Molecular chaperone TRiC governs avian reovirus replication by protecting outer-capsid protein σC and inner core protein σA and non-structural protein σNS from ubiquitin- proteasome degradation
•TRiC stabilizes the outer-capsid protein σC, inner core protein σA, and the non-structural protein σNS of ARV.•TriC serves as a chaperone of viral proteins and prevents their degradation via the ubiquitin-proteasome pathway.•Inhibition of TRiC significantly reduced expression levels of σC, σA, and...
Saved in:
Published in | Veterinary microbiology Vol. 264; p. 109277 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.01.2022
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •TRiC stabilizes the outer-capsid protein σC, inner core protein σA, and the non-structural protein σNS of ARV.•TriC serves as a chaperone of viral proteins and prevents their degradation via the ubiquitin-proteasome pathway.•Inhibition of TRiC significantly reduced expression levels of σC, σA, and σNS proteins of ARV and virus yield.
Avian reoviruses (ARVs) are important pathogens that cause considerable economic losses in poultry farming. To date, host factors that control stabilization of ARV proteins remain largely unknown. In this work we determined that the eukaryotic chaperonin T-complex protein-1 (TCP-1) ring complex (TRiC) is essential for avian reovirus (ARV) replication by stabilizing outer-capsid protein σC, inner core protein σA, and the non-structural protein σNS of ARV. TriC serves as a chaperone of viral proteins and prevent their degradation via the ubiquitin-proteasome pathway. Furthermore, reciprocal co-immunoprecipitation assays confirmed the association of viral proteins (σA, σC, and σNS) with TRiC. Immunofluorescence staining indicated that the TRiC chaperonins (CCT2 and CCT5) are colocalized with viral proteins σC, σA, and σNS of ARV. In this study, inhibition of TRiC chaperonins (CCT2 and CCT5) by the inhibitor HSF1A or shRNAs significantly reduced expression levels of the σC, σA, and σNS proteins of ARV as well as virus yield, suggesting that the TRiC complex functions in stabilization of viral proteins and virus replication. This study provides novel insights into TRiC chaperonin governing virus replication via stabilization of outer-capsid protein σC, inner core protein σA, and the non-structural protein σNS of ARV. |
---|---|
AbstractList | Avian reoviruses (ARVs) are important pathogens that cause considerable economic losses in poultry farming. To date, host factors that control stabilization of ARV proteins remain largely unknown. In this work we determined that the eukaryotic chaperonin T-complex protein-1 (TCP-1) ring complex (TRiC) is essential for avian reovirus (ARV) replication by stabilizing outer-capsid protein σC, inner core protein σA, and the non-structural protein σNS of ARV. TriC serves as a chaperone of viral proteins and prevent their degradation via the ubiquitin-proteasome pathway. Furthermore, reciprocal co-immunoprecipitation assays confirmed the association of viral proteins (σA, σC, and σNS) with TRiC. Immunofluorescence staining indicated that the TRiC chaperonins (CCT2 and CCT5) are colocalized with viral proteins σC, σA, and σNS of ARV. In this study, inhibition of TRiC chaperonins (CCT2 and CCT5) by the inhibitor HSF1A or shRNAs significantly reduced expression levels of the σC, σA, and σNS proteins of ARV as well as virus yield, suggesting that the TRiC complex functions in stabilization of viral proteins and virus replication. This study provides novel insights into TRiC chaperonin governing virus replication via stabilization of outer-capsid protein σC, inner core protein σA, and the non-structural protein σNS of ARV.Avian reoviruses (ARVs) are important pathogens that cause considerable economic losses in poultry farming. To date, host factors that control stabilization of ARV proteins remain largely unknown. In this work we determined that the eukaryotic chaperonin T-complex protein-1 (TCP-1) ring complex (TRiC) is essential for avian reovirus (ARV) replication by stabilizing outer-capsid protein σC, inner core protein σA, and the non-structural protein σNS of ARV. TriC serves as a chaperone of viral proteins and prevent their degradation via the ubiquitin-proteasome pathway. Furthermore, reciprocal co-immunoprecipitation