Non-contact manipulation of nonmagnetic materials by using a uniform magnetic field: Experiment and simulation
•The MFIDSA process of nonmagnetic materials in magnetic fluids is investigated.•An LB model is developed for simulating MFIDSA process in magnetic multiphase flows.•The length of self-assembled structures does not relate with particle-size.•The length of self-assembled structures increases with the...
Saved in:
Published in | Journal of Magnetism and Magnetic Materials Vol. 497; p. 165957 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English Japanese |
Published |
Amsterdam
Elsevier B.V
01.03.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0304-8853 1873-4766 |
DOI | 10.1016/j.jmmm.2019.165957 |
Cover
Loading…
Abstract | •The MFIDSA process of nonmagnetic materials in magnetic fluids is investigated.•An LB model is developed for simulating MFIDSA process in magnetic multiphase flows.•The length of self-assembled structures does not relate with particle-size.•The length of self-assembled structures increases with the external magnetic field.
Magnetic field induced dynamic self-assembly (MFIDSA) can be regarded as one of non-contact manipulation method under special category of micro-scale or nano-scale fabrication technique, which is confined to magnetic materials. This study is focused on MFIDSA process of nonmagnetic materials in a magnetic multiphase fluid by using the experimental technique and numerical method. To explore the controllability of MFIDSA process, a series of experiments by using the magnetic multiphase fluid comprising of nonmagnetic polystyrene microparticles with different particle-size distributions were carried out. The relations of the strength of external magnetic field, the average length of self-assembled chain-like structures, and the particle-size distribution of nonmagnetic polystyrene microparticles were investigated experimentally. Meanwhile, to reveal the interaction mechanisms behind the self-assembling behaviours of nonmagnetic materials, an immersed boundary lattice Boltzmann method was applied to simulate the multi-physical field coupled multiphase flows in MFIDSA process. The present work shows that the average length of self-assembled chain-like structures is mainly determined by the strength of external magnetic field, irrespective of the particle-size distribution of nonmagnetic materials. The coincident results of the experiments and numerical simulations provide a guidance on how to manipulate the nonmagnetic materials to form the chain-like structures by magnetic field. |
---|---|
AbstractList | •The MFIDSA process of nonmagnetic materials in magnetic fluids is investigated.•An LB model is developed for simulating MFIDSA process in magnetic multiphase flows.•The length of self-assembled structures does not relate with particle-size.•The length of self-assembled structures increases with the external magnetic field.
Magnetic field induced dynamic self-assembly (MFIDSA) can be regarded as one of non-contact manipulation method under special category of micro-scale or nano-scale fabrication technique, which is confined to magnetic materials. This study is focused on MFIDSA process of nonmagnetic materials in a magnetic multiphase fluid by using the experimental technique and numerical method. To explore the controllability of MFIDSA process, a series of experiments by using the magnetic multiphase fluid comprising of nonmagnetic polystyrene microparticles with different particle-size distributions were carried out. The relations of the strength of external magnetic field, the average length of self-assembled chain-like structures, and the particle-size distribution of nonmagnetic polystyrene microparticles were investigated experimentally. Meanwhile, to reveal the interaction mechanisms behind the self-assembling behaviours of nonmagnetic materials, an immersed boundary lattice Boltzmann method was applied to simulate the multi-physical field coupled multiphase flows in MFIDSA process. The present work shows that the average length of self-assembled chain-like structures is mainly determined by the strength of external magnetic field, irrespective of the particle-size distribution of nonmagnetic materials. The coincident results of the experiments and numerical simulations provide a guidance on how to manipulate the nonmagnetic materials to form the chain-like structures by magnetic field. Magnetic field induced dynamic self-assembly (MFIDSA) can be regarded as one of non-contact manipulation method under special category of micro-scale or nano-scale fabrication technique, which is confined to magnetic materials. This study is focused on MFIDSA process of nonmagnetic materials in a magnetic multiphase fluid by using the experimental technique and numerical method. To explore the controllability of MFIDSA process, a series of experiments by using the magnetic multiphase fluid comprising of nonmagnetic polystyrene microparticles with different particle-size distributions were carried out. The relations of the strength of external magnetic field, the average length of self-assembled chain-like structures, and the particle-size distribution of nonmagnetic polystyrene microparticles were investigated experimentally. Meanwhile, to reveal the interaction mechanisms behind the self-assembling behaviours of nonmagnetic materials, an immersed boundary lattice Boltzmann method was applied to simulate the multi-physical field coupled multiphase flows in MFIDSA process. The present work shows that the average length of self-assembled chain-like structures is mainly determined by the strength of external magnetic field, irrespective of the particle-size distribution of nonmagnetic materials. The coincident results of the experiments and numerical simulations provide a guidance on how to manipulate the nonmagnetic materials to form the chain-like structures by magnetic field. |
ArticleNumber | 165957 |
Author | Yu, Peng Li, Xiang Niu, Xiaodong Yamaguchi, Hiroshi Li, Decai |
Author_xml | – sequence: 1 givenname: Xiang surname: Li fullname: Li, Xiang organization: Shenzhen Key Laboratory of Complex Aerospace Flows, Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, People’s Republic of China – sequence: 2 givenname: Peng surname: Yu fullname: Yu, Peng email: yup6@sustech.edu.cn organization: Shenzhen Key Laboratory of Complex Aerospace Flows, Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, People’s Republic of China – sequence: 3 givenname: Xiaodong surname: Niu fullname: Niu, Xiaodong email: xdniu@stu.edu.cn organization: College of Engineering, Shantou University, Shantou, Guangdong 515063, People’s Republic of China – sequence: 4 givenname: Hiroshi surname: Yamaguchi fullname: Yamaguchi, Hiroshi organization: Energy Conversion Research Center, Doshisha University, Kyoto 630-0321, Japan – sequence: 5 givenname: Decai surname: Li fullname: Li, Decai organization: Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People’s Republic of China |
BackLink | https://cir.nii.ac.jp/crid/1872553967359086848$$DView record in CiNii |
BookMark | eNp9kctu3CAUhlGVSp2kfYGukJqtp1wMxlE2UZRepKjdtGuE8SHCGsMUcJR5--A66qKLbGDBfznn4xydhRgAoY-U7Cmh8vO0n-Z53jNC-z2VohfdG7SjquNN20l5hnaEk7ZRSvB36DzniRBCWyV3KPyIobExFGMLnk3wx-Vgio8BR4dryWweAhRv61uB5M0h4-GEl-zDAzZ4Cd7FNON_KufhMF7hu6djFc8QCjZhxNnPL6nv0VtXM-DDy32Bfn-5-3X7rbn_-fX77c19Y1vGS2Ocg1FxMVCmQDpFbDdw44gau4H2g1PWGSIscy2XI0gp2MBFa63pKLBxkPwCfdpyjyn-WSAXPcUlhVqpGedtR6lgqqrUprIp5pzAaevL3zlLMv6gKdErXT3pla5e6eqNbrWy_6zHurBJp9dNl5speF-r1rP-EROC97LjoidKqnYd63qTQSX06CHpbD0EC6NPYIseo3-t5Rk71qKV |
CitedBy_id | crossref_primary_10_1007_s10854_024_13217_9 crossref_primary_10_1016_j_icheatmasstransfer_2021_105487 crossref_primary_10_1007_s10948_021_05932_9 crossref_primary_10_1016_j_est_2021_103043 crossref_primary_10_1016_j_csite_2021_101161 crossref_primary_10_1016_j_jmmm_2023_170964 crossref_primary_10_1016_j_ijmultiphaseflow_2022_103982 crossref_primary_10_1016_j_mseb_2024_117341 crossref_primary_10_1063_5_0043998 crossref_primary_10_1007_s13204_021_01976_4 crossref_primary_10_1007_s10854_024_13407_5 crossref_primary_10_1016_j_ast_2021_106846 crossref_primary_10_1007_s13204_021_01941_1 crossref_primary_10_1016_j_jpcs_2023_111548 crossref_primary_10_1063_5_0041021 crossref_primary_10_1016_j_matchemphys_2025_130561 crossref_primary_10_1007_s11082_023_05122_y crossref_primary_10_1007_s42417_024_01498_7 crossref_primary_10_1016_j_csite_2024_104514 crossref_primary_10_1063_5_0014522 crossref_primary_10_1007_s40948_024_00902_6 crossref_primary_10_1142_S1793292024500437 crossref_primary_10_1016_j_apm_2022_12_025 crossref_primary_10_1063_5_0052148 crossref_primary_10_1088_1402_4896_ad67b6 crossref_primary_10_1007_s13204_021_01884_7 crossref_primary_10_3390_rs15102687 crossref_primary_10_1007_s11036_023_02178_8 crossref_primary_10_1016_j_cherd_2024_06_042 crossref_primary_10_1039_D4RA02939A crossref_primary_10_1016_j_conbuildmat_2021_124026 crossref_primary_10_1088_2053_1591_ad97a7 crossref_primary_10_1016_j_tsep_2024_103132 crossref_primary_10_1016_j_jmmm_2023_171501 crossref_primary_10_1088_1361_6463_ac353a crossref_primary_10_1007_s13204_021_01907_3 crossref_primary_10_1016_j_jre_2024_05_004 crossref_primary_10_3390_w15162931 crossref_primary_10_1080_15376494_2024_2342576 crossref_primary_10_1016_j_amc_2020_125634 crossref_primary_10_3390_nano14020222 crossref_primary_10_1016_j_jobe_2021_103223 crossref_primary_10_1007_s10570_023_05190_z crossref_primary_10_1016_j_ceramint_2024_07_438 crossref_primary_10_1063_5_0020903 crossref_primary_10_1016_j_micron_2020_102960 crossref_primary_10_1016_j_icheatmasstransfer_2024_108054 crossref_primary_10_1007_s10854_024_13304_x crossref_primary_10_1016_j_jmmm_2023_171079 crossref_primary_10_1063_5_0245850 crossref_primary_10_1016_j_triboint_2024_109579 crossref_primary_10_1016_j_ceramint_2024_11_072 crossref_primary_10_1016_j_colsurfa_2023_131697 crossref_primary_10_1140_epjp_s13360_021_02106_3 crossref_primary_10_1016_j_jmmm_2024_171750 crossref_primary_10_1007_s10854_024_13007_3 crossref_primary_10_1016_j_icheatmasstransfer_2021_105625 crossref_primary_10_1016_j_ultras_2022_106865 crossref_primary_10_2298_TSCI240215161U crossref_primary_10_1007_s13204_021_01999_x crossref_primary_10_1016_j_physb_2024_416000 crossref_primary_10_1108_MMMS_08_2024_0239 crossref_primary_10_1063_5_0067426 crossref_primary_10_1007_s13204_021_01953_x crossref_primary_10_1007_s13204_021_01988_0 crossref_primary_10_1088_1402_4896_ac018a crossref_primary_10_1142_S1793292023500807 crossref_primary_10_3390_fluids8010002 crossref_primary_10_1007_s10973_024_13372_5 crossref_primary_10_1142_S0129183121501436 crossref_primary_10_1063_5_0077701 crossref_primary_10_1016_j_molliq_2021_116595 crossref_primary_10_1016_j_amc_2020_125769 crossref_primary_10_1016_j_jmmm_2023_171244 crossref_primary_10_1016_j_inoche_2024_113252 crossref_primary_10_1016_j_mtchem_2024_102311 crossref_primary_10_1080_15376494_2023_2219453 crossref_primary_10_1080_01411594_2023_2228968 crossref_primary_10_1016_j_petrol_2021_109173 crossref_primary_10_1063_5_0048123 crossref_primary_10_1088_1402_4896_ad007c crossref_primary_10_1007_s13204_021_01960_y crossref_primary_10_1007_s13204_021_01962_w crossref_primary_10_1142_S0129183122500103 crossref_primary_10_1007_s10904_024_03535_0 crossref_primary_10_1016_j_jfluidstructs_2020_103008 crossref_primary_10_1007_s13204_021_01993_3 crossref_primary_10_1016_j_csite_2021_101198 crossref_primary_10_1089_soro_2024_0007 crossref_primary_10_1007_s10971_025_06712_w crossref_primary_10_1016_j_csite_2023_103059 crossref_primary_10_1140_epjp_s13360_021_01658_8 |
Cites_doi | 10.1016/j.jmmm.2016.09.119 10.1103/PhysRevE.61.6732 10.1016/j.jmmm.2008.11.011 10.1103/PhysRevE.79.046713 10.1016/j.expthermflusci.2016.07.005 10.1016/j.compfluid.2016.04.019 10.1016/j.jmmm.2018.10.065 10.1038/s41467-018-04115-w 10.1016/j.physleta.2006.01.060 10.1038/s41586-018-0250-8 10.1126/science.1070821 10.1021/nl103008v 10.1021/acs.langmuir.8b01135 10.1016/0304-8853(87)90033-3 10.1103/PhysRevE.100.012608 10.1109/TMAG.2018.2845915 10.1088/1361-6463/ab062f 10.1063/1.5010292 10.1146/annurev.fluid.30.1.329 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. Copyright Elsevier BV Mar 1, 2020 |
Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright Elsevier BV Mar 1, 2020 |
DBID | RYH AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1016/j.jmmm.2019.165957 |
DatabaseName | CiNii Complete CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1873-4766 |
ExternalDocumentID | 10_1016_j_jmmm_2019_165957 S0304885319324680 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 6OB 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAXUO ABFNM ABMAC ABNEU ABYKQ ACDAQ ACFVG ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM M24 M38 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCU SDF SDG SDP SES SPC SPCBC SPD SSQ SSZ T5K XPP ZMT ~02 ~G- AAQFI AATTM AAXKI AAYWO ACVFH ADCNI AEIPS AEUPX AFPUW AFXIZ AGCQF AGRNS AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV RYH SSH 29K 5VS AAQXK AAYXX ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AFFNX AFJKZ AGHFR AGQPQ AIGII ASPBG AVWKF AZFZN BBWZM CITATION D-I EJD FGOYB G-2 HMV HZ~ NDZJH R2- RIG SEW SMS SPG WUQ XXG 7SR 7U5 8BQ 8FD EFKBS JG9 L7M |
ID | FETCH-LOGICAL-c423t-affed835b128e6f80c7b3af08d7b19bf8cfa05c2f436de6652b354cca71e2db63 |
IEDL.DBID | .~1 |
ISSN | 0304-8853 |
IngestDate | Sun Jul 13 04:42:25 EDT 2025 Tue Jul 01 01:56:05 EDT 2025 Thu Apr 24 23:06:23 EDT 2025 Thu Jun 26 22:49:53 EDT 2025 Fri Feb 23 02:49:32 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Self-assembly Magnetic fluid Lattice Boltzmann method Immersed boundary method Nonmagnetic materials Non-contact manipulation |
Language | English Japanese |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c423t-affed835b128e6f80c7b3af08d7b19bf8cfa05c2f436de6652b354cca71e2db63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8722-2153 |
PQID | 2334711528 |
PQPubID | 2045450 |
ParticipantIDs | proquest_journals_2334711528 crossref_citationtrail_10_1016_j_jmmm_2019_165957 crossref_primary_10_1016_j_jmmm_2019_165957 nii_cinii_1872553967359086848 elsevier_sciencedirect_doi_10_1016_j_jmmm_2019_165957 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-01 2020-03-00 20200301 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Journal of Magnetism and Magnetic Materials |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Iwamoto, Yoshioka, Naito, Cuya, Ido, Okawa (b0015) 2016; 79 Zablotsky (b0065) 2019; 474 Garcia-Torres, Calero, Sagues, Pagonabarraga, Tierno (b0050) 2018; 9 Niu, Yamaguchi, Yoshikawa (b0090) 2009; 79 Fujita, Mamiya (b0100) 1987; 65 Ivanov, Kantorovich, Elfimova, Zverev, Sindt, Camp (b0030) 2017; 431 Whitesides, Grzybowski (b0005) 2002; 295 Wang, Timonen, Carlson, Drotlef, Zhang, Kolle, Grinthal, Wong, Hatton, Kang, Kennedy, Chi, Blough, Sitti, Mahadevan, Aizenberg (b0045) 2018; 559 Steinbach, Schreiber, Nissen, Albrecht, Novak, Sánchez, Kantorovich, Gemming, Erbe (b0060) 2019; 100 Li, Niu, Li, Chen (b0075) 2018; 30 Niu, Shu, Chew, Peng (b0085) 2006; 354 He, Hu, Kim, Ge, Kwon, Yin (b0010) 2010; 10 Li, Yen, Lo (b0035) 2018; 54 Kim, Bauer, Vasquez, Furst (b0055) 2019; 52 Chen, Doolen (b0080) 1998; 30 Ido, Sumiyoshi, Tsutsumi (b0025) 2017; 142 Furst, Gast (b0105) 2000; 61 Chen, Li, Niu, Li, Khan, Yamaguchi (b0070) 2017; 66 Yang, Li, Niu (b0095) 2018; 98 Peng, Min, Ma, Luo, Yan (b0020) 2009; 321 Sherman, Ghosh, Swan (b0040) 2018; 34 Chen (10.1016/j.jmmm.2019.165957_b0080) 1998; 30 Peng (10.1016/j.jmmm.2019.165957_b0020) 2009; 321 Li (10.1016/j.jmmm.2019.165957_b0075) 2018; 30 Chen (10.1016/j.jmmm.2019.165957_b0070) 2017; 66 Iwamoto (10.1016/j.jmmm.2019.165957_b0015) 2016; 79 Garcia-Torres (10.1016/j.jmmm.2019.165957_b0050) 2018; 9 Zablotsky (10.1016/j.jmmm.2019.165957_b0065) 2019; 474 Kim (10.1016/j.jmmm.2019.165957_b0055) 2019; 52 He (10.1016/j.jmmm.2019.165957_b0010) 2010; 10 Niu (10.1016/j.jmmm.2019.165957_b0090) 2009; 79 Ivanov (10.1016/j.jmmm.2019.165957_b0030) 2017; 431 Fujita (10.1016/j.jmmm.2019.165957_b0100) 1987; 65 Li (10.1016/j.jmmm.2019.165957_b0035) 2018; 54 Sherman (10.1016/j.jmmm.2019.165957_b0040) 2018; 34 Whitesides (10.1016/j.jmmm.2019.165957_b0005) 2002; 295 Yang (10.1016/j.jmmm.2019.165957_b0095) 2018; 98 Steinbach (10.1016/j.jmmm.2019.165957_b0060) 2019; 100 Niu (10.1016/j.jmmm.2019.165957_b0085) 2006; 354 Ido (10.1016/j.jmmm.2019.165957_b0025) 2017; 142 Furst (10.1016/j.jmmm.2019.165957_b0105) 2000; 61 Wang (10.1016/j.jmmm.2019.165957_b0045) 2018; 559 |
References_xml | – volume: 52 year: 2019 ident: b0055 article-title: Structural coarsening of magnetic ellipsoid particle suspensions driven in toggled fields publication-title: J. Phys. D Appl. Phys. – volume: 10 start-page: 4708 year: 2010 ident: b0010 article-title: Magnetic assembly of nonmagnetic particles into photonic crystal structures publication-title: Nano Lett. – volume: 9 start-page: 1663 year: 2018 ident: b0050 article-title: Magnetically tunable bidirectional locomotion of a self-assembled nanorod-sphere propeller publication-title: Nat. Commun. – volume: 431 start-page: 141 year: 2017 end-page: 144 ident: b0030 article-title: The influence of interparticle correlations and self-assembly on the dynamic initial magnetic susceptibility spectra of ferrofluids publication-title: J. Magn. Magn. Mater. – volume: 559 start-page: 77 year: 2018 end-page: 82 ident: b0045 article-title: Multifunctional ferrofluid-infused surfaces with reconfigurable multiscale topography publication-title: Nature – volume: 66 year: 2017 ident: b0070 article-title: Sedimentation of two non-magnetic particles in magnetic fluid publication-title: Acta Phys. Sin. – volume: 61 start-page: 6732 year: 2000 end-page: 6739 ident: b0105 article-title: Micromechanics of magnetorheological suspensions publication-title: Phys. Rev. E – volume: 54 start-page: 5200305 year: 2018 ident: b0035 article-title: Flexibility of micromagnetic flagella in the presence of an oscillating field publication-title: IEEE T. Magn. – volume: 79 year: 2009 ident: b0090 article-title: Lattice Boltzmann model for simulating temperature-sensitive ferrofluids publication-title: Phys. Rev. E – volume: 65 start-page: 207 year: 1987 end-page: 210 ident: b0100 article-title: Interaction forces between nonmagnetic particles in the magnetized magnetic fluid publication-title: J. Magn. Magn. Mater. – volume: 295 start-page: 2418 year: 2002 end-page: 2421 ident: b0005 article-title: Self-assembly at all scales publication-title: Science – volume: 100 year: 2019 ident: b0060 article-title: Field-responsive colloidal assemblies defined by magnetic anisotropy publication-title: Phys. Rev. E – volume: 354 start-page: 173 year: 2006 end-page: 182 ident: b0085 article-title: A momentum exchange-based immersed boundary-lattice Boltzmann method for simulating incompressible viscous flows publication-title: Phys. Lett. A – volume: 30 year: 2018 ident: b0075 article-title: Self-assembly of silica microparticles in magnetic multiphase flows: experiment and simulation publication-title: Phys. Fluids – volume: 321 start-page: 1221 year: 2009 end-page: 1226 ident: b0020 article-title: Two-dimensional Monte Carlo simulations of a suspension comprised of magnetic and nonmagnetic particles in gradient magnetic fields publication-title: J. Magn. Magn. Mater. – volume: 30 start-page: 329 year: 1998 end-page: 364 ident: b0080 article-title: Lattice boltzmann method for fluid flows publication-title: Annu. Rev. Fluid Mech. – volume: 142 start-page: 86 year: 2017 end-page: 95 ident: b0025 article-title: Simulations of behavior of magnetic particles in magnetic functional fluids using a hybrid method of lattice Boltzmann method, immersed boundary method and discrete particle method publication-title: Comput. Fluids – volume: 34 start-page: 7117 year: 2018 end-page: 7134 ident: b0040 article-title: Field-directed self-assembly of mutually polarizable nanoparticles publication-title: Langmuir – volume: 474 start-page: 462 year: 2019 end-page: 466 ident: b0065 article-title: Field effect in the viscosity of magnetic colloids studied by multi-particle collision dynamics publication-title: J. Magn. Magn. Mater. – volume: 79 start-page: 111 year: 2016 end-page: 117 ident: b0015 article-title: Field induced anisotropic thermal conductivity of silver nanowire dispersed magnetic functional fluid publication-title: Exp. Therm. Fluid Sci. – volume: 98 year: 2018 ident: b0095 article-title: Phase-field-based lattice Boltzmann model for multiphase ferrofluid flows publication-title: Phys. Rev. E – volume: 431 start-page: 141 year: 2017 ident: 10.1016/j.jmmm.2019.165957_b0030 article-title: The influence of interparticle correlations and self-assembly on the dynamic initial magnetic susceptibility spectra of ferrofluids publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2016.09.119 – volume: 61 start-page: 6732 year: 2000 ident: 10.1016/j.jmmm.2019.165957_b0105 article-title: Micromechanics of magnetorheological suspensions publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.61.6732 – volume: 321 start-page: 1221 year: 2009 ident: 10.1016/j.jmmm.2019.165957_b0020 article-title: Two-dimensional Monte Carlo simulations of a suspension comprised of magnetic and nonmagnetic particles in gradient magnetic fields publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2008.11.011 – volume: 79 year: 2009 ident: 10.1016/j.jmmm.2019.165957_b0090 article-title: Lattice Boltzmann model for simulating temperature-sensitive ferrofluids publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.79.046713 – volume: 79 start-page: 111 year: 2016 ident: 10.1016/j.jmmm.2019.165957_b0015 article-title: Field induced anisotropic thermal conductivity of silver nanowire dispersed magnetic functional fluid publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/j.expthermflusci.2016.07.005 – volume: 142 start-page: 86 year: 2017 ident: 10.1016/j.jmmm.2019.165957_b0025 article-title: Simulations of behavior of magnetic particles in magnetic functional fluids using a hybrid method of lattice Boltzmann method, immersed boundary method and discrete particle method publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2016.04.019 – volume: 474 start-page: 462 year: 2019 ident: 10.1016/j.jmmm.2019.165957_b0065 article-title: Field effect in the viscosity of magnetic colloids studied by multi-particle collision dynamics publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2018.10.065 – volume: 9 start-page: 1663 year: 2018 ident: 10.1016/j.jmmm.2019.165957_b0050 article-title: Magnetically tunable bidirectional locomotion of a self-assembled nanorod-sphere propeller publication-title: Nat. Commun. doi: 10.1038/s41467-018-04115-w – volume: 354 start-page: 173 year: 2006 ident: 10.1016/j.jmmm.2019.165957_b0085 article-title: A momentum exchange-based immersed boundary-lattice Boltzmann method for simulating incompressible viscous flows publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2006.01.060 – volume: 98 year: 2018 ident: 10.1016/j.jmmm.2019.165957_b0095 article-title: Phase-field-based lattice Boltzmann model for multiphase ferrofluid flows publication-title: Phys. Rev. E – volume: 559 start-page: 77 year: 2018 ident: 10.1016/j.jmmm.2019.165957_b0045 article-title: Multifunctional ferrofluid-infused surfaces with reconfigurable multiscale topography publication-title: Nature doi: 10.1038/s41586-018-0250-8 – volume: 295 start-page: 2418 year: 2002 ident: 10.1016/j.jmmm.2019.165957_b0005 article-title: Self-assembly at all scales publication-title: Science doi: 10.1126/science.1070821 – volume: 10 start-page: 4708 year: 2010 ident: 10.1016/j.jmmm.2019.165957_b0010 article-title: Magnetic assembly of nonmagnetic particles into photonic crystal structures publication-title: Nano Lett. doi: 10.1021/nl103008v – volume: 34 start-page: 7117 year: 2018 ident: 10.1016/j.jmmm.2019.165957_b0040 article-title: Field-directed self-assembly of mutually polarizable nanoparticles publication-title: Langmuir doi: 10.1021/acs.langmuir.8b01135 – volume: 65 start-page: 207 year: 1987 ident: 10.1016/j.jmmm.2019.165957_b0100 article-title: Interaction forces between nonmagnetic particles in the magnetized magnetic fluid publication-title: J. Magn. Magn. Mater. doi: 10.1016/0304-8853(87)90033-3 – volume: 100 year: 2019 ident: 10.1016/j.jmmm.2019.165957_b0060 article-title: Field-responsive colloidal assemblies defined by magnetic anisotropy publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.100.012608 – volume: 54 start-page: 5200305 year: 2018 ident: 10.1016/j.jmmm.2019.165957_b0035 article-title: Flexibility of micromagnetic flagella in the presence of an oscillating field publication-title: IEEE T. Magn. doi: 10.1109/TMAG.2018.2845915 – volume: 52 year: 2019 ident: 10.1016/j.jmmm.2019.165957_b0055 article-title: Structural coarsening of magnetic ellipsoid particle suspensions driven in toggled fields publication-title: J. Phys. D Appl. Phys. doi: 10.1088/1361-6463/ab062f – volume: 30 year: 2018 ident: 10.1016/j.jmmm.2019.165957_b0075 article-title: Self-assembly of silica microparticles in magnetic multiphase flows: experiment and simulation publication-title: Phys. Fluids doi: 10.1063/1.5010292 – volume: 66 year: 2017 ident: 10.1016/j.jmmm.2019.165957_b0070 article-title: Sedimentation of two non-magnetic particles in magnetic fluid publication-title: Acta Phys. Sin. – volume: 30 start-page: 329 year: 1998 ident: 10.1016/j.jmmm.2019.165957_b0080 article-title: Lattice boltzmann method for fluid flows publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fluid.30.1.329 |
SSID | ssj0001486 ssib006544711 ssib006544710 ssib003054951 ssib033400537 ssib020737796 ssib019626450 |
Score | 2.5851543 |
Snippet | •The MFIDSA process of nonmagnetic materials in magnetic fluids is investigated.•An LB model is developed for simulating MFIDSA process in magnetic multiphase... Magnetic field induced dynamic self-assembly (MFIDSA) can be regarded as one of non-contact manipulation method under special category of micro-scale or... |
SourceID | proquest crossref nii elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 165957 |
SubjectTerms | Assembling Chains Charged particles Computational fluid dynamics Computer simulation Controllability Immersed boundary method Lattice Boltzmann method Magnetic fields Magnetic fluid Magnetic materials Magnetism Microparticles Multiphase flow Non-contact manipulation Nonmagnetic materials Numerical methods Particle size distribution Polystyrene resins Self-assembly |
Title | Non-contact manipulation of nonmagnetic materials by using a uniform magnetic field: Experiment and simulation |
URI | https://dx.doi.org/10.1016/j.jmmm.2019.165957 https://cir.nii.ac.jp/crid/1872553967359086848 https://www.proquest.com/docview/2334711528 |
Volume | 497 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS-UwEA-uIuxF1FX2-UUO3qS-tmnT1JuI8lR8F1fwFvIplW0VXz148W93pk2fiOjBS6Ft2oaZaeY35DczhOwDxNCpEnFUKLDgzJS4SQinVhlAt-Dh867d29WUT26yi9v8doGcDLkwSKsMa3-_pnerdbgyDtIcP1bV-Bo39YRAGwJQwAXG7Vi9Dmz68PWd5gFwv9-vjLMIR4fEmZ7jdV_XmI2elIcJ1tUrvnJOv5qq-rRYdx7obJWsBOhIj_vZrZEF16yT5Y7CaWZ_SDN9aCJknivTUqxqMXTmog-eQpBfq7sGMxbhXtubHdUvFHnvd1TR5wZTtGo6H9VR247o6bwDAFWNpbOqDm_dIDdnp_9OJlHophAZgExtpLx3FvCWBo_kuBexKTRTPha20EmpvTBexblJfca4dZznqWZ5BgouEpdazdkmWYTJur-E5tx5p1gZawFoygHELEvFrE1LwXRqkxFJBjFKE0qNY8eL_3LglN1LFL1E0cte9CNyMH_msS-08e3ofNCO_GAuEjzBt8_tgiphUnhMRAEBFSt5wbDzOxeZGJGdQcky_MwzmTIGLhysVmz98LPb5HeKcXrHXdshi-3Ts9sFMNPqvc5a98jS8fnlZPoGoo3xdg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7SDaW5lD7ptkmqQ2_FXduyZbm3EBI2r700gdyEnsGhdkLWOfTfd8aWF0ppDr0Y_JAtRuOZb9A3MwBfEGKYXMs0qTRqcGFr2iTEU6ctolv08OXQ7u1iJZZXxel1eb0Fh1MuDNEqo-0fbfpgreOVRZTm4r5pFj9oU09K0iEEBUJi3L5N1amKGWwfnJwtVxuDjIh_3LJMi4QGxNyZkeZ127aUkJ7V3zIqrVf9yz8965rmL3s9OKHjV_Ayokd2ME7wNWz57g08H1icdv0WutVdlxD5XNueUWGLqTkXuwsM4_xW33SUtIj3-lHzmPnFiPp-wzR77ChLq2WbpwZ223d2tGkCwHTn2Lpp41vfwdXx0eXhMokNFRKLqKlPdAjeIeQy6JS8CDK1leE6pNJVJqtNkDbotLR5KLhwXogyN7wscI2rzOfOCP4eZjhZ_wFYKXzwmtepkQioPKLMutbcubyW3OQum0M2iVHZWG2cml78VBOt7FaR6BWJXo2in8PXzZj7sdbGk0-X0-qoPzRGoTN4ctweLiVOio6ZrDCm4rWoODV_F7KQc9idFlnF_3mtcs7Ri6Piyo__-dnP8GJ5eXGuzk9WZ59gJ6ewfaCy7cKsf3j0e4hterMfdfc37Wj0Jw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-contact+manipulation+of+nonmagnetic+materials+by+using+a+uniform+magnetic+field%3A+Experiment+and+simulation&rft.jtitle=Journal+of+magnetism+and+magnetic+materials&rft.au=Li%2C+Xiang&rft.au=Yu%2C+Peng&rft.au=Niu%2C+Xiaodong&rft.au=Yamaguchi%2C+Hiroshi&rft.date=2020-03-01&rft.pub=Elsevier+BV&rft.issn=0304-8853&rft.eissn=1873-4766&rft.volume=497&rft.spage=1&rft_id=info:doi/10.1016%2Fj.jmmm.2019.165957&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-8853&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-8853&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-8853&client=summon |