Selected AI optimization techniques and applications in geotechnical engineering

In an age of depleting earth due to global warming impacting badly on the ozone layer of the earth system, the need to employ technologies to substitute those engineering practices which result in emissions contributing to the death of our earth has arisen. One of those technologies is one that can...

Full description

Saved in:
Bibliographic Details
Published inCogent engineering Vol. 10; no. 1
Main Authors Onyelowe, Kennedy C., Mojtahedi, Farid F., Ebid, Ahmed M., Rezaei, Amirhossein, Osinubi, Kolawole J., Eberemu, Adrian O., Salahudeen, Bunyamin, Gadzama, Emmanuel W., Rezazadeh, Danial, Jahangir, Hashem, Yohanna, Paul, Onyia, Michael E., Jalal, Fazal E., Iqbal, Mudassir, Ikpa, Chidozie, Obianyo, Ifeyinwa I., Rehman, Zia Ur
Format Journal Article
LanguageEnglish
Published Cogent 31.12.2023
Taylor & Francis Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In an age of depleting earth due to global warming impacting badly on the ozone layer of the earth system, the need to employ technologies to substitute those engineering practices which result in emissions contributing to the death of our earth has arisen. One of those technologies is one that can sufficiently replace overdependence on laboratory activities where oxides of carbon and other toxins are released. Also, it is one technology that brings precision to other engineering activities especially earthwork design and construction thereby reducing to lower ebb the release of carbon oxides due to inexact utilization of materials during geotechnical practices. In this review, the use of artificial intelligence techniques in geotechnics has been explored as a precise technique through which geotechnical engineering works don't impact on our planet due to precision. The intelligent learning algorithms of ANN, Fuzzy Logic, GEP, ANFIS, ANOVA and other nature-inspired algorithms have been reviewed as they are applied in the prediction of geotechnical and geoenvironmental problems and system. It is a complex exercise to conduct experimental protocols during the design and construction of earthwork infrastructures. Most times, such experimental exercises don't meet the required condition for sustainable design and construction. At other times, certain errors as a result of experimental set up or human misjudgment may mar the accuracy of measurements and release unexpected emissions. The employment of the evolutionary learning methods has solved most of the lapses encountered in repeated laboratory measurements. So, in this review work, the relevant computational intelligent techniques employed at different times, under different laboratory protocols and utilizing different materials, have been presented as a comprehensive guide to future researchers in this innovative and evolving field of artificial intelligence. With this extensive review, a researcher would not have to look far to get a technical and state of the art guide in the utilization of various intelligent techniques that would enable engineering models in a more efficient, precise and more sustainable approach to forestall multiple practices that release carbon emissions into the environment.
AbstractList In an age of depleting earth due to global warming impacting badly on the ozone layer of the earth system, the need to employ technologies to substitute those engineering practices which result in emissions contributing to the death of our earth has arisen. One of those technologies is one that can sufficiently replace overdependence on laboratory activities where oxides of carbon and other toxins are released. Also, it is one technology that brings precision to other engineering activities especially earthwork design and construction thereby reducing to lower ebb the release of carbon oxides due to inexact utilization of materials during geotechnical practices. In this review, the use of artificial intelligence techniques in geotechnics has been explored as a precise technique through which geotechnical engineering works don't impact on our planet due to precision. The intelligent learning algorithms of ANN, Fuzzy Logic, GEP, ANFIS, ANOVA and other nature-inspired algorithms have been reviewed as they are applied in the prediction of geotechnical and geoenvironmental problems and system. It is a complex exercise to conduct experimental protocols during the design and construction of earthwork infrastructures. Most times, such experimental exercises don't meet the required condition for sustainable design and construction. At other times, certain errors as a result of experimental set up or human misjudgment may mar the accuracy of measurements and release unexpected emissions. The employment of the evolutionary learning methods has solved most of the lapses encountered in repeated laboratory measurements. So, in this review work, the relevant computational intelligent techniques employed at different times, under different laboratory protocols and utilizing different materials, have been presented as a comprehensive guide to future researchers in this innovative and evolving field of artificial intelligence. With this extensive review, a researcher would not have to look far to get a technical and state of the art guide in the utilization of various intelligent techniques that would enable engineering models in a more efficient, precise and more sustainable approach to forestall multiple practices that release carbon emissions into the environment.
AbstractIn an age of depleting earth due to global warming impacting badly on the ozone layer of the earth system, the need to employ technologies to substitute those engineering practices which result in emissions contributing to the death of our earth has arisen. One of those technologies is one that can sufficiently replace overdependence on laboratory activities where oxides of carbon and other toxins are released. Also, it is one technology that brings precision to other engineering activities especially earthwork design and construction thereby reducing to lower ebb the release of carbon oxides due to inexact utilization of materials during geotechnical practices. In this review, the use of artificial intelligence techniques in geotechnics has been explored as a precise technique through which geotechnical engineering works don’t impact on our planet due to precision. The intelligent learning algorithms of ANN, Fuzzy Logic, GEP, ANFIS, ANOVA and other nature-inspired algorithms have been reviewed as they are applied in the prediction of geotechnical and geoenvironmental problems and system. It is a complex exercise to conduct experimental protocols during the design and construction of earthwork infrastructures. Most times, such experimental exercises don’t meet the required condition for sustainable design and construction. At other times, certain errors as a result of experimental set up or human misjudgment may mar the accuracy of measurements and release unexpected emissions. The employment of the evolutionary learning methods has solved most of the lapses encountered in repeated laboratory measurements. So, in this review work, the relevant computational intelligent techniques employed at different times, under different laboratory protocols and utilizing different materials, have been presented as a comprehensive guide to future researchers in this innovative and evolving field of artificial intelligence. With this extensive review, a researcher would not have to look far to get a technical and state of the art guide in the utilization of various intelligent techniques that would enable engineering models in a more efficient, precise and more sustainable approach to forestall multiple practices that release carbon emissions into the environment.
Author Onyelowe, Kennedy C.
Rezazadeh, Danial
Rehman, Zia Ur
Eberemu, Adrian O.
Ikpa, Chidozie
Mojtahedi, Farid F.
Jalal, Fazal E.
Ebid, Ahmed M.
Obianyo, Ifeyinwa I.
Osinubi, Kolawole J.
Salahudeen, Bunyamin
Iqbal, Mudassir
Rezaei, Amirhossein
Yohanna, Paul
Onyia, Michael E.
Gadzama, Emmanuel W.
