Non-contact manipulation of nonmagnetic materials by using a uniform magnetic field: Experiment and simulation

•The MFIDSA process of nonmagnetic materials in magnetic fluids is investigated.•An LB model is developed for simulating MFIDSA process in magnetic multiphase flows.•The length of self-assembled structures does not relate with particle-size.•The length of self-assembled structures increases with the...

Full description

Saved in:
Bibliographic Details
Published inJournal of Magnetism and Magnetic Materials Vol. 497; p. 165957
Main Authors Li, Xiang, Yu, Peng, Niu, Xiaodong, Yamaguchi, Hiroshi, Li, Decai
Format Journal Article
LanguageEnglish
Japanese
Published Amsterdam Elsevier B.V 01.03.2020
Elsevier BV
Subjects
Online AccessGet full text
ISSN0304-8853
1873-4766
DOI10.1016/j.jmmm.2019.165957

Cover

Loading…
Abstract •The MFIDSA process of nonmagnetic materials in magnetic fluids is investigated.•An LB model is developed for simulating MFIDSA process in magnetic multiphase flows.•The length of self-assembled structures does not relate with particle-size.•The length of self-assembled structures increases with the external magnetic field. Magnetic field induced dynamic self-assembly (MFIDSA) can be regarded as one of non-contact manipulation method under special category of micro-scale or nano-scale fabrication technique, which is confined to magnetic materials. This study is focused on MFIDSA process of nonmagnetic materials in a magnetic multiphase fluid by using the experimental technique and numerical method. To explore the controllability of MFIDSA process, a series of experiments by using the magnetic multiphase fluid comprising of nonmagnetic polystyrene microparticles with different particle-size distributions were carried out. The relations of the strength of external magnetic field, the average length of self-assembled chain-like structures, and the particle-size distribution of nonmagnetic polystyrene microparticles were investigated experimentally. Meanwhile, to reveal the interaction mechanisms behind the self-assembling behaviours of nonmagnetic materials, an immersed boundary lattice Boltzmann method was applied to simulate the multi-physical field coupled multiphase flows in MFIDSA process. The present work shows that the average length of self-assembled chain-like structures is mainly determined by the strength of external magnetic field, irrespective of the particle-size distribution of nonmagnetic materials. The coincident results of the experiments and numerical simulations provide a guidance on how to manipulate the nonmagnetic materials to form the chain-like structures by magnetic field.
AbstractList •The MFIDSA process of nonmagnetic materials in magnetic fluids is investigated.•An LB model is developed for simulating MFIDSA process in magnetic multiphase flows.•The length of self-assembled structures does not relate with particle-size.•The length of self-assembled structures increases with the external magnetic field. Magnetic field induced dynamic self-assembly (MFIDSA) can be regarded as one of non-contact manipulation method under special category of micro-scale or nano-scale fabrication technique, which is confined to magnetic materials. This study is focused on MFIDSA process of nonmagnetic materials in a magnetic multiphase fluid by using the experimental technique and numerical method. To explore the controllability of MFIDSA process, a series of experiments by using the magnetic multiphase fluid comprising of nonmagnetic polystyrene microparticles with different particle-size distributions were carried out. The relations of the strength of external magnetic field, the average length of self-assembled chain-like structures, and the particle-size distribution of nonmagnetic polystyrene microparticles were investigated experimentally. Meanwhile, to reveal the interaction mechanisms behind the self-assembling behaviours of nonmagnetic materials, an immersed boundary lattice Boltzmann method was applied to simulate the multi-physical field coupled multiphase flows in MFIDSA process. The present work shows that the average length of self-assembled chain-like structures is mainly determined by the strength of external magnetic field, irrespective of the particle-size distribution of nonmagnetic materials. The coincident results of the experiments and numerical simulations provide a guidance on how to manipulate the nonmagnetic materials to form the chain-like structures by magnetic field.
