Coherent-Incoherent Crossover of Charge and Neutral Mode Transport as Evidence for the Disorder-Dominated Fractional Edge Phase

Couplings between topological edge channels open electronic phases possessing nontrivial eigenmodes far beyond the noninteracting-edge picture. However, inelastic scatterings mask the eigenmodes’ inherent features, often preventing us from identifying the phases, as is the case for the quintessentia...

Full description

Saved in:
Bibliographic Details
Published inPhysical review. X Vol. 13; no. 3; p. 031024
Main Authors Hashisaka, Masayuki, Ito, Takuya, Akiho, Takafumi, Sasaki, Satoshi, Kumada, Norio, Shibata, Naokazu, Muraki, Koji
Format Journal Article
LanguageEnglish
Published American Physical Society 07.09.2023
Online AccessGet full text

Cover

Loading…
Abstract Couplings between topological edge channels open electronic phases possessing nontrivial eigenmodes far beyond the noninteracting-edge picture. However, inelastic scatterings mask the eigenmodes’ inherent features, often preventing us from identifying the phases, as is the case for the quintessential Landau-level filling factor ν=2/3 edge composed of the counterpropagating ν=1/3 and 1 (1/3–1) channels. Here, we study the coherent-incoherent crossover of the 1/3–1 channels by tuning the channel length in situ using a new device architecture comprising a junction of ν=1/3 and 1 systems, the particle-hole conjugate of the 2/3 edge. We successfully observed the concurrence of the fluctuating electrical conductance and the quantized thermal conductance in the crossover regime, the definitive hallmark of the eigenmodes in the disorder-dominated edge phase left experimentally unverified.
AbstractList Couplings between topological edge channels open electronic phases possessing nontrivial eigenmodes far beyond the noninteracting-edge picture. However, inelastic scatterings mask the eigenmodes’ inherent features, often preventing us from identifying the phases, as is the case for the quintessential Landau-level filling factor ν=2/3 edge composed of the counterpropagating ν=1/3 and 1 (1/3–1) channels. Here, we study the coherent-incoherent crossover of the 1/3–1 channels by tuning the channel length in situ using a new device architecture comprising a junction of ν=1/3 and 1 systems, the particle-hole conjugate of the 2/3 edge. We successfully observed the concurrence of the fluctuating electrical conductance and the quantized thermal conductance in the crossover regime, the definitive hallmark of the eigenmodes in the disorder-dominated edge phase left experimentally unverified.
ArticleNumber 031024
Author Ito, Takuya
Muraki, Koji
Sasaki, Satoshi
Kumada, Norio
Shibata, Naokazu
Akiho, Takafumi
Hashisaka, Masayuki
Author_xml – sequence: 1
  givenname: Masayuki
  orcidid: 0000-0003-1301-6119
  surname: Hashisaka
  fullname: Hashisaka, Masayuki
– sequence: 2
  givenname: Takuya
  surname: Ito