Jahangir, Hashem
Author_xml – sequence: 1
  givenname: Kennedy C.
  orcidid: 0000-0001-5218-820X
  surname: Onyelowe
  fullname: Onyelowe, Kennedy C.
  email: kennedychibuzor@kiu.ac.ug, konyelowe@mouau.edu.ng, konyelowe@gmail.com
  organization: University of Peloponnese
– sequence: 2
  givenname: Farid F.
  surname: Mojtahedi
  fullname: Mojtahedi, Farid F.
  organization: University of Melbourne
– sequence: 3
  givenname: Ahmed M.
  surname: Ebid
  fullname: Ebid, Ahmed M.
  organization: Future University in Egypt
– sequence: 4
  givenname: Amirhossein
  surname: Rezaei
  fullname: Rezaei, Amirhossein
  organization: Tarbiat Modares University
– sequence: 5
  givenname: Kolawole J.
  surname: Osinubi
  fullname: Osinubi, Kolawole J.
  organization: Ahmadu Bello University
– sequence: 6
  givenname: Adrian O.
  surname: Eberemu
  fullname: Eberemu, Adrian O.
  organization: Ahmadu Bello University
– sequence: 7
  givenname: Bunyamin
  surname: Salahudeen
  fullname: Salahudeen, Bunyamin
  organization: University of Jos
– sequence: 8
  givenname: Emmanuel W.
  surname: Gadzama
  fullname: Gadzama, Emmanuel W.
  organization: Modibbo Adama University of Technololgy
– sequence: 9
  givenname: Danial
  surname: Rezazadeh
  fullname: Rezazadeh, Danial
  organization: Semnan University
– sequence: 10
  givenname: Hashem
  surname: Jahangir
  fullname: Jahangir, Hashem
  organization: University of Birjand
– sequence: 11
  givenname: Paul
  surname: Yohanna
  fullname: Yohanna, Paul
  organization: University of Jos
– sequence: 12
  givenname: Michael E.
  surname: Onyia
  fullname: Onyia, Michael E.
  organization: University of Nigeria
– sequence: 13
  givenname: Fazal E.
  surname: Jalal
  fullname: Jalal, Fazal E.
  organization: Shanghai Jiao Tong University
– sequence: 14
  givenname: Mudassir
  surname: Iqbal
  fullname: Iqbal, Mudassir
  organization: Shanghai Jiao Tong University
– sequence: 15
  givenname: Chidozie
  surname: Ikpa
  fullname: Ikpa, Chidozie
  organization: Alex Ekwueme Federal University
– sequence: 16
  givenname: Ifeyinwa I.
  surname: Obianyo
  fullname: Obianyo, Ifeyinwa I.
  organization: African University of Science and Technology
– sequence: 17
  givenname: Zia Ur
  surname: Rehman
  fullname: Rehman, Zia Ur
  organization: Tsinghua University
BookMark eNqFkNtKAzEQhoNUsNY-grAv0JrDZreLN5bioVBQUK_DbDKpKdukZiNSn96eFPFCrxJm5v9m-E5JxwePhJwzOmR0RC-4EIxVrBhyyvmQMylyVh2R7rY-2DY6P_4npN-2C0opE7mkFe2Sh0dsUCc02XiahVVyS_cByQWfJdQv3r2-YZuBNxmsVo3Tu1abOZ_NMewnNDQZ-rnziNH5-Rk5ttC02D-8PfJ8c_00uRvM7m-nk_FsoHMu0kAbizVwSTeHYEkLlEWhLTdVXpVMUl6OamFtqSUvLIBGXdUml0LX0hY5cBQ9Mt1zTYCFWkW3hLhWAZzaFUKcK4jJ6QaVwRFUZV3nTNicGgRraFFaTVHKarNww5J7lo6hbSPabx6jamtZfVlWW8vqYHmTu_yV0y7tFKUIrvk3fbVPO29DXMJ7iI1RCdZNiDaC165V4m_EJz-umN4
CitedBy_id crossref_primary_10_1007_s42107_023_00800_4
crossref_primary_10_3389_fbuil_2024_1395448
crossref_primary_10_1080_17486025_2024_2321919
crossref_primary_10_1007_s12145_024_01398_0
crossref_primary_10_1016_j_kscej_2024_100052
crossref_primary_10_1016_j_prime_2024_100647
crossref_primary_10_3390_app13106074
crossref_primary_10_3390_a16060303
crossref_primary_10_3389_fevo_2023_1275703
crossref_primary_10_1016_j_rineng_2023_101637
crossref_primary_10_1007_s41024_023_00378_z
crossref_primary_10_1016_j_jrmge_2023_11_042
crossref_primary_10_2139_ssrn_4681735
crossref_primary_10_1007_s40891_023_00508_0
crossref_primary_10_1007_s42107_025_01287_x
crossref_primary_10_1016_j_geoai_2025_100014
crossref_primary_10_1038_s41598_024_79983_y
crossref_primary_10_1007_s13369_024_08752_w
crossref_primary_10_1016_j_trgeo_2024_101402
crossref_primary_10_1016_j_iswa_2024_200329
crossref_primary_10_1007_s41939_024_00397_4
crossref_primary_10_1007_s41939_023_00304_3
crossref_primary_10_3390_info15050280
crossref_primary_10_1007_s41939_023_00280_8
crossref_primary_10_17798_bitlisfen_1506446
crossref_primary_10_1016_j_egyr_2024_05_045
crossref_primary_10_3390_app132111966
crossref_primary_10_3390_en18051192
crossref_primary_10_1016_j_compag_2024_109221
crossref_primary_10_1007_s12145_024_01435_y
crossref_primary_10_1038_s41598_024_52825_7
crossref_primary_10_1038_s41598_025_90468_4
crossref_primary_10_1007_s12145_024_01284_9
crossref_primary_10_26848_rbgf_v17_2_p1071_1085
crossref_primary_10_3389_fbuil_2024_1373092
Cites_doi 10.1109/ICNN.1995.488108
10.1016/j.undsp.2019.12.001
10.1080/19475705.2020.1753824
10.1016/j.compgeo.2011.09.008
10.1016/j.enggeo.2008.03.001
10.1007/s00158-017-1653-0
10.28991/cej-2017-00000099
10.1016/j.procs.2019.06.039
10.7551/mitpress/3927.001.0001
10.5897/SRE12.297
10.1007/s00521-017-2939-2
10.1016/j.dss.2007.03.013
10.1016/S0092-8240(05)80006-0
10.1061/(ASCE)1090-0241(2005)131:1(84
10.1109/ICIECS.2009.5366444
10.1016/B978-0-12-398296-4.00008-8
