdOWZ9K4awMWWo4iH3SK-clHBDKIFPGCiW9DAiPjMFFEuNBSWGE5ZD3Sbowk3YtdXhUsHjRo5ZhdGFdHa2rW-v2yWDZ7a3hzljV4Tz6YNk4Ul_XDzAgdBsQelVA9InqelBX9c5HaGRKtPhzAIf_MYAjsh416Rs2yGPSq94_4QSRS2VP6yD9AqOP55M priority: 102 providerName: Directory of Open Access Journals |
Title | Selected AI optimization techniques and applications in geotechnical engineering |
URI | https://www.tandfonline.com/doi/abs/10.1080/23311916.2022.2153419 https://doaj.org/article/de8a97bb413f40deafd067fc0e559949 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI5gXOCAeIrxUg5cO7Kkj-U4ENNAAiHBJDhVeTgTErRoK_8fp4-tIAEHrlUcNXaTz3adz4ScoVEZyEgH2irfwizuB3JgbMBlbDEico4pn9C_vYvHk_DmKWqqCed1WaWPoV1FFFGe1X5zKz1vKuLOuRCelswXGHDeQ8zynGSrZA2RmPkmBux5vEyziBAhkTV3d36S_oJKJXn_N-rSFuiMtshm7S3SYWXebbIC2Q7ZaHEI7pL7h7KTDVg6vKY5HgBv9c1KuqBnnVNcKm3_qqYvGZ1CXo1AK1FYTrlHJqOrx8txULdJCAz6QkVgrAOt0JXBpULCYkAPzThuZSgTdPd4MtDCucREPHZKGTBS2zASRkcuDhUHsU86WZ7BAaEMYqm0kJGNHPpJSmG0xLiTkVBCc0i6JGzUlJqaQ9y3snhN-zXVaKPd1Gs3rbXbJb2F2HtFovGXwIW3wWKw58AuH-SzaVpvqdTCQMlEa4RhFzILylmEXmcYeBa1ECeRbQumRZkCcVW_klT8-gKH_5A9Iuu-J33FBnlMOsXsA07Qcyn0afltnpZx_yfgq-RR |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELWgHIADYhU7PnBNMXac1MeCQGUVEq1UTpaXcYUELYLy_4yTtAQk4MA18ljxTOz3PLHfEHKIQWWgpE2sN7GEWXacqJbzCVeZxx1RCMzEhP7NbdbppZd92a_dhYnHKuMeOpRCEcVaHSd3TEZPjsQdcSGiLlk8YcB5E0EripLNkjmJ4BsnJ3vofOZZRIqYyCaXd36y_gJLhXr_N-3SGuqcL5Olii7SdhnfFTIDw1WyWBMRXCN390UpG_C0fUFHuAI8V1cr6VSf9Y3iWGn9XzV9HNIBjMoWGCYKn12uk975Wfe0k1R1EhKHZGicOB_AGuQyOFTIWQZI0VzgXqUqR77H85YVIeRO8iwY48Ap61MpnJUhSw0HsUEaw9EQNgllkCljhZJeBiRKxuB2ifGgpDDCcsi3SDpxk3aViHisZfGkjyut0Yl3dfSurry7RZpTs5dSReMvg5MYg2njKIJdPBi9DnQ1p7SHllG5tYjDIWUeTPCIvcExiDJqKXai6hHU4yIHEsqCJVr8-gLb_7A9IPOd7s21vr64vdohC7FAfSkNuUsa49d32EMaM7b7xXf6AfOB5tA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JSwMxFA4uIHoQV9zNwevUmExmmqNbqVspaEFPIctLEbQVrf_fl1lqFdSD1yEvTN6b5H3JvHwfIQcYVAZK2sR6EyXMsqNENZ1PuMo87ohCYCYe6N90snYvvbyXdTXhW1VWGffQoSSKKNbqOLlffKgr4g65EJGWLBYYcN7AnBU5yabJrMTcG9Ub2EP785hFpJgSWX135yfrL1mpIO__Rl06kXRaS2SxQov0uAzvMpmCwQpZmOAQXCXd20LJBjw9vqBDXACeq5uVdEzP-kZxqHTyVzV9HNA-DMsWGCUKn12ukV7r_O60nVQyCYlDLDRKnA9gDUIZHCrkLANEaC5wr1KVI9zjedOKEHIneRaMceCU9akUzsqQpYaDWCczg-EANghlkCljhZJeBsRJxuBuifGgpDDCcsg3SVq7SbuKQzxKWTzpo4pqtPaujt7VlXc3SWNs9lKSaPxlcBJjMG4cObCLB8PXvq6mlPbQNCq3FtNwSJkHEzym3uAYRBa1FDtRkxHUo-IIJJR6JVr8-gJb_7DdJ3Pds5a-vuhcbZP5KE9fEkPukJnR6zvsIogZ2b3iM_0AkVvl-Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selected+AI+optimization+techniques+and+applications+in+geotechnical+engineering&rft.jtitle=Cogent+engineering&rft.au=Onyelowe%2C+Kennedy+C.&rft.au=Mojtahedi%2C+Farid+F.&rft.au=Ebid%2C+Ahmed+M.&rft.au=Rezaei%2C+Amirhossein&rft.date=2023-12-31&rft.issn=2331-1916&rft.eissn=2331-1916&rft.volume=10&rft.issue=1&rft_id=info:doi/10.1080%2F23311916.2022.2153419&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_23311916_2022_2153419 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2331-1916&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2331-1916&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2331-1916&client=summon |