Magnetic field induced dynamic self-assembly (MFIDSA) can be regarded as one of non-contact manipulation method under special category of micro-scale or nano-scale fabrication technique, which is confined to magnetic materials. This study is focused on MFIDSA process of nonmagnetic materials in a magnetic multiphase fluid by using the experimental technique and numerical method. To explore the controllability of MFIDSA process, a series of experiments by using the magnetic multiphase fluid comprising of nonmagnetic polystyrene microparticles with different particle-size distributions were carried out. The relations of the strength of external magnetic field, the average length of self-assembled chain-like structures, and the particle-size distribution of nonmagnetic polystyrene microparticles were investigated experimentally. Meanwhile, to reveal the interaction mechanisms behind the self-assembling behaviours of nonmagnetic materials, an immersed boundary lattice Boltzmann method was applied to simulate the multi-physical field coupled multiphase flows in MFIDSA process. The present work shows that the average length of self-assembled chain-like structures is mainly determined by the strength of external magnetic field, irrespective of the particle-size distribution of nonmagnetic materials. The coincident results of the experiments and numerical simulations provide a guidance on how to manipulate the nonmagnetic materials to form the chain-like structures by magnetic field.
ArticleNumber 165957
Author Yu, Peng
Li, Xiang
Niu, Xiaodong
Yamaguchi, Hiroshi
Li, Decai
Author_xml – sequence: 1
  givenname: Xiang
  surname: Li
  fullname: Li, Xiang
  organization: Shenzhen Key Laboratory of Complex Aerospace Flows, Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, People’s Republic of China
– sequence: 2
  givenname: Peng
  surname: Yu
  fullname: Yu, Peng
  email: yup6@sustech.edu.cn
  organization: Shenzhen Key Laboratory of Complex Aerospace Flows, Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, People’s Republic of China
– sequence: 3
  givenname: Xiaodong
  surname: Niu
  fullname: Niu, Xiaodong
  email: xdniu@stu.edu.cn
  organization: College of Engineering, Shantou University, Shantou, Guangdong 515063, People’s Republic of China
– sequence: 4
  givenname: Hiroshi
  surname: Yamaguchi
  fullname: Yamaguchi, Hiroshi
  organization: Energy Conversion Research Center, Doshisha University, Kyoto 630-0321, Japan
– sequence: 5
  givenname: Decai
  surname: Li
  fullname: Li, Decai
  organization: Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People’s Republic of China
BackLink https://cir.nii.ac.jp/crid/1872553967359086848$$DView record in CiNii
BookMark eNp9kctu3CAUhlGVSp2kfYGukJqtp1wMxlE2UZRepKjdtGuE8SHCGsMUcJR5--A66qKLbGDBfznn4xydhRgAoY-U7Cmh8vO0n-Z53jNC-z2VohfdG7SjquNN20l5hnaEk7ZRSvB36DzniRBCWyV3KPyIobExFGMLnk3wx-Vgio8BR4dryWweAhRv61uB5M0h4-GEl-zDAzZ4Cd7FNON_KufhMF7hu6djFc8QCjZhxNnPL6nv0VtXM-DDy32Bfn-5-3X7rbn_-fX77c19Y1vGS2Ocg1FxMVCmQDpFbDdw44gau4H2g1PWGSIscy2XI0gp2MBFa63pKLBxkPwCfdpyjyn-WSAXPcUlhVqpGedtR6lgqqrUprIp5pzAaevL3zlLMv6gKdErXT3pla5e6eqNbrWy_6zHurBJp9dNl5speF-r1rP-EROC97LjoidKqnYd63qTQSX06CHpbD0EC6NPYIseo3-t5Rk71qKV
CitedBy_id crossref_primary_10_1007_s10854_024_13217_9
crossref_primary_10_1016_j_icheatmasstransfer_2021_105487
crossref_primary_10_1007_s10948_021_05932_9
crossref_primary_10_1016_j_est_2021_103043