10.1016/j.compgeo.2004.05.001
10.1016/S0266-352X(95)00013-Z
10.1061/(ASCE)0733-9364(1997)123:3(214
10.1007/s10706-020-01536-7
10.1139/t06-029
10.1002/nag.463
10.1088/1755-1315/189/2/022054
10.1002/nag.2714
10.1016/j.measurement.2017.10.032
10.5120/1123-1472
10.1111/j.1467-8667.1989.tb00026.x
10.1007/3-540-32498-4_2
10.1016/j.envsoft.2010.02.003
10.1016/j.conbuildmat.2020.120677
10.1016/j.compgeo.2006.10.012
10.1007/s12517-020-06050-x
10.1007/s40515-020-00113-y
10.1007/978-3-319-96433-1_6
10.1201/9781315169064-30
10.1007/978-3-662-46309-3_1
10.1061/(ASCE)0887-3801(2004)18:2(105
10.1007/s12665-009-0009-5
10.1016/j.tust.2013.05.002
10.1007/s11269-015-1016-9
10.20944/preprints201903.0049.v1
10.1111/j.1467-8667.2004.00354.x
10.1007/s12665-012-1836-3
10.4314/njt.v35i2.5
10.1623/hysj.54.2.247
10.1155/2018/8917059
10.1007/s00521-020-05244-4
10.1061/(ASCE)0887-3801(2008)22:4(272
10.1016/j.compgeo.2003.09.004
10.1007/s00500-019-04316-5
10.1061/(ASCE)0733-9410(1985)111:12(1425
10.1177/0734242X20952839
10.1007/s10064-008-0168-8
10.1061/(ASCE)0733-9410(1996)122:1(70
10.1109/CIMSA.2011.6059929
10.3390/sym12081295
10.1016/j.ecolind.2017.10.042
10.1007/s00366-020-00999-9
10.1155/2017/3741941
10.1016/S1364-8152(99)00007-9
10.1016/j.conbuildmat.2018.01.191
10.1007/s10845-016-1229-7
10.1111/0885-9507.00219
10.1109/TGRS.2010.2050328
10.1061/(ASCE)0733-9410(1994)120:9(1467
10.1007/s11069-019-03688-z
10.1016/j.matdes.2016.10.046
10.1007/s00521-016-2618-8
10.1007/s12649-012-9161-3
10.1016/j.autcon.2009.12.007
10.1061/(ASCE)0733-9364(2005)131:7(765
10.1007/s00254-008-1645-x
10.1109/21.256541
10.1016/j.istruc.2019.09.013
10.1016/j.compstruct.2016.11.068
10.1016/j.tust.2017.03.011
10.7764/RDLC.17.3.364
10.1016/j.ijrmms.2012.06.005
10.1007/s12665-019-8658-5
10.1016/j.asoc.2008.09.006
10.2113/EEG-2023
10.1007/s11709-016-0363-9
10.18517/ijaseit.2.2.174
10.1016/j.compgeo.2009.04.003
10.48550/arXiv.1106.1570
10.1016/j.wasman.2016.04.033
10.22115/SCCE.2018.128634.1059
10.1038/s41598-020-77567-0
10.1016/j.medengphy.2016.07.003
10.1016/S1364-8152(98)00020-6
10.1016/j.eswa.2009.04.008
10.1016/j.compstruct.2010.04.008
10.1016/S0266-352X(03)00012-0
10.1007/s00254-008-1300-6
10.1007/s42452-020-2727-y
10.1007/s00366-016-0447-0
10.3390/app10020472
10.15406/mojce.2018.04.00111
10.1080/15325008.2014.964813
10.1016/S1364-0321(01)00006-5
10.1631/jzus.A1000252
10.1016/j.jrmge.2017.03.011
10.32604/cmes.2019.07653
10.1016/j.conbuildmat.2013.01.016
10.1061/(ASCE)1090-0241(2002)128:9(785
10.33922/j.ujet_v6i1_9
10.1007/978-3-540-89924-2
10.1109/TSMC.1985.6313399
10.1186/s40703-017-0067-6
10.1016/j.sandf.2015.06.006
10.1016/j.jobe.2018.01.007
10.1016/j.compgeo.2008.07.002
10.1016/j.compgeo.2016.01.014
10.1007/s11831-020-09442-0
10.1016/j.measurement.2019.02.054
10.3390/app9214650
10.24200/sci.2016.2097
10.1007/s00158-016-1521-3
10.3208/sandf1972.28.2_49
10.1080/01446193.2019.1590615
10.1007/s00521-016-2190-2
10.3390/s20051313
10.33796/waberconference2019.19
10.1016/j.jrmge.2016.11.011
ContentType Journal Article
Copyright 2023 The Author(s). This open access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license. 2023
Copyright_xml – notice: 2023 The Author(s). This open access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license. 2023
DBID 0YH
AAYXX
CITATION
DOA
DOI 10.1080/23311916.2022.2153419
DatabaseName Taylor & Francis Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 0YH
  name: Taylor & Francis Open Access
  url: https://www.tandfonline.com
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2331-1916
ExternalDocumentID oai_doaj_org_article_de8a97bb413f40deafd067fc0e559949
10_1080_23311916_2022_2153419
2153419
Genre Review Article
GroupedDBID 0YH
5VS
8FE
8FG
AAFWJ
ABDBF
ABJCF
ACUHS
ADBBV
ADCVX
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
CCPQU
EAP
EBS
ESX
GROUPED_DOAJ
H13
HCIFZ
HZ~
KQ8
L6V
M4Z
M7S
M~E
O9-
OK1
PIMPY
PROAC
PTHSS
TDBHL
TFMNY
TFW
AAYXX
ADMLS
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
ID FETCH-LOGICAL-c423t-cdfeba250345e706e566cf2d9497150278b3ff7c526faacec9bd453cb5f64a2e3
IEDL.DBID 0YH
ISSN 2331-1916
IngestDate Wed Aug 27 01:32:04 EDT 2025
Tue Jul 01 04:00:03 EDT 2025
Thu Apr 24 23:03:21 EDT 2025
Wed Dec 25 09:06:42 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License open-access: http://creativecommons.org/licenses/by/4.0/: You are free to: Share - copy and redistribute the material in any medium or format. Adapt - remix, transform, and build upon the material for any purpose, even commercially. The licensor cannot revoke these freedoms as long as you follow the license terms. Under the following terms: Attribution - You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. No additional restrictions You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c423t-cdfeba250345e706e566cf2d9497150278b3ff7c526faacec9bd453cb5f64a2e3