  fullname: Ito, Takuya
– sequence: 3
  givenname: Takafumi
  orcidid: 0000-0003-4871-5331
  surname: Akiho
  fullname: Akiho, Takafumi
– sequence: 4
  givenname: Satoshi
  surname: Sasaki
  fullname: Sasaki, Satoshi
– sequence: 5
  givenname: Norio
  orcidid: 0000-0001-7826-6894
  surname: Kumada
  fullname: Kumada, Norio
– sequence: 6
  givenname: Naokazu
  orcidid: 0000-0002-8354-6791
  surname: Shibata
  fullname: Shibata, Naokazu
– sequence: 7
  givenname: Koji
  orcidid: 0000-0003-0289-5496
  surname: Muraki
  fullname: Muraki, Koji
BookMark eNp9kd1KAzEQhYMoWH9ewKu8wNZkk_27lG3VQtUiCt6FbDLpRmoiSSz0yld3ay2IF87NDAPnY-acE3TovAOELigZU0rY5aLfxEdYv4wpGxNGSc4P0CinJckYI_Xhr_kYncf4SoYqCeVVNUKfre8hgEvZzKmfEbfBx-jXELA3uO1lWAKWTuN7-EhBrvCd14CfgnTx3YeEZcTTtdXgFGDjA0494ImNPmgI2cS_WScTaHwdpErWuwEw1QNx0csIZ-jIyFWE859-ip6vp0_tbTZ_uJm1V_NM8ZylTLFalTnXuhiqqqgxNZE1AOVFaRRTueJNTVjHm04RXTZQq0I3leG64VVnDDtFsx1Xe_kq3oN9k2EjvLTie-HDUsiQrFqBILyDjpWUVazghJuuqaVWhnWFIboqYWDVO5ba-hTACGWT3L42uGNXghKxzUXscxGUiV0ugzT_I92f8o_oC1mqlu0
CitedBy_id crossref_primary_10_1103_PhysRevLett_132_136502
crossref_primary_10_53829_ntr202402fr1
crossref_primary_10_1103_PhysRevLett_132_256601
crossref_primary_10_1103_PhysRevResearch_6_043073
crossref_primary_10_1103_PhysRevB_110_035402
crossref_primary_10_1103_PhysRevB_110_155404
crossref_primary_10_21468_SciPostPhys_18_2_058
Cites_doi 10.1063/5.0036419
10.1103/PhysRevB.69.085307
10.1103/PhysRevB.103.115107
10.1038/s41467-022-32956-z
10.1126/science.abg6116
10.1103/PhysRevB.57.12324
10.1143/JPSJ.72.664
10.1103/PhysRevLett.111.246803
10.1103/PhysRevB.51.13449
10.1038/s41567-017-0035-2
10.1016/j.revip.2018.07.001
10.1103/PhysRevLett.109.026803
10.1103/PhysRevLett.130.076205
10.1038/nphys2384
10.1038/nphys4010
10.1038/s41467-019-09920-5
10.1088/0305-4470/36/37/201
10.1038/s41467-021-27805-4
10.1103/PhysRevB.49.8227
10.1103/PhysRevLett.67.2060
10.1103/PhysRevLett.118.046801
10.1103/PhysRevB.67.035314
10.1103/PhysRevLett.126.216803
10.1038/nphys4062
10.1103/PhysRevLett.100.166803
10.1016/j.aop.2017.07.015
10.1103/PhysRevLett.64.220
10.1103/PhysRevB.99.161302
10.1016/j.physleta.2012.05.031
10.1103/PhysRevLett.64.2206
10.1103/PhysRevB.46.4026
10.1103/PhysRevB.98.115408
10.1038/nature22052
10.1103/PhysRevLett.103.236802
10.1103/PhysRevLett.88.056802
10.1103/PhysRevB.57.3781
10.1038/s41467-020-20395-7
10.1038/nature09277
10.1103/PhysRevB.103.165302
10.1126/science.aar3766
10.1103/PhysRevB.52.R17040
10.1103/PhysRevB.85.155424
10.7566/JPSJ.90.102001
10.1126/sciadv.aaw5798
10.1103/PhysRevB.88.235409
10.1103/PhysRevB.103.L121302
10.1038/ncomms2305
10.1103/PhysRevLett.129.116803
10.1103/PhysRevLett.72.2624
10.1103/PhysRevLett.72.4129
10.1126/science.1241912
10.1038/nnano.2013.312
10.1038/s41586-018-0184-1
10.1103/PhysRevLett.113.266803
10.1038/s41467-021-23160-6
10.1103/PhysRevB.81.165313
10.1103/PhysRevB.93.245427
10.1038/s41467-022-28009-0
10.1038/ncomms5067