assays confirmed the association of viral proteins (σA, σC, and σNS) with TRiC. Immunofluorescence staining indicated that the TRiC chaperonins (CCT2 and CCT5) are colocalized with viral proteins σC, σA, and σNS of ARV. In this study, inhibition of TRiC chaperonins (CCT2 and CCT5) by the inhibitor HSF1A or shRNAs significantly reduced expression levels of the σC, σA, and σNS proteins of ARV as well as virus yield, suggesting that the TRiC complex functions in stabilization of viral proteins and virus replication. This study provides novel insights into TRiC chaperonin governing virus replication via stabilization of outer-capsid protein σC, inner core protein σA, and the non-structural protein σNS of ARV. •TRiC stabilizes the outer-capsid protein σC, inner core protein σA, and the non-structural protein σNS of ARV.•TriC serves as a chaperone of viral proteins and prevents their degradation via the ubiquitin-proteasome pathway.•Inhibition of TRiC significantly reduced expression levels of σC, σA, and σNS proteins of ARV and virus yield. Avian reoviruses (ARVs) are important pathogens that cause considerable economic losses in poultry farming. To date, host factors that control stabilization of ARV proteins remain largely unknown. In this work we determined that the eukaryotic chaperonin T-complex protein-1 (TCP-1) ring complex (TRiC) is essential for avian reovirus (ARV) replication by stabilizing outer-capsid protein σC, inner core protein σA, and the non-structural protein σNS of ARV. TriC serves as a chaperone of viral proteins and prevent their degradation via the ubiquitin-proteasome pathway. Furthermore, reciprocal co-immunoprecipitation assays confirmed the association of viral proteins (σA, σC, and σNS) with TRiC. Immunofluorescence staining indicated that the TRiC chaperonins (CCT2 and CCT5) are colocalized with viral proteins σC, σA, and σNS of ARV. In this study, inhibition of TRiC chaperonins (CCT2 and CCT5) by the inhibitor HSF1A or shRNAs significantly reduced expression levels of the σC, σA, and σNS proteins of ARV as well as virus yield, suggesting that the TRiC complex functions in stabilization of viral proteins and virus replication. This study provides novel insights into TRiC chaperonin governing virus replication via stabilization of outer-capsid protein σC, inner core protein σA, and the non-structural protein σNS of ARV. Avian reoviruses (ARVs) are important pathogens that cause considerable economic losses in poultry farming. To date, host factors that control stabilization of ARV proteins remain largely unknown. In this work we determined that the eukaryotic chaperonin T-complex protein-1 (TCP-1) ring complex (TRiC) is essential for avian reovirus (ARV) replication by stabilizing outer-capsid protein σC, inner core protein σA, and the non-structural protein σNS of ARV. TriC serves as a chaperone of viral proteins and prevent their degradation via the ubiquitin-proteasome pathway. Furthermore, reciprocal co-immunoprecipitation assays confirmed the association of viral proteins (σA, σC, and σNS) with TRiC. Immunofluorescence staining indicated that the TRiC chaperonins (CCT2 and CCT5) are colocalized with viral proteins σC, σA, and σNS of ARV. In this study, inhibition of TRiC chaperonins (CCT2 and CCT5) by the inhibitor HSF1A or shRNAs significantly reduced expression levels of the σC, σA, and σNS proteins of ARV as well as virus yield, suggesting that the TRiC complex functions in stabilization of viral proteins and virus replication. This study provides novel insights into TRiC chaperonin governing virus replication via stabilization of outer-capsid protein σC, inner core protein σA, and the non-structural protein σNS of ARV. |
ArticleNumber | 109277 |
Author | Liu, Hung-Jen Chang, Yu-Kang Wen, Hsiao-Wei Wang, Chi-Young Huang, Wei-Ru Yeh, Chuan-Ming Chang, Ching-Dong Hsu, Chao-Yu Wu, Yi-Ying Nielsen, Brent L. Liao, Tsai-Ling Hu, Nien-Jen Li, Jyun-Yi |