ORCID 0000-0001-5218-820X
OpenAccessLink https://www.tandfonline.com/doi/abs/10.1080/23311916.2022.2153419
ParticipantIDs crossref_primary_10_1080_23311916_2022_2153419
crossref_citationtrail_10_1080_23311916_2022_2153419
doaj_primary_oai_doaj_org_article_de8a97bb413f40deafd067fc0e559949
informaworld_taylorfrancis_310_1080_23311916_2022_2153419
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-31
PublicationDateYYYYMMDD 2023-12-31
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-31
  day: 31
PublicationDecade 2020
PublicationTitle Cogent engineering
PublicationYear 2023
Publisher Cogent
Taylor & Francis Group
Publisher_xml – name: Cogent
– name: Taylor & Francis Group
References e_1_3_2_28_1
Rumelhart D. E. (e_1_3_2_137_1) 1986
e_1_3_2_20_1
e_1_3_2_66_1
e_1_3_2_130_1
e_1_3_2_43_1
e_1_3_2_85_1
e_1_3_2_24_1
e_1_3_2_47_1
e_1_3_2_89_1
e_1_3_2_100_1
e_1_3_2_146_1
Chandwani V. (e_1_3_2_27_1) 2014; 4
e_1_3_2_127_1
e_1_3_2_169_1
Kolay P. K. (e_1_3_2_94_1) 2008
e_1_3_2_62_1
e_1_3_2_104_1
e_1_3_2_142_1
e_1_3_2_81_1
e_1_3_2_165_1
Park H. I (e_1_3_2_128_1) 2011
Kaveh A. (e_1_3_2_86_1) 2015; 16
e_1_3_2_16_1
e_1_3_2_7_1
e_1_3_2_31_1
e_1_3_2_54_1
e_1_3_2_77_1
Benali A. (e_1_3_2_21_1) 2013; 5
e_1_3_2_35_1
e_1_3_2_58_1
e_1_3_2_96_1
e_1_3_2_3_1
Wang Y.-R. (e_1_3_2_172_1) 2009
e_1_3_2_92_1
e_1_3_2_135_1
Behfarnia K. (e_1_3_2_19_1) 2017; 7
e_1_3_2_158_1
e_1_3_2_50_1
e_1_3_2_73_1
e_1_3_2_131_1
e_1_3_2_177_1
e_1_3_2_112_1
e_1_3_2_154_1
e_1_3_2_139_1
Sugeno M. (e_1_3_2_163_1) 1988; 28
e_1_3_2_29_1
Tizpa P. (e_1_3_2_167_1) 2014
e_1_3_2_44_1
e_1_3_2_63_1
Kohestani V. R. (e_1_3_2_93_1) 2017; 5
Seyed H. I. (e_1_3_2_147_1) 2008
e_1_3_2_25_1
Ang A. H.-S. (e_1_3_2_12_1) 2006
e_1_3_2_126_1
e_1_3_2_168_1
Li L. (e_1_3_2_98_1) 2007; 26
Haykin S. (e_1_3_2_64_1) 2009
Sadi A. (e_1_3_2_138_1) 2001; 19
e_1_3_2_82_1
e_1_3_2_103_1
e_1_3_2_122_1
e_1_3_2_164_1
e_1_3_2_107_1
e_1_3_2_17_1
Haghshenas S. S. (e_1_3_2_60_1) 2017
Wang Y. X (e_1_3_2_171_1) 2010; 31
e_1_3_2_2_1
e_1_3_2_55_1
e_1_3_2_141_1
e_1_3_2_32_1
Salahudeen A. B. (e_1_3_2_145_1) 2020; 27
e_1_3_2_13_1
Eidgahee D. R. (e_1_3_2_39_1) 2015; 31
Fakharian P. (e_1_3_2_42_1) 2018
e_1_3_2_59_1
e_1_3_2_78_1
e_1_3_2_115_1
e_1_3_2_157_1
American Concrete Institute (ACI) (e_1_3_2_10_1) 2005
Naderpour H. (e_1_3_2_119_1) 2018; 16
e_1_3_2_51_1
e_1_3_2_111_1
e_1_3_2_134_1
e_1_3_2_176_1
Djamalddine B. (e_1_3_2_36_1) 2011; 8
e_1_3_2_70_1
Yohanna P. (e_1_3_2_178_1) 2020
Li L. (e_1_3_2_97_1) 2005; 26
Azura M. Z. (e_1_3_2_18_1) 2019; 527
e_1_3_2_49_1
Muzzammil M (e_1_3_2_117_1) 2010; 12
Nihat S. I (e_1_3_2_121_1) 2009; 4
e_1_3_2_151_1
e_1_3_2_174_1
e_1_3_2_41_1
e_1_3_2_87_1
Smith M. J. D (e_1_3_2_159_1) 2018
Subasi S (e_1_3_2_161_1) 2009; 4
e_1_3_2_26_1
Feng J. (e_1_3_2_45_1) 2014
e_1_3_2_125_1
El-Khoja A. M. N. (e_1_3_2_40_1) 2018; 12
e_1_3_2_148_1
e_1_3_2_83_1
Murat M. B (e_1_3_2_116_1) 2003; 8
e_1_3_2_102_1
e_1_3_2_144_1
e_1_3_2_129_1
Ferreira C (e_1_3_2_46_1) 2001; 13
Ahmad S. S. S. (e_1_3_2_6_1) 2018; 96
Sodikov J (e_1_3_2_160_1) 2005; 6
e_1_3_2_9_1
e_1_3_2_33_1
e_1_3_2_52_1
e_1_3_2_75_1
Olowosulu A. T. (e_1_3_2_123_1) 2020
e_1_3_2_140_1
e_1_3_2_5_1
Margaret W. E. (e_1_3_2_108_1) 2002
e_1_3_2_14_1
e_1_3_2_37_1
e_1_3_2_56_1
e_1_3_2_79_1
e_1_3_2_114_1
e_1_3_2_179_1
e_1_3_2_110_1
e_1_3_2_156_1
e_1_3_2_71_1
e_1_3_2_90_1
e_1_3_2_133_1
e_1_3_2_175_1
Van Schelt W. (e_1_3_2_170_1) 1994
Ikizler S. B. (e_1_3_2_69_1) 2012
e_1_3_2_118_1
Wang C. (e_1_3_2_173_1) 2007
Tiile R. N (e_1_3_2_166_1) 2016
e_1_3_2_65_1
e_1_3_2_88_1
e_1_3_2_150_1
Besawa L. E. (e_1_3_2_22_1) 2006
e_1_3_2_23_1
Hubick K. T (e_1_3_2_67_1) 1992
e_1_3_2_80_1
e_1_3_2_101_1
e_1_3_2_124_1
e_1_3_2_61_1
e_1_3_2_84_1
e_1_3_2_105_1
e_1_3_2_120_1
e_1_3_2_143_1
Ikizler S. B. (e_1_3_2_68_1) 2009
Maizir H. (e_1_3_2_106_1) 2013
e_1_3_2_109_1
e_1_3_2_38_1
e_1_3_2_8_1
Sezer A. (e_1_3_2_149_1) 2010; 9
e_1_3_2_30_1
e_1_3_2_76_1
e_1_3_2_11_1
e_1_3_2_53_1
e_1_3_2_34_1
Su Q. (e_1_3_2_162_1) 2017; 2017
e_1_3_2_4_1
e_1_3_2_15_1
e_1_3_2_57_1
e_1_3_2_99_1
e_1_3_2_113_1
e_1_3_2_136_1
e_1_3_2_95_1
e_1_3_2_132_1
e_1_3_2_155_1
e_1_3_2_72_1
e_1_3_2_91_1
Shahin M. A. (e_1_3_2_153_1) 2001; 36
References_xml – volume: 12
  start-page: 1068
  issue: 11
  year: 2018
  ident: e_1_3_2_40_1
  article-title: Prediction of rubberised concrete strength by using artificial neural networks
  publication-title: International Journal of Structural and Construction Engineering
– ident: e_1_3_2_125_1
  doi: 10.1109/ICNN.1995.488108
– ident: e_1_3_2_70_1
  doi: 10.1016/j.undsp.2019.12.001
– ident: e_1_3_2_148_1
  doi: 10.1080/19475705.2020.1753824
– ident: e_1_3_2_24_1
  doi: 10.1016/j.compgeo.2011.09.008
– ident: e_1_3_2_35_1
  doi: 10.1016/j.enggeo.2008.03.001
– ident: e_1_3_2_51_1
