Salinity tolerances of two Australian freshwater turtles, Chelodina expansa and Emydura macquarii (Testudinata: Chelidae)

Freshwater biota experience physiological challenges in regions affected by salinization, but often the effects on particular species are poorly understood. Freshwater turtles are of particular concern as they appear to have limited ability to cope with environmental conditions that are hyperosmotic...

Full description

Saved in:
Bibliographic Details
Published inConservation physiology Vol. 4; no. 1; p. cow042
Main Authors Bower, Deborah S, Scheltinga, David M, Clulow, Simon, Clulow, John, Franklin, Craig E, Georges, Arthur
Format Journal Article
LanguageEnglish
Published England Oxford University Press 2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Freshwater biota experience physiological challenges in regions affected by salinization, but often the effects on particular species are poorly understood. Freshwater turtles are of particular concern as they appear to have limited ability to cope with environmental conditions that are hyperosmotic to their body fluids. Here, we determined the physiological responses of two Australian freshwater chelid turtles, and , exposed to freshwater (0‰) and brackish water (15‰, representing a hyperosmotic environment). Brackish water is common in the Murray-Darling River Basin within the natural range of these species in Australia during periods of drought, yet it is unknown how well these species tolerate saline conditions. We hypothesized that these turtles would be unable to maintain homeostasis in the 15‰ water treatment and would suffer osmotic loss of water, increased ionic concentrations and a decrease in body mass. Results revealed that these turtles had elevated plasma concentrations of sodium, chloride, urea and uric acid in the plasma. Plasma ionic concentrations increased proportionally more in than in . Individuals of both species reduced feeding in 15‰ water, indicating that behaviour may provide an additional means for freshwater turtles to limit ion/solute influx when in hyperosmotic environments. This osmoregulatory behaviour may allow for persistence of turtles in regions affected by salinization; however, growth rates and body condition may be affected in the long term. Although we demonstrate that these turtles have mechanisms to survive temporarily in saline waters, it is likely that sustained salinization of waterways will exceed their short- to medium-term capacity to survive increased salt levels, making salinization a potentially key threatening process for these freshwater reptiles.
AbstractList Freshwater biota experience physiological challenges in regions affected by salinization, but often the effects on particular species are poorly understood. Freshwater turtles are of particular concern as they appear to have limited ability to cope with environmental conditions that are hyperosmotic to their body fluids. Here, we determined the physiological responses of two Australian freshwater chelid turtles, Emydura macquarii and Chelodina expansa, exposed to freshwater (0[per thousand]) and brackish water (15[per thousand], representing a hyperosmotic environment). Brackish water is common in the Murray-Darling River Basin within the natural range of these species in Australia during periods of drought, yet it is unknown how well these species tolerate saline conditions. We hypothesized that these turtles would be unable to maintain homeostasis in the 15[per thousand] water treatment and would suffer osmotic loss of water, increased ionic concentrations and a decrease in body mass. Results revealed that these turtles had elevated plasma concentrations of sodium, chloride, urea and uric acid in the plasma. Plasma ionic concentrations increased proportionally more in E. macquarii than in C. expansa. Individuals of both species reduced feeding in 15[per thousand] water, indicating that behaviour may provide an additional means for freshwater turtles to limit ion/solute influx when in hyperosmotic environments. This osmoregulatory behaviour may allow for persistence of turtles in regions affected by salinization; however, growth rates and body condition may be affected in the long term. Although we demonstrate that these turtles have mechanisms to survive temporarily in saline waters, it is likely that sustained salinization of waterways will exceed their short- to medium-term capacity to survive increased salt levels, making salinization a potentially key threatening process for these freshwater reptiles.
Freshwater biota experience physiological challenges in regions affected by salinization, but often the effects on particular species are poorly understood. Freshwater turtles are of particular concern as they appear to have limited ability to cope with environmental conditions that are hyperosmotic to their body fluids. Here, we determined the physiological responses of two Australian freshwater chelid turtles, Emydura macquarii and Chelodina expansa, exposed to freshwater (0[per thousand]) and brackish water (15[per thousand], representing a hyperosmotic environment). Brackish water is common in the Murray-Darling River Basin within the natural range of these species in Australia during periods of drought, yet it is unknown how well these species tolerate saline conditions. We hypothesized that these turtles would be unable to maintain homeostasis in the 15[per thousand] water treatment and would suffer osmotic loss of water, increased ionic concentrations and a decrease in body mass. Results revealed that these turtles had elevated plasma concentrations of sodium, chloride, urea and uric acid in the plasma. Plasma ionic concentrations increased proportionally more in E. macquarii than in C. expansa. Individuals of both species reduced feeding in 15[per thousand] water, indicating that behaviour may provide an additional means for freshwater turtles to limit ion/solute influx when in hyperosmotic environments. This osmoregulatory behaviour may allow for persistence of turtles in regions affected by salinization; however, growth rates and body condition may be affected in the long term. Although we demonstrate that these turtles have mechanisms to survive temporarily in saline waters, it is likely that sustained salinization of waterways will exceed their short- to medium-term capacity to survive increased salt levels, making salinization a potentially key threatening process for these freshwater reptiles. Key words: chloride, salinization, salt, sodium, tortoise, urea
Freshwater biota experience physiological challenges in regions affected by salinization, but often the effects on particular species are poorly understood. Freshwater turtles are of particular concern as they appear to have limited ability to cope with environmental conditions that are hyperosmotic to their body fluids. Here, we determined the physiological responses of two Australian freshwater chelid turtles, and , exposed to freshwater (0‰) and brackish water (15‰, representing a hyperosmotic environment). Brackish water is common in the Murray-Darling River Basin within the natural range of these species in Australia during periods of drought, yet it is unknown how well these species tolerate saline conditions. We hypothesized that these turtles would be unable to maintain homeostasis in the 15‰ water treatment and would suffer osmotic loss of water, increased ionic concentrations and a decrease in body mass. Results revealed that these turtles had elevated plasma concentrations of sodium, chloride, urea and uric acid in the plasma. Plasma ionic concentrations increased proportionally more in than in . Individuals of both species reduced feeding in 15‰ water, indicating that behaviour may provide an additional means for freshwater turtles to limit ion/solute influx when in hyperosmotic environments. This osmoregulatory behaviour may allow for persistence of turtles in regions affected by salinization; however, growth rates and body condition may be affected in the long term. Although we demonstrate that these turtles have mechanisms to survive temporarily in saline waters, it is likely that sustained salinization of waterways will exceed their short- to medium-term capacity to survive increased salt levels, making salinization a potentially key threatening process for these freshwater reptiles.
Two species of Australian freshwater turtle were submerged in either water of 0‰ or 15‰ over 50 days. Turtles in 15‰ water reduced feeding and had raised plasma ionic concentrations of sodium, chloride, urea and uric acid to decrease dehydration and enable survival. Freshwater biota experience physiological challenges in regions affected by salinization, but often the effects on particular species are poorly understood. Freshwater turtles are of particular concern as they appear to have limited ability to cope with environmental conditions that are hyperosmotic to their body fluids. Here, we determined the physiological responses of two Australian freshwater chelid turtles, Emydura macquarii and Chelodina expansa , exposed to freshwater (0‰) and brackish water (15‰, representing a hyperosmotic environment). Brackish water is common in the Murray–Darling River Basin within the natural range of these species in Australia during periods of drought, yet it is unknown how well these species tolerate saline conditions. We hypothesized that these turtles would be unable to maintain homeostasis in the 15‰ water treatment and would suffer osmotic loss of water, increased ionic concentrations and a decrease in body mass. Results revealed that these turtles had elevated plasma concentrations of sodium, chloride, urea and uric acid in the plasma. Plasma ionic concentrations increased proportionally more in E. macquarii than in C. expansa . Individuals of both species reduced feeding in 15‰ water, indicating that behaviour may provide an additional means for freshwater turtles to limit ion/solute influx when in hyperosmotic environments. This osmoregulatory behaviour may allow for persistence of turtles in regions affected by salinization; however, growth rates and body condition may be affected in the long term. Although we demonstrate that these turtles have mechanisms to survive temporarily in saline waters, it is likely that sustained salinization of waterways will exceed their short- to medium-term capacity to survive increased salt levels, making salinization a potentially key threatening process for these freshwater reptiles.
Audience Academic
Author Scheltinga, David M
Franklin, Craig E
Clulow, John
Clulow, Simon
Bower, Deborah S
Georges, Arthur
Author_xml – sequence: 1
  givenname: Deborah S
  surname: Bower
  fullname: Bower, Deborah S
  organization: Institute for Applied Ecology , University of Canberra , ACT 2601 , Australia
– sequence: 2
  givenname: David M
  surname: Scheltinga
  fullname: Scheltinga, David M
  organization: Water Quality and Aquatic Ecosystem Health Branch , Department of Environment and Resource Management, GPO Box 2454, QLD 4001 , Australia
– sequence: 3
  givenname: Simon
  surname: Clulow
  fullname: Clulow, Simon
  organization: University of Newcastle , Callaghan, NSW 2308 , Australia
– sequence: 4
  givenname: John
  surname: Clulow
  fullname: Clulow, John
  organization: University of Newcastle , Callaghan, NSW 2308 , Australia
– sequence: 5
  givenname: Craig E
  surname: Franklin
  fullname: Franklin, Craig E
  organization: School of Biological Sciences , The University of Queensland , St Lucia, QLD 4072 , Australia
– sequence: 6
  givenname: Arthur
  surname: Georges
  fullname: Georges, Arthur
  organization: Institute for Applied Ecology , University of Canberra , ACT 2601 , Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27757236$$D View this record in MEDLINE/PubMed
BookMark eNpVks1rGzEQxUVJadI01x6LjgnUqbSS9qOHgjFpGwgUmvQsZrWztsqu5EjaOv7vK9duiNFhxMzvPXjMvCUnzjsk5D1n15w14pPxbr3axlw3TBavyFnBFJ9xKeTJi_8puYjxN2OMs0qppn5DTouqUlUhyjOyvYfBOpu2NPkBAziDkfqepo2n8ymmkMfgaB8wrjaQMNA0hTRg_EgXKxx8Zx1QfFqDi0DBdfRm3HZTADqCeZwgWEsvHzCmaQcm-PxPZTvAq3fkdQ9DxItDPSe_vt48LL7P7n58u13M72ZGFiLNjBA9a5rWcA5tW3ei6xQYaLgo26owPVdNWwOISkmOXCoGjSxFJwXKpmQ1E-fky953PbUjdgbdLpReBztC2GoPVh9PnF3ppf-jFStLUVfZ4PJgEPzjlLPo0UaDwwAO_RQ1r4WSjZIVz-j1Hl3CgNq63mdHk1-Ho83bwt7m_lzWQgje1HUWXB0JMpPwKS1hilHf3v88Zg_mJvgYA_bPGTjTu3vQh3vQ-3vIgg8vkz_j_7cv_gJIlrcy
CitedBy_id crossref_primary_10_1016_j_cub_2020_04_088
crossref_primary_10_1016_j_cretres_2019_104197
crossref_primary_10_1002_ece3_10201
crossref_primary_10_1016_j_scitotenv_2024_171743
crossref_primary_10_1007_s12549_023_00577_z
crossref_primary_10_7717_peerj_5938
crossref_primary_10_1016_j_scitotenv_2020_141744
crossref_primary_10_1002_vetr_2180
crossref_primary_10_1111_aec_13403
crossref_primary_10_1093_conphys_coz054
crossref_primary_10_1016_j_cretres_2023_105503
crossref_primary_10_1007_s11252_017_0708_8
crossref_primary_10_1098_rsos_171773
crossref_primary_10_1002_aqc_4056
crossref_primary_10_1016_j_jsames_2017_07_014
crossref_primary_10_1038_s41598_021_88905_1
crossref_primary_10_1007_s00267_020_01326_0
crossref_primary_10_1016_j_cbpa_2019_110531
crossref_primary_10_1002_aqc_3767
crossref_primary_10_1111_brv_12410
crossref_primary_10_1242_jeb_181172
crossref_primary_10_3390_ani9110855
Cites_doi 10.1007/BF00691116
10.1093/icb/ics073
10.1002/cphy.cp130222
10.1152/ajpregu.1986.250.6.R1133
10.2307/1563376
10.1007/s10750-007-0806-3
10.1242/jeb.38.3.659
10.1007/s00360-006-0105-8
10.1071/ZO9840649
10.1016/j.jembe.2015.01.017
10.1007/BF00014327
10.1016/j.agee.2012.06.022
10.1111/j.1469-7998.1990.tb04320.x
10.2307/1444958
10.1007/s00360-012-0695-2
10.1071/BT02111
10.1016/0300-9629(85)90442-6
10.1111/j.1469-7998.2011.00891.x
10.1242/jeb.46.1.161
10.1016/0016-6480(89)90138-X
10.1007/BF00014328
10.1016/j.ygcen.2005.12.009
10.1016/0300-9629(85)90125-2
10.1242/jeb.52.3.691
10.1071/WR11214
10.1111/j.1600-0587.2012.07717.x
10.1111/j.1440-1681.1998.tb02284.x
10.1046/j.1440-1770.1999.00089.x
10.2307/1563949
10.2307/1442030
10.1111/j.1469-185X.1936.tb00497.x
10.1023/A:1014598509028
10.1002/jez.436
10.1152/physrev.00037.2007
10.1071/BT02115
ContentType Journal Article
Copyright COPYRIGHT 2016 Oxford University Press
The Author 2016. Published by Oxford University Press and the Society for Experimental Biology. 2016
Copyright_xml – notice: COPYRIGHT 2016 Oxford University Press
– notice: The Author 2016. Published by Oxford University Press and the Society for Experimental Biology. 2016
DBID NPM
AAYXX
CITATION
ISR
7X8
5PM
DOI 10.1093/conphys/cow042
DatabaseName PubMed
CrossRef
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList

PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Ecology
EISSN 2051-1434
EndPage cow042
ExternalDocumentID A483331988
10_1093_conphys_cow042
27757236
Genre Journal Article
GeographicLocations Australia
GeographicLocations_xml – name: Australia
GroupedDBID 0R~
4.4
5VS
AAFWJ
AAHBH
AAKDD
AAMVS
AAOGV
AAPPN
AAPXW
AAVAP
ABPTD
ABQLI
ABXVV
ACGFS
ADBBV
ADHZD
AENZO
AFPKN
AFULF
ALMA_UNASSIGNED_HOLDINGS
ALUQC
AOIJS
AVWKF
BAYMD
BCNDV
BTTYL
CIDKT
D~K
EBS
EDH
EJD
GROUPED_DOAJ
GX1
H13
HYE
IAO
ISR
ITC
KQ8
KSI
ML0
M~E
NPM
O9-
OAWHX
OJQWA
OK1
O~Y
PEELM
RNS
ROX
RPM
TOX
AAYXX
CITATION
OJZSN
7X8
5PM
ID FETCH-LOGICAL-c423t-c33f099bc11abb8d3dd5aca9136b72cf159b8aa37541e1450a9463d43e4960803
IEDL.DBID RPM
ISSN 2051-1434
IngestDate Tue Sep 17 21:08:13 EDT 2024
Fri Aug 16 21:05:35 EDT 2024
Wed Jan 10 03:57:57 EST 2024
Thu Aug 01 19:41:18 EDT 2024
Fri Aug 23 01:17:28 EDT 2024
Sat Sep 28 07:59:28 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 1
Keywords sodium
chloride
tortoise
salt
salinization
urea
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c423t-c33f099bc11abb8d3dd5aca9136b72cf159b8aa37541e1450a9463d43e4960803
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Institute for Applied Ecology, University of Canberra, ACT 2601, Australia.
Editor: Steven Cooke
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5066387/
PMID 27757236
PQID 1835495471
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5066387
proquest_miscellaneous_1835495471
gale_infotracacademiconefile_A483331988
gale_incontextgauss_ISR_A483331988
crossref_primary_10_1093_conphys_cow042
pubmed_primary_27757236
PublicationCentury 2000
PublicationDate 2016-00-00
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – year: 2016
  text: 2016-00-00
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Conservation physiology
PublicationTitleAlternate Conserv Physiol
PublicationYear 2016
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References 22586069 - Integr Comp Biol. 2012 Aug;52(2):245-56
2864163 - Comp Biochem Physiol A Comp Physiol. 1985;81(2):217-23
3717386 - Am J Physiol. 1986 Jun;250(6 Pt 2):R1133-7
2684740 - Gen Comp Endocrinol. 1989 Dec;76(3):421-6
2866884 - Comp Biochem Physiol A Comp Physiol. 1985;82(3):613-9
23011356 - J Comp Physiol B. 2013 Feb;183(2):235-41
16838133 - J Comp Physiol B. 2007 Jan;177(1):19-29
5449715 - J Exp Biol. 1970 Jun;52(3):691-7
19126758 - Physiol Rev. 2009 Jan;89(1):193-277
9750963 - Clin Exp Pharmacol Physiol. 1998 Sep;25(9):722-7
16457828 - Gen Comp Endocrinol. 2006 May 15;147(1):3-8
18273861 - J Exp Zool A Ecol Genet Physiol. 2008 Mar 1;309(2):111-6
6032170 - J Exp Biol. 1967 Feb;46(1):161-7
Dunson (2016101518093585000_4.1.cow042.13) 1986; 250
Davenport (2016101518093585000_4.1.cow042.9) 1993; 3
Dessauer (2016101518093585000_4.1.cow042.10) 1970; Vol 3
2016101518093585000_4.1.cow042.42
2016101518093585000_4.1.cow042.21
2016101518093585000_4.1.cow042.43
2016101518093585000_4.1.cow042.40
2016101518093585000_4.1.cow042.41
Bower (2016101518093585000_4.1.cow042.3) 2012; 39
2016101518093585000_4.1.cow042.7
2016101518093585000_4.1.cow042.28
2016101518093585000_4.1.cow042.6
2016101518093585000_4.1.cow042.29
2016101518093585000_4.1.cow042.5
2016101518093585000_4.1.cow042.26
Bentley (2016101518093585000_4.1.cow042.2) 1967; 46
2016101518093585000_4.1.cow042.4
2016101518093585000_4.1.cow042.27
Gilles-Baillen (2016101518093585000_4.1.cow042.19) 1970; 52
Hart (2016101518093585000_4.1.cow042.24) 2006; 32
2016101518093585000_4.1.cow042.25
2016101518093585000_4.1.cow042.1
2016101518093585000_4.1.cow042.22
2016101518093585000_4.1.cow042.44
2016101518093585000_4.1.cow042.23
2016101518093585000_4.1.cow042.8
Gordon (2016101518093585000_4.1.cow042.20) 1961; 38
Dunson (2016101518093585000_4.1.cow042.14) 1989; 44
2016101518093585000_4.1.cow042.31
2016101518093585000_4.1.cow042.32
2016101518093585000_4.1.cow042.17
2016101518093585000_4.1.cow042.39
2016101518093585000_4.1.cow042.18
2016101518093585000_4.1.cow042.15
2016101518093585000_4.1.cow042.37
2016101518093585000_4.1.cow042.16
2016101518093585000_4.1.cow042.38
2016101518093585000_4.1.cow042.35
2016101518093585000_4.1.cow042.36
2016101518093585000_4.1.cow042.11
2016101518093585000_4.1.cow042.33
2016101518093585000_4.1.cow042.12
2016101518093585000_4.1.cow042.34
Muir (2016101518093585000_4.1.cow042.30) 2008; 309
References_xml – ident: 2016101518093585000_4.1.cow042.34
  doi: 10.1007/BF00691116
– ident: 2016101518093585000_4.1.cow042.1
  doi: 10.1093/icb/ics073
– ident: 2016101518093585000_4.1.cow042.18
  doi: 10.1002/cphy.cp130222
– volume: 250
  start-page: R1133
  year: 1986
  ident: 2016101518093585000_4.1.cow042.13
  article-title: Effect of relative shell size in turtles on water and electrolyte composition
  publication-title: Am J Physiol Regul Integr Comp Physiol
  doi: 10.1152/ajpregu.1986.250.6.R1133
  contributor:
    fullname: Dunson
– ident: 2016101518093585000_4.1.cow042.11
  doi: 10.2307/1563376
– ident: 2016101518093585000_4.1.cow042.16
  doi: 10.1007/s10750-007-0806-3
– volume: 38
  start-page: 659
  year: 1961
  ident: 2016101518093585000_4.1.cow042.20
  article-title: Osmotic regulation in the crab-eating frog (Rana cancrivora)
  publication-title: J Exp Biol
  doi: 10.1242/jeb.38.3.659
  contributor:
    fullname: Gordon
– ident: 2016101518093585000_4.1.cow042.27
  doi: 10.1007/s00360-006-0105-8
– ident: 2016101518093585000_4.1.cow042.7
  doi: 10.1071/ZO9840649
– volume: 32
  start-page: 206
  year: 2006
  ident: 2016101518093585000_4.1.cow042.24
  article-title: The diamondback terrapin: the biology, ecology, cultural history, and conservation status of an obligate estuarine turtle
  publication-title: Stud Avian Biol
  contributor:
    fullname: Hart
– volume: 44
  start-page: 229
  year: 1989
  ident: 2016101518093585000_4.1.cow042.14
  article-title: Salinity as a limiting factor in the distribution of reptiles in Florida Bay: a theory for the estuarine origin of marine snakes and turtles
  publication-title: Bull Mar Sci
  contributor:
    fullname: Dunson
– ident: 2016101518093585000_4.1.cow042.21
  doi: 10.1016/j.jembe.2015.01.017
– ident: 2016101518093585000_4.1.cow042.22
  doi: 10.1007/BF00014327
– ident: 2016101518093585000_4.1.cow042.17
  doi: 10.1016/j.agee.2012.06.022
– ident: 2016101518093585000_4.1.cow042.32
– ident: 2016101518093585000_4.1.cow042.8
  doi: 10.1111/j.1469-7998.1990.tb04320.x
– volume: Vol 3
  start-page: 1
  volume-title: Biology of Reptiles,
  year: 1970
  ident: 2016101518093585000_4.1.cow042.10
  contributor:
    fullname: Dessauer
– ident: 2016101518093585000_4.1.cow042.12
  doi: 10.2307/1444958
– ident: 2016101518093585000_4.1.cow042.5
  doi: 10.1007/s00360-012-0695-2
– ident: 2016101518093585000_4.1.cow042.23
  doi: 10.1071/BT02111
– ident: 2016101518093585000_4.1.cow042.28
  doi: 10.1016/0300-9629(85)90442-6
– ident: 2016101518093585000_4.1.cow042.38
– ident: 2016101518093585000_4.1.cow042.4
  doi: 10.1111/j.1469-7998.2011.00891.x
– volume: 46
  start-page: 161
  year: 1967
  ident: 2016101518093585000_4.1.cow042.2
  article-title: Osmoregulation in the diamondback terrapin, Malaclemys terrapin centrata
  publication-title: J Exp Biol
  doi: 10.1242/jeb.46.1.161
  contributor:
    fullname: Bentley
– ident: 2016101518093585000_4.1.cow042.39
  doi: 10.1016/0016-6480(89)90138-X
– ident: 2016101518093585000_4.1.cow042.41
  doi: 10.1007/BF00014328
– ident: 2016101518093585000_4.1.cow042.29
  doi: 10.1016/j.ygcen.2005.12.009
– ident: 2016101518093585000_4.1.cow042.26
  doi: 10.1016/0300-9629(85)90125-2
– volume: 52
  start-page: 691
  year: 1970
  ident: 2016101518093585000_4.1.cow042.19
  article-title: Urea and osmoregulation in the diamondback terrapin Malaclemys centrata centrata (Latreille)
  publication-title: J Exp Biol
  doi: 10.1242/jeb.52.3.691
  contributor:
    fullname: Gilles-Baillen
– volume: 39
  start-page: 705
  year: 2012
  ident: 2016101518093585000_4.1.cow042.3
  article-title: Ecological and physiological impacts of salinisation on freshwater turtles of the lower Murray River
  publication-title: Wildl Res
  doi: 10.1071/WR11214
  contributor:
    fullname: Bower
– ident: 2016101518093585000_4.1.cow042.6
  doi: 10.1111/j.1600-0587.2012.07717.x
– ident: 2016101518093585000_4.1.cow042.44
  doi: 10.1111/j.1440-1681.1998.tb02284.x
– ident: 2016101518093585000_4.1.cow042.42
  doi: 10.1046/j.1440-1770.1999.00089.x
– ident: 2016101518093585000_4.1.cow042.15
  doi: 10.2307/1563949
– ident: 2016101518093585000_4.1.cow042.40
  doi: 10.2307/1442030
– ident: 2016101518093585000_4.1.cow042.36
  doi: 10.1111/j.1469-185X.1936.tb00497.x
– volume: 3
  start-page: 95
  year: 1993
  ident: 2016101518093585000_4.1.cow042.9
  article-title: The effects of salinity and temperature on appetite in the diamondback terrapin Malaclemys terrapin (Latreille)
  publication-title: Herpetol J
  contributor:
    fullname: Davenport
– ident: 2016101518093585000_4.1.cow042.33
– ident: 2016101518093585000_4.1.cow042.43
  doi: 10.1023/A:1014598509028
– volume: 309
  start-page: 111
  year: 2008
  ident: 2016101518093585000_4.1.cow042.30
  article-title: Metabolic depression induced by urea in organs of the wood frog, Rana sylvatica: effects of season and temperature
  publication-title: J Exp Zool
  doi: 10.1002/jez.436
  contributor:
    fullname: Muir
– ident: 2016101518093585000_4.1.cow042.25
  doi: 10.1152/physrev.00037.2007
– ident: 2016101518093585000_4.1.cow042.31
  doi: 10.1071/BT02115
– ident: 2016101518093585000_4.1.cow042.35
– ident: 2016101518093585000_4.1.cow042.37
SSID ssj0001075598
Score 2.172603
Snippet Freshwater biota experience physiological challenges in regions affected by salinization, but often the effects on particular species are poorly understood....
Two species of Australian freshwater turtle were submerged in either water of 0‰ or 15‰ over 50 days. Turtles in 15‰ water reduced feeding and had raised...
SourceID pubmedcentral
proquest
gale
crossref
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage cow042
SubjectTerms Analysis
Common snakeneck turtle
Emydidae
Physiological aspects
Salinity
Title Salinity tolerances of two Australian freshwater turtles, Chelodina expansa and Emydura macquarii (Testudinata: Chelidae)
URI https://www.ncbi.nlm.nih.gov/pubmed/27757236
https://search.proquest.com/docview/1835495471
https://pubmed.ncbi.nlm.nih.gov/PMC5066387
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdtYbCXse9lH0Ubg20wN3Ek2dLeSkjpBt3GmkLejD4bQ2JnsUOW_34n2U6TPe7FfvDJCN3Z97vT6XcIvRfOCJcoGqVDriOqnIoEF4NICMXkwFmbBsr8q-_J5Q39NmXTI8S6szChaF-r_KyYL86KfBZqK5cL3e_qxPo_r0bM-0me9o_RcUrIXogeEivgBJngO4JG0ofA0qcJ4L4BE_X0v2nK0mFgZb7zRf_-kfdc0mG55J7_uXiIHrTAEZ83E3yEjmzxGN0bB9Lp7RO0vZb-jGO9xXU5t75bhq1w6XC9KfFdPgM7iK5nG8CXKwy-Buyk-oxHMzsvwYVJbP8sffdwLAuDx4utWa8kXkj9G8woz_HHifVktCBYyy9hVG6k_fQU3VyMJ6PLqG2rEGnATnWkCXGAC5WOY6kUN8QYJrUUMUlUOtQOAI7iUvreuLGNKRtIQRNiKLEUwh0-IM_QSVEW9gXCTiTUGogRlaIQiFoOgIImSkjCDDNG9tCHboGzZcOekTW73iRrtZI1Wumhd379M09JUfial1u5rqrs6_Wv7JxyQuBPwTm8rhVyJayblu0RApiMZ7E6kHzb6TGD78VvgsjClusqi32mSzDwyT30vNHrbmqdXfRQeqDxnYDn4j58AiYaOLlbk3z53yNfofuAxdrszmt0Uq_W9g3gnVqdhjzBabByuE5-TP8Cv6sH5w
link.rule.ids 230,315,733,786,790,870,891,4043,27956,27957,27958,53827,53829
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbGEIIX7rByNQgJkEjb1HZi8zZVnTpYJ8Q6tLfIt6wVbVKaRKX8eo5z6dq9wVMebEdOzmefi4-_g9A7ERsRB4p6YY9rj6pYeYKLrieEYrIbWxuWlPmj02B4Tr9csIs9xJq7MGXSvlbTdjKbt5PppMytXMx1p8kT63wb9ZnTkzzs3EA3Yb32wi0nvQytgBpkgm8oGkkHXEsXKIDnCkDqCIDDkIW9kpf5Shtd35O3lNJuwuSWBjq6h340c68ST362i1y19Z9rtI7__HH30d3aJsWHVfMDtGeTh-jWoOSzXj9C6zPprk_ma5ynM-sKcdgMpzHOVym-CpXgGBz3yQpM1yUGNQYQzD7h_sTOUtCOEtvfC1eYHMvE4MF8bYqlxHOpfwFCp1P8YWwdzy10zOXnctTUSPvxMTo_Goz7Q6-u2OBpMMtyTxMSg8mptO9LpbghxjCppfBJoMKejsF2UlxKV3bXtz5lXSloQAwlloInxbvkCdpP0sQeIByLgFoD7qdSFHxcy8FWoYESkjDDjJEt9L6RXLSoiDmi6kCdRLW4o0rcLfTWCTZybBeJS6e5lEWWRcdn36NDygmBTYhzeF3dKU7hv2lZ306AyTiCrJ2ebxqARLAU3fmKTGxaZJHvgmiCgbpvoacVYDZTawDXQuEOlDYdHM33bgsApKT7rgHx7L9Hvka3h-PRSXRyfPr1OboDJl8dRHqB9vNlYV-CWZWrV-Ui-gsAIifR
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgCLQX7oxyNQgJkEjT1E5i8zaVVhuwaWKbNPES-Uor2qQ0iUr59Rzn0rV73FMechw5OZ9zLj7-DkLvuNXcRpJ6cZ8pj0orPc54z-NchqJnjYkryvyj4-jgnH69CC82Wn1VRftKTrrpdNZNJ-OqtnI-U35bJ-afHA1CZydZ7M-19W-iW7Bm-3wjUK_SK2AKQ87WNI3Eh_DSJQvgugSgOhLgOA7jfsXNfGmRrv6XNwzTdtHkhhUa3UM_2_nXxSe_u2Uhu-rfFWrHa73gfXS38U3xfi3yAN0w6UN0e1jxWq8eodWpcMcoixUusqlxDTlMjjOLi2WGL1Mm2EIAP16CC7vAYM4AivknPBibaQZWUmDzd-4alGORajycrXS5EHgm1B9A6mSCP5wZx3cLgoX4XI2aaGE-Pkbno-HZ4MBrOjd4CtyzwlOEWHA9pQoCISXTROtQKMEDEsm4ryz4UJIJ4drvBiagYU9wGhFNiaEQUbEeeYJ20iw1TxG2PKJGQxgqJYVY1zDwWWgkuSChDrUWHfS-1V4yrwk6knpjnSSNypNa5R301ik3cawXqSur-SXKPE8OT38k-5QRAj8jxuBxjZDN4Lsp0ZxSgMk4oqwtyTctSBJYkm6fRaQmK_MkcMk0HoLZ76C9GjTrqbWg66B4C05rAUf3vX0HQFLRfjegeHbtka_RnZMvo-T74fG352gXPL8ml_QC7RSL0rwE76qQr6p19B8XASpR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Salinity+tolerances+of+two+Australian+freshwater+turtles%2C+Chelodina+expansa+and+Emydura+macquarii&rft.jtitle=Conservation+physiology&rft.au=Bower%2C+Deborah+S&rft.au=Scheltinga%2C+David+M&rft.au=Clulow%2C+Simon&rft.au=Clulow%2C+John&rft.date=2016&rft.pub=Oxford+University+Press&rft.issn=2051-1434&rft.eissn=2051-1434&rft_id=info:doi/10.1093%2Fconphys%2Fcow042&rft.externalDocID=A483331988
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2051-1434&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2051-1434&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2051-1434&client=summon