A sustained high-temperature fusion plasma regime facilitated by fast ions

Nuclear fusion is one of the most attractive alternatives to carbon-dependent energy sources 1 . Harnessing energy from nuclear fusion in a large reactor scale, however, still presents many scientific challenges despite the many years of research and steady advances in magnetic confinement approache...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 609; no. 7926; pp. 269 - 275
Main Authors Han, H., Park, S. J., Sung, C., Kang, J., Lee, Y. H., Chung, J., Hahm, T. S., Kim, B., Park, J.-K., Bak, J. G., Cha, M. S., Choi, G. J., Choi, M. J., Gwak, J., Hahn, S. H., Jang, J., Lee, K. C., Kim, J. H., Kim, S. K., Kim, W. C., Ko, J., Ko, W. H., Lee, C. Y., Lee, J. H., Lee, J. K., Lee, J. P., Lee, K. D., Park, Y. S., Seo, J., Yang, S. M., Yoon, S. W., Na, Y.-S.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 08.09.2022
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nuclear fusion is one of the most attractive alternatives to carbon-dependent energy sources 1 . Harnessing energy from nuclear fusion in a large reactor scale, however, still presents many scientific challenges despite the many years of research and steady advances in magnetic confinement approaches. State-of-the-art magnetic fusion devices cannot yet achieve a sustainable fusion performance, which requires a high temperature above 100 million kelvin and sufficient control of instabilities to ensure steady-state operation on the order of tens of seconds 2 , 3 . Here we report experiments at the Korea Superconducting Tokamak Advanced Research 4 device producing a plasma fusion regime that satisfies most of the above requirements: thanks to abundant fast ions stabilizing the core plasma turbulence, we generate plasmas at a temperature of 100 million kelvin lasting up to 20 seconds without plasma edge instabilities or impurity accumulation. A low plasma density combined with a moderate input power for operation is key to establishing this regime by preserving a high fraction of fast ions. This regime is rarely subject to disruption and can be sustained reliably even without a sophisticated control, and thus represents a promising path towards commercial fusion reactors. A magnetic confinement regime established at the Korea Superconducting Tokamak Advanced Research device enables the generation of plasmas over 10 8  kelvin for 20 seconds with the aid of fast ions without plasma edge instabilities or impurity accumulation.
AbstractList Nuclear fusion is one of the most attractive alternatives to carbon-dependent energy sources1. Harnessing energy from nuclear fusion in a large reactor scale, however, still presents many scientific challenges despite the many years of research and steady advances in magnetic confinement approaches. State-of-the-art magnetic fusion devices cannot yet achieve a sustainable fusion performance, which requires a high temperature above 100 million kelvin and sufficient control of instabilities to ensure steady-state operation on the order of tens of seconds2,3. Here we report experiments at the Korea Superconducting Tokamak Advanced Research4 device producing a plasma fusion regime that satisfies most of the above requirements: thanks to abundant fast ions stabilizing the core plasma turbulence, we generate plasmas at a temperature of 100 million kelvin lasting up to 20 seconds without plasma edge instabilities or impurity accumulation. A low plasma density combined with a moderate input power for operation is key to establishing this regime by preserving a high fraction of fast ions. This regime is rarely subject to disruption and can be sustained reliably even without a sophisticated control, and thus represents a promising path towards commercial fusion reactors.Nuclear fusion is one of the most attractive alternatives to carbon-dependent energy sources1. Harnessing energy from nuclear fusion in a large reactor scale, however, still presents many scientific challenges despite the many years of research and steady advances in magnetic confinement approaches. State-of-the-art magnetic fusion devices cannot yet achieve a sustainable fusion performance, which requires a high temperature above 100 million kelvin and sufficient control of instabilities to ensure steady-state operation on the order of tens of seconds2,3. Here we report experiments at the Korea Superconducting Tokamak Advanced Research4 device producing a plasma fusion regime that satisfies most of the above requirements: thanks to abundant fast ions stabilizing the core plasma turbulence, we generate plasmas at a temperature of 100 million kelvin lasting up to 20 seconds without plasma edge instabilities or impurity accumulation. A low plasma density combined with a moderate input power for operation is key to establishing this regime by preserving a high fraction of fast ions. This regime is rarely subject to disruption and can be sustained reliably even without a sophisticated control, and thus represents a promising path towards commercial fusion reactors.
Nuclear fusion is one of the most attractive alternatives to carbon-dependent energy sources1. Harnessing energy from nuclear fusion in a large reactor scale, however, still presents many scientific challenges despite the many years of research and steady advances in magnetic confinement approaches. State-of-the-art magnetic fusion devices cannot yet achieve a sustainable fusion performance, which requires a high temperature above 100 million kelvin and sufficient control of instabilities to ensure steady-state operation on the order oftens of seconds2,3. Here we report experiments at the Korea Superconducting Tokamak Advanced Research4 device producing a plasma fusion regime that satisfies most ofthe above requirements: thanks to abundant fast ions stabilizing the core plasma turbulence, we generate plasmas at a temperature of 100 million kelvin lasting up to 20 seconds without plasma edge instabilities or impurity accumulation. A low plasma density combined with a moderate input power for operation is key to establishing this regime by preserving a high fraction of fast ions. This regime is rarely subject to disruption and can be sustained reliably even without a sophisticated control, and thus represents a promising path towards commercial fusion reactors.
Nuclear fusion is one of the most attractive alternatives to carbon-dependent energy sources. Harnessing energy from nuclear fusion in a large reactor scale, however, still presents many scientific challenges despite the many years of research and steady advances in magnetic confinement approaches. State-of-the-art magnetic fusion devices cannot yet achieve a sustainable fusion performance, which requires a high temperature above 100 million kelvin and sufficient control of instabilities to ensure steady-state operation on the order of tens of seconds. Here, in this study, we report experiments at the Korea Superconducting Tokamak Advanced Research device producing a plasma fusion regime that satisfies most of the above requirements: thanks to abundant fast ions stabilizing the core plasma turbulence, we generate plasmas at a temperature of 100 million kelvin lasting up to 20 seconds without plasma edge instabilities or impurity accumulation. A low plasma density combined with a moderate input power for operation is key to establishing this regime by preserving a high fraction of fast ions. This regime is rarely subject to disruption and can be sustained reliably even without a sophisticated control, and thus represents a promising path towards commercial fusion reactors.
Nuclear fusion is one of the most attractive alternatives to carbon-dependent energy sources 1 . Harnessing energy from nuclear fusion in a large reactor scale, however, still presents many scientific challenges despite the many years of research and steady advances in magnetic confinement approaches. State-of-the-art magnetic fusion devices cannot yet achieve a sustainable fusion performance, which requires a high temperature above 100 million kelvin and sufficient control of instabilities to ensure steady-state operation on the order of tens of seconds 2 , 3 . Here we report experiments at the Korea Superconducting Tokamak Advanced Research 4 device producing a plasma fusion regime that satisfies most of the above requirements: thanks to abundant fast ions stabilizing the core plasma turbulence, we generate plasmas at a temperature of 100 million kelvin lasting up to 20 seconds without plasma edge instabilities or impurity accumulation. A low plasma density combined with a moderate input power for operation is key to establishing this regime by preserving a high fraction of fast ions. This regime is rarely subject to disruption and can be sustained reliably even without a sophisticated control, and thus represents a promising path towards commercial fusion reactors. A magnetic confinement regime established at the Korea Superconducting Tokamak Advanced Research device enables the generation of plasmas over 10 8  kelvin for 20 seconds with the aid of fast ions without plasma edge instabilities or impurity accumulation.
Author Lee, K. D.
Lee, J. P.
Park, Y. S.
Choi, M. J.
Yoon, S. W.
Choi, G. J.
Ko, W. H.
Kim, S. K.
Kim, W. C.
Kim, J. H.
Sung, C.
Hahm, T. S.
Park, S. J.
Lee, C. Y.
Lee, Y. H.
Cha, M. S.
Jang, J.
Gwak, J.
Han, H.
Lee, J. K.
Kang, J.
Lee, K. C.
Chung, J.
Hahn, S. H.
Ko, J.
Bak, J. G.
Park, J.-K.
Na, Y.-S.
Seo, J.
Yang, S. M.
Kim, B.
Lee, J. H.