crossref_primary_10_1016_j_csite_2021_101161
crossref_primary_10_1016_j_jmmm_2023_170964
crossref_primary_10_1016_j_ijmultiphaseflow_2022_103982
crossref_primary_10_1016_j_mseb_2024_117341
crossref_primary_10_1063_5_0043998
crossref_primary_10_1007_s13204_021_01976_4
crossref_primary_10_1007_s10854_024_13407_5
crossref_primary_10_1016_j_ast_2021_106846
crossref_primary_10_1007_s13204_021_01941_1
crossref_primary_10_1016_j_jpcs_2023_111548
crossref_primary_10_1063_5_0041021
crossref_primary_10_1016_j_matchemphys_2025_130561
crossref_primary_10_1007_s11082_023_05122_y
crossref_primary_10_1007_s42417_024_01498_7
crossref_primary_10_1016_j_csite_2024_104514
crossref_primary_10_1063_5_0014522
crossref_primary_10_1007_s40948_024_00902_6
crossref_primary_10_1142_S1793292024500437
crossref_primary_10_1016_j_apm_2022_12_025
crossref_primary_10_1063_5_0052148
crossref_primary_10_1088_1402_4896_ad67b6
crossref_primary_10_1007_s13204_021_01884_7
crossref_primary_10_3390_rs15102687
crossref_primary_10_1007_s11036_023_02178_8
crossref_primary_10_1016_j_cherd_2024_06_042
crossref_primary_10_1039_D4RA02939A
crossref_primary_10_1016_j_conbuildmat_2021_124026
crossref_primary_10_1088_2053_1591_ad97a7
crossref_primary_10_1016_j_tsep_2024_103132
crossref_primary_10_1016_j_jmmm_2023_171501
crossref_primary_10_1088_1361_6463_ac353a
crossref_primary_10_1007_s13204_021_01907_3
crossref_primary_10_1016_j_jre_2024_05_004
crossref_primary_10_3390_w15162931
crossref_primary_10_1080_15376494_2024_2342576
crossref_primary_10_1016_j_amc_2020_125634
crossref_primary_10_3390_nano14020222
crossref_primary_10_1016_j_jobe_2021_103223
crossref_primary_10_1007_s10570_023_05190_z
crossref_primary_10_1016_j_ceramint_2024_07_438
crossref_primary_10_1063_5_0020903
crossref_primary_10_1016_j_micron_2020_102960
crossref_primary_10_1016_j_icheatmasstransfer_2024_108054
crossref_primary_10_1007_s10854_024_13304_x
crossref_primary_10_1016_j_jmmm_2023_171079
crossref_primary_10_1063_5_0245850
crossref_primary_10_1016_j_triboint_2024_109579
crossref_primary_10_1016_j_ceramint_2024_11_072
crossref_primary_10_1016_j_colsurfa_2023_131697
crossref_primary_10_1140_epjp_s13360_021_02106_3
crossref_primary_10_1016_j_jmmm_2024_171750
crossref_primary_10_1007_s10854_024_13007_3
crossref_primary_10_1016_j_icheatmasstransfer_2021_105625
crossref_primary_10_1016_j_ultras_2022_106865
crossref_primary_10_2298_TSCI240215161U
crossref_primary_10_1007_s13204_021_01999_x
crossref_primary_10_1016_j_physb_2024_416000
crossref_primary_10_1108_MMMS_08_2024_0239
crossref_primary_10_1063_5_0067426
crossref_primary_10_1007_s13204_021_01953_x
crossref_primary_10_1007_s13204_021_01988_0
crossref_primary_10_1088_1402_4896_ac018a
crossref_primary_10_1142_S1793292023500807
crossref_primary_10_3390_fluids8010002
crossref_primary_10_1007_s10973_024_13372_5
crossref_primary_10_1142_S0129183121501436
crossref_primary_10_1063_5_0077701
crossref_primary_10_1016_j_molliq_2021_116595
crossref_primary_10_1016_j_amc_2020_125769
crossref_primary_10_1016_j_jmmm_2023_171244
crossref_primary_10_1016_j_inoche_2024_113252
crossref_primary_10_1016_j_mtchem_2024_102311
crossref_primary_10_1080_15376494_2023_2219453
crossref_primary_10_1080_01411594_2023_2228968
crossref_primary_10_1016_j_petrol_2021_109173
crossref_primary_10_1063_5_0048123
crossref_primary_10_1088_1402_4896_ad007c
crossref_primary_10_1007_s13204_021_01960_y
crossref_primary_10_1007_s13204_021_01962_w
crossref_primary_10_1142_S0129183122500103
crossref_primary_10_1007_s10904_024_03535_0
crossref_primary_10_1016_j_jfluidstructs_2020_103008
crossref_primary_10_1007_s13204_021_01993_3
crossref_primary_10_1016_j_csite_2021_101198
crossref_primary_10_1089_soro_2024_0007
crossref_primary_10_1007_s10971_025_06712_w
crossref_primary_10_1016_j_csite_2023_103059
crossref_primary_10_1140_epjp_s13360_021_01658_8
Cites_doi 10.1016/j.jmmm.2016.09.119
10.1103/PhysRevE.61.6732
10.1016/j.jmmm.2008.11.011
10.1103/PhysRevE.79.046713
10.1016/j.expthermflusci.2016.07.005
10.1016/j.compfluid.2016.04.019
10.1016/j.jmmm.2018.10.065
10.1038/s41467-018-04115-w
10.1016/j.physleta.2006.01.060
10.1038/s41586-018-0250-8
10.1126/science.1070821
10.1021/nl103008v
10.1021/acs.langmuir.8b01135
10.1016/0304-8853(87)90033-3
10.1103/PhysRevE.100.012608
10.1109/TMAG.2018.2845915
10.1088/1361-6463/ab062f
10.1063/1.5010292
10.1146/annurev.fluid.30.1.329
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright Elsevier BV Mar 1, 2020
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright Elsevier BV Mar 1, 2020
DBID RYH
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1016/j.jmmm.2019.165957
DatabaseName CiNii Complete
CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1873-4766
ExternalDocumentID 10_1016_j_jmmm_2019_165957
S0304885319324680
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
6OB
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXUO
ABFNM
ABMAC
ABNEU
ABYKQ
ACDAQ
ACFVG
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
M24
M38
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSQ
SSZ
T5K
XPP
ZMT
~02
~G-
AAQFI
AATTM
AAXKI
AAYWO
ACVFH
ADCNI
AEIPS
AEUPX
AFPUW
AFXIZ
AGCQF
AGRNS
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
RYH
SSH
29K
5VS
AAQXK
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AFFNX
AFJKZ
AGHFR
AGQPQ
AIGII
ASPBG
AVWKF
AZFZN
BBWZM
CITATION
D-I
EJD
FGOYB
G-2
HMV
HZ~
NDZJH
R2-
RIG
SEW
SMS
SPG
WUQ
XXG
7SR
7U5
8BQ
8FD
EFKBS
JG9
L7M
ID FETCH-LOGICAL-c423t-affed835b128e6f80c7b3af08d7b19bf8cfa05c2f436de6652b354cca71e2db63
IEDL.DBID .~1
ISSN 0304-8853
IngestDate Sun Jul 13 04:42:25 EDT 2025
Tue Jul 01 01:56:05 EDT 2025
Thu Apr 24 23:06:23 EDT 2025
Thu Jun 26 22:49:53 EDT 2025
Fri Feb 23 02:49:32 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Self-assembly
Magnetic fluid
Lattice Boltzmann method
Immersed boundary method
Nonmagnetic materials
Non-contact manipulation
Language English
Japanese
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c423t-affed835b128e6f80c7b3af08d7b19bf8cfa05c2f436de6652b354cca71e2db63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8722-2153
PQID 2334711528
PQPubID 2045450
ParticipantIDs proquest_journals_2334711528
crossref_citationtrail_10_1016_j_jmmm_2019_165957
crossref_primary_10_1016_j_jmmm_2019_165957
nii_cinii_1872553967359086848
elsevier_sciencedirect_doi_10_1016_j_jmmm_2019_165957
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-01
2020-03-00
20200301
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Journal of Magnetism and Magnetic Materials
PublicationYear 2020
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Iwamoto, Yoshioka, Naito, Cuya, Ido, Okawa (b0015) 2016; 79
Zablotsky (b0065) 2019; 474
Garcia-Torres, Calero, Sagues, Pagonabarraga, Tierno (b0050) 2018; 9
Niu, Yamaguchi, Yoshikawa (b0090) 2009; 79
Fujita, Mamiya (b0100) 1987; 65
Ivanov, Kantorovich, Elfimova, Zverev, Sindt, Camp (b0030) 2017; 431
Whitesides, Grzybowski (b0005) 2002; 295
Wang, Timonen, Carlson, Drotlef, Zhang, Kolle, Grinthal, Wong, Hatton, Kang, Kennedy, Chi, Blough, Sitti, Mahadevan, Aizenberg (b0045) 2018; 559
Steinbach, Schreiber, Nissen, Albrecht, Novak, Sánchez, Kantorovich, Gemming, Erbe (b0060) 2019; 100
Li, Niu, Li, Chen (b0075) 2018; 30
Niu, Shu, Chew, Peng (b0085) 2006; 354
He, Hu, Kim, Ge, Kwon, Yin (b0010) 2010; 10
Li, Yen, Lo (b0035) 2018; 54
Kim, Bauer, Vasquez, Furst (b0055) 2019; 52
Chen, Doolen (b0080) 1998; 30
Ido, Sumiyoshi, Tsutsumi (b0025) 2017; 142
Furst, Gast (b0105) 2000; 61
Chen, Li, Niu, Li, Khan, Yamaguchi (b0070) 2017; 66
Yang, Li, Niu (b0095) 2018; 98
Peng, Min, Ma, Luo, Yan (b0020) 2009; 321
Sherman, Ghosh, Swan (b0040) 2018; 34
Chen (10.1016/j.jmmm.2019.165957_b0080) 1998; 30
Peng (10.1016/j.jmmm.2019.165957_b0020) 2009; 321
Li (10.1016/j.jmmm.2019.165957_b0075) 2018; 30
Chen (10.1016/j.jmmm.2019.165957_b0070) 2017; 66
Iwamoto (10.1016/j.jmmm.2019.165957_b0015) 2016; 79
Garcia-Torres (10.1016/j.jmmm.2019.165957_b0050) 2018; 9
Zablotsky (10.1016/j.jmmm.2019.165957_b0065) 2019; 474
Kim (10.1016/j.jmmm.2019.165957_b0055) 2019; 52
He (10.1016/j.jmmm.2019.165957_b0010) 2010; 10
Niu (10.1016/j.jmmm.2019.165957_b0090) 2009; 79
Ivanov (10.1016/j.jmmm.2019.165957_b0030) 2017; 431
Fujita (10.1016/j.jmmm.2019.165957_b0100) 1987; 65
Li (10.1016/j.jmmm.2019.165957_b0035) 2018; 54
Sherman (10.1016/j.jmmm.2019.165957_b0040) 2018; 34
Whitesides (10.1016/j.jmmm.2019.165957_b0005) 2002; 295
Yang (10.1016/j.jmmm.2019.165957_b0095) 2018; 98
Steinbach (10.1016/j.jmmm.2019.165957_b0060) 2019; 100
Niu (10.1016/j.jmmm.2019.165957_b0085) 2006; 354
Ido (10.1016/j.jmmm.2019.165957_b0025) 2017; 142
Furst (10.1016/j.jmmm.2019.165957_b0105) 2000; 61
Wang (10.1016/j.jmmm.2019.165957_b0045) 2018; 559
References_xml – volume: 52
  year: 2019
  ident: b0055
  article-title: Structural coarsening of magnetic ellipsoid particle suspensions driven in toggled fields
  publication-title: J. Phys. D Appl. Phys.
– volume: 10
  start-page: 4708
  year: 2010
  ident: b0010
  article-title: Magnetic assembly of nonmagnetic particles into photonic crystal structures
  publication-title: Nano Lett.
– volume: 9
  start-page: 1663
  year: 2018
  ident: b0050
  article-title: Magnetically tunable bidirectional locomotion of a self-assembled nanorod-sphere propeller
  publication-title: Nat. Commun.
– volume: 431
  start-page: 141
  year: 2017
  end-page: 144
  ident: b0030
  article-title: The influence of interparticle correlations and self-assembly on the dynamic initial magnetic susceptibility spectra of ferrofluids
  publication-title: J. Magn. Magn. Mater.
– volume: 559
  start-page: 77
  year: 2018
  end-page: 82
  ident: b0045
  article-title: Multifunctional ferrofluid-infused surfaces with reconfigurable multiscale topography
  publication-title: Nature
– volume: 66
  year: 2017
  ident: b0070
  article-title: Sedimentation of two non-magnetic particles in magnetic fluid
  publication-title: Acta Phys. Sin.
– volume: 61
  start-page: 6732
  year: 2000
  end-page: 6739
  ident: b0105
  article-title: Micromechanics of magnetorheological suspensions
  publication-title: Phys. Rev. E
– volume: 54
  start-page: 5200305
  year: 2018
  ident: b0035
  article-title: Flexibility of micromagnetic flagella in the presence of an oscillating field
  publication-title: IEEE T. Magn.
– volume: 79
  year: 2009
  ident: b0090
  article-title: Lattice Boltzmann model for simulating temperature-sensitive ferrofluids
  publication-title: Phys. Rev. E
– volume: 65
  start-page: 207
  year: 1987
  end-page: 210
  ident: b0100
  article-title: Interaction forces between nonmagnetic particles in the magnetized magnetic fluid
  publication-title: J. Magn. Magn. Mater.
– volume: 295
  start-page: 2418
  year: 2002
  end-page: 2421
  ident: b0005
  article-title: Self-assembly at all scales
  publication-title: Science
– volume: 100
  year: 2019
  ident: b0060
  article-title: Field-responsive colloidal assemblies defined by magnetic anisotropy
  publication-title: Phys. Rev. E
– volume: 354
  start-page: 173
  year: 2006
  end-page: 182
  ident: b0085
  article-title: A momentum exchange-based immersed boundary-lattice Boltzmann method for simulating incompressible viscous flows
  publication-title: Phys. Lett. A
– volume: 30
  year: 2018
  ident: b0075
  article-title: Self-assembly of silica microparticles in magnetic multiphase flows: experiment and simulation
  publication-title: Phys. Fluids
– volume: 321
  start-page: 1221
  year: 2009
  end-page: 1226
  ident: b0020
  article-title: Two-dimensional Monte Carlo simulations of a suspension comprised of magnetic and nonmagnetic particles in gradient magnetic fields
  publication-title: J. Magn. Magn. Mater.
– volume: 30
  start-page: 329
  year: 1998
  end-page: 364
  ident: b0080
  article-title: Lattice boltzmann method for fluid flows
  publication-title: Annu. Rev. Fluid Mech.
– volume: 142
  start-page: 86
  year: 2017
  end-page: 95
  ident: b0025
  article-title: Simulations of behavior of magnetic particles in magnetic functional fluids using a hybrid method of lattice Boltzmann method, immersed boundary method and discrete particle method
  publication-title: Comput. Fluids
– volume: 34
  start-page: 7117
  year: 2018
  end-page: 7134
  ident: b0040
  article-title: Field-directed self-assembly of mutually polarizable nanoparticles
  publication-title: Langmuir
– volume: 474
  start-page: 462
  year: 2019
  end-page: 466
  ident: b0065
  article-title: Field effect in the viscosity of magnetic colloids studied by multi-particle collision dynamics
  publication-title: J. Magn. Magn. Mater.
– volume: 79
  start-page: 111
  year: 2016
  end-page: 117
  ident: b0015
  article-title: Field induced anisotropic thermal conductivity of silver nanowire dispersed magnetic functional fluid
  publication-title: Exp. Therm. Fluid Sci.
– volume: 98
  year: 2018
  ident: b0095
  article-title: Phase-field-based lattice Boltzmann model for multiphase ferrofluid flows
  publication-title: Phys. Rev. E
– volume: 431
  start-page: 141
  year: 2017
  ident: 10.1016/j.jmmm.2019.165957_b0030
  article-title: The influence of interparticle correlations and self-assembly on the dynamic initial magnetic susceptibility spectra of ferrofluids
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2016.09.119
– volume: 61
  start-page: 6732
  year: 2000
  ident: 10.1016/j.jmmm.2019.165957_b0105
  article-title: Micromechanics of magnetorheological suspensions
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.61.6732
– volume: 321
  start-page: 1221
  year: 2009
  ident: 10.1016/j.jmmm.2019.165957_b0020
  article-title: Two-dimensional Monte Carlo simulations of a suspension comprised of magnetic and nonmagnetic particles in gradient magnetic fields
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2008.11.011
– volume: 79
  year: 2009
  ident: 10.1016/j.jmmm.2019.165957_b0090
  article-title: Lattice Boltzmann model for simulating temperature-sensitive ferrofluids
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.79.046713
– volume: 79
  start-page: 111
  year: 2016
  ident: 10.1016/j.jmmm.2019.165957_b0015
  article-title: Field induced anisotropic thermal conductivity of silver nanowire dispersed magnetic functional fluid
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/j.expthermflusci.2016.07.005
– volume: 142
  start-page: 86
  year: 2017
  ident: 10.1016/j.jmmm.2019.165957_b0025
  article-title: Simulations of behavior of magnetic particles in magnetic functional fluids using a hybrid method of lattice Boltzmann method, immersed boundary method and discrete particle method
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2016.04.019
– volume: 474
  start-page: 462
  year: 2019
  ident: 10.1016/j.jmmm.2019.165957_b0065
  article-title: Field effect in the viscosity of magnetic colloids studied by multi-particle collision dynamics
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2018.10.065
– volume: 9
  start-page: 1663
  year: 2018
  ident: 10.1016/j.jmmm.2019.165957_b0050
  article-title: Magnetically tunable bidirectional locomotion of a self-assembled nanorod-sphere propeller
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04115-w
– volume: 354
  start-page: 173
  year: 2006
  ident: 10.1016/j.jmmm.2019.165957_b0085
  article-title: A momentum exchange-based immersed boundary-lattice Boltzmann method for simulating incompressible viscous flows
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2006.01.060
– volume: 98
  year: 2018
  ident: 10.1016/j.jmmm.2019.165957_b0095
  article-title: Phase-field-based lattice Boltzmann model for multiphase ferrofluid flows
  publication-title: Phys. Rev. E
– volume: 559
  start-page: 77
  year: 2018
  ident: 10.1016/j.jmmm.2019.165957_b0045
  article-title: Multifunctional ferrofluid-infused surfaces with reconfigurable multiscale topography
  publication-title: Nature
  doi: 10.1038/s41586-018-0250-8
– volume: 295
  start-page: 2418
  year: 2002
  ident: 10.1016/j.jmmm.2019.165957_b0005
  article-title: Self-assembly at all scales
  publication-title: Science
  doi: 10.1126/science.1070821
– volume: 10
  start-page: 4708
  year: 2010
  ident: 10.1016/j.jmmm.2019.165957_b0010
  article-title: Magnetic assembly of nonmagnetic particles into photonic crystal structures
  publication-title: Nano Lett.
  doi: 10.1021/nl103008v
– volume: 34
  start-page: 7117
  year: 2018
  ident: 10.1016/j.jmmm.2019.165957_b0040
  article-title: Field-directed self-assembly of mutually polarizable nanoparticles
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.8b01135
– volume: 65
  start-page: 207
  year: 1987
  ident: 10.1016/j.jmmm.2019.165957_b0100
  article-title: Interaction forces between nonmagnetic particles in the magnetized magnetic fluid
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/0304-8853(87)90033-3
– volume: 100
  year: 2019
  ident: 10.1016/j.jmmm.2019.165957_b0060
  article-title: Field-responsive colloidal assemblies defined by magnetic anisotropy
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.100.012608
– volume: 54
  start-page: 5200305
  year: 2018
  ident: 10.1016/j.jmmm.2019.165957_b0035
  article-title: Flexibility of micromagnetic flagella in the presence of an oscillating field
  publication-title: IEEE T. Magn.
  doi: 10.1109/TMAG.2018.2845915
– volume: 52
  year: 2019
  ident: 10.1016/j.jmmm.2019.165957_b0055
  article-title: Structural coarsening of magnetic ellipsoid particle suspensions driven in toggled fields
  publication-title: J. Phys. D Appl. Phys.
  doi: 10.1088/1361-6463/ab062f
– volume: 30
  year: 2018
  ident: 10.1016/j.jmmm.2019.165957_b0075
  article-title: Self-assembly of silica microparticles in magnetic multiphase flows: experiment and simulation
  publication-title: Phys. Fluids
  doi: 10.1063/1.5010292
– volume: 66
  year: 2017
  ident: 10.1016/j.jmmm.2019.165957_b0070
  article-title: Sedimentation of two non-magnetic particles in magnetic fluid
  publication-title: Acta Phys. Sin.
– volume: 30
  start-page: 329
  year: 1998
  ident: 10.1016/j.jmmm.2019.165957_b0080
  article-title: Lattice boltzmann method for fluid flows
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fluid.30.1.329
SSID ssj0001486
ssib006544711
ssib006544710
ssib003054951
ssib033400537
ssib020737796
ssib019626450
Score 2.5851543
Snippet •The MFIDSA process of nonmagnetic materials in magnetic fluids is investigated.•An LB model is developed for simulating MFIDSA process in magnetic multiphase...
Magnetic field induced dynamic self-assembly (MFIDSA) can be regarded as one of non-contact manipulation method under special category of micro-scale or...
SourceID proquest
crossref
nii
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 165957
SubjectTerms Assembling
Chains
Charged particles
Computational fluid dynamics
Computer simulation
Controllability
Immersed boundary method
Lattice Boltzmann method
Magnetic fields
Magnetic fluid
Magnetic materials
Magnetism
Microparticles
Multiphase flow
Non-contact manipulation
Nonmagnetic materials
Numerical methods
Particle size distribution
Polystyrene resins
Self-assembly
Title Non-contact manipulation of nonmagnetic materials by using a uniform magnetic field: Experiment and simulation
URI https://dx.doi.org/10.1016/j.jmmm.2019.165957
https://cir.nii.ac.jp/crid/1872553967359086848
https://www.proquest.com/docview/2334711528
Volume 497
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS-UwEA-uIuxF1FX2-UUO3qS-tmnT1JuI8lR8F1fwFvIplW0VXz148W93pk2fiOjBS6Ft2oaZaeY35DczhOwDxNCpEnFUKLDgzJS4SQinVhlAt-Dh867d29WUT26yi9v8doGcDLkwSKsMa3-_pnerdbgyDtIcP1bV-Bo39YRAGwJQwAXG7Vi9Dmz68PWd5gFwv9-vjLMIR4fEmZ7jdV_XmI2elIcJ1tUrvnJOv5qq-rRYdx7obJWsBOhIj_vZrZEF16yT5Y7CaWZ_SDN9aCJknivTUqxqMXTmog-eQpBfq7sGMxbhXtubHdUvFHnvd1TR5wZTtGo6H9VR247o6bwDAFWNpbOqDm_dIDdnp_9OJlHophAZgExtpLx3FvCWBo_kuBexKTRTPha20EmpvTBexblJfca4dZznqWZ5BgouEpdazdkmWYTJur-E5tx5p1gZawFoygHELEvFrE1LwXRqkxFJBjFKE0qNY8eL_3LglN1LFL1E0cte9CNyMH_msS-08e3ofNCO_GAuEjzBt8_tgiphUnhMRAEBFSt5wbDzOxeZGJGdQcky_MwzmTIGLhysVmz98LPb5HeKcXrHXdshi-3Ts9sFMNPqvc5a98jS8fnlZPoGoo3xdg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7SDaW5lD7ptkmqQ2_FXduyZbm3EBI2r700gdyEnsGhdkLWOfTfd8aWF0ppDr0Y_JAtRuOZb9A3MwBfEGKYXMs0qTRqcGFr2iTEU6ctolv08OXQ7u1iJZZXxel1eb0Fh1MuDNEqo-0fbfpgreOVRZTm4r5pFj9oU09K0iEEBUJi3L5N1amKGWwfnJwtVxuDjIh_3LJMi4QGxNyZkeZ127aUkJ7V3zIqrVf9yz8965rmL3s9OKHjV_Ayokd2ME7wNWz57g08H1icdv0WutVdlxD5XNueUWGLqTkXuwsM4_xW33SUtIj3-lHzmPnFiPp-wzR77ChLq2WbpwZ223d2tGkCwHTn2Lpp41vfwdXx0eXhMokNFRKLqKlPdAjeIeQy6JS8CDK1leE6pNJVJqtNkDbotLR5KLhwXogyN7wscI2rzOfOCP4eZjhZ_wFYKXzwmtepkQioPKLMutbcubyW3OQum0M2iVHZWG2cml78VBOt7FaR6BWJXo2in8PXzZj7sdbGk0-X0-qoPzRGoTN4ctweLiVOio6ZrDCm4rWoODV_F7KQc9idFlnF_3mtcs7Ri6Piyo__-dnP8GJ5eXGuzk9WZ59gJ6ewfaCy7cKsf3j0e4hterMfdfc37Wj0Jw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-contact+manipulation+of+nonmagnetic+materials+by+using+a+uniform+magnetic+field%3A+Experiment+and+simulation&rft.jtitle=Journal+of+magnetism+and+magnetic+materials&rft.au=Li%2C+Xiang&rft.au=Yu%2C+Peng&rft.au=Niu%2C+Xiaodong&rft.au=Yamaguchi%2C+Hiroshi&rft.date=2020-03-01&rft.pub=Elsevier+BV&rft.issn=0304-8853&rft.eissn=1873-4766&rft.volume=497&rft.spage=1&rft_id=info:doi/10.1016%2Fj.jmmm.2019.165957&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-8853&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-8853&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-8853&client=summon