A sustained high-temperature fusion plasma regime facilitated by fast ions
Nuclear fusion is one of the most attractive alternatives to carbon-dependent energy sources 1 . Harnessing energy from nuclear fusion in a large reactor scale, however, still presents many scientific challenges despite the many years of research and steady advances in magnetic confinement approache...
Saved in:
Published in | Nature (London) Vol. 609; no. 7926; pp. 269 - 275 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
08.09.2022
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nuclear fusion is one of the most attractive alternatives to carbon-dependent energy sources
1
. Harnessing energy from nuclear fusion in a large reactor scale, however, still presents many scientific challenges despite the many years of research and steady advances in magnetic confinement approaches. State-of-the-art magnetic fusion devices cannot yet achieve a sustainable fusion performance, which requires a high temperature above 100 million kelvin and sufficient control of instabilities to ensure steady-state operation on the order of tens of seconds
2
,
3
. Here we report experiments at the Korea Superconducting Tokamak Advanced Research
4
device producing a plasma fusion regime that satisfies most of the above requirements: thanks to abundant fast ions stabilizing the core plasma turbulence, we generate plasmas at a temperature of 100 million kelvin lasting up to 20 seconds without plasma edge instabilities or impurity accumulation. A low plasma density combined with a moderate input power for operation is key to establishing this regime by preserving a high fraction of fast ions. This regime is rarely subject to disruption and can be sustained reliably even without a sophisticated control, and thus represents a promising path towards commercial fusion reactors.
A magnetic confinement regime established at the Korea Superconducting Tokamak Advanced Research device enables the generation of plasmas over 10
8
kelvin for 20 seconds with the aid of fast ions without plasma edge instabilities or impurity accumulation. |
---|---|
AbstractList | Nuclear fusion is one of the most attractive alternatives to carbon-dependent energy sources1. Harnessing energy from nuclear fusion in a large reactor scale, however, still presents many scientific challenges despite the many years of research and steady advances in magnetic confinement approaches. State-of-the-art magnetic fusion devices cannot yet achieve a sustainable fusion performance, which requires a high temperature above 100 million kelvin and sufficient control of instabilities to ensure steady-state operation on the order of tens of seconds2,3. Here we report experiments at the Korea Superconducting Tokamak Advanced Research4 device producing a plasma fusion regime that satisfies most of the above requirements: thanks to abundant fast ions stabilizing the core plasma turbulence, we generate plasmas at a temperature of 100 million kelvin lasting up to 20 seconds without plasma edge instabilities or impurity accumulation. A low plasma density combined with a moderate input power for operation is key to establishing this regime by preserving a high fraction of fast ions. This regime is rarely subject to disruption and can be sustained reliably even without a sophisticated control, and thus represents a promising path towards commercial fusion reactors.Nuclear fusion is one of the most attractive alternatives to carbon-dependent energy sources1. Harnessing energy from nuclear fusion in a large reactor scale, however, still presents many scientific challenges despite the many years of research and steady advances in magnetic confinement approaches. State-of-the-art magnetic fusion devices cannot yet achieve a sustainable fusion performance, which requires a high temperature above 100 million kelvin and sufficient control of instabilities to ensure steady-state operation on the order of tens of seconds2,3. Here we report experiments at the Korea Superconducting Tokamak Advanced Research4 device producing a plasma fusion regime that satisfies most of the above requirements: thanks to abundant fast ions stabilizing the core plasma turbulence, we generate plasmas at a temperature of 100 million kelvin lasting up to 20 seconds without plasma edge instabilities or impurity accumulation. A low plasma density combined with a moderate input power for operation is key to establishing this regime by preserving a high fraction of fast ions. This regime is rarely subject to disruption and can be sustained reliably even without a sophisticated control, and thus represents a promising path towards commercial fusion reactors. Nuclear fusion is one of the most attractive alternatives to carbon-dependent energy sources1. Harnessing energy from nuclear fusion in a large reactor scale, however, still presents many scientific challenges despite the many years of research and steady advances in magnetic confinement approaches. State-of-the-art magnetic fusion devices cannot yet achieve a sustainable fusion performance, which requires a high temperature above 100 million kelvin and sufficient control of instabilities to ensure steady-state operation on the order oftens of seconds2,3. Here we report experiments at the Korea Superconducting Tokamak Advanced Research4 device producing a plasma fusion regime that satisfies most ofthe above requirements: thanks to abundant fast ions stabilizing the core plasma turbulence, we generate plasmas at a temperature of 100 million kelvin lasting up to 20 seconds without plasma edge instabilities or impurity accumulation. A low plasma density combined with a moderate input power for operation is key to establishing this regime by preserving a high fraction of fast ions. This regime is rarely subject to disruption and can be sustained reliably even without a sophisticated control, and thus represents a promising path towards commercial fusion reactors. Nuclear fusion is one of the most attractive alternatives to carbon-dependent energy sources. Harnessing energy from nuclear fusion in a large reactor scale, however, still presents many scientific challenges despite the many years of research and steady advances in magnetic confinement approaches. State-of-the-art magnetic fusion devices cannot yet achieve a sustainable fusion performance, which requires a high temperature above 100 million kelvin and sufficient control of instabilities to ensure steady-state operation on the order of tens of seconds. Here, in this study, we report experiments at the Korea Superconducting Tokamak Advanced Research device producing a plasma fusion regime that satisfies most of the above requirements: thanks to abundant fast ions stabilizing the core plasma turbulence, we generate plasmas at a temperature of 100 million kelvin lasting up to 20 seconds without plasma edge instabilities or impurity accumulation. A low plasma density combined with a moderate input power for operation is key to establishing this regime by preserving a high fraction of fast ions. This regime is rarely subject to disruption and can be sustained reliably even without a sophisticated control, and thus represents a promising path towards commercial fusion reactors. Nuclear fusion is one of the most attractive alternatives to carbon-dependent energy sources 1 . Harnessing energy from nuclear fusion in a large reactor