Author_xml – sequence: 1
  givenname: H.
  orcidid: 0000-0001-6506-9824
  surname: Han
  fullname: Han, H.
  organization: Korea Institute of Fusion Energy
– sequence: 2
  givenname: S. J.
  orcidid: 0000-0002-4453-0439
  surname: Park
  fullname: Park, S. J.
  organization: Department of Nuclear Engineering, Seoul National University
– sequence: 3
  givenname: C.
  orcidid: 0000-0002-8122-0018
  surname: Sung
  fullname: Sung, C.
  organization: Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology
– sequence: 4
  givenname: J.
  surname: Kang
  fullname: Kang, J.
  organization: Korea Institute of Fusion Energy
– sequence: 5
  givenname: Y. H.
  surname: Lee
  fullname: Lee, Y. H.
  organization: Korea Institute of Fusion Energy, Department of Nuclear Engineering, Seoul National University
– sequence: 6
  givenname: J.
  surname: Chung
  fullname: Chung, J.
  organization: Korea Institute of Fusion Energy
– sequence: 7
  givenname: T. S.
  surname: Hahm
  fullname: Hahm, T. S.
  organization: Department of Nuclear Engineering, Seoul National University
– sequence: 8
  givenname: B.
  surname: Kim
  fullname: Kim, B.
  organization: Department of Nuclear Engineering, Seoul National University
– sequence: 9
  givenname: J.-K.
  surname: Park
  fullname: Park, J.-K.
  organization: Princeton Plasma Physics Laboratory
– sequence: 10
  givenname: J. G.
  surname: Bak
  fullname: Bak, J. G.
  organization: Korea Institute of Fusion Energy
– sequence: 11
  givenname: M. S.
  surname: Cha
  fullname: Cha, M. S.
  organization: Department of Nuclear Engineering, Seoul National University
– sequence: 12
  givenname: G. J.
  surname: Choi
  fullname: Choi, G. J.
  organization: Department of Nuclear Engineering, Seoul National University
– sequence: 13
  givenname: M. J.
  orcidid: 0000-0002-2825-6484
  surname: Choi
  fullname: Choi, M. J.
  organization: Korea Institute of Fusion Energy
– sequence: 14
  givenname: J.
  surname: Gwak
  fullname: Gwak, J.
  organization: Department of Nuclear Engineering, Seoul National University
– sequence: 15
  givenname: S. H.
  orcidid: 0000-0001-8115-9248
  surname: Hahn
  fullname: Hahn, S. H.
  organization: Korea Institute of Fusion Energy
– sequence: 16
  givenname: J.
  surname: Jang
  fullname: Jang, J.
  organization: Korea Institute of Fusion Energy
– sequence: 17
  givenname: K. C.
  surname: Lee
  fullname: Lee, K. C.
  organization: Korea Institute of Fusion Energy
– sequence: 18
  givenname: J. H.
  orcidid: 0000-0001-7792-3581
  surname: Kim
  fullname: Kim, J. H.
  organization: Korea Institute of Fusion Energy
– sequence: 19
  givenname: S. K.
  surname: Kim
  fullname: Kim, S. K.
  organization: Princeton Plasma Physics Laboratory, Princeton University
– sequence: 20
  givenname: W. C.
  surname: Kim
  fullname: Kim, W. C.
  organization: Korea Institute of Fusion Energy
– sequence: 21
  givenname: J.
  orcidid: 0000-0002-5501-3939
  surname: Ko
  fullname: Ko, J.
  organization: Korea Institute of Fusion Energy, Department of Accelerator and Nuclear Fusion Physical Engineering, Korean University of Science and Technology
– sequence: 22
  givenname: W. H.
  surname: Ko
  fullname: Ko, W. H.
  organization: Korea Institute of Fusion Energy, Department of Accelerator and Nuclear Fusion Physical Engineering, Korean University of Science and Technology
– sequence: 23
  givenname: C. Y.
  orcidid: 0000-0003-0704-704X
  surname: Lee
  fullname: Lee, C. Y.
  organization: Department of Nuclear Engineering, Seoul National University
– sequence: 24
  givenname: J. H.
  surname: Lee
  fullname: Lee, J. H.
  organization: Korea Institute of Fusion Energy, Department of Accelerator and Nuclear Fusion Physical Engineering, Korean University of Science and Technology
– sequence: 25
  givenname: J. H.
  surname: Lee
  fullname: Lee, J. H.
  organization: Korea Institute of Fusion Energy
– sequence: 26
  givenname: J. K.
  orcidid: 0000-0002-1252-7075
  surname: Lee
  fullname: Lee, J. K.
  organization: Korea Institute of Fusion Energy, Department of Accelerator and Nuclear Fusion Physical Engineering, Korean University of Science and Technology
– sequence: 27
  givenname: J. P.
  orcidid: 0000-0002-4382-4515
  surname: Lee
  fullname: Lee, J. P.
  organization: Department of Nuclear Engineering, Hanyang University
– sequence: 28
  givenname: K. D.
  surname: Lee
  fullname: Lee, K. D.
  organization: Korea Institute of Fusion Energy
– sequence: 29
  givenname: Y. S.
  surname: Park
  fullname: Park, Y. S.
  organization: Department of Applied Physics and Applied Mathematics, Columbia University
– sequence: 30
  givenname: J.
  orcidid: 0000-0003-0635-0282
  surname: Seo
  fullname: Seo, J.
  organization: Department of Nuclear Engineering, Seoul National University
– sequence: 31
  givenname: S. M.
  surname: Yang
  fullname: Yang, S. M.
  organization: Princeton Plasma Physics Laboratory
– sequence: 32
  givenname: S. W.
  surname: Yoon
  fullname: Yoon, S. W.
  organization: Korea Institute of Fusion Energy
– sequence: 33
  givenname: Y.-S.
  orcidid: 0000-0001-7270-3846
  surname: Na
  fullname: Na, Y.-S.
  email: ysna@snu.ac.kr
  organization: Department of Nuclear Engineering, Seoul National University
BackLink https://www.osti.gov/servlets/purl/1889862$$D View this record in Osti.gov
BookMark eNp9kcFu3CAQhlGVSt2kfYGerPbSCylgDONjFDVto0i9tGeE2fEukY23DD7k7cvWlSrlkBMwfB9i5r9kF2lJyNh7Ka6laOEzadmB4UIpLjohgMtXbCe1NVwbsBdsJ4QCLqA1b9gl0aMQopNW79j9TUMrFR8T7ptjPBx5wfmE2Zc1YzOuFJfUnCZPs28yHuJciz7EKRZfqjE81SOVplL0lr0e_UT47t96xX7dffl5-40__Pj6_fbmgQet2sJD2xvvje1tsFp3oxHSDkobOZjOG_R7gMHKEaFHBfUGxNCOArqx7nA_hPaKfdjeXahERyEWDMewpIShOAnQg1EV-rRBp7z8XpGKmyMFnCafcFnJKSslaNUrUdGPz9DHZc2ptnCmFPSt0bpSsFEhL0QZRxfOM6iNl-zj5KRw5yTcloSrSbi_SThZVfVMPeU4-_z0stRuElU4HTD__9UL1h8oHZvm
CitedBy_id crossref_primary_10_1088_1741_4326_ad3f2f
crossref_primary_10_1016_j_fusengdes_2024_114431
crossref_primary_10_1088_1741_4326_ad91c5
crossref_primary_10_1088_1741_4326_ada811
crossref_primary_10_1016_j_fusengdes_2024_114350
crossref_primary_10_1088_1361_6587_acda5d
crossref_primary_10_1016_j_net_2024_08_051
crossref_primary_10_1088_1741_4326_acf5da
crossref_primary_10_1088_1741_4326_adacfc
crossref_primary_10_1038_s41567_024_02737_0
crossref_primary_10_1063_5_0151466
crossref_primary_10_1088_1741_4326_acffda
crossref_primary_10_1088_1741_4326_ad8ad3
crossref_primary_10_1016_j_ijhydene_2025_03_156
crossref_primary_10_1038_s41467_024_45454_1
crossref_primary_10_1016_j_fusengdes_2022_113416
crossref_primary_10_1088_1741_4326_acfd40
crossref_primary_10_1007_s41614_022_00106_z
crossref_primary_10_1088_1741_4326_acf677
crossref_primary_10_1038_s41586_024_07024_9
crossref_primary_10_1103_PhysRevLett_132_065106
crossref_primary_10_1088_2058_6272_ad663b
crossref_primary_10_1088_1741_4326_acde8c
crossref_primary_10_1109_TPS_2024_3390159