  doi: 10.1007/s00158-017-1653-0
– ident: e_1_3_2_59_1
  doi: 10.28991/cej-2017-00000099
– ident: e_1_3_2_132_1
  doi: 10.1016/j.procs.2019.06.039
– ident: e_1_3_2_111_1
  doi: 10.7551/mitpress/3927.001.0001
– ident: e_1_3_2_77_1
  doi: 10.5897/SRE12.297
– ident: e_1_3_2_73_1
  doi: 10.1007/s00521-017-2939-2
– ident: e_1_3_2_9_1
  doi: 10.1016/j.dss.2007.03.013
– volume: 13
  start-page: 87
  issue: 2
  year: 2001
  ident: e_1_3_2_46_1
  article-title: Gene expression programming: A new adaptive algorithm for solving problems
  publication-title: Complex Systems
– ident: e_1_3_2_109_1
  doi: 10.1016/S0092-8240(05)80006-0
– start-page: 465
  issue: 20
  year: 2002
  ident: e_1_3_2_108_1
  article-title: Data modelling and the application of a neural network approach to the prediction of total construction costs
  publication-title: Construction Management and Economics
– volume: 4
  start-page: 2949
  issue: 4
  year: 2014
  ident: e_1_3_2_27_1
  article-title: Applications of Artificial Neural Networks in Modelling Compressive Strength of Concrete: A State of the Art Review
  publication-title: International Journal of Current Engineering and Technology
– ident: e_1_3_2_56_1
  doi: 10.1061/(ASCE)1090-0241(2005)131:1(84
– volume: 6
  start-page: 1036
  year: 2005
  ident: e_1_3_2_160_1
  article-title: Cost Estimation of Highway Projects In Developing CountriesArtificial Neural Network Approach
  publication-title: Journal ofthe Eastern Asia Society for Transportation Studies
– ident: e_1_3_2_165_1
  doi: 10.1109/ICIECS.2009.5366444
– volume: 4
  start-page: 289
  issue: 4
  year: 2009
  ident: e_1_3_2_161_1
  article-title: Prediction of mechanical properties of cement containing class C fly ash by using artificial neural network and regression technique
  publication-title: Sci. Res. Essays
– ident: e_1_3_2_150_1
  doi: 10.1016/B978-0-12-398296-4.00008-8
– ident: e_1_3_2_57_1
  doi: 10.1016/j.compgeo.2004.05.001
– ident: e_1_3_2_66_1
  doi: 10.1016/S0266-352X(95)00013-Z
– volume: 19
  start-page: 234
  issue: 5
  year: 2001
  ident: e_1_3_2_138_1
  article-title: Themanagement of construction company overhead costs
  publication-title: International Journal of Project Management
– volume: 8
  start-page: 1. 51
  year: 2011
  ident: e_1_3_2_36_1
  article-title: Fuzzy-sets decision-support system for geotechnical site soundings
  publication-title: Acta geotechnica Slovenica
– ident: e_1_3_2_34_1
  doi: 10.1061/(ASCE)0733-9364(1997)123:3(214
– volume-title: chapter in Sustainable Issues in Infrastructure Engineering. First Online version
  year: 2020
  ident: e_1_3_2_123_1
– volume-title: A proposed model for compressive strength prediction of FRP-confined rectangular column in terms of Genetic expression Programming (GEP) (in Persian)
  year: 2018
  ident: e_1_3_2_42_1
– start-page: 386
  volume-title: Proceedings of the Symposium on Time Domain Reflectometry in Environmental, Infrastructure, and Mining Applications
  year: 1994
  ident: e_1_3_2_170_1
– ident: e_1_3_2_38_1
  doi: 10.1007/s10706-020-01536-7
– ident: e_1_3_2_151_1
  doi: 10.1139/t06-029
– ident: e_1_3_2_134_1
  doi: 10.1002/nag.463
– volume: 36
  start-page: 49
  issue: 1
  year: 2001
  ident: e_1_3_2_153_1
  article-title: Artificial neural network applications ingeotechnical engineering
  publication-title: Australian Geomechanics
– ident: e_1_3_2_28_1
  doi: 10.1088/1755-1315/189/2/022054
– ident: e_1_3_2_176_1
  doi: 10.1002/nag.2714
– ident: e_1_3_2_49_1
  doi: 10.1016/j.measurement.2017.10.032
– start-page: 6857
  year: 2014
  ident: e_1_3_2_45_1
  article-title: Prediction of Railway Foundation Settlement Based on the BP Neural Network Model
  publication-title: Elecrtonic Journal of Geotechnical Engineering
– ident: e_1_3_2_96_1
  doi: 10.5120/1123-1472
– ident: e_1_3_2_3_1
  doi: 10.1111/j.1467-8667.1989.tb00026.x
– ident: e_1_3_2_47_1
  doi: 10.1007/3-540-32498-4_2
– ident: e_1_3_2_105_1
  doi: 10.1016/j.envsoft.2010.02.003
– ident: e_1_3_2_122_1
  doi: 10.1016/j.conbuildmat.2020.120677
– start-page: 2007
  year: 2007
  ident: e_1_3_2_173_1
  article-title: Particle swarm optimization technique for searching for non-circle critical slip surface in soil slopes
  publication-title: Sichuan Build Sci
– ident: e_1_3_2_31_1
  doi: 10.1016/j.compgeo.2006.10.012
– ident: e_1_3_2_168_1
  doi: 10.1007/s12517-020-06050-x
– volume: 5
  start-page: 127
  issue: 1
  year: 2017
  ident: e_1_3_2_93_1
  article-title: Prediction of maximum surface settlement caused by earth pressure balance shield tunnelling using random forest
  publication-title: Journal of Artificial Intelligence and Data Mining
– volume-title: Proceedings of the International MultiConference of Engineers and Computer Scientists Vol I.
  year: 2013
  ident: e_1_3_2_106_1
– ident: e_1_3_2_158_1
  doi: 10.1007/s40515-020-00113-y
– start-page: 82
  volume-title: 2ndInternational Conference on Sustainable Infrastructural Development (ICSID), Theme: Sustainable Infrastructural Development (Virtual), Track 5: Geotechnics and Transportation Infrastructure
  year: 2020
  ident: e_1_3_2_178_1
– ident: e_1_3_2_20_1
  doi: 10.1007/978-3-319-96433-1_6
– ident: e_1_3_2_17_1
  doi: 10.1201/9781315169064-30
– ident: e_1_3_2_135_1
  doi: 10.1007/978-3-662-46309-3_1
– ident: e_1_3_2_156_1
  doi: 10.1061/(ASCE)0887-3801(2004)18:2(105
– ident: e_1_3_2_88_1
  doi: 10.1007/s12665-009-0009-5
– volume: 28
  start-page: 15
  year: 1988
  ident: e_1_3_2_163_1
  article-title: Structure identification of fuzzy model
  publication-title: Proceedings of IEEE Transactions on Systems, Man and Cybernetics
– ident: e_1_3_2_100_1
  doi: 10.1016/j.tust.2013.05.002
– volume: 16
  start-page: 751
  issue: 6
  year: 2015
  ident: e_1_3_2_86_1
  article-title: CBO and DPSO for optimum design of reinforced concrete cantilever retaining walls
  publication-title: Asian Journal of Civ Eng
– volume: 27
  start-page: 45
  issue: 1
  year: 2020
  ident: e_1_3_2_145_1
  article-title: Prediction of unconfined compressive strength of treated expansive clay using back-propagation artificial neural networks
  publication-title: Nigerian Journal of Engineering (NJE)
– ident: e_1_3_2_4_1
  doi: 10.1007/s11269-015-1016-9
– ident: e_1_3_2_115_1
  doi: 10.20944/preprints201903.0049.v1
– ident: e_1_3_2_113_1
  doi: 10.1111/j.1467-8667.2004.00354.x
– ident: e_1_3_2_16_1
  doi: 10.1007/s12665-012-1836-3
– start-page: 289
  volume-title: IMCET 2017: new trends in mining—proceedings of 25th international mining congress of Turkey
  year: 2017
  ident: e_1_3_2_60_1
– ident: e_1_3_2_71_1
  doi: 10.4314/njt.v35i2.5
– ident: e_1_3_2_131_1
  doi: 10.1623/hysj.54.2.247
– ident: e_1_3_2_82_1
  doi: 10.1155/2018/8917059
– ident: e_1_3_2_13_1
  doi: 10.1007/s00521-020-05244-4
– ident: e_1_3_2_32_1
  doi: 10.1061/(ASCE)0887-3801(2008)22:4(272
– ident: e_1_3_2_155_1
  doi: 10.1016/j.compgeo.2003.09.004
– ident: e_1_3_2_84_1
  doi: 10.1007/s00500-019-04316-5
– ident: e_1_3_2_146_1
  doi: 10.1061/(ASCE)0733-9410(1985)111:12(1425
– ident: e_1_3_2_26_1
  doi: 10.1177/0734242X20952839
– volume: 12
  start-page: 474
  issue: 40
  year: 2010
  ident: e_1_3_2_117_1
  article-title: ANFIS approach to the scour depth prediction at a bridge Abutment
  publication-title: Journal of Hydro informatics
– ident: e_1_3_2_126_1
  doi: 10.1007/s10064-008-0168-8
– ident: e_1_3_2_89_1
  doi: 10.1007/s12665-009-0009-5
– ident: e_1_3_2_54_1
  doi: 10.1061/(ASCE)0733-9410(1996)122:1(70
– ident: e_1_3_2_112_1
  doi: 10.1109/CIMSA.2011.6059929
– start-page: 303
  volume-title: Artificial Neural Networks - Application
  year: 2011
  ident: e_1_3_2_128_1
– volume: 31
  start-page: 105
  issue: 1
  year: 2015
  ident: e_1_3_2_39_1
  article-title: Optimized artificial neural network for amazing soil-waste rubber shred mixture (in Persian)
  publication-title: Sharif Journal of Civil Engineering
– ident: e_1_3_2_43_1
  doi: 10.3390/sym12081295
– volume: 96
  start-page: 7973
  year: 2018
  ident: e_1_3_2_6_1
  article-title: Modeling of Concrete Strength Prediction using Fuzzy Type-2 Techniques
  publication-title: Journal of Theoretical and Applied Information. Technology
– ident: e_1_3_2_136_1
  doi: 10.1016/j.ecolind.2017.10.042
– volume: 8
  start-page: 221
  issue: 2
  year: 2003
  ident: e_1_3_2_116_1
  article-title: Neuromodex: Neural network system for modular construction decision
  publication-title: Journal of Computing in Civil Engineering, ASCE
– ident: e_1_3_2_85_1
  doi: 10.1007/s00366-020-00999-9
– volume: 2017
  start-page: 1
  year: 2017
  ident: e_1_3_2_162_1
  article-title: Application of Variance Analyses Comparison in Seismic Damage Assessment of Masonry Buildings Using Three Simplified Indexes
  publication-title: Math. Probl. Eng
  doi: 10.1155/2017/3741941
– ident: e_1_3_2_104_1
  doi: 10.1016/S1364-8152(99)00007-9
– volume-title: Building code requirements for structural concrete and commentary (ACI 318-05)
  year: 2005
  ident: e_1_3_2_10_1
– ident: e_1_3_2_72_1
  doi: 10.1016/j.conbuildmat.2018.01.191
– ident: e_1_3_2_92_1
  doi: 10.1007/s10845-016-1229-7
– start-page: 210
  volume-title: “Application of Artificial Neural Network to Forecast Actual Cost of a Project to Improve Earned Value Management
  year: 2008
  ident: e_1_3_2_147_1
– ident: e_1_3_2_2_1
  doi: 10.1111/0885-9507.00219
– ident: e_1_3_2_130_1
  doi: 10.1109/TGRS.2010.2050328
– ident: e_1_3_2_53_1
  doi: 10.1061/(ASCE)0733-9410(1994)120:9(1467
– ident: e_1_3_2_110_1
  doi: 10.1007/s11069-019-03688-z
– start-page: 318
  volume-title: Learning internal representation by error propagation, in Parallel distributed processing: explorations in the microstructure of congestion
  year: 1986
  ident: e_1_3_2_137_1
– ident: e_1_3_2_99_1
  doi: 10.1016/j.matdes.2016.10.046
– ident: e_1_3_2_14_1
  doi: 10.1007/s00521-016-2618-8
– ident: e_1_3_2_37_1
  doi: 10.1007/s12649-012-9161-3
– volume: 26
  start-page: 1393
  issue: 9
  year: 2007
  ident: e_1_3_2_98_1
  article-title: Modified particle swarm optimization algorithmand its application to the search for the critical slip surface of soil slopes
  publication-title: J Disaster Prev Mitig Eng
– ident: e_1_3_2_174_1
  doi: 10.1016/j.autcon.2009.12.007
– ident: e_1_3_2_33_1
  doi: 10.1061/(ASCE)0733-9364(2005)131:7(765
– ident: e_1_3_2_80_1
  doi: 10.1007/s00254-008-1645-x
– ident: e_1_3_2_75_1
  doi: 10.1109/21.256541
– ident: e_1_3_2_79_1
  doi: 10.1016/j.istruc.2019.09.013
– volume-title: Statistical Analysis Handbook
  year: 2018
  ident: e_1_3_2_159_1
– ident: e_1_3_2_175_1
  doi: 10.1016/j.compstruct.2016.11.068
– ident: e_1_3_2_23_1
  doi: 10.1016/j.tust.2017.03.011
– ident: e_1_3_2_169_1
  doi: 10.7764/RDLC.17.3.364
– volume: 5
  issue: 1
  year: 2013
  ident: e_1_3_2_21_1
  article-title: Principal component analysis and Neural Networks for predicting the pile capacity using SPT
  publication-title: International Journal of Engineering and Technology
– ident: e_1_3_2_101_1
  doi: 10.1016/j.ijrmms.2012.06.005