scale, however, still presents many scientific challenges despite the many years of research and steady advances in magnetic confinement approaches. State-of-the-art magnetic fusion devices cannot yet achieve a sustainable fusion performance, which requires a high temperature above 100 million kelvin and sufficient control of instabilities to ensure steady-state operation on the order of tens of seconds 2 , 3 . Here we report experiments at the Korea Superconducting Tokamak Advanced Research 4 device producing a plasma fusion regime that satisfies most of the above requirements: thanks to abundant fast ions stabilizing the core plasma turbulence, we generate plasmas at a temperature of 100 million kelvin lasting up to 20 seconds without plasma edge instabilities or impurity accumulation. A low plasma density combined with a moderate input power for operation is key to establishing this regime by preserving a high fraction of fast ions. This regime is rarely subject to disruption and can be sustained reliably even without a sophisticated control, and thus represents a promising path towards commercial fusion reactors. A magnetic confinement regime established at the Korea Superconducting Tokamak Advanced Research device enables the generation of plasmas over 10 8 kelvin for 20 seconds with the aid of fast ions without plasma edge instabilities or impurity accumulation. |
Author | Lee, K. D. Lee, J. P. Park, Y. S. Choi, M. J. Yoon, S. W. Choi, G. J. Ko, W. H. Kim, S. K. Kim, W. C. Kim, J. H. Sung, C. Hahm, T. S. Park, S. J. Lee, C. Y. Lee, Y. H. Cha, M. S. Jang, J. Gwak, J. Han, H. Lee, J. K. Kang, J. Lee, K. C. Chung, J. Hahn, S. H. Ko, J. Bak, J. G. Park, J.-K. Na, Y.-S. Seo, J. Yang, S. M. Kim, B. Lee, J. H. |
Author_xml | – sequence: 1 givenname: H. orcidid: 0000-0001-6506-9824 surname: Han fullname: Han, H. organization: Korea Institute of Fusion Energy – sequence: 2 givenname: S. J. orcidid: 0000-0002-4453-0439 surname: Park fullname: Park, S. J. organization: Department of Nuclear Engineering, Seoul National University – sequence: 3 givenname: C. orcidid: 0000-0002-8122-0018 surname: Sung fullname: Sung, C. organization: Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology – sequence: 4 givenname: J. surname: Kang fullname: Kang, J. organization: Korea Institute of Fusion Energy – sequence: 5 givenname: Y. H. surname: Lee fullname: Lee, Y. H. organization: Korea Institute of Fusion Energy, Department of Nuclear Engineering, Seoul National University – sequence: 6 givenname: J. surname: Chung fullname: Chung, J. organization: Korea Institute of Fusion Energy – sequence: 7 givenname: T. S. surname: Hahm fullname: Hahm, T. S. organization: Department of Nuclear Engineering, Seoul National University – sequence: 8 givenname: B. surname: Kim fullname: Kim, B. organization: Department of Nuclear Engineering, Seoul National University – sequence: 9 givenname: J.-K. surname: Park fullname: Park, J.-K. organization: Princeton Plasma Physics Laboratory – sequence: 10 givenname: J. G. surname: Bak fullname: Bak, J. G. organization: Korea Institute of Fusion Energy – sequence: 11 givenname: M. S. surname: Cha fullname: Cha, M. S. organization: Department of Nuclear Engineering, Seoul National University – sequence: 12 givenname: G. J. surname: Choi fullname: Choi, G. J. organization: Department of Nuclear Engineering, Seoul National University – sequence: 13 givenname: M. J. orcidid: 0000-0002-2825-6484 surname: Choi fullname: Choi, M. J. organization: Korea Institute of Fusion Energy – sequence: 14 givenname: J. surname: Gwak fullname: Gwak, J. organization: Department of Nuclear Engineering, Seoul National University – sequence: 15 givenname: S. H. orcidid: 0000-0001-8115-9248 surname: Hahn fullname: Hahn, S. H. organization: Korea Institute of Fusion Energy – sequence: 16 givenname: J. surname: Jang fullname: Jang, J. organization: Korea Institute of Fusion Energy – sequence: 17 givenname: K. C. surname: Lee fullname: Lee, K. C. organization: Korea Institute of Fusion Energy – sequence: 18 givenname: J. H. orcidid: 0000-0001-7792-3581 surname: Kim fullname: Kim, J. H. organization: Korea Institute of Fusion Energy – sequence: 19 givenname: S. K. surname: Kim fullname: Kim, S. K. organization: Princeton Plasma Physics Laboratory, Princeton University – sequence: 20 givenname: W. C. surname: Kim fullname: Kim, W. C. organization: Korea Institute of Fusion Energy – sequence: 21 givenname: J. orcidid: 0000-0002-5501-3939 surname: Ko fullname: Ko, J. organization: Korea Institute of Fusion Energy, Department of Accelerator and Nuclear Fusion Physical Engineering, Korean University of Science and Technology – sequence: 22 givenname: W. H. surname: Ko fullname: Ko, W. H. organization: Korea Institute of Fusion Energy, Department of Accelerator and Nuclear Fusion Physical Engineering, Korean University of Science and Technology – sequence: 23 givenname: C. Y. orcidid: 0000-0003-0704-704X surname: Lee fullname: Lee, C. Y. organization: Department of Nuclear Engineering, Seoul National University – sequence: 24 givenname: J. H. surname: Lee fullname: Lee, J. H. organization: Korea Institute of Fusion Energy, Department of Accelerator and Nuclear Fusion Physical Engineering, Korean University of Science and Technology – sequence: 25 givenname: J. H. surname: Lee fullname: Lee, J. H. organization: Korea Institute of Fusion Energy – sequence: 26 givenname: J. K. orcidid: 0000-0002-1252-7075 surname: Lee fullname: Lee, J. K. organization: Korea Institute of Fusion Energy, Department of Accelerator and Nuclear Fusion Physical Engineering, Korean University of Science and Technology – sequence: 27 givenname: J. P. orcidid: 0000-0002-4382-4515 surname: Lee fullname: Lee, J. P. organization: Department of Nuclear Engineering, Hanyang University – sequence: 28 givenname: K. D. surname: Lee fullname: Lee, K. D. organization: Korea Institute of Fusion Energy – sequence: 29 givenname: Y. S. surname: Park fullname: Park, Y. S. organization: Department of Applied Physics and Applied Mathematics, Columbia University – sequence: 30 givenname: J. orcidid: 0000-0003-0635-0282 surname: Seo fullname: Seo, J. organization: Department of Nuclear Engineering, Seoul National University – sequence: 31 givenname: S. M. surname: Yang fullname: Yang, S. M. organization: Princeton Plasma Physics Laboratory – sequence: 32 givenname: S. W. surname: Yoon fullname: Yoon, S. W. organization: Korea Institute of Fusion Energy – sequence: 33 givenname: Y.-S. orcidid: 0000-0001-7270-3846 surname: Na fullname: Na, Y.-S. email: ysna@snu.ac.kr organization: Department of Nuclear Engineering, Seoul National University |
BackLink | https://www.osti.gov/servlets/purl/1889862$$D View this record in Osti.gov |
BookMark | eNp9kcFu3CAQhlGVSt2kfYGerPbSCylgDONjFDVto0i9tGeE2fEukY23DD7k7cvWlSrlkBMwfB9i5r9kF2lJyNh7Ka6laOEzadmB4UIpLjohgMtXbCe1NVwbsBdsJ4QCLqA1b9gl0aMQopNW79j9TUMrFR8T7ptjPBx5wfmE2Zc1YzOuFJfUnCZPs28yHuJciz7EKRZfqjE81SOVplL0lr0e_UT47t96xX7dffl5-40__Pj6_fbmgQet2sJD2xvvje1tsFp3oxHSDkobOZjOG_R7gMHKEaFHBfUGxNCOArqx7nA_hPaKfdjeXahERyEWDMewpIShOAnQg1EV-rRBp7z8XpGKmyMFnCafcFnJKSslaNUrUdGPz9DHZc2ptnCmFPSt0bpSsFEhL0QZRxfOM6iNl-zj5KRw5yTcloSrSbi_SThZVfVMPeU4-_z0stRuElU4HTD__9UL1h8oHZvm |
