Land cover changes in grassland landscapes: combining enhanced Landsat data composition, LandTrendr, and machine learning classification in google earth engine with MLP-ANN scenario forecasting
Understanding grassland habitat dynamics in space and time is crucial for evaluating the effectiveness of protection measures and developing sustainable management practices, specifically within the Natura 2000 network and in light of the European Biodiversity Strategy. Land cover maps, derived from...
Saved in:
Published in | GIScience and remote sensing Vol. 61; no. 1 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Taylor & Francis
31.12.2024
Taylor & Francis Group |
Subjects | |
Online Access | Get full text |
ISSN | 1548-1603 1943-7226 |
DOI | 10.1080/15481603.2024.2302221 |
Cover
Abstract | Understanding grassland habitat dynamics in space and time is crucial for evaluating the effectiveness of protection measures and developing sustainable management practices, specifically within the Natura 2000 network and in light of the European Biodiversity Strategy. Land cover maps, derived from remote sensing data, are essential for understanding long-term changes in vegetation cover and land use and assessing the impact of land use changes on grassland ecosystems. In this study, we conducted a 20-year land cover analysis of grassland landscapes in Umbria, Italy, using Random Forest classifications of Landsat data in Google Earth Engine. Our analysis was based on the years 2000, 2010, and 2020. We integrated harmonic modeling, Gray-Level Co-occurrence Matrix (GLCM) textural analysis, statistical image and gradient analysis, and other spectral and Digital Terrain Model (DTM)-derived indices to enhance the classification capabilities. The LandTrendr (LT) algorithm was used in GEE to collect ground control points in no-change areas automatically. We used a method based on Multilayer Perceptron-Artificial Neural Networks (MLP-ANNs) to forecast 2040 land cover. Our land cover classifications and the scenario model validation achieved an overall accuracy of over 90%. However, the classification of shrublands proved challenging due to their mixed composition and unique spatial patterns, resulting in lower accuracies. Feature importance analysis demonstrated the value of the enhanced map composition, and applying the LandTrendr algorithm simplified the diachronic land use and land cover (LULC) classification and change analysis by supporting automatic training data collection. Results support the interpretation of grassland dynamics in Umbria over the past two decades and identify areas affected by encroachment from shrubs, woody plants, or those with reduced green biomass. The forecasting method along with the selection of spatial drivers to predict land cover change, demonstrated high efficiency compared to other studies. A specific analysis was developed to identify areas where conservation measures related to the Natura 2000 network have been more or less effective in preserving grasslands. Overall, the research provides a scientific foundation for a methodology helpful in informing policy decisions and defining spatially explicit management strategies to enhance grassland conservation inside and outside Natura 2000 areas. |
---|---|
AbstractList | Understanding grassland habitat dynamics in space and time is crucial for evaluating the effectiveness of protection measures and developing sustainable management practices, specifically within the Natura 2000 network and in light of the European Biodiversity Strategy. Land cover maps, derived from remote sensing data, are essential for understanding long-term changes in vegetation cover and land use and assessing the impact of land use changes on grassland ecosystems. In this study, we conducted a 20-year land cover analysis of grassland landscapes in Umbria, Italy, using Random Forest classifications of Landsat data in Google Earth Engine. Our analysis was based on the years 2000, 2010, and 2020. We integrated harmonic modeling, Gray-Level Co-occurrence Matrix (GLCM) textural analysis, statistical image and gradient analysis, and other spectral and Digital Terrain Model (DTM)-derived indices to enhance the classification capabilities. The LandTrendr (LT) algorithm was used in GEE to collect ground control points in no-change areas automatically. We used a method based on Multilayer Perceptron-Artificial Neural Networks (MLP-ANNs) to forecast 2040 land cover. Our land cover classifications and the scenario model validation achieved an overall accuracy of over 90%. However, the classification of shrublands proved challenging due to their mixed composition and unique spatial patterns, resulting in lower accuracies. Feature importance analysis demonstrated the value of the enhanced map composition, and applying the LandTrendr algorithm simplified the diachronic land use and land cover (LULC) classification and change analysis by supporting automatic training data collection. Results support the interpretation of grassland dynamics in Umbria over the past two decades and identify areas affected by encroachment from shrubs, woody plants, or those with reduced green biomass. The forecasting method along with the selection of spatial drivers to predict land cover change, demonstrated high efficiency compared to other studies. A specific analysis was developed to identify areas where conservation measures related to the Natura 2000 network have been more or less effective in preserving grasslands. Overall, the research provides a scientific foundation for a methodology helpful in informing policy decisions and defining spatially explicit management strategies to enhance grassland conservation inside and outside Natura 2000 areas. |
Author | Gigante, Daniela Mutanga, Onisimo Bonafoni, Stefania Parracciani, Cecilia Vizzari, Marco |
Author_xml | – sequence: 1 givenname: Cecilia surname: Parracciani fullname: Parracciani, Cecilia organization: University of Perugia – sequence: 2 givenname: Daniela surname: Gigante fullname: Gigante, Daniela organization: University of Perugia – sequence: 3 givenname: Onisimo surname: Mutanga fullname: Mutanga, Onisimo organization: University of KwaZulu-Natal – sequence: 4 givenname: Stefania surname: Bonafoni fullname: Bonafoni, Stefania organization: University of Perugia – sequence: 5 givenname: Marco surname: Vizzari fullname: Vizzari, Marco email: marco.vizzari@unipg.it organization: University of Perugia |
BookMark | eNqFkc1u1DAUhSNUJNrCIyD5AZrBP5k4AxuqCmilobAoa-vavs64ytgjO6Lq4_Fm2JmWBQvwwn_3nO9aPmfNSYgBm-YtoytGB_qOrbuB9VSsOOXdigvKOWcvmlO26UQrOe9Pyr5o2ip61ZzlfE-pWDO2Pm1-bSFYYuJPTMTsIIyYiQ9kTJDzVEt1ygYOmN8X2V774MNIMBStQUuqPcNMLMxQ64eY_exjuFgqdwmDTRekgvZgdj4gmRDSwjBT6eGdN1ANS9cYxwlJEcy70mKs8gdf9l-339vL21uSDQZIPhIXExrIc-G8bl46mDK-eVrPmx-fP91dXbfbb19uri63rem4mFuthR7WVmpnpWHl4FAiww10RsIw2F5KIR1qsymDQ2_tANwWQ6eZpHwQ583NkWsj3KtD8ntIjyqCV8tFTKMq7_ZmQuU4agdOWqF5x9FpA7anpjeIgxkYL6z1kWVSzDmh-8NjVNVM1XOmqmaqnjItvg9_-Yyfl--bE_jpv-6PR7cP5f_28BDTZNUMj1NMLpU8fVbi34jffHrCTw |
CitedBy_id | crossref_primary_10_3390_land13060845 crossref_primary_10_3390_s24030834 crossref_primary_10_1016_j_pce_2025_103893 crossref_primary_10_3390_land13030386 crossref_primary_10_1016_j_ufug_2025_128697 crossref_primary_10_1080_15481603_2024_2385170 crossref_primary_10_1007_s13201_024_02345_6 crossref_primary_10_1016_j_indic_2025_100628 |
Cites_doi | 10.3390/rs13040586 10.3390/RS11131623 10.5194/essd-13-4349-2021 10.23953/cloud.ijarsg.74 10.1016/j.agsy.2008.07.004 10.3390/RS13245064 10.1109/JSTARS.2021.3098720 10.1080/07038992.2022.2039060 10.1016/j.rse.2019.111225 10.1016/J.RSE.2010.07.008 10.1016/J.JAG.2022.102806 10.1109/igarss.2004.1370429 10.1007/s10531-019-01718-7 10.2478/jengeo-2019-0005 10.1016/j.patrec.2005.08.011 10.3390/RS12182953 10.1007/s00442-017-3807-6 10.1016/J.JENVMAN.2020.111617 10.1016/J.JCLEPRO.2018.01.050 10.1007/s41324-023-00509-1 10.3390/rs13071279 10.3390/rs9121245 10.1016/j.isprsjprs.2011.11.002 10.1109/TGRS.2005.852480 10.1016/S0378-1127(99)00272-8 10.3390/RS11131514 10.1016/J.ISPRSJPRS.2014.09.002 10.1007/s11356-021-17904-6 10.1016/S0034-4257(96)00072-7 10.3390/rs11243023 10.1016/S0006-3207(01)00201-4 10.3389/frsen.2022.894571 10.1111/j.1365-2486.2008.01838.x 10.5194/isprs-archives-XLIII-B3-2020-663-2020 10.1080/15481603.2022.2088652 10.1111/1365-2745.12325 10.1016/j.isprsjprs.2020.04.001 10.1016/J.RSASE.2020.100459 10.1371/JOURNAL.PONE.0208264 10.1016/j.rse.2015.11.032 10.1016/J.RSE.2022.113228 10.1016/j.rse.2013.08.014 10.1016/J.RSE.2018.07.010 10.1016/J.RSE.2014.10.018 10.1016/J.JAG.2013.12.007 10.1080/01431161.2017.1399480 10.1007/s12210-018-0707-6 10.1016/J.ENVSCI.2021.10.028 10.3390/rs12121949 10.3390/rs13071239 10.1080/01431161.2016.1278314 10.1080/01431161.2014.933280 10.1111/cobi.12534 10.1016/j.rse.2014.02.015 10.1007/978-1-4419-7865-3 10.1080/01431160210154029 10.1080/01431161.2018.1490976 10.1177/0309133314524429 10.1111/gcb.12365 10.1111/avsc.12416 10.3390/land11030419 10.3390/land10060584 10.1016/J.RSE.2007.11.010 10.1016/j.jnc.2020.125863 10.34133/2021/5289697 10.1016/j.biocon.2012.07.026 10.1111/j.1654-1103.2012.01400.x 10.5194/essd-13-2753-2021 10.1088/1755-1315/280/1/012023 10.1016/j.rse.2018.10.004 10.1109/JSTARS.2013.2294956 10.1088/1748-9326/aacc7a 10.1109/IGARSS.2016.7730346 10.1016/j.biocon.2018.05.030 10.1080/0143116031000139863 10.1016/S0378-1127(03)00113-0 10.3390/s7112636 10.1016/j.jenvman.2013.01.038 10.3390/rs10050691 10.1023/A:1010933404324 10.1016/S0034-4257(02)00096-2 10.3390/rs12071135 10.1109/TSMC.1973.4309314 10.3390/rs12223776 10.1111/nph.13147 10.3318/BIOE.2006.106.3.167 10.3390/rs12152411 10.1080/01431160701227596 10.1016/J.PATCOG.2012.06.003 10.3390/rs9090967 10.1016/J.JAG.2020.102293 10.1111/j.1523-1739.2007.00831.x 10.3390/rs15041148 10.3390/RS12081279 10.3390/RS8050365 10.3389/feart.2017.00017 10.1016/j.rse.2017.06.031 10.1016/j.biocon.2014.11.048 10.3390/RS14112628 10.1029/2006GL026457 10.1016/J.ISPRSJPRS.2011.11.002 10.1007/s11769-020-1119-y 10.1186/1471-2105-10-213 10.3390/rs1030184 10.1038/s41467-018-04616-8 10.3390/rs10081226 10.1080/01431161.2012.748992 10.3390/rs11101234 10.3390/RS13122299 10.5721/EuJRS20124501 10.1016/J.AGEE.2022.107891 10.1109/JSTARS.2020.3021052 10.1016/j.rse.2015.03.028 10.1515/hacq-2017-0018 10.3390/rs10101509 10.1038/s43017-021-00207-2 10.1007/s10661-019-7478-0 10.1016/S0034-4257(01)00295-4 10.3390/rs12071201 10.1007/s12518-020-00298-4 10.1016/j.rse.2010.08.003 10.3390/RS12182883 10.1007/978-3-319-46709-2_2 |
ContentType | Journal Article |
Copyright | 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2024 |
Copyright_xml | – notice: 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2024 |
DBID | 0YH AAYXX CITATION DOA |
DOI | 10.1080/15481603.2024.2302221 |
DatabaseName | Taylor & Francis Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 0YH name: Taylor & Francis Open Access url: https://www.tandfonline.com sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics |
EISSN | 1943-7226 |
ExternalDocumentID | oai_doaj_org_article_f2ebfaf7d3b242efbcad60c6cee8c812 10_1080_15481603_2024_2302221 2302221 |
Genre | Research Article |
GrantInformation_xml | – fundername: the European Union - LIFE Project "LIFE IMAGINE UMBRIA" |
GroupedDBID | 0YH 30N 4.4 5GY AAHBH AAJMT ABCCY ABFIM ABPEM ABTAI ACGFS ACTIO ADCVX AEISY AENEX AEYOC AIJEM ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW BLEHA CCCUG CS3 DGEBU DKSSO DU5 EBS E~A E~B GROUPED_DOAJ GTTXZ H13 HZ~ H~P IPNFZ KYCEM LJTGL M4Z O9- OK1 RIG S-T SNACF TDBHL TEI TFL TFT TFW TTHFI UT5 ~02 AAYXX AIYEW CITATION |
ID | FETCH-LOGICAL-c423t-bb3b85d7bfd7c1b3bfe7e1e9a4c7a88d67737febc99992a6dd8a2d5d74b170283 |
IEDL.DBID | DOA |
ISSN | 1548-1603 |
IngestDate | Wed Aug 27 00:50:35 EDT 2025 Tue Jul 01 02:27:29 EDT 2025 Thu Apr 24 22:56:53 EDT 2025 Wed Dec 25 09:04:02 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | open-access: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c423t-bb3b85d7bfd7c1b3bfe7e1e9a4c7a88d67737febc99992a6dd8a2d5d74b170283 |
OpenAccessLink | https://doaj.org/article/f2ebfaf7d3b242efbcad60c6cee8c812 |
ParticipantIDs | informaworld_taylorfrancis_310_1080_15481603_2024_2302221 doaj_primary_oai_doaj_org_article_f2ebfaf7d3b242efbcad60c6cee8c812 crossref_primary_10_1080_15481603_2024_2302221 crossref_citationtrail_10_1080_15481603_2024_2302221 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-31 |
PublicationDateYYYYMMDD | 2024-12-31 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-31 day: 31 |
PublicationDecade | 2020 |
PublicationTitle | GIScience and remote sensing |
PublicationYear | 2024 |
Publisher | Taylor & Francis Taylor & Francis Group |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Group |
References | e_1_3_5_123_1 e_1_3_5_27_1 e_1_3_5_100_1 Vogelmann J. E. (e_1_3_5_132_1) 1998; 64 e_1_3_5_23_1 e_1_3_5_46_1 e_1_3_5_69_1 e_1_3_5_88_1 Hutchinson C. F. (e_1_3_5_56_1) 1982; 48 e_1_3_5_108_1 e_1_3_5_127_1 e_1_3_5_104_1 e_1_3_5_61_1 e_1_3_5_80_1 e_1_3_5_42_1 e_1_3_5_65_1 e_1_3_5_9_1 e_1_3_5_5_1 e_1_3_5_39_1 e_1_3_5_112_1 e_1_3_5_16_1 e_1_3_5_139_1 e_1_3_5_131_1 e_1_3_5_35_1 e_1_3_5_12_1 e_1_3_5_77_1 e_1_3_5_58_1 e_1_3_5_116_1 Strahler A. H. (e_1_3_5_117_1) 1978 e_1_3_5_135_1 e_1_3_5_50_1 e_1_3_5_92_1 e_1_3_5_73_1 e_1_3_5_54_1 e_1_3_5_96_1 e_1_3_5_101_1 e_1_3_5_124_1 e_1_3_5_28_1 e_1_3_5_120_1 e_1_3_5_24_1 e_1_3_5_109_1 e_1_3_5_66_1 e_1_3_5_47_1 e_1_3_5_89_1 e_1_3_5_105_1 e_1_3_5_128_1 e_1_3_5_81_1 e_1_3_5_62_1 e_1_3_5_43_1 e_1_3_5_85_1 e_1_3_5_8_1 e_1_3_5_20_1 e_1_3_5_4_1 e_1_3_5_113_1 e_1_3_5_136_1 e_1_3_5_17_1 Mohanaiah P. (e_1_3_5_79_1) 2013; 3 e_1_3_5_13_1 e_1_3_5_36_1 e_1_3_5_55_1 e_1_3_5_78_1 e_1_3_5_59_1 Jakubauskas M. E. (e_1_3_5_57_1) 2000; 67 e_1_3_5_70_1 e_1_3_5_93_1 e_1_3_5_51_1 e_1_3_5_74_1 e_1_3_5_97_1 Rouse J. W. (e_1_3_5_102_1) 1973; 1 e_1_3_5_29_1 e_1_3_5_121_1 e_1_3_5_25_1 e_1_3_5_44_1 e_1_3_5_67_1 e_1_3_5_140_1 e_1_3_5_129_1 e_1_3_5_48_1 e_1_3_5_106_1 e_1_3_5_125_1 e_1_3_5_82_1 e_1_3_5_3_1 e_1_3_5_40_1 e_1_3_5_63_1 e_1_3_5_86_1 e_1_3_5_21_1 e_1_3_5_7_1 e_1_3_5_18_1 European Commission (e_1_3_5_31_1) 1979 e_1_3_5_137_1 e_1_3_5_37_1 e_1_3_5_110_1 e_1_3_5_14_1 Rikimaru A. (e_1_3_5_99_1) 2002; 43 e_1_3_5_33_1 e_1_3_5_118_1 e_1_3_5_133_1 e_1_3_5_114_1 e_1_3_5_94_1 e_1_3_5_71_1 e_1_3_5_52_1 e_1_3_5_98_1 e_1_3_5_75_1 e_1_3_5_10_1 European Commission (e_1_3_5_32_1) 1992 e_1_3_5_90_1 e_1_3_5_122_1 e_1_3_5_26_1 e_1_3_5_22_1 e_1_3_5_45_1 e_1_3_5_107_1 e_1_3_5_141_1 e_1_3_5_68_1 e_1_3_5_49_1 e_1_3_5_103_1 e_1_3_5_83_1 e_1_3_5_2_1 e_1_3_5_60_1 e_1_3_5_41_1 e_1_3_5_87_1 e_1_3_5_64_1 e_1_3_5_6_1 e_1_3_5_38_1 e_1_3_5_111_1 e_1_3_5_138_1 e_1_3_5_15_1 e_1_3_5_130_1 e_1_3_5_11_1 e_1_3_5_34_1 e_1_3_5_119_1 e_1_3_5_115_1 e_1_3_5_134_1 e_1_3_5_19_1 e_1_3_5_72_1 e_1_3_5_91_1 e_1_3_5_53_1 e_1_3_5_76_1 e_1_3_5_95_1 e_1_3_5_30_1 |
References_xml | – ident: e_1_3_5_96_1 doi: 10.3390/rs13040586 – ident: e_1_3_5_25_1 doi: 10.3390/RS11131623 – ident: e_1_3_5_82_1 doi: 10.5194/essd-13-4349-2021 – ident: e_1_3_5_113_1 doi: 10.23953/cloud.ijarsg.74 – ident: e_1_3_5_114_1 doi: 10.1016/j.agsy.2008.07.004 – ident: e_1_3_5_138_1 doi: 10.3390/RS13245064 – ident: e_1_3_5_103_1 doi: 10.1109/JSTARS.2021.3098720 – ident: e_1_3_5_16_1 – ident: e_1_3_5_116_1 doi: 10.1080/07038992.2022.2039060 – ident: e_1_3_5_55_1 doi: 10.1016/j.rse.2019.111225 – volume: 3 start-page: 1 year: 2013 ident: e_1_3_5_79_1 article-title: Image Texture Feature Extraction Using GLCM Approach publication-title: International Journal of Scientific and Research Publications – ident: e_1_3_5_61_1 doi: 10.1016/J.RSE.2010.07.008 – ident: e_1_3_5_15_1 – ident: e_1_3_5_91_1 doi: 10.1016/J.JAG.2022.102806 – ident: e_1_3_5_20_1 doi: 10.1109/igarss.2004.1370429 – ident: e_1_3_5_112_1 doi: 10.1007/s10531-019-01718-7 – ident: e_1_3_5_8_1 doi: 10.2478/jengeo-2019-0005 – ident: e_1_3_5_40_1 doi: 10.1016/j.patrec.2005.08.011 – ident: e_1_3_5_49_1 doi: 10.3390/RS12182953 – ident: e_1_3_5_23_1 doi: 10.1007/s00442-017-3807-6 – ident: e_1_3_5_124_1 doi: 10.1016/J.JENVMAN.2020.111617 – ident: e_1_3_5_137_1 doi: 10.1016/J.JCLEPRO.2018.01.050 – ident: e_1_3_5_4_1 doi: 10.1007/s41324-023-00509-1 – ident: e_1_3_5_65_1 doi: 10.3390/rs13071279 – ident: e_1_3_5_24_1 doi: 10.3390/rs9121245 – ident: e_1_3_5_100_1 doi: 10.1016/j.isprsjprs.2011.11.002 – ident: e_1_3_5_115_1 doi: 10.1109/TGRS.2005.852480 – ident: e_1_3_5_34_1 doi: 10.1016/S0378-1127(99)00272-8 – ident: e_1_3_5_128_1 doi: 10.3390/RS11131514 – ident: e_1_3_5_19_1 doi: 10.1016/J.ISPRSJPRS.2014.09.002 – ident: e_1_3_5_60_1 doi: 10.1007/s11356-021-17904-6 – ident: e_1_3_5_41_1 doi: 10.1016/S0034-4257(96)00072-7 – ident: e_1_3_5_135_1 doi: 10.3390/rs11243023 – ident: e_1_3_5_95_1 doi: 10.1016/S0006-3207(01)00201-4 – ident: e_1_3_5_37_1 doi: 10.3389/frsen.2022.894571 – ident: e_1_3_5_106_1 doi: 10.1111/j.1365-2486.2008.01838.x – ident: e_1_3_5_11_1 doi: 10.5194/isprs-archives-XLIII-B3-2020-663-2020 – ident: e_1_3_5_76_1 doi: 10.1080/15481603.2022.2088652 – ident: e_1_3_5_5_1 doi: 10.1111/1365-2745.12325 – ident: e_1_3_5_120_1 doi: 10.1016/j.isprsjprs.2020.04.001 – ident: e_1_3_5_10_1 doi: 10.1016/J.RSASE.2020.100459 – ident: e_1_3_5_38_1 doi: 10.1371/JOURNAL.PONE.0208264 – ident: e_1_3_5_134_1 doi: 10.1016/j.rse.2015.11.032 – ident: e_1_3_5_85_1 doi: 10.1016/J.RSE.2022.113228 – ident: e_1_3_5_50_1 doi: 10.1016/j.rse.2013.08.014 – ident: e_1_3_5_46_1 doi: 10.1016/J.RSE.2018.07.010 – ident: e_1_3_5_108_1 doi: 10.1016/J.RSE.2014.10.018 – ident: e_1_3_5_28_1 doi: 10.1016/J.JAG.2013.12.007 – ident: e_1_3_5_43_1 doi: 10.1080/01431161.2017.1399480 – ident: e_1_3_5_18_1 doi: 10.1007/s12210-018-0707-6 – volume: 48 start-page: 123 issue: 1 year: 1982 ident: e_1_3_5_56_1 article-title: Techniques for combining Landsat and ancillary data for digital classification improvement publication-title: Photogrammetric Engineering & Remote Sensing – ident: e_1_3_5_52_1 doi: 10.1016/J.ENVSCI.2021.10.028 – ident: e_1_3_5_97_1 doi: 10.3390/rs12121949 – ident: e_1_3_5_87_1 doi: 10.3390/rs13071239 – ident: e_1_3_5_48_1 doi: 10.1080/01431161.2016.1278314 – volume: 43 start-page: 39 year: 2002 ident: e_1_3_5_99_1 article-title: Tropical Forest Cover Density Mapping publication-title: Tropical Ecology – volume: 64 start-page: 45 issue: 1 year: 1998 ident: e_1_3_5_132_1 article-title: Regional Characterization of Land Cover Using Multiple Sources of Data publication-title: Photogrammetric Engineering and Remote Sensing – ident: e_1_3_5_127_1 doi: 10.1080/01431161.2014.933280 – ident: e_1_3_5_66_1 doi: 10.1111/cobi.12534 – ident: e_1_3_5_88_1 doi: 10.1016/j.rse.2014.02.015 – ident: e_1_3_5_111_1 doi: 10.1007/978-1-4419-7865-3 – ident: e_1_3_5_110_1 doi: 10.1080/01431160210154029 – ident: e_1_3_5_58_1 doi: 10.1080/01431161.2018.1490976 – ident: e_1_3_5_39_1 doi: 10.1177/0309133314524429 – ident: e_1_3_5_53_1 doi: 10.1111/gcb.12365 – ident: e_1_3_5_74_1 doi: 10.1111/avsc.12416 – ident: e_1_3_5_81_1 doi: 10.3390/land11030419 – ident: e_1_3_5_2_1 doi: 10.3390/land10060584 – ident: e_1_3_5_89_1 doi: 10.1016/J.RSE.2007.11.010 – ident: e_1_3_5_105_1 doi: 10.1016/j.jnc.2020.125863 – start-page: 7 year: 1992 ident: e_1_3_5_32_1 article-title: Council Directive 92/43/EEC of 21 May 1992 on the Conservation of Natural Habitats and of Wild Fauna and Flora publication-title: Official Journal of the European Communities – ident: e_1_3_5_68_1 doi: 10.34133/2021/5289697 – ident: e_1_3_5_69_1 – ident: e_1_3_5_13_1 doi: 10.1016/j.biocon.2012.07.026 – ident: e_1_3_5_133_1 doi: 10.1111/j.1654-1103.2012.01400.x – start-page: 1 year: 1979 ident: e_1_3_5_31_1 article-title: Council Directive 79/409/EEC of 2 April 1979 on the Conservation of Wild Birds publication-title: Official Journal of the European Communities – ident: e_1_3_5_140_1 doi: 10.5194/essd-13-2753-2021 – ident: e_1_3_5_47_1 doi: 10.1088/1755-1315/280/1/012023 – ident: e_1_3_5_118_1 doi: 10.1016/j.rse.2018.10.004 – ident: e_1_3_5_136_1 doi: 10.1109/JSTARS.2013.2294956 – ident: e_1_3_5_30_1 doi: 10.1088/1748-9326/aacc7a – ident: e_1_3_5_83_1 doi: 10.1109/IGARSS.2016.7730346 – ident: e_1_3_5_90_1 doi: 10.1016/j.biocon.2018.05.030 – ident: e_1_3_5_72_1 doi: 10.1080/0143116031000139863 – ident: e_1_3_5_26_1 doi: 10.1016/S0378-1127(03)00113-0 – ident: e_1_3_5_77_1 doi: 10.3390/s7112636 – ident: e_1_3_5_63_1 doi: 10.1016/j.jenvman.2013.01.038 – ident: e_1_3_5_62_1 doi: 10.3390/rs10050691 – ident: e_1_3_5_14_1 doi: 10.1023/A:1010933404324 – ident: e_1_3_5_54_1 doi: 10.1016/S0034-4257(02)00096-2 – ident: e_1_3_5_119_1 doi: 10.3390/rs12071135 – ident: e_1_3_5_51_1 doi: 10.1109/TSMC.1973.4309314 – ident: e_1_3_5_122_1 doi: 10.3390/rs12223776 – ident: e_1_3_5_104_1 doi: 10.1111/nph.13147 – ident: e_1_3_5_33_1 doi: 10.3318/BIOE.2006.106.3.167 – ident: e_1_3_5_92_1 doi: 10.3390/rs12152411 – ident: e_1_3_5_70_1 doi: 10.1080/01431160701227596 – ident: e_1_3_5_59_1 doi: 10.1016/J.PATCOG.2012.06.003 – ident: e_1_3_5_93_1 doi: 10.3390/rs9090967 – ident: e_1_3_5_22_1 doi: 10.1016/J.JAG.2020.102293 – ident: e_1_3_5_73_1 doi: 10.1111/j.1523-1739.2007.00831.x – volume-title: International Symposium on Remote Sensing of Environment year: 1978 ident: e_1_3_5_117_1 – ident: e_1_3_5_71_1 doi: 10.3390/rs15041148 – ident: e_1_3_5_75_1 doi: 10.3390/RS12081279 – ident: e_1_3_5_67_1 doi: 10.3390/RS8050365 – ident: e_1_3_5_109_1 doi: 10.3389/feart.2017.00017 – ident: e_1_3_5_45_1 doi: 10.1016/j.rse.2017.06.031 – ident: e_1_3_5_21_1 – ident: e_1_3_5_123_1 doi: 10.1016/j.biocon.2014.11.048 – ident: e_1_3_5_131_1 doi: 10.3390/RS14112628 – ident: e_1_3_5_42_1 doi: 10.1029/2006GL026457 – ident: e_1_3_5_101_1 doi: 10.1016/J.ISPRSJPRS.2011.11.002 – ident: e_1_3_5_139_1 doi: 10.1007/s11769-020-1119-y – ident: e_1_3_5_78_1 doi: 10.1186/1471-2105-10-213 – ident: e_1_3_5_98_1 doi: 10.3390/rs1030184 – ident: e_1_3_5_129_1 doi: 10.1038/s41467-018-04616-8 – ident: e_1_3_5_86_1 doi: 10.3390/rs10081226 – ident: e_1_3_5_12_1 – ident: e_1_3_5_44_1 doi: 10.1080/01431161.2012.748992 – ident: e_1_3_5_141_1 doi: 10.3390/rs11101234 – ident: e_1_3_5_121_1 doi: 10.3390/RS13122299 – ident: e_1_3_5_35_1 doi: 10.5721/EuJRS20124501 – ident: e_1_3_5_107_1 doi: 10.1016/J.AGEE.2022.107891 – volume: 1 start-page: 309 year: 1973 ident: e_1_3_5_102_1 article-title: Monitoring Vegetation Systems in the Great Plains with ERTS publication-title: Third Earth Resources Technology Satellite-1 Symposium NASA – ident: e_1_3_5_3_1 doi: 10.1109/JSTARS.2020.3021052 – ident: e_1_3_5_29_1 doi: 10.1016/j.rse.2015.03.028 – ident: e_1_3_5_125_1 doi: 10.1515/hacq-2017-0018 – ident: e_1_3_5_64_1 doi: 10.3390/rs10101509 – ident: e_1_3_5_9_1 doi: 10.1038/s43017-021-00207-2 – ident: e_1_3_5_27_1 doi: 10.1007/s10661-019-7478-0 – ident: e_1_3_5_36_1 doi: 10.1016/S0034-4257(01)00295-4 – volume: 67 start-page: 461 year: 2000 ident: e_1_3_5_57_1 article-title: Harmonic analysis of time-series AVHRR NDVI data publication-title: Photogrammetric Engineering and Remote Sensing – ident: e_1_3_5_17_1 doi: 10.3390/rs12071201 – ident: e_1_3_5_6_1 doi: 10.1007/s12518-020-00298-4 – ident: e_1_3_5_130_1 doi: 10.1016/j.rse.2010.08.003 – ident: e_1_3_5_80_1 doi: 10.3390/RS12182883 – ident: e_1_3_5_94_1 – ident: e_1_3_5_7_1 doi: 10.1007/978-3-319-46709-2_2 |
SSID | ssj0035115 |
Score | 2.4359865 |
Snippet | Understanding grassland habitat dynamics in space and time is crucial for evaluating the effectiveness of protection measures and developing sustainable... |
SourceID | doaj crossref informaworld |
SourceType | Open Website Enrichment Source Index Database Publisher |
SubjectTerms | Artificial Neural Networks GLCM harmonic modeling Landsat LandTrendr Natura 2000 random forest |
SummonAdditionalLinks | – databaseName: Taylor & Francis Open Access dbid: 0YH link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQXLhUhbZi-0BzqHoi7SZx7GxvCwKtKlj1UKT2FPkxXiqxSbVJD_w8_hkzToKgEu2htzw8eU1sf2N__kaI99M8C6pkKcTMu0QSZk1safNEofJpOUXp44zuxVItLuWX78XIJmwHWiXH0KEXiohtNVduY9uREfeJUTZnR6boLpPMZKY-jgKgnYyAIrP6pj8WY2PM02RFlEyVFCyRzbiI56nLPOqeoor_HxqmD3qfs-fi2QAbYd77eU9sYb0vDuYtD2Q36xv4AHG7H6doX4jbc3o7cMzPhH5tbws_a1htCCszlxHiEl8mP7WfqdjaxjwRgPVVZAQAm7emAyaQ8vmR23UUz0Qi7eYI-ELryMZEGNJPrMAxHmcCUvR5vGvTrK4RqEB3RbdgAUTg8V-4OP-azJdLYEUpitkboA-AzrRMxX4pLs9Ov50skiFbQ-IIknWJtbktC69t8NqltBNQY4ozI502ZemV1rkOaB1B0llmlPelyTwZSJtqRjmvxHbd1HggIFUFSiV1MOQZ51KD3inNc7C2oIZ9NhFydFLlBilzzqhxXaWD4uno24p9Ww2-nYiP92a_ei2Pfxkc8x9wX5iluOOBZrOqhppdhQxtMEH73BLcwWCd8WrqFKGP0hF8mojZw_-n6uJITOjTplT5Xx_g9X_YvhG7vNuLUr4V293mN74jANXZw1hF7gAuNRL- priority: 102 providerName: Taylor & Francis |
Title | Land cover changes in grassland landscapes: combining enhanced Landsat data composition, LandTrendr, and machine learning classification in google earth engine with MLP-ANN scenario forecasting |
URI | https://www.tandfonline.com/doi/abs/10.1080/15481603.2024.2302221 https://doaj.org/article/f2ebfaf7d3b242efbcad60c6cee8c812 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagJy6Ip7o8qjkgTg3Nw7EdbguiWqF2xYFK5RT5uUXqJtUmHPh5_DNm7KRaONALt8SP2PJM7Bn78zeMvcmrMghFVIilsxlHmzUzylSZ8MIVKvfcxRPd87VYXfDPl_XlXqgvwoQleuA0cCeh9CboIF1lcDXxwVjtRG4FTu7KqhhfuMybfHam0hxMp2N1ZErl6COJvJrv7qj8hNIoCX3DkhMOGlfI4o9VKZL3_0VdurfonD5iDydrEZapl4_ZPd89YYfLgfav--1PeAvxOW1PDE_ZrzPdObAEy4R0pXeA7x1sdmgiE4QR4s1ewjwN77HY1sTwEOC7qwgEAKo-6BEIN0r5M6TrOOZE_OzuGOhD2wjC9DBFndiAJTOccEdR1LHVvt9ce8AC4xU2QbyHQNu-cH72JVuu10BEUuiq94AD4K0eCIH9jF2cfvr6cZVNQRoyi5bYmBlTGVU7aYKTtsCX4KUvfKO5lVopJ6SsZPDGoiXalFo4p3TpsAI3hSTj5jk76PrOHzIoRO254DJolIy1hfbOCklHr6bG-bxZMD4LqbUTgzkF0rhui4nodJZtS7JtJ9ku2LvbajeJwuOuCh9IA24LEwN3TEC9bCe9bO_SywVr9vWnHeMGTEjRUtrqnx148T868JI9oG8mUspX7GDc_fCv0YAazRG7n39bHcU_5jcBuRnj |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbQcoALWl7a8pwD4rSBJnFsl1tBrAq0FYddaTlZfnaRtglqsgd-Hv-MGSdZFSTgwK2pPUmb8eMb-_M3jL2YlkUUiqQQC-8yjpg1s8qWmQjC52oauE87uqu1WJzxj-fV-d5ZGKJVUgwde6GINFZT56bF6JES95pgNqVHxvCu4ERlxkkOI6CblcJoAtv09MtiHI1pn6xKmqkcoyW0GU_x_Ok2v8xPScb_NxHTvenn5JDdGXAjzHtH32U3Qn2PHc1bWslutt_hJaTP_UJFe5_9WOLfA0cETegP97bwtYbNDsEykRkhnfEl9lP7BqttbUoUAaG-SJQAIPPWdEAMUiofyV3HqSQxaXfHQDfaJjpmgCH_xAYcAXJiICWnp6c2zeYyAFboLvARpIAItAAMq-XnbL5eA0lKYdDeAL6A4ExLXOwH7Ozk_em7RTaka8gcYrIus7a0qvLSRi9djhcxyJCHmeFOGqW8kLKUMViHmHRWGOG9MoVHA25zSTDnITuomzocMchFFbjgMhr0jHO5Cd4JSZuwtsKRfTZhfHSSdoOWOaXUuNT5IHk6-laTb_Xg2wl7dW32rRfz-JfBW2oB15VJizt90ew2eujaOhbBRhOlLy3inRCtM15MnUD4oRzipwmb7bcf3aWlmNjnTdHlX3_Ao_-wfc5uLU5XS738sP70mN2mol6h8gk76HZX4Smiqc4-S93lJ_5OFmk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb5wwELaqRKp66bvK9jmHqqewXcDYbG7bxyptNyiHRuoN-bmJmoUIyKH9d_lnmTEQpZHaHnID7MGAB_uz_fkbxt7O0sSLnKQQE2sijpg10rlOI-GEjfOZ4zas6B4UYv-If_2RjWzCdqBV0hja90IRoa2mn_vM-pER955QNkVHxtFdwonJjH0cDoC2BcITYvWls2JsjGmZLAuSqRwHS2gzbuL5223-6J6Civ8NDdNrvc_yAdPjc_ekk5_T805Pze8bko63erGH7P6ATWHRO9MjdsdVj9nOoqXZ8nrzC95BOO4nQ9on7GKFJYEhEij0G4hbOKlg3SAgJ8IkhH3ExLBq9zDbRodgFOCq40A7ADJvVQfEUqX0kUC2G1ICW7fZBbrRJlA-HQwxLtZgCPQTyyk4Vii1rtenDjBDd4xFkMoi0CQzHKwOo0VRAMlWqeakBvzKzqiW-N5P2dHy8_eP-9EQEiIyiPu6SOtU55mV2ltpYjzxTrrYzRU3UuW5FVKm0jttEPfOEyWszVVi0YDrWBKUesa2qrpyOwxikTkuuPQKP7YxsXLWCEkLvTrD3mM-YXz0hNIMeukUtuO0jAdZ1bG6SqqucqiuCZtemZ31giH_M_hAbnaVmfS-w4W6WZdD81H6xGmvvLSpRkzlvDbKipkRCHFygxhtwubXnbTswnSP72OzlOk_H-D5LWzfsLuHn5bl6kvx7QW7Rym9COZLttU15-4VArZOvw6_5CVWIzUB |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Land+cover+changes+in+grassland+landscapes%3A+combining+enhanced+Landsat+data+composition%2C+LandTrendr%2C+and+machine+learning+classification+in+google+earth+engine+with+MLP-ANN+scenario+forecasting&rft.jtitle=GIScience+and+remote+sensing&rft.au=Cecilia+Parracciani&rft.au=Daniela+Gigante&rft.au=Onisimo+Mutanga&rft.au=Stefania+Bonafoni&rft.date=2024-12-31&rft.pub=Taylor+%26+Francis+Group&rft.issn=1548-1603&rft.eissn=1943-7226&rft.volume=61&rft.issue=1&rft_id=info:doi/10.1080%2F15481603.2024.2302221&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f2ebfaf7d3b242efbcad60c6cee8c812 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1548-1603&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1548-1603&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1548-1603&client=summon |