– ident: e_1_3_2_140_1
  doi: 10.1007/s12665-019-8658-5
– ident: e_1_3_2_179_1
  doi: 10.1016/j.asoc.2008.09.006
– ident: e_1_3_2_124_1
  doi: 10.2113/EEG-2023
– ident: e_1_3_2_90_1
  doi: 10.1007/s11709-016-0363-9
– ident: e_1_3_2_114_1
  doi: 10.18517/ijaseit.2.2.174
– ident: e_1_3_2_129_1
  doi: 10.1016/j.compgeo.2009.04.003
– start-page: 7571
  volume-title: Artificial neural network approach to predict blast-induced ground vibration, airblast and rock fragmentation
  year: 2016
  ident: e_1_3_2_166_1
– ident: e_1_3_2_41_1
  doi: 10.48550/arXiv.1106.1570
– ident: e_1_3_2_177_1
  doi: 10.1016/j.wasman.2016.04.033
– start-page: 1843
  volume-title: The 12th International Conference of International Association for Computer Methods and Advances in Geomechanics (IACMAG)
  year: 2008
  ident: e_1_3_2_94_1
– ident: e_1_3_2_143_1
  doi: 10.22115/SCCE.2018.128634.1059
– ident: e_1_3_2_52_1
  doi: 10.1038/s41598-020-77567-0
– ident: e_1_3_2_120_1
  doi: 10.1016/j.medengphy.2016.07.003
– volume-title: Probability Concepts in Engineering_ Emphasis on Applications to Civil and Environmental Engineering
  year: 2006
  ident: e_1_3_2_12_1
– ident: e_1_3_2_103_1
  doi: 10.1016/S1364-8152(98)00020-6
– year: 2009
  ident: e_1_3_2_68_1
  article-title: Prediction of swelling pressures of expansive soils using artificial neural networks
  publication-title: Advances in Engineering Software
– ident: e_1_3_2_87_1
  doi: 10.1016/j.eswa.2009.04.008
– volume-title: Artificial neural networks in Australia, Department of Industry, Technology and Commerce
  year: 1992
  ident: e_1_3_2_67_1
– ident: e_1_3_2_118_1
  doi: 10.1016/j.compstruct.2010.04.008
– ident: e_1_3_2_30_1
  doi: 10.1016/S0266-352X(03)00012-0
– volume: 26
  start-page: 1393
  issue: 9
  year: 2005
  ident: e_1_3_2_97_1
  article-title: Improved complex method based on particle swarm optimization algorithm and its application to slope stability analysis
  publication-title: Rock and Soil Mechanics Wuhan
– volume: 4
  start-page: 1047
  issue: 10
  year: 2009
  ident: e_1_3_2_121_1
  article-title: Estimation of swell index of fine grained soils using regression equations and artificial neural networks
  publication-title: Scientific Research and Essay
– volume-title: Prediction of swellingpressures of expansive soils using soft computing methods
  year: 2012
  ident: e_1_3_2_69_1
– volume: 527
  issue: 2019
  year: 2019
  ident: e_1_3_2_18_1
  article-title: An overview of traditional and non-traditional stabilizer for soft soil
  publication-title: Materials Science and Engineering
– ident: e_1_3_2_58_1
  doi: 10.1007/s00254-008-1300-6
– ident: e_1_3_2_15_1
  doi: 10.1007/s42452-020-2727-y
– ident: e_1_3_2_63_1
  doi: 10.1007/s00366-016-0447-0
– volume-title: Application of an Artificial Neural Network for Analysis of Subsurface Contamination at the Schuyler Falls
  year: 2006
  ident: e_1_3_2_22_1
– ident: e_1_3_2_102_1
  doi: 10.3390/app10020472
– start-page: 199
  volume-title: Applying Neural Network Ensemble Concepts for Modelling Project Success “proceeding of 26th International Symposium on Automation and Robotics in Construction (ISARC 2009)
  year: 2009
  ident: e_1_3_2_172_1
– ident: e_1_3_2_11_1
  doi: 10.15406/mojce.2018.04.00111
– ident: e_1_3_2_62_1
  doi: 10.1080/15325008.2014.964813
– ident: e_1_3_2_81_1
  doi: 10.1016/S1364-0321(01)00006-5
– ident: e_1_3_2_91_1
  doi: 10.1631/jzus.A1000252
– ident: e_1_3_2_55_1
  doi: 10.1016/j.jrmge.2017.03.011
– ident: e_1_3_2_65_1
  doi: 10.32604/cmes.2019.07653
– ident: e_1_3_2_78_1
– ident: e_1_3_2_139_1
  doi: 10.1016/j.conbuildmat.2013.01.016
– ident: e_1_3_2_154_1
  doi: 10.1061/(ASCE)1090-0241(2002)128:9(785
– ident: e_1_3_2_8_1
  doi: 10.33922/j.ujet_v6i1_9
– ident: e_1_3_2_25_1
  doi: 10.1007/978-3-540-89924-2
– ident: e_1_3_2_164_1
  doi: 10.1109/TSMC.1985.6313399
– volume: 31
  start-page: 3000
  issue: 9
  year: 2010
  ident: e_1_3_2_171_1
  article-title: Application of fuzzy mathematics to slope stability analysis
  publication-title: Rock and Soil Mechanics
– ident: e_1_3_2_44_1
  doi: 10.1186/s40703-017-0067-6
– ident: e_1_3_2_5_1
  doi: 10.1016/j.sandf.2015.06.006
– volume: 16
  start-page: 213
  year: 2018
  ident: e_1_3_2_119_1
  article-title: Compressive strength predictionof environmentally friendly concrete using artificial neural networks
  publication-title: Journal of BuildingEngineering
  doi: 10.1016/j.jobe.2018.01.007
– volume-title: Neural Networks and Learning Machines
  year: 2009
  ident: e_1_3_2_64_1
– ident: e_1_3_2_95_1
  doi: 10.1016/j.compgeo.2008.07.002
– year: 2014
  ident: e_1_3_2_167_1
  article-title: ANN prediction of some geotechnical properties of soil from their index parameters
  publication-title: Arab J Geosci
– ident: e_1_3_2_107_1
  doi: 10.1016/j.compgeo.2016.01.014
– ident: e_1_3_2_142_1
  doi: 10.1016/j.procs.2019.06.039
– ident: e_1_3_2_83_1
  doi: 10.1007/s11831-020-09442-0
– ident: e_1_3_2_7_1
  doi: 10.1016/j.measurement.2019.02.054
– ident: e_1_3_2_61_1
  doi: 10.3390/app9214650
– volume: 7
  start-page: 71
  year: 2017
  ident: e_1_3_2_19_1
  article-title: Comprehensive study on the concrete compressive strength estimation using artificial neural network and adaptive neuro-fuzzy inference system
  publication-title: International Journal of Optimization in Civil Engineering
– ident: e_1_3_2_76_1
  doi: 10.24200/sci.2016.2097
– ident: e_1_3_2_50_1
  doi: 10.1007/s00158-016-1521-3
– ident: e_1_3_2_157_1
  doi: 10.3208/sandf1972.28.2_49
– ident: e_1_3_2_127_1
  doi: 10.1080/01446193.2019.1590615
– volume: 9
  start-page: 231
  issue: 2
  year: 2010
  ident: e_1_3_2_149_1
  article-title: Adaptive neuro-fuzzy approach for sand permeability estimation
  publication-title: Environmental Engineering andManagement Journal
– ident: e_1_3_2_29_1
  doi: 10.1007/s00521-016-2190-2
– ident: e_1_3_2_141_1
  doi: 10.3390/s20051313
– ident: e_1_3_2_144_1
  doi: 10.33796/waberconference2019.19
– ident: e_1_3_2_133_1
  doi: 10.1016/j.jrmge.2016.11.011
SSID ssj0001345090
Score 2.4716582
SecondaryResourceType review_article
Snippet In an age of depleting earth due to global warming impacting badly on the ozone layer of the earth system, the need to employ technologies to substitute those...