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1103/PhysRevX.13.031024
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2160-3308
ExternalDocumentID oai_doaj_org_article_04beb3613735404fb98adcf3b5f0d76e
10_1103_PhysRevX_13_031024
GroupedDBID 3MX
5VS
88I
AAYXX
ABJCF
ABSSX
ABUWG
ADBBV
AENEX
AFGMR
AFKRA
AGDNE
ALMA_UNASSIGNED_HOLDINGS
AUAIK
AZQEC
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
EBS
EJD
FRP
GNUQQ
GROUPED_DOAJ
HCIFZ
KQ8
M2P
M7S
M~E
OK1
PHGZM
PHGZT
PIMPY
PTHSS
ROL
S7W
PQGLB
PUEGO
ID FETCH-LOGICAL-c423t-c38c624dd5555771ff80a8ee1456fc3c2c49803b49bc0d69e8c5d97f4d947bff3
IEDL.DBID DOA
ISSN 2160-3308
IngestDate Wed Aug 27 01:29:26 EDT 2025
Thu Apr 24 23:11:19 EDT 2025
Tue Jul 01 01:33:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c423t-c38c624dd5555771ff80a8ee1456fc3c2c49803b49bc0d69e8c5d97f4d947bff3
ORCID 0000-0003-0289-5496
0000-0003-4871-5331
0000-0002-8354-6791
0000-0003-1301-6119
0000-0001-7826-6894
OpenAccessLink https://doaj.org/article/04beb3613735404fb98adcf3b5f0d76e
ParticipantIDs doaj_primary_oai_doaj_org_article_04beb3613735404fb98adcf3b5f0d76e
crossref_citationtrail_10_1103_PhysRevX_13_031024
crossref_primary_10_1103_PhysRevX_13_031024
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-09-07
PublicationDateYYYYMMDD 2023-09-07
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-07
  day: 07
PublicationDecade 2020
PublicationTitle Physical review. X
PublicationYear 2023
Publisher American Physical Society
Publisher_xml – name: American Physical Society
References PhysRevX.13.031024Cc29R1
PhysRevX.13.031024Cc27R1
PhysRevX.13.031024Cc25R1
PhysRevX.13.031024Cc23R1
PhysRevX.13.031024Cc21R1
PhysRevX.13.031024Cc40R1
PhysRevX.13.031024Cc42R1
PhysRevX.13.031024Cc44R1
PhysRevX.13.031024Cc48R1
PhysRevX.13.031024Cc17R1
PhysRevX.13.031024Cc15R1
PhysRevX.13.031024Cc13R1
PhysRevX.13.031024Cc11R1
PhysRevX.13.031024Cc1R1
PhysRevX.13.031024Cc30R1
PhysRevX.13.031024Cc51R1
PhysRevX.13.031024Cc32R1
PhysRevX.13.031024Cc53R1
PhysRevX.13.031024Cc5R1
PhysRevX.13.031024Cc34R1
PhysRevX.13.031024Cc55R1
PhysRevX.13.031024Cc3R1
PhysRevX.13.031024Cc36R1
PhysRevX.13.031024Cc57R1
PhysRevX.13.031024Cc9R1
PhysRevX.13.031024Cc38R1
PhysRevX.13.031024Cc59R1
PhysRevX.13.031024Cc7R1
PhysRevX.13.031024Cc19R1
PhysRevX.13.031024Cc28R1
PhysRevX.13.031024Cc26R1
PhysRevX.13.031024Cc24R1
PhysRevX.13.031024Cc22R1
PhysRevX.13.031024Cc20R1
PhysRevX.13.031024Cc60R1
PhysRevX.13.031024Cc41R1
PhysRevX.13.031024Cc43R1
PhysRevX.13.031024Cc45R1
PhysRevX.13.031024Cc47R1
PhysRevX.13.031024Cc49R1
PhysRevX.13.031024Cc18R1
PhysRevX.13.031024Cc16R1
PhysRevX.13.031024Cc14R1
PhysRevX.13.031024Cc12R1
PhysRevX.13.031024Cc10R1
PhysRevX.13.031024Cc50R1
PhysRevX.13.031024Cc52R1
PhysRevX.13.031024Cc31R1
PhysRevX.13.031024Cc54R1
PhysRevX.13.031024Cc4R1
PhysRevX.13.031024Cc33R1
PhysRevX.13.031024Cc56R1
PhysRevX.13.031024Cc2R1
PhysRevX.13.031024Cc35R1
PhysRevX.13.031024Cc58R1
PhysRevX.13.031024Cc8R1
PhysRevX.13.031024Cc37R1
PhysRevX.13.031024Cc6R1
PhysRevX.13.031024Cc39R1
References_xml – ident: PhysRevX.13.031024Cc58R1
  doi: 10.1063/5.0036419
– ident: PhysRevX.13.031024Cc35R1
  doi: 10.1103/PhysRevB.69.085307
– ident: PhysRevX.13.031024Cc38R1
  doi: 10.1103/PhysRevB.103.115107
– ident: PhysRevX.13.031024Cc22R1
  doi: 10.1038/s41467-022-32956-z
– ident: PhysRevX.13.031024Cc23R1
  doi: 10.1126/science.abg6116
– ident: PhysRevX.13.031024Cc44R1
  doi: 10.1103/PhysRevB.57.12324
– ident: PhysRevX.13.031024Cc51R1
  doi: 10.1143/JPSJ.72.664
– ident: PhysRevX.13.031024Cc4R1
  doi: 10.1103/PhysRevLett.111.246803
– ident: PhysRevX.13.031024Cc2R1
  doi: 10.1103/PhysRevB.51.13449
– ident: PhysRevX.13.031024Cc36R1
  doi: 10.1038/s41567-017-0035-2
– ident: PhysRevX.13.031024Cc16R1
  doi: 10.1016/j.revip.2018.07.001
– ident: PhysRevX.13.031024Cc11R1
  doi: 10.1103/PhysRevLett.109.026803
– ident: PhysRevX.13.031024Cc32R1
  doi: 10.1103/PhysRevLett.130.076205
– ident: PhysRevX.13.031024Cc9R1
  doi: 10.1038/nphys2384
– ident: PhysRevX.13.031024Cc13R1
  doi: 10.1038/nphys4010
– ident: PhysRevX.13.031024Cc37R1
  doi: 10.1038/s41467-019-09920-5
– ident: PhysRevX.13.031024Cc52R1
  doi: 10.1088/0305-4470/36/37/201
– ident: PhysRevX.13.031024Cc19R1
  doi: 10.1038/s41467-021-27805-4
– ident: PhysRevX.13.031024Cc29R1
  doi: 10.1103/PhysRevB.49.8227
– ident: PhysRevX.13.031024Cc27R1
  doi: 10.1103/PhysRevLett.67.2060
– ident: PhysRevX.13.031024Cc5R1
  doi: 10.1103/PhysRevLett.118.046801
– ident: PhysRevX.13.031024Cc34R1
  doi: 10.1103/PhysRevB.67.035314
– ident: PhysRevX.13.031024Cc18R1
  doi: 10.1103/PhysRevLett.126.216803
– ident: PhysRevX.13.031024Cc56R1
  doi: 10.1038/nphys4062
– ident: PhysRevX.13.031024Cc53R1
  doi: 10.1103/PhysRevLett.100.166803
– ident: PhysRevX.13.031024Cc3R1
  doi: 10.1016/j.aop.2017.07.015
– ident: PhysRevX.13.031024Cc25R1
  doi: 10.1103/PhysRevLett.64.220
– ident: PhysRevX.13.031024Cc47R1
  doi: 10.1103/PhysRevB.99.161302
– ident: PhysRevX.13.031024Cc54R1
  doi: 10.1016/j.physleta.2012.05.031
– ident: PhysRevX.13.031024Cc26R1
  doi: 10.1103/PhysRevLett.64.2206
– ident: PhysRevX.13.031024Cc24R1
  doi: 10.1103/PhysRevB.46.4026
– ident: PhysRevX.13.031024Cc48R1
  doi: 10.1103/PhysRevB.98.115408
– ident: PhysRevX.13.031024Cc14R1
  doi: 10.1038/nature22052
– ident: PhysRevX.13.031024Cc7R1
  doi: 10.1103/PhysRevLett.103.236802
– ident: PhysRevX.13.031024Cc30R1
  doi: 10.1103/PhysRevLett.88.056802
– ident: PhysRevX.13.031024Cc45R1
  doi: 10.1103/PhysRevB.57.3781
– ident: PhysRevX.13.031024Cc57R1
  doi: 10.1038/s41467-020-20395-7
– ident: PhysRevX.13.031024Cc8R1
  doi: 10.1038/nature09277
– ident: PhysRevX.13.031024Cc33R1
  doi: 10.1103/PhysRevB.103.165302
– ident: PhysRevX.13.031024Cc41R1
  doi: 10.1126/science.aar3766
– ident: PhysRevX.13.031024Cc43R1
  doi: 10.1103/PhysRevB.52.R17040
– ident: PhysRevX.13.031024Cc40R1
  doi: 10.1103/PhysRevB.85.155424
– ident: PhysRevX.13.031024Cc59R1
  doi: 10.7566/JPSJ.90.102001
– ident: PhysRevX.13.031024Cc17R1
  doi: 10.1126/sciadv.aaw5798
– ident: PhysRevX.13.031024Cc39R1
  doi: 10.1103/PhysRevB.88.235409
– ident: PhysRevX.13.031024Cc6R1
  doi: 10.1103/PhysRevB.103.L121302
– ident: PhysRevX.13.031024Cc10R1
  doi: 10.1038/ncomms2305
– ident: PhysRevX.13.031024Cc21R1
  doi: 10.1103/PhysRevLett.129.116803
– ident: PhysRevX.13.031024Cc28R1
  doi: 10.1103/PhysRevLett.72.2624
– ident: PhysRevX.13.031024Cc1R1
  doi: 10.1103/PhysRevLett.72.4129
– ident: PhysRevX.13.031024Cc49R1
  doi: 10.1126/science.1241912
– ident: PhysRevX.13.031024Cc55R1
  doi: 10.1038/nnano.2013.312
– ident: PhysRevX.13.031024Cc15R1
  doi: 10.1038/s41586-018-0184-1
– ident: PhysRevX.13.031024Cc31R1
  doi: 10.1103/PhysRevLett.113.266803
– ident: PhysRevX.13.031024Cc42R1
  doi: 10.1038/s41467-021-23160-6
– ident: PhysRevX.13.031024Cc50R1
  doi: 10.1103/PhysRevB.81.165313
– ident: PhysRevX.13.031024Cc60R1
  doi: 10.1103/PhysRevB.93.245427
– ident: PhysRevX.13.031024Cc20R1
  doi: 10.1038/s41467-022-28009-0
– ident: PhysRevX.13.031024Cc12R1
  doi: 10.1038/ncomms5067
SSID ssj0000601477
Score 2.3992872
Snippet Couplings between topological edge channels open electronic phases possessing nontrivial eigenmodes far beyond the noninteracting-edge picture. However,...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 031024
Title Coherent-Incoherent Crossover of Charge and Neutral Mode Transport as Evidence for the Disorder-Dominated Fractional Edge Phase
URI https://doaj.org/article/04beb3613735404fb98adcf3b5f0d76e
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCF7EJ64vcvAm2U2btGmOuu6yCC4iLuytNC89SFf24dW_7kwfy3rRiz2VkgxlOs18mcx8Q8h1qrznLhYMoIJh0tuIGa8SZq3TRTDcy4AB_cdxOprIh2ky3Wj1hTlhNT1wrbgelwb2e-B0FEYoZDA6K5wNwiSBO5V6XH3B521spuo1GKC_Um2VDBc9TKh89p_TbiS6SIcZyx-eaIOwv_Isw32y10BCelu_ygHZ8uUh2alSM-3iiHxhBQVyKDH4l5tb2keRmH1JZ4Hikfmrp0Xp6NivMHRBscUZXROX02JB2_ahFFAqBdRHW95Ndj_DdBhAnnQ4r8scQMDAgcSnN_Bxx2QyHLz0R6xpm8AsYKMlsyKzaSydS-BSKgoh40XmfQRYKVhhYyt1xoWR2ljuUu0zmzitgnRaKhOCOCHb5az0p4Qi9JZKcpP5VJq4gGlKCG2KBGBTpmWHRK0Kc9twimNri_e82ltwkbdqzyOR12rvkJv1nI-aUePX0Xf4ZdYjkQ27egA2kjc2kv9lI2f_IeSc7GKr-Sq_TF2Q7eV85S8BkCzNVWV739mf4EI
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coherent-Incoherent+Crossover+of+Charge+and+Neutral+Mode+Transport+as+Evidence+for+the+Disorder-Dominated+Fractional+Edge+Phase&rft.jtitle=Physical+review.+X&rft.au=Masayuki+Hashisaka&rft.au=Takuya+Ito&rft.au=Takafumi+Akiho&rft.au=Satoshi+Sasaki&rft.date=2023-09-07&rft.pub=American+Physical+Society&rft.eissn=2160-3308&rft.volume=13&rft.issue=3&rft.spage=031024&rft_id=info:doi/10.1103%2FPhysRevX.13.031024&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_04beb3613735404fb98adcf3b5f0d76e
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-3308&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-3308&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-3308&client=summon