CitedBy_id | crossref_primary_10_1088_1741_4326_ad3f2f crossref_primary_10_1016_j_fusengdes_2024_114431 crossref_primary_10_1088_1741_4326_ad91c5 crossref_primary_10_1088_1741_4326_ada811 crossref_primary_10_1016_j_fusengdes_2024_114350 crossref_primary_10_1088_1361_6587_acda5d crossref_primary_10_1016_j_net_2024_08_051 crossref_primary_10_1088_1741_4326_acf5da crossref_primary_10_1088_1741_4326_adacfc crossref_primary_10_1038_s41567_024_02737_0 crossref_primary_10_1063_5_0151466 crossref_primary_10_1088_1741_4326_acffda crossref_primary_10_1088_1741_4326_ad8ad3 crossref_primary_10_1016_j_ijhydene_2025_03_156 crossref_primary_10_1038_s41467_024_45454_1 crossref_primary_10_1016_j_fusengdes_2022_113416 crossref_primary_10_1088_1741_4326_acfd40 crossref_primary_10_1007_s41614_022_00106_z crossref_primary_10_1088_1741_4326_acf677 crossref_primary_10_1038_s41586_024_07024_9 crossref_primary_10_1103_PhysRevLett_132_065106 crossref_primary_10_1088_2058_6272_ad663b crossref_primary_10_1088_1741_4326_acde8c crossref_primary_10_1109_TPS_2024_3390159 crossref_primary_10_1038_s41467_024_52182_z crossref_primary_10_7498_aps_73_20240831 crossref_primary_10_3389_fphy_2023_1225787 crossref_primary_10_1088_1361_6587_ad3c1e crossref_primary_10_1007_s43673_023_00103_5 crossref_primary_10_1016_j_fusengdes_2023_113549 crossref_primary_10_1088_1741_4326_acf1b0 crossref_primary_10_1088_1741_4326_ad7304 crossref_primary_10_1088_1741_4326_ad7865 crossref_primary_10_1088_1741_4326_ad0f5f crossref_primary_10_1088_1741_4326_ad8ced crossref_primary_10_1088_2632_2153_ad605e crossref_primary_10_1038_s41567_024_02715_6 crossref_primary_10_1016_j_nima_2025_170208 crossref_primary_10_2298_TSCI2403999Z crossref_primary_10_1017_S0022377823000776 crossref_primary_10_1016_j_fusengdes_2025_114808 crossref_primary_10_1007_s40042_023_00839_1 crossref_primary_10_1063_5_0201440 crossref_primary_10_1088_1741_4326_ad0606 crossref_primary_10_1063_5_0184007 crossref_primary_10_1038_s41467_024_48415_w crossref_primary_10_1016_j_fusengdes_2024_114646 crossref_primary_10_1088_1361_6587_ace849 crossref_primary_10_1360_TB_2023_0370 crossref_primary_10_7498_aps_72_20230721 crossref_primary_10_1088_1741_4326_ad703d crossref_primary_10_1088_1741_4326_ad521a crossref_primary_10_1017_S0022377823001216 crossref_primary_10_1016_j_fusengdes_2023_113803 crossref_primary_10_1016_j_nme_2023_101368 crossref_primary_10_1016_j_physleta_2025_130278 crossref_primary_10_1088_1741_4326_acff78 crossref_primary_10_1007_s41614_024_00169_0 crossref_primary_10_1088_1741_4326_ad3b1d |
Cites_doi | 10.1063/1.872367 10.1063/5.0043811 10.1063/1.3257907 10.1038/nphys312 10.1088/1741-4326/aa90c1 10.1038/s41467-018-05839-5 10.1088/0029-5515/45/8/003 10.1103/PhysRevLett.58.1004 10.1088/0741-3335/52/4/045007 10.13182/FST05-A1055 10.1088/0029-5515/43/10/012 10.1088/0029-5515/33/2/I06 10.1063/1.872666 10.1063/1.5004217 10.1088/0029-5515/56/5/056003 10.1088/0029-5515/51/5/053018 10.1088/1741-4326/ac3366 10.1088/0029-5515/51/11/113009 10.1038/nphys2795 10.1103/PhysRevLett.88.145004 10.1103/PhysRevLett.127.025002 10.1103/PhysRevLett.111.155001 10.1016/j.jcp.2016.07.039 10.1088/0029-5515/52/11/114001 10.1103/PhysRevLett.78.1472 10.1016/j.fusengdes.2011.03.058 10.1063/1.4890402 10.1088/0029-5515/54/1/013015 10.1063/1.3080721 10.1088/0741-3335/47/5A/003 10.1016/j.cpc.2009.07.001 10.1109/TPS.2020.2964776 10.1103/PhysRevLett.84.1463 10.1088/0029-5515/54/8/083012 10.1103/PhysRevLett.75.4417 10.1088/0029-5515/39/12/302 10.1088/0029-5515/55/5/053007 10.1063/1.4890258 10.1038/s41567-020-0940-7 10.1103/PhysRevLett.77.2710 10.1063/1.4936479 10.1103/PhysRevLett.109.035004 10.1103/PhysRevLett.49.1408 10.1088/0029-5515/47/6/S01 10.1063/1.872465 10.1088/0029-5515/55/4/043004 10.1088/0741-3335/45/9/306 10.1088/0029-5515/38/8/303 10.1088/0029-5515/41/10/318 10.1103/PhysRevLett.87.245001 10.1088/0029-5515/55/12/123025 10.1063/1.4972088 10.1088/0029-5515/40/6/312 10.1088/0741-3335/43/12A/307 10.1103/PhysRevLett.72.3662 10.1016/0010-4655(96)00046-X 10.1063/1.3660254 10.1016/j.cpc.2003.11.002 10.1088/1741-4326/ab8b7a 10.1088/0029-5515/45/2/005 10.1016/j.physleta.2011.06.065 10.1088/0741-3335/38/2/001 10.1063/1.4891161 10.1088/0741-3335/36/5/002 10.1063/1.870691 10.1103/PhysRevLett.70.3435 10.1103/PhysRevLett.80.5544 10.1088/0029-5515/44/4/R01 10.1038/s41567-018-0268-8 10.1016/j.fusengdes.2010.09.025 10.1088/0029-5515/27/9/009 10.1103/PhysRevLett.75.4421 10.1063/1.2953587 10.1088/0029-5515/30/10/001 10.1088/0029-5515/25/11/007 10.1063/1.2913610 10.1016/j.energy.2020.118460 10.1088/1741-4326/ac1690 10.1088/0741-3335/44/5A/305 10.1016/j.fusengdes.2019.111395 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Nature Publishing Group Sep 8, 2022 2022. The Author(s), under exclusive licence to Springer Nature Limited. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Nature Publishing Group Sep 8, 2022 – notice: 2022. The Author(s), under exclusive licence to Springer Nature Limited. |
CorporateAuthor | Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States) |
CorporateAuthor_xml | – name: Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States) |
DBID | AAYXX CITATION 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7X8 OIOZB OTOTI |
DOI | 10.1038/s41586-022-05008-1 |
DatabaseName | CrossRef ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection eLibrary ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agriculture Science Database ProQuest Health & Medical Collection Medical Database Psychology Database Research Library Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering Collection Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) University of Michigan Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Agricultural Science Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics |
EISSN | 1476-4687 |
EndPage | 275 |
ExternalDocumentID | 1889862 10_1038_s41586_022_05008_1 |
GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .XZ 07C 0R~ 0WA 123 186 1OL 1VR 29M 2KS 2XV 39C 41X 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L A6W A7Z AAEEF AAHBH AAHTB AAIKC AAKAB AAMNW AASDW AAYEP AAYZH AAZLF ABDQB ABFSI ABIVO ABJCF ABJNI ABLJU ABOCM ABPEJ ABPPZ ABUWG ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACWUS ADBBV ADFRT ADUKH AENEX AEUYN AFBBN AFFNX AFKRA AFLOW AFRAH AFSHS AGAYW AGHSJ AGHTU AGOIJ AGSOS AHMBA AHSBF AIDUJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARAPS ARMCB ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC BBNVY BCU BEC BENPR BGLVJ BHPHI BIN BKEYQ BKKNO BKSAR BPHCQ BVXVI CCPQU CJ0 CS3 D1I D1J D1K DU5 DWQXO E.- E.L EAP EBS EE. EMH EPS EX3 EXGXG F5P FAC FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HG6 HMCUK HVGLF HZ~ IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR K6- KB. KOO L6V L7B LK5 LK8 LSO M0K M1P M2M M2O M2P M7P M7R M7S N9A NAPCQ NEPJS O9- OBC OES OHH OMK OVD P2P P62 PATMY PCBAR PDBOC PKN PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SOJ TAE TAOOD TBHMF TDRGL TEORI TN5 TSG TWZ U5U UIG UKHRP UKR UMD UQL VQA VVN WH7 WOW X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YNT YOC YQT YR2 YR5 YXB YZZ Z5M ZCA ~02 ~7V ~88 ~KM AARCD AAYXX ABFSG ACMFV ACSTC AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT 3V. 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 88A 8FD 8FK C1K FR3 H94 K9. KL. M7N MBDVC P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U RC3 SOI 7X8 AADEA AADWK AAEXX AAJMP AAPBV AAYJO ABEEJ ABGFU ABGIJ ABPTK ABVXF ACBMV ACBRV ACBYP ACIGE ACTTH ACVWB ADFPY ADMDM ADQMX ADZGE AEDAW AEFTE AFNRJ AGEZK AGGBP AHGBK AJDOV AMRJV B-7 EBO I-U ITC OIOZB OTOTI P-O U1R YJ6 ZA5 |
ID | FETCH-LOGICAL-c423t-c396aa6797c7445f6017b2461b65a6ead88b71fe89e287b280b3f085f280edbc3 |
IEDL.DBID | 7X7 |
ISSN | 0028-0836 1476-4687 |
IngestDate | Mon Oct 30 03:58:53 EDT 2023 Fri Jul 11 00:04:34 EDT 2025 Wed Aug 13 09:06:07 EDT 2025 Tue Jul 01 02:32:41 EDT 2025 Thu Apr 24 23:10:18 EDT 2025 Fri Feb 21 02:39:26 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7926 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c423t-c396aa6797c7445f6017b2461b65a6ead88b71fe89e287b280b3f085f280edbc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 AC02-09CH11466 USDOE National Research Foundation of Korea (NRF) Korea Institute of Fusion Energy (KFE) |
ORCID | 0000-0002-8122-0018 0000-0001-7270-3846 0000-0003-0635-0282 0000-0001-7792-3581 0000-0002-2825-6484 0000-0001-8115-9248 0000-0002-4453-0439 0000-0002-4382-4515 0000-0002-5501-3939 0000-0003-0704-704X 0000-0002-1252-7075 0000-0001-6506-9824 0000000181159248 0000000243824515 0000000172703846 0000000281220018 0000000312141268 0000000244530439 0000000324198667 0000000165069824 000000030704704X 0000000228256484 0000000212527075 0000000177923581 0000000306350282 0000000255013939 |
OpenAccessLink | https://www.osti.gov/servlets/purl/1889862 |
PQID | 2712893644 |
PQPubID | 40569 |
PageCount | 7 |
ParticipantIDs | osti_scitechconnect_1889862 proquest_miscellaneous_2711842920 proquest_journals_2712893644 crossref_citationtrail_10_1038_s41586_022_05008_1 crossref_primary_10_1038_s41586_022_05008_1 springer_journals_10_1038_s41586_022_05008_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-08 |
PublicationDateYYYYMMDD | 2022-09-08 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-08 day: 08 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: United States |
PublicationSubtitle | International weekly journal of science |
PublicationTitle | Nature (London) |
PublicationTitleAbbrev | Nature |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Lee (CR4) 2001; 41 Zohm (CR13) 1996; 38 Bourdelle (CR49) 2005; 45 Yushmanov (CR32) 1990; 30 Citrin (CR43) 2013; 111 CR39 Carlstrom (CR65) 2005; 48 Angioni, Peeters (CR74) 2008; 15 Kim (CR52) 2005; 45 Lee (CR53) 2011; 86 Doyle (CR31) 2001; 43 Juhn (CR61) 2021; 92 Wang (CR67) 2015; 1689 CR72 Strachan (CR23) 1987; 58 Chung (CR28) 2018; 58 Lao (CR12) 1993; 70 Garcia (CR45) 2015; 55 Gruber (CR25) 2000; 40 Strait (CR40) 1994; 1 CR2 Okabayashi (CR37) 1998; 38 de Vries (CR38) 2011; 51 CR3 Liu (CR84) 2016; 23 Shimada (CR6) 2007; 47 Burrell (CR19) 1997; 4 Kim (CR42) 2014; 54 Di Siena (CR46) 2021; 127 Diamond (CR81) 1997; 78 Lang (CR14) 2003; 43 Candy, Belli, Bravenec (CR50) 2016; 324 Lao (CR57) 1985; 25 (CR33) 1999; 39 In (CR51) 2015; 55 Chapman, Kemp, Ward (CR41) 2011; 86 Crisanti (CR34) 2002; 88 Na (CR10) 2020; 60 Koide (CR22) 1994; 72 Levinton (CR85) 1995; 75 Pankin (CR70) 2004; 159 Ahn (CR64) 2012; 52 Yoon (CR8) 2011; 51 Banacloche, Gamarra, Lechon, Bustreo (CR1) 2020; 209 Chu (CR36) 1996; 77 Luce (CR11) 2014; 54 Lee (CR56) 2008; 79 McDermott (CR83) 2009; 16 CR58 Miller (CR76) 1998; 5 Guo, Romanelli (CR79) 1993; 5 Romanelli (CR44) 2010; 52 CR54 Peeters (CR48) 2009; 180 Degeling (CR15) 2003; 45 Evans (CR16) 2006; 2 Connor (CR47) 2004; 44 Conway (CR21) 2000; 84 Garofalo (CR30) 2015; 55 Jeon (CR17) 2012; 109 Chung, Ko, De Bock, Jaspers (CR62) 2014; 85 Wagner (CR5) 1982; 49 Park (CR18) 2018; 14 Yoo (CR82) 2018; 9 Fujita (CR87) 2001; 87 Manickam, Pomphrey, Todd (CR35) 1987; 27 Hahm, Tang (CR78) 1989; 1 Li (CR9) 2013; 9 England (CR63) 2011; 375 Yu (CR26) 2016; 56 CR69 Lee (CR59) 2014; 85 Sarwar, Na, Park (CR73) 2018; 89 Barbarino (CR7) 2020; 16 Chung (CR29) 2021; 61 CR20 Connor, Wilson (CR80) 1994; 36 Gormezano (CR24) 1998; 80 Koide (CR27) 1993; 33 Houlberg, Shaing, Hirshman, Zarnstorff (CR71) 1997; 4 Sugama, Watanabe, Nunami (CR77) 2009; 16 Lutjens, Bondeson, Sauter (CR75) 1996; 97 Kwak (CR55) 2020; 48 Ko (CR60) 2014; 85 Jeong (CR66) 2012; 83 Strait (CR86) 1995; 75 Sips (CR68) 2005; 47 J Chung (5008_CR28) 2018; 58 S Banacloche (5008_CR1) 2020; 209 PT Lang (5008_CR14) 2003; 43 5008_CR39 LL Lao (5008_CR57) 1985; 25 J Li (5008_CR9) 2013; 9 T Fujita (5008_CR87) 2001; 87 AM Garofalo (5008_CR30) 2015; 55 M Barbarino (5008_CR7) 2020; 16 PN Yushmanov (5008_CR32) 1990; 30 AC England (5008_CR63) 2011; 375 PH Diamond (5008_CR81) 1997; 78 EJ Strait (5008_CR86) 1995; 75 J Citrin (5008_CR43) 2013; 111 F Wagner (5008_CR5) 1982; 49 JD Strachan (5008_CR23) 1987; 58 C Bourdelle (5008_CR49) 2005; 45 TS Hahm (5008_CR78) 1989; 1 ACC Sips (5008_CR68) 2005; 47 J-G Kwak (5008_CR55) 2020; 48 J-K Park (5008_CR18) 2018; 14 5008_CR72 DL Yu (5008_CR26) 2016; 56 MS Chu (5008_CR36) 1996; 77 TC Luce (5008_CR11) 2014; 54 RL Miller (5008_CR76) 1998; 5 JW Connor (5008_CR47) 2004; 44 J Chung (5008_CR62) 2014; 85 YS Na (5008_CR10) 2020; 60 HJ Lee (5008_CR53) 2011; 86 A Pankin (5008_CR70) 2004; 159 H-S Kim (5008_CR42) 2014; 54 IT Chapman (5008_CR41) 2011; 86 5008_CR20 5008_CR2 YM Jeon (5008_CR17) 2012; 109 J-W Juhn (5008_CR61) 2021; 92 5008_CR69 AW Degeling (5008_CR15) 2003; 45 TN Carlstrom (5008_CR65) 2005; 48 5008_CR3 TE Evans (5008_CR16) 2006; 2 SJ Wang (5008_CR67) 2015; 1689 SC Guo (5008_CR79) 1993; 5 FM Levinton (5008_CR85) 1995; 75 S Sarwar (5008_CR73) 2018; 89 MG Yoo (5008_CR82) 2018; 9 H Sugama (5008_CR77) 2009; 16 JH Lee (5008_CR59) 2014; 85 H Lutjens (5008_CR75) 1996; 97 PC de Vries (5008_CR38) 2011; 51 Y Koide (5008_CR22) 1994; 72 J Manickam (5008_CR35) 1987; 27 EJ Doyle (5008_CR31) 2001; 43 5008_CR54 WA Houlberg (5008_CR71) 1997; 4 GD Conway (5008_CR21) 2000; 84 M Romanelli (5008_CR44) 2010; 52 J-W Ahn (5008_CR64) 2012; 52 5008_CR58 J Garcia (5008_CR45) 2015; 55 J Chung (5008_CR29) 2021; 61 JW Connor (5008_CR80) 1994; 36 Y Koide (5008_CR27) 1993; 33 O Gruber (5008_CR25) 2000; 40 LL Lao (5008_CR12) 1993; 70 F Crisanti (5008_CR34) 2002; 88 M Okabayashi (5008_CR37) 1998; 38 K Kim (5008_CR52) 2005; 45 A Di Siena (5008_CR46) 2021; 127 RM McDermott (5008_CR83) 2009; 16 SW Yoon (5008_CR8) 2011; 51 ITER Physics Expert Group on Confinement and Transport (5008_CR33) 1999; 39 Y In (5008_CR51) 2015; 55 WH Ko (5008_CR60) 2014; 85 EJ Strait (5008_CR40) 1994; 1 GS Lee (5008_CR4) 2001; 41 C Gormezano (5008_CR24) 1998; 80 SH Jeong (5008_CR66) 2012; 83 ZX Liu (5008_CR84) 2016; 23 KH Burrell (5008_CR19) 1997; 4 M Shimada (5008_CR6) 2007; 47 J Candy (5008_CR50) 2016; 324 SG Lee (5008_CR56) 2008; 79 AG Peeters (5008_CR48) 2009; 180 C Angioni (5008_CR74) 2008; 15 H Zohm (5008_CR13) 1996; 38 |
References_xml | – volume: 4 start-page: 1499 year: 1997 ident: CR19 article-title: Effects of E×B velocity shear and magnetic shear on turbulence and transport in magnetic confinement devices publication-title: Phys. Plasmas doi: 10.1063/1.872367 – volume: 92 start-page: 043559 year: 2021 ident: CR61 article-title: Multi-chord IR–visible two-color interferometer on KSTAR publication-title: Rev. Sci. Instrum. doi: 10.1063/5.0043811 – volume: 16 start-page: 112503 year: 2009 ident: CR77 article-title: Linearized model collision operators for multiple ion species plasmas and gyrokinetic entropy balance equations publication-title: Phys. Plasmas doi: 10.1063/1.3257907 – volume: 2 start-page: 419 year: 2006 end-page: 423 ident: CR16 article-title: Edge stability and transport control with resonant magnetic perturbations in collisionless tokamak plasmas publication-title: Nat. Phys. doi: 10.1038/nphys312 – volume: 58 start-page: 016019 year: 2018 ident: CR28 article-title: Formation of the internal transport barrier in KSTAR publication-title: Nucl. Fusion doi: 10.1088/1741-4326/aa90c1 – ident: CR39 – volume: 9 year: 2018 ident: CR82 article-title: Evidence of a turbulent ExB mixing avalanche mechanism of gas breakdown in strongly magnetized systems publication-title: Nat. Commun. doi: 10.1038/s41467-018-05839-5 – volume: 45 start-page: 783 year: 2005 ident: CR52 article-title: Status of the KSTAR superconducting magnet system development publication-title: Nucl. Fusion doi: 10.1088/0029-5515/45/8/003 – volume: 58 start-page: 1004 year: 1987 ident: CR23 article-title: High-temperature plasmas in the Tokamak Fusion Test Reactor publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.58.1004 – volume: 52 start-page: 045007 year: 2010 ident: CR44 article-title: Fast ion stabilization of the ion temperature gradient driven modes in the Joint European Torus hybrid-scenario plasmas: a trigger mechanism for internal transport barrier formation publication-title: Plasma Phys. Control. Fusion doi: 10.1088/0741-3335/52/4/045007 – volume: 48 start-page: 997 year: 2005 end-page: 1010 ident: CR65 article-title: L-H transition and power threshold studies in the DIII-D tokamak publication-title: Fusion Sci. Technol. doi: 10.13182/FST05-A1055 – volume: 43 start-page: 1110 year: 2003 end-page: 1120 ident: CR14 article-title: ELM frequency control by continuous small pellet injection in ASDEX Upgrade publication-title: Nucl. Fusion doi: 10.1088/0029-5515/43/10/012 – volume: 33 start-page: 251 year: 1993 ident: CR27 article-title: Characteristic peaked profiles of ion temperature and toroidal rotation velocity in JT-60 hot ion modes publication-title: Nucl. Fusion doi: 10.1088/0029-5515/33/2/I06 – volume: 5 start-page: 973 year: 1998 ident: CR76 article-title: Noncircular, finite aspect ratio, local equilibrium model publication-title: Phys. Plasmas doi: 10.1063/1.872666 – ident: CR54 – volume: 89 start-page: 043504 year: 2018 ident: CR73 article-title: Effective ion charge (Z ) measurements and impurity behaviour in KSTAR publication-title: Rev. Sci. Instrum. doi: 10.1063/1.5004217 – volume: 56 start-page: 056003 year: 2016 ident: CR26 article-title: Ion internal transport barrier in neutral beam heated plasmas on HL-2A publication-title: Nucl. Fusion doi: 10.1088/0029-5515/56/5/056003 – ident: CR58 – volume: 1 start-page: 1185 year: 1989 ident: CR78 article-title: Properties of ion temperature gradient drift instabilities in H-mode plasmas publication-title: Phys. Plasmas – volume: 51 start-page: 053018 year: 2011 ident: CR38 article-title: Survey of disruption causes at JET publication-title: Nucl. Fusion doi: 10.1088/0029-5515/51/5/053018 – volume: 61 start-page: 126051 year: 2021 ident: CR29 article-title: Sustainable internal transport barrier discharge at KSTAR publication-title: Nucl. Fusion doi: 10.1088/1741-4326/ac3366 – volume: 51 start-page: 113009 year: 2011 ident: CR8 article-title: Characteristics of the first H-mode discharges in KSTAR publication-title: Nucl. Fusion doi: 10.1088/0029-5515/51/11/113009 – volume: 9 start-page: 817 year: 2013 end-page: 821 ident: CR9 article-title: A long-pulse high-confinement plasma regime in the Experimental Advanced Superconducting Tokamak publication-title: Nat. Phys. doi: 10.1038/nphys2795 – volume: 88 start-page: 145004 year: 2002 ident: CR34 article-title: JET quasistationary internal-transport-barrier operation with active control of the pressure profile publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.88.145004 – volume: 127 start-page: 025002 year: 2021 ident: CR46 article-title: New high-confinement regime with fast ions in the core of fusion plasmas publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.127.025002 – volume: 111 start-page: 155001 year: 2013 ident: CR43 article-title: Non-linear stabilization of tokamak microturbulence by fast ions publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.155001 – volume: 324 start-page: 73 year: 2016 end-page: 93 ident: CR50 article-title: A high-accuracy Eulerian gyrokinetic solver for collisional plasmas publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2016.07.039 – volume: 52 start-page: 114001 year: 2012 ident: CR64 article-title: Confinement and ELM characteristics of H-mode plasmas in KSTAR publication-title: Nucl. Fusion doi: 10.1088/0029-5515/52/11/114001 – volume: 78 start-page: 1472 year: 1997 end-page: 1475 ident: CR81 article-title: On the dynamics of transition to enhanced confinement of reversed magnetic shear discharges publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.78.1472 – volume: 86 start-page: 1993 year: 2011 end-page: 1996 ident: CR53 article-title: Design and fabrication of the KSTAR in-vessel cryo-pump publication-title: Fusion Eng. Des. doi: 10.1016/j.fusengdes.2011.03.058 – volume: 85 start-page: 11E413 year: 2014 ident: CR60 article-title: Rotation characteristics during the resonant magnetic perturbation induced edge localized mode suppression on the KSTAR publication-title: Rev. Sci. Instrum. doi: 10.1063/1.4890402 – volume: 54 start-page: 013015 year: 2014 ident: CR11 article-title: Development of advanced inductive scenarios for ITER publication-title: Nucl. Fusion doi: 10.1088/0029-5515/54/1/013015 – volume: 16 start-page: 056103 year: 2009 ident: CR83 article-title: Edge radial electric field structure and its connections to H-mode confinement in Alcator C-Mod plasmas publication-title: Phys. Plasmas doi: 10.1063/1.3080721 – volume: 47 start-page: A19 year: 2005 ident: CR68 article-title: Advanced scenarios for ITER operation publication-title: Plasma Phys. Control. Fusion doi: 10.1088/0741-3335/47/5A/003 – volume: 180 start-page: 2650 year: 2009 ident: CR48 article-title: The non-linear gyro-kinetic flux tube code GKW publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2009.07.001 – volume: 48 start-page: 1388 year: 2020 end-page: 1395 ident: CR55 article-title: KSTAR status and upgrade plan toward fusion reactor publication-title: IEEE Trans. Plasma Sci. doi: 10.1109/TPS.2020.2964776 – volume: 84 start-page: 1463 year: 2000 ident: CR21 article-title: Suppression of plasma turbulence during optimized shear configurations in JET publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.84.1463 – volume: 54 start-page: 083012 year: 2014 ident: CR42 article-title: Characteristics of global energy confinement in KSTAR L- and H-mode plasmas publication-title: Nucl. Fusion doi: 10.1088/0029-5515/54/8/083012 – volume: 75 start-page: 4417 year: 1995 ident: CR85 article-title: Improved confinement with reversed magnetic shear in TFTR publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.75.4417 – volume: 39 start-page: 2175 year: 1999 ident: CR33 article-title: Chapter 2: Plasma confinement and transport publication-title: Nucl. Fusion doi: 10.1088/0029-5515/39/12/302 – volume: 5 start-page: 520 year: 1993 ident: CR79 article-title: The linear threshold of the ion‐temperature‐gradient‐driven mode publication-title: Phys. Plasmas – volume: 55 start-page: 053007 year: 2015 ident: CR45 article-title: Key impact of finite-beta and fast ions in core and edge tokamak regions for the transition to advanced scenarios publication-title: Nucl. Fusion doi: 10.1088/0029-5515/55/5/053007 – volume: 85 start-page: 11D407 year: 2014 ident: CR59 article-title: Edge profile measurements using Thomson scattering on the KSTAR tokamak