crossref_primary_10_1038_s41467_024_52182_z
crossref_primary_10_7498_aps_73_20240831
crossref_primary_10_3389_fphy_2023_1225787
crossref_primary_10_1088_1361_6587_ad3c1e
crossref_primary_10_1007_s43673_023_00103_5
crossref_primary_10_1016_j_fusengdes_2023_113549
crossref_primary_10_1088_1741_4326_acf1b0
crossref_primary_10_1088_1741_4326_ad7304
crossref_primary_10_1088_1741_4326_ad7865
crossref_primary_10_1088_1741_4326_ad0f5f
crossref_primary_10_1088_1741_4326_ad8ced
crossref_primary_10_1088_2632_2153_ad605e
crossref_primary_10_1038_s41567_024_02715_6
crossref_primary_10_1016_j_nima_2025_170208
crossref_primary_10_2298_TSCI2403999Z
crossref_primary_10_1017_S0022377823000776
crossref_primary_10_1016_j_fusengdes_2025_114808
crossref_primary_10_1007_s40042_023_00839_1
crossref_primary_10_1063_5_0201440
crossref_primary_10_1088_1741_4326_ad0606
crossref_primary_10_1063_5_0184007
crossref_primary_10_1038_s41467_024_48415_w
crossref_primary_10_1016_j_fusengdes_2024_114646
crossref_primary_10_1088_1361_6587_ace849
crossref_primary_10_1360_TB_2023_0370
crossref_primary_10_7498_aps_72_20230721
crossref_primary_10_1088_1741_4326_ad703d
crossref_primary_10_1088_1741_4326_ad521a
crossref_primary_10_1017_S0022377823001216
crossref_primary_10_1016_j_fusengdes_2023_113803
crossref_primary_10_1016_j_nme_2023_101368
crossref_primary_10_1016_j_physleta_2025_130278
crossref_primary_10_1088_1741_4326_acff78
crossref_primary_10_1007_s41614_024_00169_0
crossref_primary_10_1088_1741_4326_ad3b1d
Cites_doi 10.1063/1.872367
10.1063/5.0043811
10.1063/1.3257907
10.1038/nphys312
10.1088/1741-4326/aa90c1
10.1038/s41467-018-05839-5
10.1088/0029-5515/45/8/003
10.1103/PhysRevLett.58.1004
10.1088/0741-3335/52/4/045007
10.13182/FST05-A1055
10.1088/0029-5515/43/10/012
10.1088/0029-5515/33/2/I06
10.1063/1.872666
10.1063/1.5004217
10.1088/0029-5515/56/5/056003
10.1088/0029-5515/51/5/053018
10.1088/1741-4326/ac3366
10.1088/0029-5515/51/11/113009
10.1038/nphys2795
10.1103/PhysRevLett.88.145004
10.1103/PhysRevLett.127.025002
10.1103/PhysRevLett.111.155001
10.1016/j.jcp.2016.07.039
10.1088/0029-5515/52/11/114001
10.1103/PhysRevLett.78.1472
10.1016/j.fusengdes.2011.03.058
10.1063/1.4890402
10.1088/0029-5515/54/1/013015
10.1063/1.3080721
10.1088/0741-3335/47/5A/003
10.1016/j.cpc.2009.07.001
10.1109/TPS.2020.2964776
10.1103/PhysRevLett.84.1463
10.1088/0029-5515/54/8/083012
10.1103/PhysRevLett.75.4417
10.1088/0029-5515/39/12/302
10.1088/0029-5515/55/5/053007
10.1063/1.4890258
10.1038/s41567-020-0940-7
10.1103/PhysRevLett.77.2710
10.1063/1.4936479
10.1103/PhysRevLett.109.035004
10.1103/PhysRevLett.49.1408
10.1088/0029-5515/47/6/S01
10.1063/1.872465
10.1088/0029-5515/55/4/043004
10.1088/0741-3335/45/9/306
10.1088/0029-5515/38/8/303
10.1088/0029-5515/41/10/318
10.1103/PhysRevLett.87.245001
10.1088/0029-5515/55/12/123025
10.1063/1.4972088
10.1088/0029-5515/40/6/312
10.1088/0741-3335/43/12A/307
10.1103/PhysRevLett.72.3662
10.1016/0010-4655(96)00046-X
10.1063/1.3660254
10.1016/j.cpc.2003.11.002
10.1088/1741-4326/ab8b7a
10.1088/0029-5515/45/2/005
10.1016/j.physleta.2011.06.065
10.1088/0741-3335/38/2/001
10.1063/1.4891161
10.1088/0741-3335/36/5/002
10.1063/1.870691
10.1103/PhysRevLett.70.3435
10.1103/PhysRevLett.80.5544
10.1088/0029-5515/44/4/R01
10.1038/s41567-018-0268-8
10.1016/j.fusengdes.2010.09.025
10.1088/0029-5515/27/9/009
10.1103/PhysRevLett.75.4421
10.1063/1.2953587
10.1088/0029-5515/30/10/001
10.1088/0029-5515/25/11/007
10.1063/1.2913610
10.1016/j.energy.2020.118460
10.1088/1741-4326/ac1690
10.1088/0741-3335/44/5A/305
10.1016/j.fusengdes.2019.111395
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Nature Publishing Group Sep 8, 2022
2022. The Author(s), under exclusive licence to Springer Nature Limited.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Nature Publishing Group Sep 8, 2022
– notice: 2022. The Author(s), under exclusive licence to Springer Nature Limited.
CorporateAuthor Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States)
CorporateAuthor_xml – name: Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States)
DBID AAYXX
CITATION
3V.
7QG
7QL
7QP
7QR
7RV
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7X2
7X7
7XB
88A
88E
88G
88I
8AF
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M2M
M2O
M2P
M7N
M7P
M7S
MBDVC
NAPCQ
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
PYCSY
Q9U
R05
RC3
S0X
SOI
7X8
OIOZB
OTOTI
DOI 10.1038/s41586-022-05008-1
DatabaseName CrossRef
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
eLibrary
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agriculture Science Database
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Research Library
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
University of Michigan
Genetics Abstracts
SIRS Editorial
Environment Abstracts
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
Agricultural Science Database
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
elibrary
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
University of Michigan
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SIRS Editorial
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Agricultural Science Database


Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1476-4687
EndPage 275
ExternalDocumentID 1889862
10_1038_s41586_022_05008_1
GroupedDBID ---
--Z
-DZ
-ET
-~X
.55
.CO
.XZ
07C
0R~
0WA
123
186
1OL
1VR
29M
2KS
2XV
39C
41X
53G
5RE
6TJ
70F
7RV
7X2
7X7
7XC
85S
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
97L
A6W
A7Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAMNW
AASDW
AAYEP
AAYZH
AAZLF
ABDQB
ABFSI
ABIVO
ABJCF
ABJNI
ABLJU
ABOCM
ABPEJ
ABPPZ
ABUWG
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACWUS
ADBBV
ADFRT
ADUKH
AENEX
AEUYN
AFBBN
AFFNX
AFKRA
AFLOW
AFRAH
AFSHS
AGAYW
AGHSJ
AGHTU
AGOIJ
AGSOS
AHMBA
AHSBF
AIDUJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARAPS
ARMCB
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
AZQEC
BBNVY
BCU
BEC
BENPR
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKSAR
BPHCQ
BVXVI
CCPQU
CJ0
CS3
D1I
D1J
D1K
DU5
DWQXO
E.-
E.L
EAP
EBS
EE.
EMH
EPS
EX3
EXGXG
F5P
FAC
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HG6
HMCUK
HVGLF
HZ~
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
INR
IOF
IPY
ISR
K6-
KB.
KOO
L6V
L7B
LK5
LK8
LSO
M0K
M1P
M2M
M2O
M2P
M7P
M7R
M7S
N9A
NAPCQ
NEPJS
O9-
OBC
OES
OHH
OMK
OVD
P2P
P62
PATMY
PCBAR
PDBOC
PKN
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
R05
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SHXYY
SIXXV
SJFOW
SJN
SNYQT
SOJ
TAE
TAOOD
TBHMF
TDRGL
TEORI
TN5
TSG
TWZ
U5U
UIG
UKHRP
UKR
UMD
UQL
VQA
VVN
WH7
WOW
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YIF
YIN
YNT
YOC
YQT
YR2
YR5
YXB
YZZ
Z5M
ZCA
~02
~7V
~88
~KM
AARCD
AAYXX
ABFSG
ACMFV
ACSTC
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
3V.
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7XB
88A
8FD
8FK
C1K
FR3
H94
K9.
KL.
M7N
MBDVC
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
RC3
SOI
7X8
AADEA
AADWK
AAEXX
AAJMP
AAPBV
AAYJO
ABEEJ
ABGFU
ABGIJ
ABPTK
ABVXF
ACBMV
ACBRV
ACBYP
ACIGE
ACTTH
ACVWB
ADFPY
ADMDM
ADQMX
ADZGE
AEDAW
AEFTE
AFNRJ
AGEZK
AGGBP
AHGBK
AJDOV
AMRJV
B-7
EBO
I-U
ITC
OIOZB
OTOTI
P-O
U1R
YJ6
ZA5
ID FETCH-LOGICAL-c423t-c396aa6797c7445f6017b2461b65a6ead88b71fe89e287b280b3f085f280edbc3
IEDL.DBID 7X7
ISSN 0028-0836
1476-4687
IngestDate Mon Oct 30 03:58:53 EDT 2023
Fri Jul 11 00:04:34 EDT 2025
Wed Aug 13 09:06:07 EDT 2025
Tue Jul 01 02:32:41 EDT 2025
Thu Apr 24 23:10:18 EDT 2025
Fri Feb 21 02:39:26 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7926
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c423t-c396aa6797c7445f6017b2461b65a6ead88b71fe89e287b280b3f085f280edbc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
AC02-09CH11466
USDOE
National Research Foundation of Korea (NRF)
Korea Institute of Fusion Energy (KFE)
ORCID 0000-0002-8122-0018
0000-0001-7270-3846
0000-0003-0635-0282
0000-0001-7792-3581
0000-0002-2825-6484
0000-0001-8115-9248
0000-0002-4453-0439
0000-0002-4382-4515
0000-0002-5501-3939
0000-0003-0704-704X
0000-0002-1252-7075
0000-0001-6506-9824
0000000181159248
0000000243824515
0000000172703846
0000000281220018
0000000312141268
0000000244530439
0000000324198667
0000000165069824
000000030704704X
0000000228256484
0000000212527075
0000000177923581
0000000306350282
0000000255013939
OpenAccessLink https://www.osti.gov/servlets/purl/1889862
PQID 2712893644
PQPubID 40569
PageCount 7
ParticipantIDs osti_scitechconnect_1889862
proquest_miscellaneous_2711842920
proquest_journals_2712893644
crossref_citationtrail_10_1038_s41586_022_05008_1
crossref_primary_10_1038_s41586_022_05008_1
springer_journals_10_1038_s41586_022_05008_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-08
PublicationDateYYYYMMDD 2022-09-08
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-08
  day: 08
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: United States
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Lee (CR4) 2001; 41
Zohm (CR13) 1996; 38
Bourdelle (CR49) 2005; 45
Yushmanov (CR32) 1990; 30
Citrin (CR43) 2013; 111
CR39
Carlstrom (CR65) 2005; 48
Angioni, Peeters (CR74) 2008; 15
Kim (CR52) 2005; 45
Lee (CR53) 2011; 86
Doyle (CR31) 2001; 43
Juhn (CR61) 2021; 92
Wang (CR67) 2015; 1689
CR72
Strachan (CR23) 1987; 58
Chung (CR28) 2018; 58
Lao (CR12) 1993; 70
Garcia (CR45) 2015; 55
Gruber (CR25) 2000; 40
Strait (CR40) 1994; 1
CR2
Okabayashi (CR37) 1998; 38
de Vries (CR38) 2011; 51
CR3
Liu (CR84) 2016; 23
Shimada (CR6) 2007; 47
Burrell (CR19) 1997; 4
Kim (CR42) 2014; 54
Di Siena (CR46) 2021; 127
Diamond (CR81) 1997; 78
Lang (CR14) 2003; 43
Candy, Belli, Bravenec (CR50) 2016; 324
Lao (CR57) 1985; 25
(CR33) 1999; 39
In (CR51) 2015; 55
Chapman, Kemp, Ward (CR41) 2011; 86
Crisanti (CR34) 2002; 88
Na (CR10) 2020; 60
Koide (CR22) 1994; 72
Levinton (CR85) 1995; 75
Pankin (CR70) 2004; 159
Ahn (CR64) 2012; 52
Yoon (CR8) 2011; 51
Banacloche, Gamarra, Lechon, Bustreo (CR1) 2020; 209
Chu (CR36) 1996; 77
Luce (CR11) 2014; 54
Lee (CR56) 2008; 79
McDermott (CR83) 2009; 16
CR58
Miller (CR76) 1998; 5
Guo, Romanelli (CR79) 1993; 5
Romanelli (CR44) 2010; 52
CR54
Peeters (CR48) 2009; 180
Degeling (CR15) 2003; 45
Evans (CR16) 2006; 2
Connor (CR47) 2004; 44
Conway (CR21) 2000; 84
Garofalo (CR30) 2015; 55
Jeon (CR17) 2012; 109
Chung, Ko, De Bock, Jaspers (CR62) 2014; 85
Wagner (CR5) 1982; 49
Park (CR18) 2018; 14
Yoo (CR82) 2018; 9
Fujita (CR87) 2001; 87
Manickam, Pomphrey, Todd (CR35) 1987; 27
Hahm, Tang (CR78) 1989; 1
Li (CR9) 2013; 9
England (CR63) 2011; 375
Yu (CR26) 2016; 56
CR69
Lee (CR59) 2014; 85
Sarwar, Na, Park (CR73) 2018; 89
Barbarino (CR7) 2020; 16
Chung (CR29) 2021; 61
CR20
Connor, Wilson (CR80) 1994; 36
Gormezano (CR24) 1998; 80
Koide (CR27) 1993; 33
Houlberg, Shaing, Hirshman, Zarnstorff (CR71) 1997; 4
Sugama, Watanabe, Nunami (CR77) 2009; 16
Lutjens, Bondeson, Sauter (CR75) 1996; 97
Kwak (CR55) 2020; 48
Ko (CR60) 2014; 85
Jeong (CR66) 2012; 83
Strait (CR86) 1995; 75
Sips (CR68) 2005; 47
J Chung (5008_CR28) 2018; 58
S Banacloche (5008_CR1) 2020; 209
PT Lang (5008_CR14) 2003; 43
5008_CR39
LL Lao (5008_CR57) 1985; 25
J Li (5008_CR9) 2013; 9
T Fujita (5008_CR87) 2001; 87
AM Garofalo (5008_CR30) 2015; 55
M Barbarino (5008_CR7) 2020; 16
PN Yushmanov (5008_CR32) 1990; 30
AC England (5008_CR63) 2011; 375
PH Diamond (5008_CR81) 1997; 78
EJ Strait (5008_CR86) 1995; 75
J Citrin (5008_CR43) 2013; 111
F Wagner (5008_CR5) 1982; 49
JD Strachan (5008_CR23) 1987; 58
C Bourdelle (5008_CR49) 2005; 45
TS Hahm (5008_CR78) 1989; 1
ACC Sips (5008_CR68) 2005; 47
J-G Kwak (5008_CR55) 2020; 48
J-K Park (5008_CR18) 2018; 14
5008_CR72
DL Yu (5008_CR26) 2016; 56
MS Chu (5008_CR36) 1996; 77
TC Luce (5008_CR11) 2014; 54
RL Miller (5008_CR76) 1998; 5
JW Connor (5008_CR47) 2004; 44
J Chung (5008_CR62) 2014; 85
YS Na (5008_CR10) 2020; 60
HJ Lee (5008_CR53) 2011; 86
A Pankin (5008_CR70) 2004; 159
H-S Kim (5008_CR42) 2014; 54
IT Chapman (5008_CR41) 2011; 86
5008_CR20
5008_CR2
YM Jeon (5008_CR17) 2012; 109
J-W Juhn (5008_CR61) 2021; 92
5008_CR69
AW Degeling (5008_CR15) 2003; 45
TN Carlstrom (5008_CR65) 2005; 48
5008_CR3
TE Evans (5008_CR16) 2006; 2
SJ Wang (5008_CR67) 2015; 1689
SC Guo (5008_CR79) 1993; 5
FM Levinton (5008_CR85) 1995; 75
S Sarwar (5008_CR73) 2018; 89
MG Yoo (5008_CR82) 2018; 9
H Sugama (5008_CR77) 2009; 16
JH Lee (5008_CR59) 2014; 85
H Lutjens (5008_CR75) 1996; 97
PC de Vries (5008_CR38) 2011; 51
Y Koide (5008_CR22) 1994; 72
J Manickam (5008_CR35) 1987; 27
EJ Doyle (5008_CR31) 2001; 43
5008_CR54
WA Houlberg (5008_CR71) 1997; 4
GD Conway (5008_CR21) 2000; 84
M Romanelli (5008_CR44) 2010; 52
J-W Ahn (5008_CR64) 2012; 52
5008_CR58
J Garcia (5008_CR45) 2015; 55
J Chung (5008_CR29) 2021; 61
JW Connor (5008_CR80) 1994; 36
Y Koide (5008_CR27) 1993; 33
O Gruber (5008_CR25) 2000; 40
LL Lao (5008_CR12) 1993; 70
F Crisanti (5008_CR34) 2002; 88
M Okabayashi (5008_CR37) 1998; 38
K Kim (5008_CR52) 2005; 45
A Di Siena (5008_CR46) 2021; 127
RM McDermott (5008_CR83) 2009; 16
SW Yoon (5008_CR8) 2011; 51
ITER Physics Expert Group on Confinement and Transport (5008_CR33) 1999; 39
Y In (5008_CR51) 2015; 55
WH Ko (5008_CR60) 2014; 85
EJ Strait (5008_CR40) 1994; 1
GS Lee (5008_CR4) 2001; 41
C Gormezano (5008_CR24) 1998; 80
SH Jeong (5008_CR66) 2012; 83
ZX Liu (5008_CR84) 2016; 23
KH Burrell (5008_CR19) 1997; 4
M Shimada (5008_CR6) 2007; 47
J Candy (5008_CR50) 2016; 324
SG Lee (5008_CR56) 2008; 79
AG Peeters (5008_CR48) 2009; 180
C Angioni (5008_CR74) 2008; 15
H Zohm (5008_CR13) 1996; 38
References_xml – volume: 4
  start-page: 1499
  year: 1997
  ident: CR19
  article-title: Effects of E×B velocity shear and magnetic shear on turbulence and transport in magnetic confinement devices
  publication-title: Phys. Plasmas
  doi: 10.1063/1.872367
– volume: 92
  start-page: 043559
  year: 2021
  ident: CR61
  article-title: Multi-chord IR–visible two-color interferometer on KSTAR
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/5.0043811
– volume: 16
  start-page: 112503
  year: 2009
  ident: CR77
  article-title: Linearized model collision operators for multiple ion species plasmas and gyrokinetic entropy balance equations
  publication-title: Phys. Plasmas
  doi: 10.1063/1.3257907
– volume: 2
  start-page: 419
  year: 2006
  end-page: 423
  ident: CR16
  article-title: Edge stability and transport control with resonant magnetic perturbations in collisionless tokamak plasmas
  publication-title: Nat. Phys.
  doi: 10.1038/nphys312
– volume: 58
  start-page: 016019
  year: 2018
  ident: CR28
  article-title: Formation of the internal transport barrier in KSTAR
  publication-title: Nucl. Fusion
  doi: 10.1088/1741-4326/aa90c1
– ident: CR39
– volume: 9
  year: 2018
  ident: CR82
  article-title: Evidence of a turbulent ExB mixing avalanche mechanism of gas breakdown in strongly magnetized systems
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05839-5
– volume: 45
  start-page: 783
  year: 2005
  ident: CR52
  article-title: Status of the KSTAR superconducting magnet system development
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/45/8/003
– volume: 58
  start-page: 1004
  year: 1987
  ident: CR23
  article-title: High-temperature plasmas in the Tokamak Fusion Test Reactor
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.58.1004
– volume: 52
  start-page: 045007
  year: 2010
  ident: CR44
  article-title: Fast ion stabilization of the ion temperature gradient driven modes in the Joint European Torus hybrid-scenario plasmas: a trigger mechanism for internal transport barrier formation
  publication-title: Plasma Phys. Control. Fusion
  doi: 10.1088/0741-3335/52/4/045007
– volume: 48
  start-page: 997
  year: 2005
  end-page: 1010
  ident: CR65
  article-title: L-H transition and power threshold studies in the DIII-D tokamak
  publication-title: Fusion Sci. Technol.
  doi: 10.13182/FST05-A1055
– volume: 43
  start-page: 1110
  year: 2003
  end-page: 1120
  ident: CR14
  article-title: ELM frequency control by continuous small pellet injection in ASDEX Upgrade
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/43/10/012
– volume: 33
  start-page: 251
  year: 1993
  ident: CR27
  article-title: Characteristic peaked profiles of ion temperature and toroidal rotation velocity in JT-60 hot ion modes
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/33/2/I06
– volume: 5
  start-page: 973
  year: 1998
  ident: CR76
  article-title: Noncircular, finite aspect ratio, local equilibrium model
  publication-title: Phys. Plasmas
  doi: 10.1063/1.872666
– ident: CR54
– volume: 89
  start-page: 043504
  year: 2018
  ident: CR73
  article-title: Effective ion charge (Z ) measurements and impurity behaviour in KSTAR
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.5004217
– volume: 56
  start-page: 056003
  year: 2016
  ident: CR26
  article-title: Ion internal transport barrier in neutral beam heated plasmas on HL-2A
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/56/5/056003
– ident: CR58
– volume: 1
  start-page: 1185
  year: 1989
  ident: CR78
  article-title: Properties of ion temperature gradient drift instabilities in H-mode plasmas
  publication-title: Phys. Plasmas
– volume: 51
  start-page: 053018
  year: 2011
  ident: CR38
  article-title: Survey of disruption causes at JET
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/51/5/053018
– volume: 61
  start-page: 126051
  year: 2021
  ident: CR29
  article-title: Sustainable internal transport barrier discharge at KSTAR
  publication-title: Nucl. Fusion
  doi: 10.1088/1741-4326/ac3366
– volume: 51
  start-page: 113009
  year: 2011
  ident: CR8
  article-title: Characteristics of the first H-mode discharges in KSTAR
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/51/11/113009
– volume: 9
  start-page: 817
  year: 2013
  end-page: 821
  ident: CR9
  article-title: A long-pulse high-confinement plasma regime in the Experimental Advanced Superconducting Tokamak
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2795
– volume: 88
  start-page: 145004
  year: 2002
  ident: CR34
  article-title: JET quasistationary internal-transport-barrier operation with active control of the pressure profile
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.88.145004
– volume: 127
  start-page: 025002
  year: 2021
  ident: CR46
  article-title: New high-confinement regime with fast ions in the core of fusion plasmas
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.127.025002
– volume: 111
  start-page: 155001
  year: 2013
  ident: CR43
  article-title: Non-linear stabilization of tokamak microturbulence by fast ions
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.155001
– volume: 324
  start-page: 73
  year: 2016
  end-page: 93
  ident: CR50
  article-title: A high-accuracy Eulerian gyrokinetic solver for collisional plasmas
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2016.07.039
– volume: 52
  start-page: 114001
  year: 2012
  ident: CR64
  article-title: Confinement and ELM characteristics of H-mode plasmas in KSTAR
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/52/11/114001
– volume: 78
  start-page: 1472
  year: 1997
  end-page: 1475
  ident: CR81
  article-title: On the dynamics of transition to enhanced confinement of reversed magnetic shear discharges
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.78.1472
– volume: 86
  start-page: 1993
  year: 2011
  end-page: 1996
  ident: CR53
  article-title: Design and fabrication of the KSTAR in-vessel cryo-pump
  publication-title: Fusion Eng. Des.
  doi: 10.1016/j.fusengdes.2011.03.058
– volume: 85
  start-page: 11E413
  year: 2014
  ident: CR60
  article-title: Rotation characteristics during the resonant magnetic perturbation induced edge localized mode suppression on the KSTAR
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.4890402
– volume: 54
  start-page: 013015
  year: 2014
  ident: CR11
  article-title: Development of advanced inductive scenarios for ITER
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/54/1/013015
– volume: 16
  start-page: 056103
  year: 2009
  ident: CR83
  article-title: Edge radial electric field structure and its connections to H-mode confinement in Alcator C-Mod plasmas
  publication-title: Phys. Plasmas
  doi: 10.1063/1.3080721
– volume: 47
  start-page: A19
  year: 2005
  ident: CR68
  article-title: Advanced scenarios for ITER operation
  publication-title: Plasma Phys. Control. Fusion
  doi: 10.1088/0741-3335/47/5A/003
– volume: 180
  start-page: 2650
  year: 2009
  ident: CR48
  article-title: The non-linear gyro-kinetic flux tube code GKW
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2009.07.001
– volume: 48
  start-page: 1388
  year: 2020
  end-page: 1395
  ident: CR55
  article-title: KSTAR status and upgrade plan toward fusion reactor
  publication-title: IEEE Trans. Plasma Sci.
  doi: 10.1109/TPS.2020.2964776
– volume: 84
  start-page: 1463
  year: 2000
  ident: CR21
  article-title: Suppression of plasma turbulence during optimized shear configurations in JET
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.84.1463
– volume: 54
  start-page: 083012
  year: 2014
  ident: CR42
  article-title: Characteristics of global energy confinement in KSTAR L- and H-mode plasmas
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/54/8/083012
– volume: 75
  start-page: 4417
  year: 1995
  ident: CR85
  article-title: Improved confinement with reversed magnetic shear in TFTR
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.75.4417
– volume: 39
  start-page: 2175
  year: 1999
  ident: CR33
  article-title: Chapter 2: Plasma confinement and transport
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/39/12/302
– volume: 5
  start-page: 520
  year: 1993
  ident: CR79
  article-title: The linear threshold of the ion‐temperature‐gradient‐driven mode
  publication-title: Phys. Plasmas
– volume: 55
  start-page: 053007
  year: 2015
  ident: CR45
  article-title: Key impact of finite-beta and fast ions in core and edge tokamak regions for the transition to advanced scenarios
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/55/5/053007
– volume: 85
  start-page: 11D407
  year: 2014
  ident: CR59
  article-title: Edge profile measurements using Thomson scattering on the KSTAR tokamak
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.4890258
– volume: 16
  start-page: 890
  year: 2020
  end-page: 893
  ident: CR7
  article-title: A brief history of nuclear fusion
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-020-0940-7
– volume: 77
  start-page: 2710
  year: 1996
  ident: CR36
  article-title: Resistive interchange modes in negative central shear tokamaks with peaked pressure profiles
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.2710
– volume: 1689
  start-page: 030014
  year: 2015
  ident: CR67
  article-title: Recent experimental results of KSTAR RF heating and current drive
  publication-title: AIP Conf. Proc.
  doi: 10.1063/1.4936479
– volume: 109
  start-page: 035004
  year: 2012
  ident: CR17
  article-title: Suppression of edge localized modes in high-confinement KSTAR plasmas by nonaxisymmetric magnetic perturbations
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.035004
– volume: 49
  start-page: 1408
  year: 1982
  end-page: 1412
  ident: CR5
  article-title: Regime of improved confinement and high beta in neutral-beam-heated divertor discharges of the ASDEX Tokamak
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.49.1408
– volume: 47
  start-page: S1
  year: 2007
  end-page: S17
  ident: CR6
  article-title: Progress in the ITER physics basis - Chapter 1: Overview and summary
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/47/6/S01
– volume: 4
  start-page: 3230
  year: 1997
  ident: CR71
  article-title: Bootstrap current and neoclassical transport in tokamaks of arbitrary collisionality and aspect ratio
  publication-title: Phys. Plasmas
  doi: 10.1063/1.872465
– volume: 55
  start-page: 043004
  year: 2015
  ident: CR51
  article-title: Extremely low intrinsic non-axisymmetric field in KSTAR and its implications
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/55/4/043004
– ident: CR72
– volume: 45
  start-page: 1637
  year: 2003
  end-page: 1655
  ident: CR15
  article-title: Magnetic triggering of ELMs in TCV
  publication-title: Plasma Phys. Control. Fusion
  doi: 10.1088/0741-3335/45/9/306
– volume: 38
  start-page: 1149
  year: 1998
  ident: CR37
  article-title: Mode structure of disruption precursors in TFTR enhanced reversed shear discharges
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/38/8/303
– ident: CR2
– volume: 41
  start-page: 1515
  year: 2001
  ident: CR4
  article-title: Design and construction of the KSTAR tokamak
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/41/10/318
– volume: 87
  start-page: 245001
  year: 2001
  ident: CR87
  article-title: Plasma equilibrium and confinement in a tokamak with nearly zero central current density in JT-60U
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.87.245001
– volume: 55
  start-page: 123025
  year: 2015
  ident: CR30
  article-title: Compatibility of internal transport barrier with steady-state operation in the high bootstrap fraction regime on DIII-D
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/55/12/123025
– volume: 23
  start-page: 120703
  year: 2016
  ident: CR84
  article-title: The physics mechanisms of the weakly coherent mode in the Alcator C-Mod Tokamak
  publication-title: Phys. Plasmas
  doi: 10.1063/1.4972088
– volume: 40
  start-page: 1145
  year: 2000
  ident: CR25
  article-title: Steady state H mode and Te~Ti operation with internal transport barriers in ASDEX Upgrade
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/40/6/312
– volume: 43
  start-page: A95
  year: 2001
  ident: CR31
  article-title: The quiescent double barrier regime in the DIII-D tokamak
  publication-title: Plasma Phys. Control. Fusion
  doi: 10.1088/0741-3335/43/12A/307
– volume: 72
  start-page: 3662
  year: 1994
  ident: CR22
  article-title: Internal transport barrier on q=3 surface and poloidal plasma spin up in JT-60U high-β discharges
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.72.3662
– volume: 97
  start-page: 219
  year: 1996
  ident: CR75
  article-title: The CHEASE code for toroidal MHD equilibria
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/0010-4655(96)00046-X
– volume: 83
  start-page: 02B102
  year: 2012
  ident: CR66
  article-title: First neutral beam injection experiments on KSTAR tokamak
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.3660254
– volume: 159
  start-page: 157
  year: 2004
  ident: CR70
  article-title: The tokamak Monte Carlo fast ion module NUBEAM in the National Transport Code Collaboration library
  publication-title: Phys. Commun.
  doi: 10.1016/j.cpc.2003.11.002
– volume: 60
  start-page: 086006
  year: 2020
  ident: CR10
  article-title: On hybrid scenarios in KSTAR
  publication-title: Nucl. Fusion
  doi: 10.1088/1741-4326/ab8b7a
– volume: 45
  start-page: 110
  year: 2005
  ident: CR49
  article-title: Impact of the α parameter on the microstability of internal transport barriers
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/45/2/005
– ident: CR69
– volume: 375
  start-page: 3095
  year: 2011
  end-page: 3099
  ident: CR63
  article-title: Neutron emission from KSTAR ohmically heated plasmas
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2011.06.065
– volume: 38
  start-page: 105
  year: 1996
  end-page: 128
  ident: CR13
  article-title: Edge localized modes (ELMs)
  publication-title: Plasma Phys. Control. Fusion
  doi: 10.1088/0741-3335/38/2/001
– ident: CR3
– volume: 85
  start-page: 11D827
  year: 2014
  ident: CR62
  article-title: Instrumentation for a multichord motional Stark effect diagnostic in KSTAR
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.4891161
– volume: 36
  start-page: 719
  year: 1994
  ident: CR80
  article-title: Survey of theories of anomalous transport
  publication-title: Plasma Phys. Control. Fusion
  doi: 10.1088/0741-3335/36/5/002
– volume: 1
  start-page: 1415
  year: 1994
  ident: CR40
  article-title: Stability of high beta tokamak plasmas
  publication-title: Phys. Plasmas
  doi: 10.1063/1.870691
– volume: 70
  start-page: 3435
  year: 1993
  ident: CR12
  article-title: High internal inductance improved confinement H-mode discharges obtained with an elongation ramp technique in the DIII-D tokamak
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.70.3435
– volume: 80
  start-page: 5544
  year: 1998
  ident: CR24
  article-title: Internal transport barriers in JET deuterium-tritium plasmas
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.80.5544
– volume: 44
  start-page: R1
  year: 2004
  end-page: R49
  ident: CR47
  article-title: A review of internal transport barrier physics for steady-state operation of tokamaks
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/44/4/R01
– volume: 14
  start-page: 1223
  year: 2018
  end-page: 1228
  ident: CR18
  article-title: 3D field phase-space control in tokamak plasmas
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-018-0268-8
– volume: 86
  start-page: 141
  year: 2011
  end-page: 150
  ident: CR41
  article-title: Analysis of high β regimes for DEMO
  publication-title: Fusion Eng. Des.
  doi: 10.1016/j.fusengdes.2010.09.025
– volume: 27
  start-page: 1461
  year: 1987
  ident: CR35
  article-title: Ideal MHD stability properties of pressure driven modes in low shear tokamaks
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/27/9/009
– volume: 75
  start-page: 4421
  year: 1995
  ident: CR86
  article-title: Enhanced confinement and stability in DIII-D discharges with reversed magnetic shear
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.75.4421
– volume: 79
  start-page: 10F117
  year: 2008
  ident: CR56
  article-title: Magnetic diagnostics for the first plasma operation in Korea Superconducting Tokamak Advanced Research
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.2953587
– volume: 30
  start-page: 1999
  year: 1990
  ident: CR32
  article-title: Scalings for tokamak energy confinement
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/30/10/001
– volume: 25
  start-page: 1611
  year: 1985
  ident: CR57
  article-title: Reconstruction of current profile parameters and plasma shapes in tokamaks
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/25/11/007
– volume: 15
  start-page: 052307
  year: 2008
  ident: CR74
  article-title: Gyrokinetic calculations of diffusive and convective transport of α particles with a slowing-down distribution function
  publication-title: Phys. Plasmas
  doi: 10.1063/1.2913610
– volume: 209
  start-page: 118460
  year: 2020
  ident: CR1
  article-title: Socioeconomic and environmental impacts of bringing the sun to earth: a sustainability analysis of a fusion power plant deployment
  publication-title: Energy
  doi: 10.1016/j.energy.2020.118460
– ident: CR20
– volume: 55
  start-page: 043004
  year: 2015
  ident: 5008_CR51
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/55/4/043004
– volume: 61
  start-page: 126051
  year: 2021
  ident: 5008_CR29
  publication-title: Nucl. Fusion
  doi: 10.1088/1741-4326/ac3366
– ident: 5008_CR72
– volume: 43
  start-page: 1110
  year: 2003
  ident: 5008_CR14
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/43/10/012
– volume: 40
  start-page: 1145
  year: 2000
  ident: 5008_CR25
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/40/6/312
– volume: 97
  start-page: 219
  year: 1996
  ident: 5008_CR75
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/0010-4655(96)00046-X
– volume: 9
  start-page: 817
  year: 2013
  ident: 5008_CR9
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2795
– volume: 72
  start-page: 3662
  year: 1994
  ident: 5008_CR22
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.72.3662
– volume: 54
  start-page: 083012
  year: 2014
  ident: 5008_CR42
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/54/8/083012
– volume: 9
  year: 2018
  ident: 5008_CR82
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05839-5
– volume: 4
  start-page: 1499
  year: 1997
  ident: 5008_CR19
  publication-title: Phys. Plasmas
  doi: 10.1063/1.872367
– ident: 5008_CR69
  doi: 10.1088/1741-4326/ac1690
– volume: 41
  start-page: 1515
  year: 2001
  ident: 5008_CR4
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/41/10/318
– ident: 5008_CR20
  doi: 10.1088/0741-3335/44/5A/305
– volume: 56
  start-page: 056003
  year: 2016
  ident: 5008_CR26
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/56/5/056003
– volume: 89
  start-page: 043504
  year: 2018
  ident: 5008_CR73
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.5004217
– volume: 15
  start-page: 052307
  year: 2008
  ident: 5008_CR74
  publication-title: Phys. Plasmas
  doi: 10.1063/1.2913610
– volume: 51
  start-page: 053018
  year: 2011
  ident: 5008_CR38
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/51/5/053018
– volume: 27
  start-page: 1461
  year: 1987
  ident: 5008_CR35
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/27/9/009
– volume: 39
  start-page: 2175
  year: 1999
  ident: 5008_CR33
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/39/12/302
– volume: 5
  start-page: 520
  year: 1993
  ident: 5008_CR79
  publication-title: Phys. Plasmas
– volume: 44
  start-page: R1
  year: 2004
  ident: 5008_CR47
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/44/4/R01
– volume: 85
  start-page: 11D407
  year: 2014
  ident: 5008_CR59
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.4890258
– volume: 180
  start-page: 2650
  year: 2009
  ident: 5008_CR48
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2009.07.001
– volume: 78
  start-page: 1472
  year: 1997
  ident: 5008_CR81
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.78.1472
– volume: 85
  start-page: 11D827
  year: 2014
  ident: 5008_CR62
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.4891161
– volume: 49
  start-page: 1408
  year: 1982
  ident: 5008_CR5
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.49.1408
– volume: 209
  start-page: 118460
  year: 2020
  ident: 5008_CR1
  publication-title: Energy
  doi: 10.1016/j.energy.2020.118460
– ident: 5008_CR58
– volume: 45
  start-page: 1637
  year: 2003
  ident: 5008_CR15
  publication-title: Plasma Phys. Control. Fusion
  doi: 10.1088/0741-3335/45/9/306
– volume: 55
  start-page: 053007
  year: 2015
  ident: 5008_CR45
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/55/5/053007
– volume: 1
  start-page: 1185
  year: 1989
  ident: 5008_CR78
  publication-title: Phys. Plasmas
– volume: 87
  start-page: 245001
  year: 2001
  ident: 5008_CR87
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.87.245001
– volume: 88
  start-page: 145004
  year: 2002
  ident: 5008_CR34
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.88.145004
– volume: 16
  start-page: 112503
  year: 2009
  ident: 5008_CR77
  publication-title: Phys. Plasmas
  doi: 10.1063/1.3257907
– volume: 70
  start-page: 3435
  year: 1993
  ident: 5008_CR12
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.70.3435
– volume: 75
  start-page: 4421
  year: 1995
  ident: 5008_CR86
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.75.4421
– volume: 1
  start-page: 1415
  year: 1994
  ident: 5008_CR40
  publication-title: Phys. Plasmas
  doi: 10.1063/1.870691
– volume: 54
  start-page: 013015
  year: 2014
  ident: 5008_CR11
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/54/1/013015
– volume: 375
  start-page: 3095
  year: 2011
  ident: 5008_CR63
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2011.06.065
– ident: 5008_CR3
– volume: 55
  start-page: 123025
  year: 2015
  ident: 5008_CR30
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/55/12/123025
– volume: 45
  start-page: 110
  year: 2005
  ident: 5008_CR49
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/45/2/005
– volume: 86
  start-page: 1993
  year: 2011
  ident: 5008_CR53
  publication-title: Fusion Eng. Des.
  doi: 10.1016/j.fusengdes.2011.03.058
– volume: 16
  start-page: 056103
  year: 2009
  ident: 5008_CR83
  publication-title: Phys. Plasmas
  doi: 10.1063/1.3080721
– volume: 60
  start-page: 086006
  year: 2020
  ident: 5008_CR10
  publication-title: Nucl. Fusion
  doi: 10.1088/1741-4326/ab8b7a
– volume: 324
  start-page: 73
  year: 2016
  ident: 5008_CR50
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2016.07.039
– volume: 77
  start-page: 2710
  year: 1996
  ident: 5008_CR36
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.2710
– volume: 85
  start-page: 11E413
  year: 2014
  ident: 5008_CR60
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.4890402
– volume: 79
  start-page: 10F117
  year: 2008
  ident: 5008_CR56
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.2953587
– volume: 36
  start-page: 719
  year: 1994
  ident: 5008_CR80
  publication-title: Plasma Phys. Control. Fusion
  doi: 10.1088/0741-3335/36/5/002
– volume: 75
  start-page: 4417
  year: 1995
  ident: 5008_CR85
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.75.4417
– volume: 52
  start-page: 045007
  year: 2010
  ident: 5008_CR44
  publication-title: Plasma Phys. Control. Fusion
  doi: 10.1088/0741-3335/52/4/045007
– ident: 5008_CR54
  doi: 10.1016/j.fusengdes.2019.111395
– volume: 4
  start-page: 3230
  year: 1997
  ident: 5008_CR71
  publication-title: Phys. Plasmas
  doi: 10.1063/1.872465
– volume: 14
  start-page: 1223
  year: 2018
  ident: 5008_CR18
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-018-0268-8
– volume: 84
  start-page: 1463
  year: 2000
  ident: 5008_CR21
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.84.1463
– volume: 86
  start-page: 141
  year: 2011
  ident: 5008_CR41
  publication-title: Fusion Eng. Des.
  doi: 10.1016/j.fusengdes.2010.09.025
– volume: 58
  start-page: 016019
  year: 2018
  ident: 5008_CR28
  publication-title: Nucl. Fusion
  doi: 10.1088/1741-4326/aa90c1
– volume: 45
  start-page: 783
  year: 2005
  ident: 5008_CR52
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/45/8/003
– volume: 51
  start-page: 113009
  year: 2011
  ident: 5008_CR8
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/51/11/113009
– ident: 5008_CR2
– volume: 33
  start-page: 251
  year: 1993
  ident: 5008_CR27
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/33/2/I06
– volume: 25
  start-page: 1611
  year: 1985
  ident: 5008_CR57
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/25/11/007
– volume: 80
  start-page: 5544
  year: 1998
  ident: 5008_CR24
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.80.5544
– volume: 38
  start-page: 1149
  year: 1998
  ident: 5008_CR37
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/38/8/303
– volume: 30
  start-page: 1999
  year: 1990
  ident: 5008_CR32
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/30/10/001
– volume: 2
  start-page: 419
  year: 2006
  ident: 5008_CR16
  publication-title: Nat. Phys.
  doi: 10.1038/nphys312
– volume: 47
  start-page: A19
  year: 2005
  ident: 5008_CR68
  publication-title: Plasma Phys. Control. Fusion
  doi: 10.1088/0741-3335/47/5A/003
– volume: 109
  start-page: 035004
  year: 2012
  ident: 5008_CR17
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.035004
– volume: 5
  start-page: 973
  year: 1998
  ident: 5008_CR76
  publication-title: Phys. Plasmas
  doi: 10.1063/1.872666
– volume: 48
  start-page: 997
  year: 2005
  ident: 5008_CR65
  publication-title: Fusion Sci. Technol.
  doi: 10.13182/FST05-A1055
– volume: 111
  start-page: 155001
  year: 2013
  ident: 5008_CR43
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.155001
– volume: 83
  start-page: 02B102
  year: 2012
  ident: 5008_CR66
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.3660254
– volume: 38
  start-page: 105
  year: 1996
  ident: 5008_CR13
  publication-title: Plasma Phys. Control. Fusion
  doi: 10.1088/0741-3335/38/2/001
– volume: 52
  start-page: 114001
  year: 2012
  ident: 5008_CR64
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/52/11/114001
– volume: 43
  start-page: A95
  year: 2001
  ident: 5008_CR31
  publication-title: Plasma Phys. Control. Fusion
  doi: 10.1088/0741-3335/43/12A/307
– volume: 159
  start-page: 157
  year: 2004
  ident: 5008_CR70
  publication-title: Phys. Commun.
  doi: 10.1016/j.cpc.2003.11.002
– volume: 16
  start-page: 890
  year: 2020
  ident: 5008_CR7
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-020-0940-7
– ident: 5008_CR39
– volume: 92
  start-page: 043559
  year: 2021
  ident: 5008_CR61
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/5.0043811
– volume: 1689
  start-page: 030014
  year: 2015
  ident: 5008_CR67
  publication-title: AIP Conf. Proc.
  doi: 10.1063/1.4936479
– volume: 58
  start-page: 1004
  year: 1987
  ident: 5008_CR23
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.58.1004
– volume: 23
  start-page: 120703
  year: 2016
  ident: 5008_CR84
  publication-title: Phys. Plasmas
  doi: 10.1063/1.4972088
– volume: 47
  start-page: S1
  year: 2007
  ident: 5008_CR6
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/47/6/S01
– volume: 127
  start-page: 025002
  year: 2021
  ident: 5008_CR46
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.127.025002
– volume: 48
  start-page: 1388
  year: 2020
  ident: 5008_CR55
  publication-title: IEEE Trans. Plasma Sci.
  doi: 10.1109/TPS.2020.2964776
SSID ssj0005174
Score 2.6378522
Snippet Nuclear fusion is one of the most attractive alternatives to carbon-dependent energy sources 1 . Harnessing energy from nuclear fusion in a large reactor...
Nuclear fusion is one of the most attractive alternatives to carbon-dependent energy sources1. Harnessing energy from nuclear fusion in a large reactor scale,...
Nuclear fusion is one of the most attractive alternatives to carbon-dependent energy sources. Harnessing energy from nuclear fusion in a large reactor scale,...
SourceID osti
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 269
SubjectTerms 639/4077/4091/4093
639/766/1960/1136
70 PLASMA PHYSICS AND FUSION TECHNOLOGY
Alternative energy sources
Carbon
Carbon sources
Energy
Fusion reactors
High temperature
Humanities and Social Sciences
Ions
magnetically confined plasmas
multidisciplinary
Nuclear fusion
nuclear fusion and fission
Nuclear reactors
Plasma
Plasma density
Plasma turbulence
Reactors
Science
Science (multidisciplinary)
Temperature requirements
Title A sustained high-temperature fusion plasma regime facilitated by fast ions
URI https://link.springer.com/article/10.1038/s41586-022-05008-1
https://www.proquest.com/docview/2712893644
https://www.proquest.com/docview/2711842920
https://www.osti.gov/servlets/purl/1889862
Volume 609
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7BVkhcKlpApC2VkTiAIGoSZ_04oVJ1qSpRIUSlvVl-5dTuLiR74N8z43i7aiV6iRLHTqx5eMb2-BuA99pWAt1uigtDNrQu2FJ5XpVxGpTrvJCyooPC36_ExXV7OZ_O84Jbn8MqN2NiGqjD0tMa-UkjcSTVHM33l9XvkrJG0e5qTqHxFHYIuoxCuuRcbkM8HqAw50MzFVcnPRouReG3DfYyQZzeM0yTJSrYPafzwT5pMj-zF7Cb_UZ2OjJ6D57ExT48S_Gbvt-HvayjPfuQgaQ_voTLU9aP56NiYIRLXBIQVUZRZt2aFsrYCt3nW8soQcMtFlo_wnZjC_cXH_uBkWC-guvZ-a-zizLnTig9OkhD6bkW1gqppZdtO-1w3iUdYcc5MbUCxUcpJ-suKh1xzuQaVTneofvV4V0MzvPXMFksF_ENMBEqLxvOgxe6laHTtrZNV2Fx8HXXtAXUG8IZn4HFKb_FjUkb3FyZkdgGiW0SsU1dwKe7NqsRVuPR2ofED4NOASHbegoB8oOpldI4ISvgaMMmkxWwN1txKeDd3WtUHdoPsYu4XKc6OL-ldF0FfN6wd_uJ__fn4PE_HsLzJgmWRqk7gsnwZx3fousyuOMkn3hVZzVdZ9-OYefr-dWPn_8A0jPqJQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VRQguiBZQQ0sxEkggiJrY2dg-oKoCqu3z1Ep7M7bjnOjuQrJC_VP8RmacpKtWorfe8rCdaB6eGXv8DcA7bbMS3W7KC0M2FK6yqfIiS8O4Uq72pZQZHRQ-PSsnF8XRdDxdg7_DWRhKqxzmxDhRV3NPa-S7XOJMqgWa773Fr5SqRtHu6lBCoxOL43D1B0O25svhN-Tve84Pvp9_naR9VYHUo-vQpl7o0tpSaullUYxrjEikI1Q1V45tiYRVysm8DkoHjCYcV5kTNTomNV6FynmB4z6Ah2h4M9IoOZWrlJJbqM_9IZ1MqN0GDaWidF-OVImQqjcM4WiOCn3Dyb21LxvN3cEzeNr7qWy_E6x1WAuzDXgU80V9swHr_ZzQsA89cPXH53C0z5ruPFaoGOEgpwR81aM2s3pJC3Nsge76pWVUEOISH1rfwYRjD3eFt03LSBFewMW9UPUljGbzWdgEVlaZl1yIype6kFWtbW55neHjyuc1LxLIB8IZ3wOZUz2NnyZuqAtlOmIbJLaJxDZ5Ap-u-yw6GI87W28RPww6IYSk6ynlyLcmV0pjAJjA9sAm0yt8Y1bimcDb69eoqrT_YmdhvoxtMJ6m8mAJfB7Yuxri___z6u4vvoHHk_PTE3NyeHa8BU94FDKNErgNo_b3MrxGt6l1O1FWGfy4b-X4B6SNI0o
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VRaBeKlpApC1gJJBAEG0SJ7FzQKiirPqAigOV9mb8PNHdbZNV1b_Gr2Mmj65aid56y8N2onnYM57xNwBvK52UaHZTXhiyITdOx9LyJPaFkybYUoiEDgr_OCkPTvOjaTFdg7_DWRhKqxzmxHaidnNLe-TjTOBMWnFcvsehT4v4uT_5sjiPqYIURVqHchqdiBz7q0t03-rPh_vI63dZNvn26-tB3FcYiC2aEU1seVVqXYpKWJHnRUDvRBhCWDNloUskspRGpMHLyqNnYTKZGB7QSAl45Z2xHMd9AA8FL1LSMTEVq_SSWwjQ_YGdhMtxjYumpNTfDCnUwqveWBRHc1TuGwbvrRhtu_RNnsBGb7OyvU7INmHNz7bgUZs7aust2Oznh5q970GsPzyFoz1Wd2ezvGOEiRwTCFaP4MzCkjbp2AJN9zPNqDjEGT7UtoMMxx7mCm_rhpFSPIPTe6HqcxjN5jP_AljpEisyzp0tq1y4UOlUZyHBx86mIcsjSAfCKduDmlNtjT-qDa5zqTpiKyS2aomt0gg-XvdZdJAed7beIX4oNEgIVddS-pFtVCplhc5gBLsDm1Sv_LVaiWoEb65fo9pSLEbP_HzZtkHfmkqFRfBpYO9qiP__z_bdX3wNj1Et1PfDk-MdWM9aGatQAHdh1Fws_Uu0oBrzqhVVBr_vWzf-AWmNJ4A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+sustained+high-temperature+fusion+plasma+regime+facilitated+by+fast+ions&rft.jtitle=Nature+%28London%29&rft.au=Han%2C+H.&rft.au=Park%2C+S.+J.&rft.au=Sung%2C+C.&rft.au=Kang%2C+J.&rft.date=2022-09-08&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=609&rft.issue=7926&rft.spage=269&rft.epage=275&rft_id=info:doi/10.1038%2Fs41586-022-05008-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41586_022_05008_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon