Coherent-Incoherent Crossover of Charge and Neutral Mode Transport as Evidence for the Disorder-Dominated Fractional Edge Phase
Couplings between topological edge channels open electronic phases possessing nontrivial eigenmodes far beyond the noninteracting-edge picture. However, inelastic scatterings mask the eigenmodes’ inherent features, often preventing us from identifying the phases, as is the case for the quintessentia...
Saved in:
Published in | Physical review. X Vol. 13; no. 3; p. 031024 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
American Physical Society
07.09.2023
|
Online Access | Get full text |
Cover
Loading…
Abstract | Couplings between topological edge channels open electronic phases possessing nontrivial eigenmodes far beyond the noninteracting-edge picture. However, inelastic scatterings mask the eigenmodes’ inherent features, often preventing us from identifying the phases, as is the case for the quintessential Landau-level filling factor ν=2/3 edge composed of the counterpropagating ν=1/3 and 1 (1/3–1) channels. Here, we study the coherent-incoherent crossover of the 1/3–1 channels by tuning the channel length in situ using a new device architecture comprising a junction of ν=1/3 and 1 systems, the particle-hole conjugate of the 2/3 edge. We successfully observed the concurrence of the fluctuating electrical conductance and the quantized thermal conductance in the crossover regime, the definitive hallmark of the eigenmodes in the disorder-dominated edge phase left experimentally unverified. |
---|---|
AbstractList | Couplings between topological edge channels open electronic phases possessing nontrivial eigenmodes far beyond the noninteracting-edge picture. However, inelastic scatterings mask the eigenmodes’ inherent features, often preventing us from identifying the phases, as is the case for the quintessential Landau-level filling factor ν=2/3 edge composed of the counterpropagating ν=1/3 and 1 (1/3–1) channels. Here, we study the coherent-incoherent crossover of the 1/3–1 channels by tuning the channel length in situ using a new device architecture comprising a junction of ν=1/3 and 1 systems, the particle-hole conjugate of the 2/3 edge. We successfully observed the concurrence of the fluctuating electrical conductance and the quantized thermal conductance in the crossover regime, the definitive hallmark of the eigenmodes in the disorder-dominated edge phase left experimentally unverified. |
ArticleNumber | 031024 |
Author | Ito, Takuya Muraki, Koji Sasaki, Satoshi Kumada, Norio Shibata, Naokazu Akiho, Takafumi Hashisaka, Masayuki |
Author_xml | – sequence: 1 givenname: Masayuki orcidid: 0000-0003-1301-6119 surname: Hashisaka fullname: Hashisaka, Masayuki – sequence: 2 givenname: Takuya surname: Ito fullname: Ito, Takuya – sequence: 3 givenname: Takafumi orcidid: 0000-0003-4871-5331 surname: Akiho fullname: Akiho, Takafumi – sequence: 4 givenname: Satoshi surname: Sasaki fullname: Sasaki, Satoshi – sequence: 5 givenname: Norio orcidid: 0000-0001-7826-6894 surname: Kumada fullname: Kumada, Norio – sequence: 6 givenname: Naokazu orcidid: 0000-0002-8354-6791 surname: Shibata fullname: Shibata, Naokazu – sequence: 7 givenname: Koji orcidid: 0000-0003-0289-5496 surname: Muraki fullname: Muraki, Koji |
BookMark | eNp9kd1KAzEQhYMoWH9ewKu8wNZkk_27lG3VQtUiCt6FbDLpRmoiSSz0yld3ay2IF87NDAPnY-acE3TovAOELigZU0rY5aLfxEdYv4wpGxNGSc4P0CinJckYI_Xhr_kYncf4SoYqCeVVNUKfre8hgEvZzKmfEbfBx-jXELA3uO1lWAKWTuN7-EhBrvCd14CfgnTx3YeEZcTTtdXgFGDjA0494ImNPmgI2cS_WScTaHwdpErWuwEw1QNx0csIZ-jIyFWE859-ip6vp0_tbTZ_uJm1V_NM8ZylTLFalTnXuhiqqqgxNZE1AOVFaRRTueJNTVjHm04RXTZQq0I3leG64VVnDDtFsx1Xe_kq3oN9k2EjvLTie-HDUsiQrFqBILyDjpWUVazghJuuqaVWhnWFIboqYWDVO5ba-hTACGWT3L42uGNXghKxzUXscxGUiV0ugzT_I92f8o_oC1mqlu0 |
CitedBy_id | crossref_primary_10_1103_PhysRevLett_132_136502 crossref_primary_10_53829_ntr202402fr1 crossref_primary_10_1103_PhysRevLett_132_256601 crossref_primary_10_1103_PhysRevResearch_6_043073 crossref_primary_10_1103_PhysRevB_110_035402 crossref_primary_10_1103_PhysRevB_110_155404 crossref_primary_10_21468_SciPostPhys_18_2_058 |
Cites_doi | 10.1063/5.0036419 10.1103/PhysRevB.69.085307 10.1103/PhysRevB.103.115107 10.1038/s41467-022-32956-z 10.1126/science.abg6116 10.1103/PhysRevB.57.12324 10.1143/JPSJ.72.664 10.1103/PhysRevLett.111.246803 10.1103/PhysRevB.51.13449 10.1038/s41567-017-0035-2 10.1016/j.revip.2018.07.001 10.1103/PhysRevLett.109.026803 10.1103/PhysRevLett.130.076205 10.1038/nphys2384 10.1038/nphys4010 10.1038/s41467-019-09920-5 10.1088/0305-4470/36/37/201 10.1038/s41467-021-27805-4 10.1103/PhysRevB.49.8227 10.1103/PhysRevLett.67.2060 10.1103/PhysRevLett.118.046801 10.1103/PhysRevB.67.035314 10.1103/PhysRevLett.126.216803 10.1038/nphys4062 10.1103/PhysRevLett.100.166803 10.1016/j.aop.2017.07.015 10.1103/PhysRevLett.64.220 10.1103/PhysRevB.99.161302 10.1016/j.physleta.2012.05.031 10.1103/PhysRevLett.64.2206 10.1103/PhysRevB.46.4026 10.1103/PhysRevB.98.115408 10.1038/nature22052 10.1103/PhysRevLett.103.236802 10.1103/PhysRevLett.88.056802 10.1103/PhysRevB.57.3781 10.1038/s41467-020-20395-7 10.1038/nature09277 10.1103/PhysRevB.103.165302 10.1126/science.aar3766 10.1103/PhysRevB.52.R17040 10.1103/PhysRevB.85.155424 10.7566/JPSJ.90.102001 10.1126/sciadv.aaw5798 10.1103/PhysRevB.88.235409 10.1103/PhysRevB.103.L121302 10.1038/ncomms2305 10.1103/PhysRevLett.129.116803 10.1103/PhysRevLett.72.2624 10.1103/PhysRevLett.72.4129 10.1126/science.1241912 10.1038/nnano.2013.312 10.1038/s41586-018-0184-1 10.1103/PhysRevLett.113.266803 10.1038/s41467-021-23160-6 10.1103/PhysRevB.81.165313 10.1103/PhysRevB.93.245427 10.1038/s41467-022-28009-0 10.1038/ncomms5067 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.1103/PhysRevX.13.031024 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2160-3308 |
ExternalDocumentID | oai_doaj_org_article_04beb3613735404fb98adcf3b5f0d76e 10_1103_PhysRevX_13_031024 |
GroupedDBID | 3MX 5VS 88I AAYXX ABJCF ABSSX ABUWG ADBBV AENEX AFGMR AFKRA AGDNE ALMA_UNASSIGNED_HOLDINGS AUAIK AZQEC BCNDV BENPR BGLVJ CCPQU CITATION DWQXO EBS EJD FRP GNUQQ GROUPED_DOAJ HCIFZ KQ8 M2P M7S M~E OK1 PHGZM PHGZT PIMPY PTHSS ROL S7W PQGLB PUEGO |
ID | FETCH-LOGICAL-c423t-c38c624dd5555771ff80a8ee1456fc3c2c49803b49bc0d69e8c5d97f4d947bff3 |
IEDL.DBID | DOA |
ISSN | 2160-3308 |
IngestDate | Wed Aug 27 01:29:26 EDT 2025 Thu Apr 24 23:11:19 EDT 2025 Tue Jul 01 01:33:23 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c423t-c38c624dd5555771ff80a8ee1456fc3c2c49803b49bc0d69e8c5d97f4d947bff3 |
ORCID | 0000-0003-0289-5496 0000-0003-4871-5331 0000-0002-8354-6791 0000-0003-1301-6119 0000-0001-7826-6894 |
OpenAccessLink | https://doaj.org/article/04beb3613735404fb98adcf3b5f0d76e |
ParticipantIDs | doaj_primary_oai_doaj_org_article_04beb3613735404fb98adcf3b5f0d76e crossref_citationtrail_10_1103_PhysRevX_13_031024 crossref_primary_10_1103_PhysRevX_13_031024 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-09-07 |
PublicationDateYYYYMMDD | 2023-09-07 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-07 day: 07 |
PublicationDecade | 2020 |
PublicationTitle | Physical review. X |
PublicationYear | 2023 |
Publisher | American Physical Society |
Publisher_xml | – name: American Physical Society |
References | PhysRevX.13.031024Cc29R1 PhysRevX.13.031024Cc27R1 PhysRevX.13.031024Cc25R1 PhysRevX.13.031024Cc23R1 PhysRevX.13.031024Cc21R1 PhysRevX.13.031024Cc40R1 PhysRevX.13.031024Cc42R1 PhysRevX.13.031024Cc44R1 PhysRevX.13.031024Cc48R1 PhysRevX.13.031024Cc17R1 PhysRevX.13.031024Cc15R1 PhysRevX.13.031024Cc13R1 PhysRevX.13.031024Cc11R1 PhysRevX.13.031024Cc1R1 PhysRevX.13.031024Cc30R1 PhysRevX.13.031024Cc51R1 PhysRevX.13.031024Cc32R1 PhysRevX.13.031024Cc53R1 PhysRevX.13.031024Cc5R1 PhysRevX.13.031024Cc34R1 PhysRevX.13.031024Cc55R1 PhysRevX.13.031024Cc3R1 PhysRevX.13.031024Cc36R1 PhysRevX.13.031024Cc57R1 PhysRevX.13.031024Cc9R1 PhysRevX.13.031024Cc38R1 PhysRevX.13.031024Cc59R1 PhysRevX.13.031024Cc7R1 PhysRevX.13.031024Cc19R1 PhysRevX.13.031024Cc28R1 PhysRevX.13.031024Cc26R1 PhysRevX.13.031024Cc24R1 PhysRevX.13.031024Cc22R1 PhysRevX.13.031024Cc20R1 PhysRevX.13.031024Cc60R1 PhysRevX.13.031024Cc41R1 PhysRevX.13.031024Cc43R1 PhysRevX.13.031024Cc45R1 PhysRevX.13.031024Cc47R1 PhysRevX.13.031024Cc49R1 PhysRevX.13.031024Cc18R1 PhysRevX.13.031024Cc16R1 PhysRevX.13.031024Cc14R1 PhysRevX.13.031024Cc12R1 PhysRevX.13.031024Cc10R1 PhysRevX.13.031024Cc50R1 PhysRevX.13.031024Cc52R1 PhysRevX.13.031024Cc31R1 PhysRevX.13.031024Cc54R1 PhysRevX.13.031024Cc4R1 PhysRevX.13.031024Cc33R1 PhysRevX.13.031024Cc56R1 PhysRevX.13.031024Cc2R1 PhysRevX.13.031024Cc35R1 PhysRevX.13.031024Cc58R1 PhysRevX.13.031024Cc8R1 PhysRevX.13.031024Cc37R1 PhysRevX.13.031024Cc6R1 PhysRevX.13.031024Cc39R1 |
References_xml | – ident: PhysRevX.13.031024Cc58R1 doi: 10.1063/5.0036419 – ident: PhysRevX.13.031024Cc35R1 doi: 10.1103/PhysRevB.69.085307 – ident: PhysRevX.13.031024Cc38R1 doi: 10.1103/PhysRevB.103.115107 – ident: PhysRevX.13.031024Cc22R1 doi: 10.1038/s41467-022-32956-z – ident: PhysRevX.13.031024Cc23R1 doi: 10.1126/science.abg6116 – ident: PhysRevX.13.031024Cc44R1 doi: 10.1103/PhysRevB.57.12324 – ident: PhysRevX.13.031024Cc51R1 doi: 10.1143/JPSJ.72.664 – ident: PhysRevX.13.031024Cc4R1 doi: 10.1103/PhysRevLett.111.246803 – ident: PhysRevX.13.031024Cc2R1 doi: 10.1103/PhysRevB.51.13449 – ident: PhysRevX.13.031024Cc36R1 doi: 10.1038/s41567-017-0035-2 – ident: PhysRevX.13.031024Cc16R1 doi: 10.1016/j.revip.2018.07.001 – ident: PhysRevX.13.031024Cc11R1 doi: 10.1103/PhysRevLett.109.026803 – ident: PhysRevX.13.031024Cc32R1 doi: 10.1103/PhysRevLett.130.076205 – ident: PhysRevX.13.031024Cc9R1 doi: 10.1038/nphys2384 – ident: PhysRevX.13.031024Cc13R1 doi: 10.1038/nphys4010 – ident: PhysRevX.13.031024Cc37R1 doi: 10.1038/s41467-019-09920-5 – ident: PhysRevX.13.031024Cc52R1 doi: 10.1088/0305-4470/36/37/201 – ident: PhysRevX.13.031024Cc19R1 doi: 10.1038/s41467-021-27805-4 – ident: PhysRevX.13.031024Cc29R1 doi: 10.1103/PhysRevB.49.8227 – ident: PhysRevX.13.031024Cc27R1 doi: 10.1103/PhysRevLett.67.2060 – ident: PhysRevX.13.031024Cc5R1 doi: 10.1103/PhysRevLett.118.046801 – ident: PhysRevX.13.031024Cc34R1 doi: 10.1103/PhysRevB.67.035314 – ident: PhysRevX.13.031024Cc18R1 doi: 10.1103/PhysRevLett.126.216803 – ident: PhysRevX.13.031024Cc56R1 doi: 10.1038/nphys4062 – ident: PhysRevX.13.031024Cc53R1 doi: 10.1103/PhysRevLett.100.166803 – ident: PhysRevX.13.031024Cc3R1 doi: 10.1016/j.aop.2017.07.015 – ident: PhysRevX.13.031024Cc25R1 doi: 10.1103/PhysRevLett.64.220 – ident: PhysRevX.13.031024Cc47R1 doi: 10.1103/PhysRevB.99.161302 – ident: PhysRevX.13.031024Cc54R1 doi: 10.1016/j.physleta.2012.05.031 – ident: PhysRevX.13.031024Cc26R1 doi: 10.1103/PhysRevLett.64.2206 – ident: PhysRevX.13.031024Cc24R1 doi: 10.1103/PhysRevB.46.4026 – ident: PhysRevX.13.031024Cc48R1 doi: 10.1103/PhysRevB.98.115408 – ident: PhysRevX.13.031024Cc14R1 doi: 10.1038/nature22052 – ident: PhysRevX.13.031024Cc7R1 doi: 10.1103/PhysRevLett.103.236802 – ident: PhysRevX.13.031024Cc30R1 doi: 10.1103/PhysRevLett.88.056802 – ident: PhysRevX.13.031024Cc45R1 doi: 10.1103/PhysRevB.57.3781 – ident: PhysRevX.13.031024Cc57R1 doi: 10.1038/s41467-020-20395-7 – ident: PhysRevX.13.031024Cc8R1 doi: 10.1038/nature09277 – ident: PhysRevX.13.031024Cc33R1 doi: 10.1103/PhysRevB.103.165302 – ident: PhysRevX.13.031024Cc41R1 doi: 10.1126/science.aar3766 – ident: PhysRevX.13.031024Cc43R1 doi: 10.1103/PhysRevB.52.R17040 – ident: PhysRevX.13.031024Cc40R1 doi: 10.1103/PhysRevB.85.155424 – ident: PhysRevX.13.031024Cc59R1 doi: 10.7566/JPSJ.90.102001 – ident: PhysRevX.13.031024Cc17R1 doi: 10.1126/sciadv.aaw5798 – ident: PhysRevX.13.031024Cc39R1 doi: 10.1103/PhysRevB.88.235409 – ident: PhysRevX.13.031024Cc6R1 doi: 10.1103/PhysRevB.103.L121302 – ident: PhysRevX.13.031024Cc10R1 doi: 10.1038/ncomms2305 – ident: PhysRevX.13.031024Cc21R1 doi: 10.1103/PhysRevLett.129.116803 – ident: PhysRevX.13.031024Cc28R1 doi: 10.1103/PhysRevLett.72.2624 – ident: PhysRevX.13.031024Cc1R1 doi: 10.1103/PhysRevLett.72.4129 – ident: PhysRevX.13.031024Cc49R1 doi: 10.1126/science.1241912 – ident: PhysRevX.13.031024Cc55R1 doi: 10.1038/nnano.2013.312 – ident: PhysRevX.13.031024Cc15R1 doi: 10.1038/s41586-018-0184-1 – ident: PhysRevX.13.031024Cc31R1 doi: 10.1103/PhysRevLett.113.266803 – ident: PhysRevX.13.031024Cc42R1 doi: 10.1038/s41467-021-23160-6 – ident: PhysRevX.13.031024Cc50R1 doi: 10.1103/PhysRevB.81.165313 – ident: PhysRevX.13.031024Cc60R1 doi: 10.1103/PhysRevB.93.245427 – ident: PhysRevX.13.031024Cc20R1 doi: 10.1038/s41467-022-28009-0 – ident: PhysRevX.13.031024Cc12R1 doi: 10.1038/ncomms5067 |
SSID | ssj0000601477 |
Score | 2.3992872 |
Snippet | Couplings between topological edge channels open electronic phases possessing nontrivial eigenmodes far beyond the noninteracting-edge picture. However,... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 031024 |
Title | Coherent-Incoherent Crossover of Charge and Neutral Mode Transport as Evidence for the Disorder-Dominated Fractional Edge Phase |
URI | https://doaj.org/article/04beb3613735404fb98adcf3b5f0d76e |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCF7EJ64vcvAm2U2btGmOuu6yCC4iLuytNC89SFf24dW_7kwfy3rRiz2VkgxlOs18mcx8Q8h1qrznLhYMoIJh0tuIGa8SZq3TRTDcy4AB_cdxOprIh2ky3Wj1hTlhNT1wrbgelwb2e-B0FEYoZDA6K5wNwiSBO5V6XH3B521spuo1GKC_Um2VDBc9TKh89p_TbiS6SIcZyx-eaIOwv_Isw32y10BCelu_ygHZ8uUh2alSM-3iiHxhBQVyKDH4l5tb2keRmH1JZ4Hikfmrp0Xp6NivMHRBscUZXROX02JB2_ahFFAqBdRHW95Ndj_DdBhAnnQ4r8scQMDAgcSnN_Bxx2QyHLz0R6xpm8AsYKMlsyKzaSydS-BSKgoh40XmfQRYKVhhYyt1xoWR2ljuUu0zmzitgnRaKhOCOCHb5az0p4Qi9JZKcpP5VJq4gGlKCG2KBGBTpmWHRK0Kc9twimNri_e82ltwkbdqzyOR12rvkJv1nI-aUePX0Xf4ZdYjkQ27egA2kjc2kv9lI2f_IeSc7GKr-Sq_TF2Q7eV85S8BkCzNVWV739mf4EI |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coherent-Incoherent+Crossover+of+Charge+and+Neutral+Mode+Transport+as+Evidence+for+the+Disorder-Dominated+Fractional+Edge+Phase&rft.jtitle=Physical+review.+X&rft.au=Masayuki+Hashisaka&rft.au=Takuya+Ito&rft.au=Takafumi+Akiho&rft.au=Satoshi+Sasaki&rft.date=2023-09-07&rft.pub=American+Physical+Society&rft.eissn=2160-3308&rft.volume=13&rft.issue=3&rft.spage=031024&rft_id=info:doi/10.1103%2FPhysRevX.13.031024&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_04beb3613735404fb98adcf3b5f0d76e |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-3308&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-3308&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-3308&client=summon |