AbstractIn an age of depleting earth due to global warming impacting badly on the ozone layer of the earth system, the need to employ technologies to...
SourceID doaj
crossref
informaworld
SourceType Open Website
Enrichment Source
Index Database
Publisher
SubjectTerms artificial intelligence
Computational intelligence
eco-friendly geomaterials optimization
geotechnics and earthworks
machine learning
precision optimization
soft computing
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8sCa1rXjJB4LogIkEBJU6mb5cUZIkCII_59zkpbAQBfWyI6cu4vv8-O-j5AzdCoDJW1ivYkSZtkoUYXzCVeZxxVRCMzEDf3bu-xqmt7M5Kwj9RXvhDX0wI3hhh4Ko3JrcbINKfNggscJNjgGkSsrrUv3MOd1FlP17opIMROyRclOwYZciMhlFm8lcD7ARBeJzH4ko5qz_xdjaSfXTLbIZgsS6bgZ3DZZg3KHbHSoA3fJ_UMtYAOejq_pHP_717agki5ZWT-oKT3tnlDT55I-wbxpgc6h8P3KPTKdXD5eXCWtOkLiEAJVifMBrEEEg58KOcsAgZkL3KNNckR5PC-sCCF3kmfBGAdOWZ9K4awMWWo4iH3SK-clHBDKIFPGCiW9DAiPjMFFEuNBSWGE5ZD3Sbowk3YtdXhUsHjRo5ZhdGFdHa2rW-v2yWDZ7a3hzljV4Tz6YNk4Ul_XDzAgdBsQelVA9InqelBX9c5HaGRKtPhzAIf_MYAjsh416Rs2yGPSq94_4QSRS2VP6yD9AqOP55M
  priority: 102
  providerName: Directory of Open Access Journals
Title Selected AI optimization techniques and applications in geotechnical engineering
URI https://www.tandfonline.com/doi/abs/10.1080/23311916.2022.2153419
https://doaj.org/article/de8a97bb413f40deafd067fc0e559949
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI5gXOCAeIrxUg5cO7Kkj-U4ENNAAiHBJDhVeTgTErRoK_8fp4-tIAEHrlUcNXaTz3adz4ScoVEZyEgH2irfwizuB3JgbMBlbDEico4pn9C_vYvHk_DmKWqqCed1WaWPoV1FFFGe1X5zKz1vKuLOuRCelswXGHDeQ8zynGSrZA2RmPkmBux5vEyziBAhkTV3d36S_oJKJXn_N-rSFuiMtshm7S3SYWXebbIC2Q7ZaHEI7pL7h7KTDVg6vKY5HgBv9c1KuqBnnVNcKm3_qqYvGZ1CXo1AK1FYTrlHJqOrx8txULdJCAz6QkVgrAOt0JXBpULCYkAPzThuZSgTdPd4MtDCucREPHZKGTBS2zASRkcuDhUHsU86WZ7BAaEMYqm0kJGNHPpJSmG0xLiTkVBCc0i6JGzUlJqaQ9y3snhN-zXVaKPd1Gs3rbXbJb2F2HtFovGXwIW3wWKw58AuH-SzaVpvqdTCQMlEa4RhFzILylmEXmcYeBa1ECeRbQumRZkCcVW_klT8-gKH_5A9Iuu-J33FBnlMOsXsA07Qcyn0afltnpZx_yfgq-RR
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELWgHIADYhU7PnBNMXac1MeCQGUVEq1UTpaXcYUELYLy_4yTtAQk4MA18ljxTOz3PLHfEHKIQWWgpE2sN7GEWXacqJbzCVeZxx1RCMzEhP7NbdbppZd92a_dhYnHKuMeOpRCEcVaHSd3TEZPjsQdcSGiLlk8YcB5E0EripLNkjmJ4BsnJ3vofOZZRIqYyCaXd36y_gJLhXr_N-3SGuqcL5Olii7SdhnfFTIDw1WyWBMRXCN390UpG_C0fUFHuAI8V1cr6VSf9Y3iWGn9XzV9HNIBjMoWGCYKn12uk975Wfe0k1R1EhKHZGicOB_AGuQyOFTIWQZI0VzgXqUqR77H85YVIeRO8iwY48Ap61MpnJUhSw0HsUEaw9EQNgllkCljhZJeBiRKxuB2ifGgpDDCcsi3SDpxk3aViHisZfGkjyut0Yl3dfSurry7RZpTs5dSReMvg5MYg2njKIJdPBi9DnQ1p7SHllG5tYjDIWUeTPCIvcExiDJqKXai6hHU4yIHEsqCJVr8-gLb_7A9IPOd7s21vr64vdohC7FAfSkNuUsa49d32EMaM7b7xXf6AfOB5tA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JSwMxFA4uIHoQV9zNwevUmExmmqNbqVspaEFPIctLEbQVrf_fl1lqFdSD1yEvTN6b5H3JvHwfIQcYVAZK2sR6EyXMsqNENZ1PuMo87ohCYCYe6N90snYvvbyXdTXhW1VWGffQoSSKKNbqOLlffKgr4g65EJGWLBYYcN7AnBU5yabJrMTcG9Ub2EP785hFpJgSWX135yfrL1mpIO__Rl06kXRaS2SxQov0uAzvMpmCwQpZmOAQXCXd20LJBjw9vqBDXACeq5uVdEzP-kZxqHTyVzV9HNA-DMsWGCUKn12ukV7r_O60nVQyCYlDLDRKnA9gDUIZHCrkLANEaC5wr1KVI9zjedOKEHIneRaMceCU9akUzsqQpYaDWCczg-EANghlkCljhZJeBsRJxuBuifGgpDDCcsg3SVq7SbuKQzxKWTzpo4pqtPaujt7VlXc3SWNs9lKSaPxlcBJjMG4cObCLB8PXvq6mlPbQNCq3FtNwSJkHEzym3uAYRBa1FDtRkxHUo-IIJJR6JVr8-gJb_7DdJ3Pds5a-vuhcbZP5KE9fEkPukJnR6zvsIogZ2b3iM_0AkVvl-Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selected+AI+optimization+techniques+and+applications+in+geotechnical+engineering&rft.jtitle=Cogent+engineering&rft.au=Onyelowe%2C+Kennedy+C.&rft.au=Mojtahedi%2C+Farid+F.&rft.au=Ebid%2C+Ahmed+M.&rft.au=Rezaei%2C+Amirhossein&rft.date=2023-12-31&rft.issn=2331-1916&rft.eissn=2331-1916&rft.volume=10&rft.issue=1&rft_id=info:doi/10.1080%2F23311916.2022.2153419&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_23311916_2022_2153419
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2331-1916&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2331-1916&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2331-1916&client=summon