publication-title: Rev. Sci. Instrum. doi: 10.1063/1.4890258 – volume: 16 start-page: 890 year: 2020 end-page: 893 ident: CR7 article-title: A brief history of nuclear fusion publication-title: Nat. Phys. doi: 10.1038/s41567-020-0940-7 – volume: 77 start-page: 2710 year: 1996 ident: CR36 article-title: Resistive interchange modes in negative central shear tokamaks with peaked pressure profiles publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.2710 – volume: 1689 start-page: 030014 year: 2015 ident: CR67 article-title: Recent experimental results of KSTAR RF heating and current drive publication-title: AIP Conf. Proc. doi: 10.1063/1.4936479 – volume: 109 start-page: 035004 year: 2012 ident: CR17 article-title: Suppression of edge localized modes in high-confinement KSTAR plasmas by nonaxisymmetric magnetic perturbations publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.035004 – volume: 49 start-page: 1408 year: 1982 end-page: 1412 ident: CR5 article-title: Regime of improved confinement and high beta in neutral-beam-heated divertor discharges of the ASDEX Tokamak publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.49.1408 – volume: 47 start-page: S1 year: 2007 end-page: S17 ident: CR6 article-title: Progress in the ITER physics basis - Chapter 1: Overview and summary publication-title: Nucl. Fusion doi: 10.1088/0029-5515/47/6/S01 – volume: 4 start-page: 3230 year: 1997 ident: CR71 article-title: Bootstrap current and neoclassical transport in tokamaks of arbitrary collisionality and aspect ratio publication-title: Phys. Plasmas doi: 10.1063/1.872465 – volume: 55 start-page: 043004 year: 2015 ident: CR51 article-title: Extremely low intrinsic non-axisymmetric field in KSTAR and its implications publication-title: Nucl. Fusion doi: 10.1088/0029-5515/55/4/043004 – ident: CR72 – volume: 45 start-page: 1637 year: 2003 end-page: 1655 ident: CR15 article-title: Magnetic triggering of ELMs in TCV publication-title: Plasma Phys. Control. Fusion doi: 10.1088/0741-3335/45/9/306 – volume: 38 start-page: 1149 year: 1998 ident: CR37 article-title: Mode structure of disruption precursors in TFTR enhanced reversed shear discharges publication-title: Nucl. Fusion doi: 10.1088/0029-5515/38/8/303 – ident: CR2 – volume: 41 start-page: 1515 year: 2001 ident: CR4 article-title: Design and construction of the KSTAR tokamak publication-title: Nucl. Fusion doi: 10.1088/0029-5515/41/10/318 – volume: 87 start-page: 245001 year: 2001 ident: CR87 article-title: Plasma equilibrium and confinement in a tokamak with nearly zero central current density in JT-60U publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.87.245001 – volume: 55 start-page: 123025 year: 2015 ident: CR30 article-title: Compatibility of internal transport barrier with steady-state operation in the high bootstrap fraction regime on DIII-D publication-title: Nucl. Fusion doi: 10.1088/0029-5515/55/12/123025 – volume: 23 start-page: 120703 year: 2016 ident: CR84 article-title: The physics mechanisms of the weakly coherent mode in the Alcator C-Mod Tokamak publication-title: Phys. Plasmas doi: 10.1063/1.4972088 – volume: 40 start-page: 1145 year: 2000 ident: CR25 article-title: Steady state H mode and Te~Ti operation with internal transport barriers in ASDEX Upgrade publication-title: Nucl. Fusion doi: 10.1088/0029-5515/40/6/312 – volume: 43 start-page: A95 year: 2001 ident: CR31 article-title: The quiescent double barrier regime in the DIII-D tokamak publication-title: Plasma Phys. Control. Fusion doi: 10.1088/0741-3335/43/12A/307 – volume: 72 start-page: 3662 year: 1994 ident: CR22 article-title: Internal transport barrier on q=3 surface and poloidal plasma spin up in JT-60U high-β discharges publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.72.3662 – volume: 97 start-page: 219 year: 1996 ident: CR75 article-title: The CHEASE code for toroidal MHD equilibria publication-title: Comput. Phys. Commun. doi: 10.1016/0010-4655(96)00046-X – volume: 83 start-page: 02B102 year: 2012 ident: CR66 article-title: First neutral beam injection experiments on KSTAR tokamak publication-title: Rev. Sci. Instrum. doi: 10.1063/1.3660254 – volume: 159 start-page: 157 year: 2004 ident: CR70 article-title: The tokamak Monte Carlo fast ion module NUBEAM in the National Transport Code Collaboration library publication-title: Phys. Commun. doi: 10.1016/j.cpc.2003.11.002 – volume: 60 start-page: 086006 year: 2020 ident: CR10 article-title: On hybrid scenarios in KSTAR publication-title: Nucl. Fusion doi: 10.1088/1741-4326/ab8b7a – volume: 45 start-page: 110 year: 2005 ident: CR49 article-title: Impact of the α parameter on the microstability of internal transport barriers publication-title: Nucl. Fusion doi: 10.1088/0029-5515/45/2/005 – ident: CR69 – volume: 375 start-page: 3095 year: 2011 end-page: 3099 ident: CR63 article-title: Neutron emission from KSTAR ohmically heated plasmas publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2011.06.065 – volume: 38 start-page: 105 year: 1996 end-page: 128 ident: CR13 article-title: Edge localized modes (ELMs) publication-title: Plasma Phys. Control. Fusion doi: 10.1088/0741-3335/38/2/001 – ident: CR3 – volume: 85 start-page: 11D827 year: 2014 ident: CR62 article-title: Instrumentation for a multichord motional Stark effect diagnostic in KSTAR publication-title: Rev. Sci. Instrum. doi: 10.1063/1.4891161 – volume: 36 start-page: 719 year: 1994 ident: CR80 article-title: Survey of theories of anomalous transport publication-title: Plasma Phys. Control. Fusion doi: 10.1088/0741-3335/36/5/002 – volume: 1 start-page: 1415 year: 1994 ident: CR40 article-title: Stability of high beta tokamak plasmas publication-title: Phys. Plasmas doi: 10.1063/1.870691 – volume: 70 start-page: 3435 year: 1993 ident: CR12 article-title: High internal inductance improved confinement H-mode discharges obtained with an elongation ramp technique in the DIII-D tokamak publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.70.3435 – volume: 80 start-page: 5544 year: 1998 ident: CR24 article-title: Internal transport barriers in JET deuterium-tritium plasmas publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.80.5544 – volume: 44 start-page: R1 year: 2004 end-page: R49 ident: CR47 article-title: A review of internal transport barrier physics for steady-state operation of tokamaks publication-title: Nucl. Fusion doi: 10.1088/0029-5515/44/4/R01 – volume: 14 start-page: 1223 year: 2018 end-page: 1228 ident: CR18 article-title: 3D field phase-space control in tokamak plasmas publication-title: Nat. Phys. doi: 10.1038/s41567-018-0268-8 – volume: 86 start-page: 141 year: 2011 end-page: 150 ident: CR41 article-title: Analysis of high β regimes for DEMO publication-title: Fusion Eng. Des. doi: 10.1016/j.fusengdes.2010.09.025 – volume: 27 start-page: 1461 year: 1987 ident: CR35 article-title: Ideal MHD stability properties of pressure driven modes in low shear tokamaks publication-title: Nucl. Fusion doi: 10.1088/0029-5515/27/9/009 – volume: 75 start-page: 4421 year: 1995 ident: CR86 article-title: Enhanced confinement and stability in DIII-D discharges with reversed magnetic shear publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.75.4421 – volume: 79 start-page: 10F117 year: 2008 ident: CR56 article-title: Magnetic diagnostics for the first plasma operation in Korea Superconducting Tokamak Advanced Research publication-title: Rev. Sci. Instrum. doi: 10.1063/1.2953587 – volume: 30 start-page: 1999 year: 1990 ident: CR32 article-title: Scalings for tokamak energy confinement publication-title: Nucl. Fusion doi: 10.1088/0029-5515/30/10/001 – volume: 25 start-page: 1611 year: 1985 ident: CR57 article-title: Reconstruction of current profile parameters and plasma shapes in tokamaks publication-title: Nucl. Fusion doi: 10.1088/0029-5515/25/11/007 – volume: 15 start-page: 052307 year: 2008 ident: CR74 article-title: Gyrokinetic calculations of diffusive and convective transport of α particles with a slowing-down distribution function publication-title: Phys. Plasmas doi: 10.1063/1.2913610 – volume: 209 start-page: 118460 year: 2020 ident: CR1 article-title: Socioeconomic and environmental impacts of bringing the sun to earth: a sustainability analysis of a fusion power plant deployment publication-title: Energy doi: 10.1016/j.energy.2020.118460 – ident: CR20 – volume: 55 start-page: 043004 year: 2015 ident: 5008_CR51 publication-title: Nucl. Fusion doi: 10.1088/0029-5515/55/4/043004 – volume: 61 start-page: 126051 year: 2021 ident: 5008_CR29 publication-title: Nucl. Fusion doi: 10.1088/1741-4326/ac3366 – ident: 5008_CR72 – volume: 43 start-page: 1110 year: 2003 ident: 5008_CR14 publication-title: Nucl. Fusion doi: 10.1088/0029-5515/43/10/012 – volume: 40 start-page: 1145 year: 2000 ident: 5008_CR25 publication-title: Nucl. Fusion doi: 10.1088/0029-5515/40/6/312 – volume: 97 start-page: 219 year: 1996 ident: 5008_CR75 publication-title: Comput. Phys. Commun. doi: 10.1016/0010-4655(96)00046-X – volume: 9 start-page: 817 year: 2013 ident: 5008_CR9 publication-title: Nat. Phys. doi: 10.1038/nphys2795 – volume: 72 start-page: 3662 year: 1994 ident: 5008_CR22 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.72.3662 – volume: 54 start-page: 083012 year: 2014 ident: 5008_CR42 publication-title: Nucl. Fusion doi: 10.1088/0029-5515/54/8/083012 – volume: 9 year: 2018 ident: 5008_CR82 publication-title: Nat. Commun. doi: 10.1038/s41467-018-05839-5 – volume: 4 start-page: 1499 year: 1997 ident: 5008_CR19 publication-title: Phys. Plasmas doi: 10.1063/1.872367 – ident: 5008_CR69 doi: 10.1088/1741-4326/ac1690 – volume: 41 start-page: 1515 year: 2001 ident: 5008_CR4 publication-title: Nucl. Fusion doi: 10.1088/0029-5515/41/10/318 – ident: 5008_CR20 doi: 10.1088/0741-3335/44/5A/305 – volume: 56 start-page: 056003 year: 2016 ident: 5008_CR26 publication-title: Nucl. Fusion doi: 10.1088/0029-5515/56/5/056003 – volume: 89 start-page: 043504 year: 2018 ident: 5008_CR73 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.5004217 – volume: 15 start-page: 052307 year: 2008 ident: 5008_CR74 publication-title: Phys. Plasmas doi: 10.1063/1.2913610 – volume: 51 start-page: 053018 year: 2011 ident: 5008_CR38 publication-title: Nucl. Fusion doi: 10.1088/0029-5515/51/5/053018 – volume: 27 start-page: 1461 year: 1987 ident: 5008_CR35 publication-title: Nucl. Fusion doi: 10.1088/0029-5515/27/9/009 – volume: 39 start-page: 2175 year: 1999 ident: 5008_CR33 publication-title: Nucl. Fusion doi: 10.1088/0029-5515/39/12/302 – volume: 5 start-page: 520 year: 1993 ident: 5008_CR79 publication-title: Phys. Plasmas – volume: 44 start-page: R1 year: 2004 ident: 5008_CR47 publication-title: Nucl. Fusion doi: 10.1088/0029-5515/44/4/R01 – volume: 85 start-page: 11D407 year: 2014 ident: 5008_CR59 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.4890258 – volume: 180 start-page: 2650 year: 2009 ident: 5008_CR48 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2009.07.001 – volume: 78 start-page: 1472 year: 1997 ident: 5008_CR81 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.78.1472 – volume: 85 start-page: 11D827 year: 2014 ident: 5008_CR62 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.4891161 – volume: 49 start-page: 1408 year: 1982 ident: 5008_CR5 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.49.1408 – volume: 209 start-page: 118460 year: 2020 ident: 5008_CR1 publication-title: Energy doi: 10.1016/j.energy.2020.118460 – ident: 5008_CR58 – volume: 45 start-page: 1637 year: 2003 ident: 5008_CR15 publication-title: Plasma Phys. Control. Fusion doi: 10.1088/0741-3335/45/9/306 – volume: 55 start-page: 053007 year: 2015 ident: 5008_CR45 publication-title: Nucl. Fusion doi: 10.1088/0029-5515/55/5/053007 – volume: 1 start-page: 1185 year: 1989 ident: 5008_CR78 publication-title: Phys. Plasmas – volume: 87 start-page: 245001 year: 2001 ident: 5008_CR87 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.87.245001 – volume: 88 start-page: 145004 year: 2002 ident: 5008_CR34 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.88.145004 – volume: 16 start-page: 112503 year: 2009 ident: 5008_CR77 publication-title: Phys. Plasmas doi: 10.1063/1.3257907 – volume: 70 start-page: 3435 year: 1993 ident: 5008_CR12 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.70.3435 – volume: 75 start-page: 4421 year: 1995 ident: 5008_CR86 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.75.4421 – volume: 1 start-page: 1415 year: 1994 ident: 5008_CR40 publication-title: Phys. Plasmas doi: 10.1063/1.870691 – volume: 54 start-page: 013015 year: 2014 ident: 5008_CR11 publication-title: Nucl. Fusion doi: 10.1088/0029-5515/54/1/013015 – volume: 375 start-page: 3095 year: 2011 ident: 5008_CR63 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2011.06.065 – ident: 5008_CR3 – volume: 55 start-page: 123025 year: 2015 ident: 5008_CR30 publication-title: Nucl. Fusion doi: 10.1088/0029-5515/55/12/123025 – volume: 45 start-page: 110 year: 2005 ident: 5008_CR49 publication-title: Nucl. Fusion doi: 10.1088/0029-5515/45/2/005 – volume: 86 start-page: 1993 year: 2011 ident: 5008_CR53 publication-title: Fusion Eng. Des. doi: 10.1016/j.fusengdes.2011.03.058 – volume: 16 start-page: 056103 year: 2009 ident: 5008_CR83 publication-title: Phys. Plasmas doi: 10.1063/1.3080721 – volume: 60 start-page: 086006 year: 2020 ident: 5008_CR10 publication-title: Nucl. Fusion doi: 10.1088/1741-4326/ab8b7a – volume: 324 start-page: 73 year: 2016 ident: 5008_CR50 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2016.07.039 – volume: 77 start-page: 2710 year: 1996 ident: 5008_CR36 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.2710 – volume: 85 start-page: 11E413 year: 2014 ident: 5008_CR60 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.4890402 – volume: 79 start-page: 10F117 year: 2008 ident: 5008_CR56 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.2953587 – volume: 36 start-page: 719 year: 1994 ident: 5008_CR80 publication-title: Plasma Phys. Control. Fusion doi: 10.1088/0741-3335/36/5/002 – volume: 75 start-page: 4417 year: 1995 ident: 5008_CR85 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.75.4417 – volume: 52 start-page: 045007 year: 2010 ident: 5008_CR44 publication-title: Plasma Phys. Control. Fusion doi: 10.1088/0741-3335/52/4/045007 – ident: 5008_CR54 doi: 10.1016/j.fusengdes.2019.111395 – volume: 4 start-page: 3230 year: 1997 ident: 5008_CR71 publication-title: Phys. Plasmas doi: 10.1063/1.872465 – volume: 14 start-page: 1223 year: 2018 ident: 5008_CR18 publication-title: Nat. Phys. doi: 10.1038/s41567-018-0268-8 – volume: 84 start-page: 1463 year: 2000 ident: 5008_CR21 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.84.1463 – volume: 86 start-page: 141 year: 2011 ident: 5008_CR41 publication-title: Fusion Eng. Des. doi: 10.1016/j.fusengdes.2010.09.025 – volume: 58 start-page: 016019 year: 2018 ident: 5008_CR28 publication-title: Nucl. Fusion doi: 10.1088/1741-4326/aa90c1 – volume: 45 start-page: 783 year: 2005 ident: 5008_CR52 publication-title: Nucl. Fusion doi: 10.1088/0029-5515/45/8/003 – volume: 51 start-page: 113009 year: 2011 ident: 5008_CR8 publication-title: Nucl. Fusion doi: 10.1088/0029-5515/51/11/113009 – ident: 5008_CR2 – volume: 33 start-page: 251 year: 1993 ident: 5008_CR27 publication-title: Nucl. Fusion doi: 10.1088/0029-5515/33/2/I06 – volume: 25 start-page: 1611 year: 1985 ident: 5008_CR57 publication-title: Nucl. Fusion doi: 10.1088/0029-5515/25/11/007 – volume: 80 start-page: 5544 year: 1998 ident: 5008_CR24 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.80.5544 – volume: 38 start-page: 1149 year: 1998 ident: 5008_CR37 publication-title: Nucl. Fusion doi: 10.1088/0029-5515/38/8/303 – volume: 30 start-page: 1999 year: 1990 ident: 5008_CR32 publication-title: Nucl. Fusion doi: 10.1088/0029-5515/30/10/001 – volume: 2 start-page: 419 year: 2006 ident: 5008_CR16 publication-title: Nat. Phys. doi: 10.1038/nphys312 – volume: 47 start-page: A19 year: 2005 ident: 5008_CR68 publication-title: Plasma Phys. Control. Fusion doi: 10.1088/0741-3335/47/5A/003 – volume: 109 start-page: 035004 year: 2012 ident: 5008_CR17 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.035004 – volume: 5 start-page: 973 year: 1998 ident: 5008_CR76 publication-title: Phys. Plasmas doi: 10.1063/1.872666 – volume: 48 start-page: 997 year: 2005 ident: 5008_CR65 publication-title: Fusion Sci. Technol. doi: 10.13182/FST05-A1055 – volume: 111 start-page: 155001 year: 2013 ident: 5008_CR43 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.155001 – volume: 83 start-page: 02B102 year: 2012 ident: 5008_CR66 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.3660254 – volume: 38 start-page: 105 year: 1996 ident: 5008_CR13 publication-title: Plasma Phys. Control. Fusion doi: 10.1088/0741-3335/38/2/001 – volume: 52 start-page: 114001 year: 2012 ident: 5008_CR64 publication-title: Nucl. Fusion doi: 10.1088/0029-5515/52/11/114001 – volume: 43 start-page: A95 year: 2001 ident: 5008_CR31 publication-title: Plasma Phys. Control. Fusion doi: 10.1088/0741-3335/43/12A/307 – volume: 159 start-page: 157 year: 2004 ident: 5008_CR70 publication-title: Phys. Commun. doi: 10.1016/j.cpc.2003.11.002 – volume: 16 start-page: 890 year: 2020 ident: 5008_CR7 publication-title: Nat. Phys. doi: 10.1038/s41567-020-0940-7 – ident: 5008_CR39 – volume: 92 start-page: 043559 year: 2021 ident: 5008_CR61 publication-title: Rev. Sci. Instrum. doi: 10.1063/5.0043811 – volume: 1689 start-page: 030014 year: 2015 ident: 5008_CR67 publication-title: AIP Conf. Proc. doi: 10.1063/1.4936479 – volume: 58 start-page: 1004 year: 1987 ident: 5008_CR23 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.58.1004 – volume: 23 start-page: 120703 year: 2016 ident: 5008_CR84 publication-title: Phys. Plasmas doi: 10.1063/1.4972088 – volume: 47 start-page: S1 year: 2007 ident: 5008_CR6 publication-title: Nucl. Fusion doi: 10.1088/0029-5515/47/6/S01 – volume: 127 start-page: 025002 year: 2021 ident: 5008_CR46 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.127.025002 – volume: 48 start-page: 1388 year: 2020 ident: 5008_CR55 publication-title: IEEE Trans. Plasma Sci. doi: 10.1109/TPS.2020.2964776 |
SSID | ssj0005174 |
Score | 2.6378522 |
Snippet | Nuclear fusion is one of the most attractive alternatives to carbon-dependent energy sources
1
. Harnessing energy from nuclear fusion in a large reactor... Nuclear fusion is one of the most attractive alternatives to carbon-dependent energy sources1. Harnessing energy from nuclear fusion in a large reactor scale,... Nuclear fusion is one of the most attractive alternatives to carbon-dependent energy sources. Harnessing energy from nuclear fusion in a large reactor scale,... |
SourceID | osti proquest crossref springer |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 269 |
SubjectTerms | 639/4077/4091/4093 639/766/1960/1136 70 PLASMA PHYSICS AND FUSION TECHNOLOGY Alternative energy sources Carbon Carbon sources Energy Fusion reactors High temperature Humanities and Social Sciences Ions magnetically confined plasmas multidisciplinary Nuclear fusion nuclear fusion and fission Nuclear reactors Plasma Plasma density Plasma turbulence Reactors Science Science (multidisciplinary) Temperature requirements |
Title | A sustained high-temperature fusion plasma regime facilitated by fast ions |
URI | https://link.springer.com/article/10.1038/s41586-022-05008-1 https://www.proquest.com/docview/2712893644 https://www.proquest.com/docview/2711842920 https://www.osti.gov/servlets/purl/1889862 |
Volume | 609 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7BVkhcKlpApC2VkTiAIGoSZ_04oVJ1qSpRIUSlvVl-5dTuLiR74N8z43i7aiV6iRLHTqx5eMb2-BuA99pWAt1uigtDNrQu2FJ5XpVxGpTrvJCyooPC36_ExXV7OZ_O84Jbn8MqN2NiGqjD0tMa-UkjcSTVHM33l9XvkrJG0e5qTqHxFHYIuoxCuuRcbkM8HqAw50MzFVcnPRouReG3DfYyQZzeM0yTJSrYPafzwT5pMj-zF7Cb_UZ2OjJ6D57ExT48S_Gbvt-HvayjPfuQgaQ_voTLU9aP56NiYIRLXBIQVUZRZt2aFsrYCt3nW8soQcMtFlo_wnZjC_cXH_uBkWC-guvZ-a-zizLnTig9OkhD6bkW1gqppZdtO-1w3iUdYcc5MbUCxUcpJ-suKh1xzuQaVTneofvV4V0MzvPXMFksF_ENMBEqLxvOgxe6laHTtrZNV2Fx8HXXtAXUG8IZn4HFKb_FjUkb3FyZkdgGiW0SsU1dwKe7NqsRVuPR2ofED4NOASHbegoB8oOpldI4ISvgaMMmkxWwN1txKeDd3WtUHdoPsYu4XKc6OL-ldF0FfN6wd_uJ__fn4PE_HsLzJgmWRqk7gsnwZx3fousyuOMkn3hVZzVdZ9-OYefr-dWPn_8A0jPqJQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VRQguiBZQQ0sxEkggiJrY2dg-oKoCqu3z1Ep7M7bjnOjuQrJC_VP8RmacpKtWorfe8rCdaB6eGXv8DcA7bbMS3W7KC0M2FK6yqfIiS8O4Uq72pZQZHRQ-PSsnF8XRdDxdg7_DWRhKqxzmxDhRV3NPa-S7XOJMqgWa773Fr5SqRtHu6lBCoxOL43D1B0O25svhN-Tve84Pvp9_naR9VYHUo-vQpl7o0tpSaullUYxrjEikI1Q1V45tiYRVysm8DkoHjCYcV5kTNTomNV6FynmB4z6Ah2h4M9IoOZWrlJJbqM_9IZ1MqN0GDaWidF-OVImQqjcM4WiOCn3Dyb21LxvN3cEzeNr7qWy_E6x1WAuzDXgU80V9swHr_ZzQsA89cPXH53C0z5ruPFaoGOEgpwR81aM2s3pJC3Nsge76pWVUEOISH1rfwYRjD3eFt03LSBFewMW9UPUljGbzWdgEVlaZl1yIype6kFWtbW55neHjyuc1LxLIB8IZ3wOZUz2NnyZuqAtlOmIbJLaJxDZ5Ap-u-yw6GI87W28RPww6IYSk6ynlyLcmV0pjAJjA9sAm0yt8Y1bimcDb69eoqrT_YmdhvoxtMJ6m8mAJfB7Yuxri___z6u4vvoHHk_PTE3NyeHa8BU94FDKNErgNo_b3MrxGt6l1O1FWGfy4b-X4B6SNI0o |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VRaBeKlpApC1gJJBAEG0SJ7FzQKiirPqAigOV9mb8PNHdbZNV1b_Gr2Mmj65aid56y8N2onnYM57xNwBvK52UaHZTXhiyITdOx9LyJPaFkybYUoiEDgr_OCkPTvOjaTFdg7_DWRhKqxzmxHaidnNLe-TjTOBMWnFcvsehT4v4uT_5sjiPqYIURVqHchqdiBz7q0t03-rPh_vI63dZNvn26-tB3FcYiC2aEU1seVVqXYpKWJHnRUDvRBhCWDNloUskspRGpMHLyqNnYTKZGB7QSAl45Z2xHMd9AA8FL1LSMTEVq_SSWwjQ_YGdhMtxjYumpNTfDCnUwqveWBRHc1TuGwbvrRhtu_RNnsBGb7OyvU7INmHNz7bgUZs7aust2Oznh5q970GsPzyFoz1Wd2ezvGOEiRwTCFaP4MzCkjbp2AJN9zPNqDjEGT7UtoMMxx7mCm_rhpFSPIPTe6HqcxjN5jP_AljpEisyzp0tq1y4UOlUZyHBx86mIcsjSAfCKduDmlNtjT-qDa5zqTpiKyS2aomt0gg-XvdZdJAed7beIX4oNEgIVddS-pFtVCplhc5gBLsDm1Sv_LVaiWoEb65fo9pSLEbP_HzZtkHfmkqFRfBpYO9qiP__z_bdX3wNj1Et1PfDk-MdWM9aGatQAHdh1Fws_Uu0oBrzqhVVBr_vWzf-AWmNJ4A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+sustained+high-temperature+fusion+plasma+regime+facilitated+by+fast+ions&rft.jtitle=Nature+%28London%29&rft.au=Han%2C+H.&rft.au=Park%2C+S.+J.&rft.au=Sung%2C+C.&rft.au=Kang%2C+J.&rft.date=2022-09-08&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=609&rft.issue=7926&rft.spage=269&rft.epage=275&rft_id=info:doi/10.1038%2Fs41586-022-05008-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41586_022_05008_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |