Land cover changes in grassland landscapes: combining enhanced Landsat data composition, LandTrendr, and machine learning classification in google earth engine with MLP-ANN scenario forecasting

Understanding grassland habitat dynamics in space and time is crucial for evaluating the effectiveness of protection measures and developing sustainable management practices, specifically within the Natura 2000 network and in light of the European Biodiversity Strategy. Land cover maps, derived from...

Full description

Saved in:
Bibliographic Details
Published inGIScience and remote sensing Vol. 61; no. 1
Main Authors Parracciani, Cecilia, Gigante, Daniela, Mutanga, Onisimo, Bonafoni, Stefania, Vizzari, Marco
Format Journal Article
LanguageEnglish
Published Taylor & Francis 31.12.2024
Taylor & Francis Group
Subjects
Online AccessGet full text
ISSN1548-1603
1943-7226
DOI10.1080/15481603.2024.2302221

Cover

Abstract Understanding grassland habitat dynamics in space and time is crucial for evaluating the effectiveness of protection measures and developing sustainable management practices, specifically within the Natura 2000 network and in light of the European Biodiversity Strategy. Land cover maps, derived from remote sensing data, are essential for understanding long-term changes in vegetation cover and land use and assessing the impact of land use changes on grassland ecosystems. In this study, we conducted a 20-year land cover analysis of grassland landscapes in Umbria, Italy, using Random Forest classifications of Landsat data in Google Earth Engine. Our analysis was based on the years 2000, 2010, and 2020. We integrated harmonic modeling, Gray-Level Co-occurrence Matrix (GLCM) textural analysis, statistical image and gradient analysis, and other spectral and Digital Terrain Model (DTM)-derived indices to enhance the classification capabilities. The LandTrendr (LT) algorithm was used in GEE to collect ground control points in no-change areas automatically. We used a method based on Multilayer Perceptron-Artificial Neural Networks (MLP-ANNs) to forecast 2040 land cover. Our land cover classifications and the scenario model validation achieved an overall accuracy of over 90%. However, the classification of shrublands proved challenging due to their mixed composition and unique spatial patterns, resulting in lower accuracies. Feature importance analysis demonstrated the value of the enhanced map composition, and applying the LandTrendr algorithm simplified the diachronic land use and land cover (LULC) classification and change analysis by supporting automatic training data collection. Results support the interpretation of grassland dynamics in Umbria over the past two decades and identify areas affected by encroachment from shrubs, woody plants, or those with reduced green biomass. The forecasting method along with the selection of spatial drivers to predict land cover change, demonstrated high efficiency compared to other studies. A specific analysis was developed to identify areas where conservation measures related to the Natura 2000 network have been more or less effective in preserving grasslands. Overall, the research provides a scientific foundation for a methodology helpful in informing policy decisions and defining spatially explicit management strategies to enhance grassland conservation inside and outside Natura 2000 areas.
AbstractList Understanding grassland habitat dynamics in space and time is crucial for evaluating the effectiveness of protection measures and developing sustainable management practices, specifically within the Natura 2000 network and in light of the European Biodiversity Strategy. Land cover maps, derived from remote sensing data, are essential for understanding long-term changes in vegetation cover and land use and assessing the impact of land use changes on grassland ecosystems. In this study, we conducted a 20-year land cover analysis of grassland landscapes in Umbria, Italy, using Random Forest classifications of Landsat data in Google Earth Engine. Our analysis was based on the years 2000, 2010, and 2020. We integrated harmonic modeling, Gray-Level Co-occurrence Matrix (GLCM) textural analysis, statistical image and gradient analysis, and other spectral and Digital Terrain Model (DTM)-derived indices to enhance the classification capabilities. The LandTrendr (LT) algorithm was used in GEE to collect ground control points in no-change areas automatically. We used a method based on Multilayer Perceptron-Artificial Neural Networks (MLP-ANNs) to forecast 2040 land cover. Our land cover classifications and the scenario model validation achieved an overall accuracy of over 90%. However, the classification of shrublands proved challenging due to their mixed composition and unique spatial patterns, resulting in lower accuracies. Feature importance analysis demonstrated the value of the enhanced map composition, and applying the LandTrendr algorithm simplified the diachronic land use and land cover (LULC) classification and change analysis by supporting automatic training data collection. Results support the interpretation of grassland dynamics in Umbria over the past two decades and identify areas affected by encroachment from shrubs, woody plants, or those with reduced green biomass. The forecasting method along with the selection of spatial drivers to predict land cover change, demonstrated high efficiency compared to other studies. A specific analysis was developed to identify areas where conservation measures related to the Natura 2000 network have been more or less effective in preserving grasslands. Overall, the research provides a scientific foundation for a methodology helpful in informing policy decisions and defining spatially explicit management strategies to enhance grassland conservation inside and outside Natura 2000 areas.
Author Gigante, Daniela
Mutanga, Onisimo
Bonafoni, Stefania
Parracciani, Cecilia
Vizzari, Marco
Author_xml – sequence: 1
  givenname: Cecilia
  surname: Parracciani
  fullname: Parracciani, Cecilia
  organization: University of Perugia
– sequence: 2
  givenname: Daniela
  surname: Gigante
  fullname: Gigante, Daniela
  organization: University of Perugia
– sequence: 3
  givenname: Onisimo
  surname: Mutanga
  fullname: Mutanga, Onisimo
  organization: University of KwaZulu-Natal
– sequence: 4
  givenname: Stefania
  surname: Bonafoni
  fullname: Bonafoni, Stefania
  organization: University of Perugia
– sequence: 5
  givenname: Marco
  surname: Vizzari
  fullname: Vizzari, Marco
  email: marco.vizzari@unipg.it
  organization: University of Perugia
BookMark eNqFkc1u1DAUhSNUJNrCIyD5AZrBP5k4AxuqCmilobAoa-vavs64ytgjO6Lq4_Fm2JmWBQvwwn_3nO9aPmfNSYgBm-YtoytGB_qOrbuB9VSsOOXdigvKOWcvmlO26UQrOe9Pyr5o2ip61ZzlfE-pWDO2Pm1-bSFYYuJPTMTsIIyYiQ9kTJDzVEt1ygYOmN8X2V774MNIMBStQUuqPcNMLMxQ64eY_exjuFgqdwmDTRekgvZgdj4gmRDSwjBT6eGdN1ANS9cYxwlJEcy70mKs8gdf9l-339vL21uSDQZIPhIXExrIc-G8bl46mDK-eVrPmx-fP91dXbfbb19uri63rem4mFuthR7WVmpnpWHl4FAiww10RsIw2F5KIR1qsymDQ2_tANwWQ6eZpHwQ583NkWsj3KtD8ntIjyqCV8tFTKMq7_ZmQuU4agdOWqF5x9FpA7anpjeIgxkYL6z1kWVSzDmh-8NjVNVM1XOmqmaqnjItvg9_-Yyfl--bE_jpv-6PR7cP5f_28BDTZNUMj1NMLpU8fVbi34jffHrCTw
CitedBy_id crossref_primary_10_3390_land13060845
crossref_primary_10_3390_s24030834
crossref_primary_10_1016_j_pce_2025_103893
crossref_primary_10_3390_land13030386
crossref_primary_10_1016_j_ufug_2025_128697
crossref_primary_10_1080_15481603_2024_2385170
crossref_primary_10_1007_s13201_024_02345_6
crossref_primary_10_1016_j_indic_2025_100628
Cites_doi 10.3390/rs13040586
10.3390/RS11131623
10.5194/essd-13-4349-2021
10.23953/cloud.ijarsg.74
10.1016/j.agsy.2008.07.004
10.3390/RS13245064
10.1109/JSTARS.2021.3098720
10.1080/07038992.2022.2039060
10.1016/j.rse.2019.111225
10.1016/J.RSE.2010.07.008
10.1016/J.JAG.2022.102806
10.1109/igarss.2004.1370429
10.1007/s10531-019-01718-7
10.2478/jengeo-2019-0005
10.1016/j.patrec.2005.08.011
10.3390/RS12182953
10.1007/s00442-017-3807-6
10.1016/J.JENVMAN.2020.111617
10.1016/J.JCLEPRO.2018.01.050
10.1007/s41324-023-00509-1
10.3390/rs13071279
10.3390/rs9121245
10.1016/j.isprsjprs.2011.11.002
10.1109/TGRS.2005.852480
10.1016/S0378-1127(99)00272-8
10.3390/RS11131514
10.1016/J.ISPRSJPRS.2014.09.002
10.1007/s11356-021-17904-6
10.1016/S0034-4257(96)00072-7
10.3390/rs11243023
10.1016/S0006-3207(01)00201-4
10.3389/frsen.2022.894571
10.1111/j.1365-2486.2008.01838.x
10.5194/isprs-archives-XLIII-B3-2020-663-2020
10.1080/15481603.2022.2088652
10.1111/1365-2745.12325
10.1016/j.isprsjprs.2020.04.001
10.1016/J.RSASE.2020.100459
10.1371/JOURNAL.PONE.0208264
10.1016/j.rse.2015.11.032
10.1016/J.RSE.2022.113228
10.1016/j.rse.2013.08.014
10.1016/J.RSE.2018.07.010
10.1016/J.RSE.2014.10.018
10.1016/J.JAG.2013.12.007
10.1080/01431161.2017.1399480
10.1007/s12210-018-0707-6
10.1016/J.ENVSCI.2021.10.028
10.3390/rs12121949
10.3390/rs13071239
10.1080/01431161.2016.1278314
10.1080/01431161.2014.933280
10.1111/cobi.12534
10.1016/j.rse.2014.02.015
10.1007/978-1-4419-7865-3
10.1080/01431160210154029
10.1080/01431161.2018.1490976
10.1177/0309133314524429
10.1111/gcb.12365
10.1111/avsc.12416
10.3390/land11030419
10.3390/land10060584
10.1016/J.RSE.2007.11.010
10.1016/j.jnc.2020.125863
10.34133/2021/5289697
10.1016/j.biocon.2012.07.026
10.1111/j.1654-1103.2012.01400.x
10.5194/essd-13-2753-2021
10.1088/1755-1315/280/1/012023
10.1016/j.rse.2018.10.004
10.1109/JSTARS.2013.2294956
10.1088/1748-9326/aacc7a
10.1109/IGARSS.2016.7730346
10.1016/j.biocon.2018.05.030
10.1080/0143116031000139863
10.1016/S0378-1127(03)00113-0
10.3390/s7112636
10.1016/j.jenvman.2013.01.038
10.3390/rs10050691
10.1023/A:1010933404324
10.1016/S0034-4257(02)00096-2
10.3390/rs12071135
10.1109/TSMC.1973.4309314
10.3390/rs12223776
10.1111/nph.13147
10.3318/BIOE.2006.106.3.167
10.3390/rs12152411
10.1080/01431160701227596
10.1016/J.PATCOG.2012.06.003
10.3390/rs9090967
10.1016/J.JAG.2020.102293
10.1111/j.1523-1739.2007.00831.x
10.3390/rs15041148
10.3390/RS12081279
10.3390/RS8050365
10.3389/feart.2017.00017
10.1016/j.rse.2017.06.031
10.1016/j.biocon.2014.11.048
10.3390/RS14112628
10.1029/2006GL026457
10.1016/J.ISPRSJPRS.2011.11.002
10.1007/s11769-020-1119-y
10.1186/1471-2105-10-213
10.3390/rs1030184
10.1038/s41467-018-04616-8
10.3390/rs10081226
10.1080/01431161.2012.748992
10.3390/rs11101234
10.3390/RS13122299
10.5721/EuJRS20124501
10.1016/J.AGEE.2022.107891
10.1109/JSTARS.2020.3021052
10.1016/j.rse.2015.03.028
10.1515/hacq-2017-0018
10.3390/rs10101509
10.1038/s43017-021-00207-2
10.1007/s10661-019-7478-0
10.1016/S0034-4257(01)00295-4
10.3390/rs12071201
10.1007/s12518-020-00298-4
10.1016/j.rse.2010.08.003
10.3390/RS12182883
10.1007/978-3-319-46709-2_2
ContentType Journal Article
Copyright 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2024
Copyright_xml – notice: 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2024
DBID 0YH
AAYXX
CITATION
DOA
DOI 10.1080/15481603.2024.2302221
DatabaseName Taylor & Francis Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 0YH
  name: Taylor & Francis Open Access
  url: https://www.tandfonline.com
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
EISSN 1943-7226
ExternalDocumentID oai_doaj_org_article_f2ebfaf7d3b242efbcad60c6cee8c812
10_1080_15481603_2024_2302221
2302221
Genre Research Article
GrantInformation_xml – fundername: the European Union - LIFE Project "LIFE IMAGINE UMBRIA"
GroupedDBID 0YH
30N
4.4
5GY
AAHBH
AAJMT
ABCCY
ABFIM
ABPEM
ABTAI
ACGFS
ACTIO
ADCVX
AEISY
AENEX
AEYOC
AIJEM
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
BLEHA
CCCUG
CS3
DGEBU
DKSSO
DU5
EBS
E~A
E~B
GROUPED_DOAJ
GTTXZ
H13
HZ~
H~P
IPNFZ
KYCEM
LJTGL
M4Z
O9-
OK1
RIG
S-T
SNACF
TDBHL
TEI
TFL
TFT
TFW
TTHFI
UT5
~02
AAYXX
AIYEW
CITATION
ID FETCH-LOGICAL-c423t-bb3b85d7bfd7c1b3bfe7e1e9a4c7a88d67737febc99992a6dd8a2d5d74b170283
IEDL.DBID DOA
ISSN 1548-1603
IngestDate Wed Aug 27 00:50:35 EDT 2025
Tue Jul 01 02:27:29 EDT 2025
Thu Apr 24 22:56:53 EDT 2025
Wed Dec 25 09:04:02 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License open-access: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c423t-bb3b85d7bfd7c1b3bfe7e1e9a4c7a88d67737febc99992a6dd8a2d5d74b170283
OpenAccessLink https://doaj.org/article/f2ebfaf7d3b242efbcad60c6cee8c812
ParticipantIDs informaworld_taylorfrancis_310_1080_15481603_2024_2302221
doaj_primary_oai_doaj_org_article_f2ebfaf7d3b242efbcad60c6cee8c812
crossref_primary_10_1080_15481603_2024_2302221
crossref_citationtrail_10_1080_15481603_2024_2302221
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-31
PublicationDateYYYYMMDD 2024-12-31
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-31
  day: 31
PublicationDecade 2020
PublicationTitle GIScience and remote sensing
PublicationYear 2024
Publisher Taylor & Francis
Taylor & Francis Group
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Group
References e_1_3_5_123_1
e_1_3_5_27_1
e_1_3_5_100_1
Vogelmann J. E. (e_1_3_5_132_1) 1998; 64
e_1_3_5_23_1
e_1_3_5_46_1
e_1_3_5_69_1
e_1_3_5_88_1
Hutchinson C. F. (e_1_3_5_56_1) 1982; 48
e_1_3_5_108_1
e_1_3_5_127_1
e_1_3_5_104_1
e_1_3_5_61_1
e_1_3_5_80_1
e_1_3_5_42_1
e_1_3_5_65_1
e_1_3_5_9_1
e_1_3_5_5_1
e_1_3_5_39_1
e_1_3_5_112_1
e_1_3_5_16_1
e_1_3_5_139_1
e_1_3_5_131_1
e_1_3_5_35_1
e_1_3_5_12_1
e_1_3_5_77_1
e_1_3_5_58_1
e_1_3_5_116_1
Strahler A. H. (e_1_3_5_117_1) 1978
e_1_3_5_135_1
e_1_3_5_50_1
e_1_3_5_92_1
e_1_3_5_73_1
e_1_3_5_54_1
e_1_3_5_96_1
e_1_3_5_101_1
e_1_3_5_124_1
e_1_3_5_28_1
e_1_3_5_120_1
e_1_3_5_24_1
e_1_3_5_109_1
e_1_3_5_66_1
e_1_3_5_47_1
e_1_3_5_89_1
e_1_3_5_105_1
e_1_3_5_128_1
e_1_3_5_81_1
e_1_3_5_62_1
e_1_3_5_43_1
e_1_3_5_85_1
e_1_3_5_8_1
e_1_3_5_20_1
e_1_3_5_4_1
e_1_3_5_113_1
e_1_3_5_136_1
e_1_3_5_17_1
Mohanaiah P. (e_1_3_5_79_1) 2013; 3
e_1_3_5_13_1
e_1_3_5_36_1
e_1_3_5_55_1
e_1_3_5_78_1
e_1_3_5_59_1
Jakubauskas M. E. (e_1_3_5_57_1) 2000; 67
e_1_3_5_70_1
e_1_3_5_93_1
e_1_3_5_51_1
e_1_3_5_74_1
e_1_3_5_97_1
Rouse J. W. (e_1_3_5_102_1) 1973; 1
e_1_3_5_29_1
e_1_3_5_121_1
e_1_3_5_25_1
e_1_3_5_44_1
e_1_3_5_67_1
e_1_3_5_140_1
e_1_3_5_129_1
e_1_3_5_48_1
e_1_3_5_106_1
e_1_3_5_125_1
e_1_3_5_82_1
e_1_3_5_3_1
e_1_3_5_40_1
e_1_3_5_63_1
e_1_3_5_86_1
e_1_3_5_21_1
e_1_3_5_7_1
e_1_3_5_18_1
European Commission (e_1_3_5_31_1) 1979
e_1_3_5_137_1
e_1_3_5_37_1
e_1_3_5_110_1
e_1_3_5_14_1
Rikimaru A. (e_1_3_5_99_1) 2002; 43
e_1_3_5_33_1
e_1_3_5_118_1
e_1_3_5_133_1
e_1_3_5_114_1
e_1_3_5_94_1
e_1_3_5_71_1
e_1_3_5_52_1
e_1_3_5_98_1
e_1_3_5_75_1
e_1_3_5_10_1
European Commission (e_1_3_5_32_1) 1992
e_1_3_5_90_1
e_1_3_5_122_1
e_1_3_5_26_1
e_1_3_5_22_1
e_1_3_5_45_1
e_1_3_5_107_1
e_1_3_5_141_1
e_1_3_5_68_1
e_1_3_5_49_1
e_1_3_5_103_1
e_1_3_5_83_1
e_1_3_5_2_1
e_1_3_5_60_1
e_1_3_5_41_1
e_1_3_5_87_1
e_1_3_5_64_1
e_1_3_5_6_1
e_1_3_5_38_1
e_1_3_5_111_1
e_1_3_5_138_1
e_1_3_5_15_1
e_1_3_5_130_1
e_1_3_5_11_1
e_1_3_5_34_1
e_1_3_5_119_1
e_1_3_5_115_1
e_1_3_5_134_1
e_1_3_5_19_1
e_1_3_5_72_1
e_1_3_5_91_1
e_1_3_5_53_1
e_1_3_5_76_1
e_1_3_5_95_1
e_1_3_5_30_1
References_xml – ident: e_1_3_5_96_1
  doi: 10.3390/rs13040586
– ident: e_1_3_5_25_1
  doi: 10.3390/RS11131623
– ident: e_1_3_5_82_1
  doi: 10.5194/essd-13-4349-2021
– ident: e_1_3_5_113_1
  doi: 10.23953/cloud.ijarsg.74
– ident: e_1_3_5_114_1
  doi: 10.1016/j.agsy.2008.07.004
– ident: e_1_3_5_138_1
  doi: 10.3390/RS13245064
– ident: e_1_3_5_103_1
  doi: 10.1109/JSTARS.2021.3098720
– ident: e_1_3_5_16_1
– ident: e_1_3_5_116_1
  doi: 10.1080/07038992.2022.2039060
– ident: e_1_3_5_55_1
  doi: 10.1016/j.rse.2019.111225
– volume: 3
  start-page: 1
  year: 2013
  ident: e_1_3_5_79_1
  article-title: Image Texture Feature Extraction Using GLCM Approach
  publication-title: International Journal of Scientific and Research Publications
– ident: e_1_3_5_61_1
  doi: 10.1016/J.RSE.2010.07.008
– ident: e_1_3_5_15_1
– ident: e_1_3_5_91_1
  doi: 10.1016/J.JAG.2022.102806
– ident: e_1_3_5_20_1
  doi: 10.1109/igarss.2004.1370429
– ident: e_1_3_5_112_1
  doi: 10.1007/s10531-019-01718-7
– ident: e_1_3_5_8_1
  doi: 10.2478/jengeo-2019-0005
– ident: e_1_3_5_40_1
  doi: 10.1016/j.patrec.2005.08.011
– ident: e_1_3_5_49_1
  doi: 10.3390/RS12182953
– ident: e_1_3_5_23_1
  doi: 10.1007/s00442-017-3807-6
– ident: e_1_3_5_124_1
  doi: 10.1016/J.JENVMAN.2020.111617
– ident: e_1_3_5_137_1
  doi: 10.1016/J.JCLEPRO.2018.01.050
– ident: e_1_3_5_4_1
  doi: 10.1007/s41324-023-00509-1
– ident: e_1_3_5_65_1
  doi: 10.3390/rs13071279
– ident: e_1_3_5_24_1
  doi: 10.3390/rs9121245
– ident: e_1_3_5_100_1
  doi: 10.1016/j.isprsjprs.2011.11.002
– ident: e_1_3_5_115_1
  doi: 10.1109/TGRS.2005.852480
– ident: e_1_3_5_34_1
  doi: 10.1016/S0378-1127(99)00272-8
– ident: e_1_3_5_128_1
  doi: 10.3390/RS11131514
– ident: e_1_3_5_19_1
  doi: 10.1016/J.ISPRSJPRS.2014.09.002
– ident: e_1_3_5_60_1
  doi: 10.1007/s11356-021-17904-6
– ident: e_1_3_5_41_1
  doi: 10.1016/S0034-4257(96)00072-7
– ident: e_1_3_5_135_1
  doi: 10.3390/rs11243023
– ident: e_1_3_5_95_1
  doi: 10.1016/S0006-3207(01)00201-4
– ident: e_1_3_5_37_1
  doi: 10.3389/frsen.2022.894571
– ident: e_1_3_5_106_1
  doi: 10.1111/j.1365-2486.2008.01838.x
– ident: e_1_3_5_11_1
  doi: 10.5194/isprs-archives-XLIII-B3-2020-663-2020
– ident: e_1_3_5_76_1
  doi: 10.1080/15481603.2022.2088652
– ident: e_1_3_5_5_1
  doi: 10.1111/1365-2745.12325
– ident: e_1_3_5_120_1
  doi: 10.1016/j.isprsjprs.2020.04.001
– ident: e_1_3_5_10_1
  doi: 10.1016/J.RSASE.2020.100459
– ident: e_1_3_5_38_1
  doi: 10.1371/JOURNAL.PONE.0208264
– ident: e_1_3_5_134_1
  doi: 10.1016/j.rse.2015.11.032
– ident: e_1_3_5_85_1
  doi: 10.1016/J.RSE.2022.113228
– ident: e_1_3_5_50_1
  doi: 10.1016/j.rse.2013.08.014
– ident: e_1_3_5_46_1
  doi: 10.1016/J.RSE.2018.07.010
– ident: e_1_3_5_108_1
  doi: 10.1016/J.RSE.2014.10.018
– ident: e_1_3_5_28_1
  doi: 10.1016/J.JAG.2013.12.007
– ident: e_1_3_5_43_1
  doi: 10.1080/01431161.2017.1399480
– ident: e_1_3_5_18_1
  doi: 10.1007/s12210-018-0707-6
– volume: 48
  start-page: 123
  issue: 1
  year: 1982
  ident: e_1_3_5_56_1
  article-title: Techniques for combining Landsat and ancillary data for digital classification improvement
  publication-title: Photogrammetric Engineering & Remote Sensing
– ident: e_1_3_5_52_1
  doi: 10.1016/J.ENVSCI.2021.10.028
– ident: e_1_3_5_97_1
  doi: 10.3390/rs12121949
– ident: e_1_3_5_87_1
  doi: 10.3390/rs13071239
– ident: e_1_3_5_48_1
  doi: 10.1080/01431161.2016.1278314
– volume: 43
  start-page: 39
  year: 2002
  ident: e_1_3_5_99_1
  article-title: Tropical Forest Cover Density Mapping
  publication-title: Tropical Ecology
– volume: 64
  start-page: 45
  issue: 1
  year: 1998
  ident: e_1_3_5_132_1
  article-title: Regional Characterization of Land Cover Using Multiple Sources of Data
  publication-title: Photogrammetric Engineering and Remote Sensing
– ident: e_1_3_5_127_1
  doi: 10.1080/01431161.2014.933280
– ident: e_1_3_5_66_1
  doi: 10.1111/cobi.12534
– ident: e_1_3_5_88_1
  doi: 10.1016/j.rse.2014.02.015
– ident: e_1_3_5_111_1
  doi: 10.1007/978-1-4419-7865-3
– ident: e_1_3_5_110_1
  doi: 10.1080/01431160210154029
– ident: e_1_3_5_58_1
  doi: 10.1080/01431161.2018.1490976
– ident: e_1_3_5_39_1
  doi: 10.1177/0309133314524429
– ident: e_1_3_5_53_1
  doi: 10.1111/gcb.12365
– ident: e_1_3_5_74_1
  doi: 10.1111/avsc.12416
– ident: e_1_3_5_81_1
  doi: 10.3390/land11030419
– ident: e_1_3_5_2_1
  doi: 10.3390/land10060584
– ident: e_1_3_5_89_1
  doi: 10.1016/J.RSE.2007.11.010
– ident: e_1_3_5_105_1
  doi: 10.1016/j.jnc.2020.125863
– start-page: 7
  year: 1992
  ident: e_1_3_5_32_1
  article-title: Council Directive 92/43/EEC of 21 May 1992 on the Conservation of Natural Habitats and of Wild Fauna and Flora
  publication-title: Official Journal of the European Communities
– ident: e_1_3_5_68_1
  doi: 10.34133/2021/5289697
– ident: e_1_3_5_69_1
– ident: e_1_3_5_13_1
  doi: 10.1016/j.biocon.2012.07.026
– ident: e_1_3_5_133_1
  doi: 10.1111/j.1654-1103.2012.01400.x
– start-page: 1
  year: 1979
  ident: e_1_3_5_31_1
  article-title: Council Directive 79/409/EEC of 2 April 1979 on the Conservation of Wild Birds
  publication-title: Official Journal of the European Communities
– ident: e_1_3_5_140_1
  doi: 10.5194/essd-13-2753-2021
– ident: e_1_3_5_47_1
  doi: 10.1088/1755-1315/280/1/012023
– ident: e_1_3_5_118_1
  doi: 10.1016/j.rse.2018.10.004
– ident: e_1_3_5_136_1
  doi: 10.1109/JSTARS.2013.2294956
– ident: e_1_3_5_30_1
  doi: 10.1088/1748-9326/aacc7a
– ident: e_1_3_5_83_1
  doi: 10.1109/IGARSS.2016.7730346
– ident: e_1_3_5_90_1
  doi: 10.1016/j.biocon.2018.05.030
– ident: e_1_3_5_72_1
  doi: 10.1080/0143116031000139863
– ident: e_1_3_5_26_1
  doi: 10.1016/S0378-1127(03)00113-0
– ident: e_1_3_5_77_1
  doi: 10.3390/s7112636
– ident: e_1_3_5_63_1
  doi: 10.1016/j.jenvman.2013.01.038
– ident: e_1_3_5_62_1
  doi: 10.3390/rs10050691
– ident: e_1_3_5_14_1
  doi: 10.1023/A:1010933404324
– ident: e_1_3_5_54_1
  doi: 10.1016/S0034-4257(02)00096-2
– ident: e_1_3_5_119_1
  doi: 10.3390/rs12071135
– ident: e_1_3_5_51_1
  doi: 10.1109/TSMC.1973.4309314
– ident: e_1_3_5_122_1
  doi: 10.3390/rs12223776
– ident: e_1_3_5_104_1
  doi: 10.1111/nph.13147
– ident: e_1_3_5_33_1
  doi: 10.3318/BIOE.2006.106.3.167
– ident: e_1_3_5_92_1
  doi: 10.3390/rs12152411
– ident: e_1_3_5_70_1
  doi: 10.1080/01431160701227596
– ident: e_1_3_5_59_1
  doi: 10.1016/J.PATCOG.2012.06.003
– ident: e_1_3_5_93_1
  doi: 10.3390/rs9090967
– ident: e_1_3_5_22_1
  doi: 10.1016/J.JAG.2020.102293
– ident: e_1_3_5_73_1
  doi: 10.1111/j.1523-1739.2007.00831.x
– volume-title: International Symposium on Remote Sensing of Environment
  year: 1978
  ident: e_1_3_5_117_1
– ident: e_1_3_5_71_1
  doi: 10.3390/rs15041148
– ident: e_1_3_5_75_1
  doi: 10.3390/RS12081279
– ident: e_1_3_5_67_1
  doi: 10.3390/RS8050365
– ident: e_1_3_5_109_1
  doi: 10.3389/feart.2017.00017
– ident: e_1_3_5_45_1
  doi: 10.1016/j.rse.2017.06.031
– ident: e_1_3_5_21_1
– ident: e_1_3_5_123_1
  doi: 10.1016/j.biocon.2014.11.048
– ident: e_1_3_5_131_1
  doi: 10.3390/RS14112628
– ident: e_1_3_5_42_1
  doi: 10.1029/2006GL026457
– ident: e_1_3_5_101_1
  doi: 10.1016/J.ISPRSJPRS.2011.11.002
– ident: e_1_3_5_139_1
  doi: 10.1007/s11769-020-1119-y
– ident: e_1_3_5_78_1
  doi: 10.1186/1471-2105-10-213
– ident: e_1_3_5_98_1
  doi: 10.3390/rs1030184
– ident: e_1_3_5_129_1
  doi: 10.1038/s41467-018-04616-8
– ident: e_1_3_5_86_1
  doi: 10.3390/rs10081226
– ident: e_1_3_5_12_1
– ident: e_1_3_5_44_1
  doi: 10.1080/01431161.2012.748992
– ident: e_1_3_5_141_1
  doi: 10.3390/rs11101234
– ident: e_1_3_5_121_1
  doi: 10.3390/RS13122299
– ident: e_1_3_5_35_1
  doi: 10.5721/EuJRS20124501
– ident: e_1_3_5_107_1
  doi: 10.1016/J.AGEE.2022.107891
– volume: 1
  start-page: 309
  year: 1973
  ident: e_1_3_5_102_1
  article-title: Monitoring Vegetation Systems in the Great Plains with ERTS
  publication-title: Third Earth Resources Technology Satellite-1 Symposium NASA
– ident: e_1_3_5_3_1
  doi: 10.1109/JSTARS.2020.3021052
– ident: e_1_3_5_29_1
  doi: 10.1016/j.rse.2015.03.028
– ident: e_1_3_5_125_1
  doi: 10.1515/hacq-2017-0018
– ident: e_1_3_5_64_1
  doi: 10.3390/rs10101509
– ident: e_1_3_5_9_1
  doi: 10.1038/s43017-021-00207-2
– ident: e_1_3_5_27_1
  doi: 10.1007/s10661-019-7478-0
– ident: e_1_3_5_36_1
  doi: 10.1016/S0034-4257(01)00295-4
– volume: 67
  start-page: 461
  year: 2000
  ident: e_1_3_5_57_1
  article-title: Harmonic analysis of time-series AVHRR NDVI data
  publication-title: Photogrammetric Engineering and Remote Sensing
– ident: e_1_3_5_17_1
  doi: 10.3390/rs12071201
– ident: e_1_3_5_6_1
  doi: 10.1007/s12518-020-00298-4
– ident: e_1_3_5_130_1
  doi: 10.1016/j.rse.2010.08.003
– ident: e_1_3_5_80_1
  doi: 10.3390/RS12182883
– ident: e_1_3_5_94_1
– ident: e_1_3_5_7_1
  doi: 10.1007/978-3-319-46709-2_2
SSID ssj0035115
Score 2.4359865
Snippet Understanding grassland habitat dynamics in space and time is crucial for evaluating the effectiveness of protection measures and developing sustainable...
SourceID doaj
crossref
informaworld
SourceType Open Website
Enrichment Source
Index Database
Publisher
SubjectTerms Artificial Neural Networks
GLCM
harmonic modeling
Landsat
LandTrendr
Natura 2000
random forest
SummonAdditionalLinks – databaseName: Taylor & Francis Open Access
  dbid: 0YH
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQXLhUhbZi-0BzqHoi7SZx7GxvCwKtKlj1UKT2FPkxXiqxSbVJD_w8_hkzToKgEu2htzw8eU1sf2N__kaI99M8C6pkKcTMu0QSZk1safNEofJpOUXp44zuxVItLuWX78XIJmwHWiXH0KEXiohtNVduY9uREfeJUTZnR6boLpPMZKY-jgKgnYyAIrP6pj8WY2PM02RFlEyVFCyRzbiI56nLPOqeoor_HxqmD3qfs-fi2QAbYd77eU9sYb0vDuYtD2Q36xv4AHG7H6doX4jbc3o7cMzPhH5tbws_a1htCCszlxHiEl8mP7WfqdjaxjwRgPVVZAQAm7emAyaQ8vmR23UUz0Qi7eYI-ELryMZEGNJPrMAxHmcCUvR5vGvTrK4RqEB3RbdgAUTg8V-4OP-azJdLYEUpitkboA-AzrRMxX4pLs9Ov50skiFbQ-IIknWJtbktC69t8NqltBNQY4ozI502ZemV1rkOaB1B0llmlPelyTwZSJtqRjmvxHbd1HggIFUFSiV1MOQZ51KD3inNc7C2oIZ9NhFydFLlBilzzqhxXaWD4uno24p9Ww2-nYiP92a_ei2Pfxkc8x9wX5iluOOBZrOqhppdhQxtMEH73BLcwWCd8WrqFKGP0hF8mojZw_-n6uJITOjTplT5Xx_g9X_YvhG7vNuLUr4V293mN74jANXZw1hF7gAuNRL-
  priority: 102
  providerName: Taylor & Francis
Title Land cover changes in grassland landscapes: combining enhanced Landsat data composition, LandTrendr, and machine learning classification in google earth engine with MLP-ANN scenario forecasting
URI https://www.tandfonline.com/doi/abs/10.1080/15481603.2024.2302221
https://doaj.org/article/f2ebfaf7d3b242efbcad60c6cee8c812
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagJy6Ip7o8qjkgTg3Nw7EdbguiWqF2xYFK5RT5uUXqJtUmHPh5_DNm7KRaONALt8SP2PJM7Bn78zeMvcmrMghFVIilsxlHmzUzylSZ8MIVKvfcxRPd87VYXfDPl_XlXqgvwoQleuA0cCeh9CboIF1lcDXxwVjtRG4FTu7KqhhfuMybfHam0hxMp2N1ZErl6COJvJrv7qj8hNIoCX3DkhMOGlfI4o9VKZL3_0VdurfonD5iDydrEZapl4_ZPd89YYfLgfav--1PeAvxOW1PDE_ZrzPdObAEy4R0pXeA7x1sdmgiE4QR4s1ewjwN77HY1sTwEOC7qwgEAKo-6BEIN0r5M6TrOOZE_OzuGOhD2wjC9DBFndiAJTOccEdR1LHVvt9ce8AC4xU2QbyHQNu-cH72JVuu10BEUuiq94AD4K0eCIH9jF2cfvr6cZVNQRoyi5bYmBlTGVU7aYKTtsCX4KUvfKO5lVopJ6SsZPDGoiXalFo4p3TpsAI3hSTj5jk76PrOHzIoRO254DJolIy1hfbOCklHr6bG-bxZMD4LqbUTgzkF0rhui4nodJZtS7JtJ9ku2LvbajeJwuOuCh9IA24LEwN3TEC9bCe9bO_SywVr9vWnHeMGTEjRUtrqnx148T868JI9oG8mUspX7GDc_fCv0YAazRG7n39bHcU_5jcBuRnj
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbQcoALWl7a8pwD4rSBJnFsl1tBrAq0FYddaTlZfnaRtglqsgd-Hv-MGSdZFSTgwK2pPUmb8eMb-_M3jL2YlkUUiqQQC-8yjpg1s8qWmQjC52oauE87uqu1WJzxj-fV-d5ZGKJVUgwde6GINFZT56bF6JES95pgNqVHxvCu4ERlxkkOI6CblcJoAtv09MtiHI1pn6xKmqkcoyW0GU_x_Ok2v8xPScb_NxHTvenn5JDdGXAjzHtH32U3Qn2PHc1bWslutt_hJaTP_UJFe5_9WOLfA0cETegP97bwtYbNDsEykRkhnfEl9lP7BqttbUoUAaG-SJQAIPPWdEAMUiofyV3HqSQxaXfHQDfaJjpmgCH_xAYcAXJiICWnp6c2zeYyAFboLvARpIAItAAMq-XnbL5eA0lKYdDeAL6A4ExLXOwH7Ozk_em7RTaka8gcYrIus7a0qvLSRi9djhcxyJCHmeFOGqW8kLKUMViHmHRWGOG9MoVHA25zSTDnITuomzocMchFFbjgMhr0jHO5Cd4JSZuwtsKRfTZhfHSSdoOWOaXUuNT5IHk6-laTb_Xg2wl7dW32rRfz-JfBW2oB15VJizt90ew2eujaOhbBRhOlLy3inRCtM15MnUD4oRzipwmb7bcf3aWlmNjnTdHlX3_Ao_-wfc5uLU5XS738sP70mN2mol6h8gk76HZX4Smiqc4-S93lJ_5OFmk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb5wwELaqRKp66bvK9jmHqqewXcDYbG7bxyptNyiHRuoN-bmJmoUIyKH9d_lnmTEQpZHaHnID7MGAB_uz_fkbxt7O0sSLnKQQE2sijpg10rlOI-GEjfOZ4zas6B4UYv-If_2RjWzCdqBV0hja90IRoa2mn_vM-pER955QNkVHxtFdwonJjH0cDoC2BcITYvWls2JsjGmZLAuSqRwHS2gzbuL5223-6J6Civ8NDdNrvc_yAdPjc_ekk5_T805Pze8bko63erGH7P6ATWHRO9MjdsdVj9nOoqXZ8nrzC95BOO4nQ9on7GKFJYEhEij0G4hbOKlg3SAgJ8IkhH3ExLBq9zDbRodgFOCq40A7ADJvVQfEUqX0kUC2G1ICW7fZBbrRJlA-HQwxLtZgCPQTyyk4Vii1rtenDjBDd4xFkMoi0CQzHKwOo0VRAMlWqeakBvzKzqiW-N5P2dHy8_eP-9EQEiIyiPu6SOtU55mV2ltpYjzxTrrYzRU3UuW5FVKm0jttEPfOEyWszVVi0YDrWBKUesa2qrpyOwxikTkuuPQKP7YxsXLWCEkLvTrD3mM-YXz0hNIMeukUtuO0jAdZ1bG6SqqucqiuCZtemZ31giH_M_hAbnaVmfS-w4W6WZdD81H6xGmvvLSpRkzlvDbKipkRCHFygxhtwubXnbTswnSP72OzlOk_H-D5LWzfsLuHn5bl6kvx7QW7Rym9COZLttU15-4VArZOvw6_5CVWIzUB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Land+cover+changes+in+grassland+landscapes%3A+combining+enhanced+Landsat+data+composition%2C+LandTrendr%2C+and+machine+learning+classification+in+google+earth+engine+with+MLP-ANN+scenario+forecasting&rft.jtitle=GIScience+and+remote+sensing&rft.au=Cecilia+Parracciani&rft.au=Daniela+Gigante&rft.au=Onisimo+Mutanga&rft.au=Stefania+Bonafoni&rft.date=2024-12-31&rft.pub=Taylor+%26+Francis+Group&rft.issn=1548-1603&rft.eissn=1943-7226&rft.volume=61&rft.issue=1&rft_id=info:doi/10.1080%2F15481603.2024.2302221&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f2ebfaf7d3b242efbcad60c6cee8c812
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1548-1603&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1548-1603&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1548-1603&client=summon