Author_xml | – sequence: 1 givenname: Wei-Ru surname: Huang fullname: Huang, Wei-Ru organization: Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan – sequence: 2 givenname: Jyun-Yi surname: Li fullname: Li, Jyun-Yi organization: Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan – sequence: 3 givenname: Tsai-Ling surname: Liao fullname: Liao, Tsai-Ling organization: Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan – sequence: 4 givenname: Chuan-Ming surname: Yeh fullname: Yeh, Chuan-Ming organization: Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan – sequence: 5 givenname: Chi-Young surname: Wang fullname: Wang, Chi-Young organization: The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan – sequence: 6 givenname: Hsiao-Wei surname: Wen fullname: Wen, Hsiao-Wei organization: Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan – sequence: 7 givenname: Nien-Jen surname: Hu fullname: Hu, Nien-Jen organization: Institute of Biochemistry, National Chung Hsing University, Taichung, Taiwan – sequence: 8 givenname: Yi-Ying surname: Wu fullname: Wu, Yi-Ying organization: Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan – sequence: 9 givenname: Chao-Yu surname: Hsu fullname: Hsu, Chao-Yu organization: Ph.D Program in Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan – sequence: 10 givenname: Yu-Kang orcidid: 0000-0001-8456-0125 surname: Chang fullname: Chang, Yu-Kang organization: Department of Medical Research, Tung’s Taichung MetroHarbor Hospital, Taichung, Taiwan – sequence: 11 givenname: Ching-Dong surname: Chang fullname: Chang, Ching-Dong organization: Department of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan – sequence: 12 givenname: Brent L. orcidid: 0000-0001-6300-4816 surname: Nielsen fullname: Nielsen, Brent L. organization: Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA – sequence: 13 givenname: Hung-Jen orcidid: 0000-0002-1460-1494 surname: Liu fullname: Liu, Hung-Jen email: hjliu5257@nchu.edu.tw organization: Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34826648$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUsuKFDEUDTLiPPQPRAJuZlNtXpWqdiEMjS8YFXRch1TqVpumKunJo2HW_pp7f8l01wwMs1BXudxz7rmPnFN05LwDhJ5TsqCEylebxQ7SZM2CEUZLasma5hE6oW3DK1YLdoROCG_ailJeH6PTGDeEELGU5Ak65qJlUor2BP365EcwedQBmx96C6E0wVdf7Qqv_Q6Ci1jvrHY4gN_ZkGMJtqM1OlnvcHeDt8EnMMm6NfY5QaiM3kbbz3nr8O-fK6xdj61zUFr4APegiwNU9qpiCtmkHPR4D_78DQ_BTzh39jrb0qOaQR39BLiHddD9YZCn6PGgxwjPbt8z9P3d26vVh-ryy_uPq4vLygjGU6UHPQAxLSfQGkEa3pFuSYEOvRyWvVxSxupBdIIJLTrDOC-hboZadjVpWC_4GTqfdcsY1xliUpONBsZRO_A5Kia5rIlksv4PKhGEMSFZob58QN34HFxZZC_YUEkp3Qu-uGXlboJebYOddLhRd19ZCK9nggk-xgCDMjYdzpOCtqOiRO19ozZq9o3a-0bNvinF4kHxnf4_yt7MZVCuvrMQVDQWnIHehuIK1Xv7d4E_nJ_juw |
CitedBy_id | crossref_primary_10_1128_jvi_00836_22 crossref_primary_10_1128_spectrum_00009_23 crossref_primary_10_1016_j_vetmic_2022_109545 crossref_primary_10_3389_fcimb_2023_1142172 crossref_primary_10_3390_v16071153 crossref_primary_10_3389_fmicb_2024_1346894 crossref_primary_10_4103_ETMJ_ETMJ_D_24_00040 crossref_primary_10_1128_jvi_00074_22 |
Cites_doi | 10.1038/s41564-018-0122-x 10.1016/j.jmb.2004.06.026 10.1083/jcb.200104079 10.1006/viro.2000.0473 10.1016/j.virol.2010.10.026 10.2307/1591118 10.1016/j.virol.2003.10.034 10.1006/viro.1999.0020 10.1128/JVI.00851-19 10.1016/j.virol.2003.12.004 10.1146/annurev.biochem.70.1.603 10.1016/j.celrep.2014.09.056 10.1074/jbc.M112.390245 10.1111/cmi.12946 10.1016/j.jmb.2005.09.034 10.1016/0092-8674(92)90622-J 10.1038/s41598-017-05510-x 10.1016/j.bbamcr.2011.11.009 10.1074/jbc.RA118.002341 10.1038/358249a0 10.1128/JVI.00563-18 10.1080/03079450600823386 10.2307/1589226 10.1099/0022-1317-79-6-1411 10.1038/nmicrobiol.2016.68 10.1093/nar/gkv639 10.1371/journal.pone.0162356 10.1016/S0960-9822(94)00024-2 10.1099/0022-1317-83-1-131 10.1074/jbc.M111.257154 10.1038/nrm2918 10.1016/j.virol.2004.12.005 10.1093/emboj/19.16.4383 10.1016/j.vetmic.2019.06.017 10.1128/mBio.01253-18 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. Copyright © 2021 Elsevier B.V. All rights reserved. Copyright Elsevier BV Jan 2022 |
Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Copyright © 2021 Elsevier B.V. All rights reserved. – notice: Copyright Elsevier BV Jan 2022 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7U9 H94 M7N 7X8 7S9 L.6 |
DOI | 10.1016/j.vetmic.2021.109277 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Virology and AIDS Abstracts AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AIDS and Cancer Research Abstracts Virology and AIDS Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE AIDS and Cancer Research Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Veterinary Medicine Biology |
EISSN | 1873-2542 |
ExternalDocumentID | 34826648 10_1016_j_vetmic_2021_109277 S037811352100300X |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM AAAJQ AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AARKO AATLK AAXUO ABBQC ABFNM ABFRF ABGRD ABJNI ABKYH ABLVK ABMAC ABMZM ABRWV ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACPRK ACRLP ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AESVU AEXOQ AFKWA AFRAH AFTJW AFXIZ AGEKW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CBWCG CJTIS CNWQP CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FD6 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMG HVGLF HZ~ IHE J1W KOM LCYCR LUGTX LW9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 QYZTP R2- RIG ROL RPZ SAB SDF SDG SDP SES SEW SIN SNL SPCBC SSA SSH SSI SSZ SVS T5K WUQ ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ACIEU ACMHX ACVFH ADCNI ADSLC AEIPS AEUPX AFJKZ AFPUW AGCQF AGRNS AGWPP AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION CGR CUY CVF ECM EIF NPM 7U9 EFKBS H94 M7N 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c423t-afafe0c830e8c4073b0b91e1fd6f9d691225f4b424a4bc233b42a7f56b5072d43 |
IEDL.DBID | .~1 |
ISSN | 0378-1135 1873-2542 |
IngestDate | Fri Jul 11 12:19:09 EDT 2025 Thu Jul 10 18:24:05 EDT 2025 Mon Jul 14 08:22:40 EDT 2025 Wed Feb 19 02:27:50 EST 2025 Tue Jul 01 01:37:02 EDT 2025 Thu Apr 24 22:58:38 EDT 2025 Fri Feb 23 02:43:56 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | HIV-1 Non-structural protein Σns SDS Hsp Vero ARV MOI CDK DMRT Avian reovirus DMEM Outer and core proteins (σC and σA) CCT HEPES HSF1A The eukaryotic chaperonin T-complex protein-1 (TCP-1) ring complex (TRiC) TCP-1 PCR MDRV TRiC |
Language | English |
License | Copyright © 2021 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c423t-afafe0c830e8c4073b0b91e1fd6f9d691225f4b424a4bc233b42a7f56b5072d43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8456-0125 0000-0001-6300-4816 0000-0002-1460-1494 |
PMID | 34826648 |
PQID | 2637161115 |
PQPubID | 105548 |
ParticipantIDs | proquest_miscellaneous_2636506265 proquest_miscellaneous_2604022462 proquest_journals_2637161115 pubmed_primary_34826648 crossref_citationtrail_10_1016_j_vetmic_2021_109277 crossref_primary_10_1016_j_vetmic_2021_109277 elsevier_sciencedirect_doi_10_1016_j_vetmic_2021_109277 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2022 2022-01-00 2022-Jan 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: January 2022 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands – name: Amsterdam |
PublicationTitle | Veterinary microbiology |
PublicationTitleAlternate | Vet Microbiol |
PublicationYear | 2022 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Huang, Li, Su, Lee, Liu (bib0085) 2005; 332 Shih, Hsu, Liao, Lee, Liu (bib0150) 2004; 321 Zamora, Hu, Knowlton, Lahr, Moreno, Berman, Prasad, Dermody (bib0195) 2018; 92 Prodromou, Panaretou, Chohan, Siligardi, O’Brien, Ladbury, Roe, Piper, Pearl (bib0140) 2000; 19 Taipale, Jarosz, Lindquist (bib0155) 2020; 11 Luo, Jacobs, Greco, Mohammed, Tong, Keegan, Binley, Cristea, Fenyö, Rout, Chait, Muesing (bib0125) 2016; 1 Gao, Thomas, Chow, Lee, Cowan (bib0055) 1992; 69 Neef, Jaeger, Gomez-Pastor, Willmund, Frydman, Thiele (bib0130) 2014; 9 Borkovich, Farrelly, Finkelstein, Taulien, Lindquist (bib0010) 1989; 9 Young, Moarefi, Hartl (bib0190) 2001; 154 Yin, Shien, Lee (bib0185) 2000; 266 Huang, Wang, Chi, Wang, Wang, Lin, Liu (bib0090) 2011; 286 Hsu, Wang, Lee, Shih, Chang, Cheng, Chulu, Ji, Liu (bib0080) 2006; 35 Patton, Silvestri, Tortorici, Vasquez-Del Carpio, Taraporewala (bib0135) 2006; 309 Tenorio, Fernández de, Knowlton, Zamora, Lee, Mainou, Dermody, Risco (bib0160) 2018; 9 Didenko, Duarte, Karagoz, Rudiger (bib0045) 2012; 1823 Yin, Lee (bib0180) 1998; 79 Glass, Naqi, Hall, Kerr (bib0060) 1973; 17 Grande, Rodriguez, Costas, Everitt, Benavente (bib0065) 2000; 274 Grande, Costas, Benavente (bib0070) 2002; 83 Tourís-Otero, Cortez-San Martín, Martínez-Costas, Benavente (bib0170) 2004; 341 Touris-Otero, Martinez-Costas, Vakharia, Benavente (bib0165) 2004; 319 Huang, Chi, Chiu, Hsu, Nielsen, Liao, Liu (bib0100) 2017; 7 Rosenberger, Sterner, Botts, Lee, Margolin (bib0145) 1989; 33 Wang, Huang, Chih, Chuang, Chang, Wu, Huang, Liu (bib0175) 2019; 235 Huang, Chiu, Liao, Chuang, Shih, Liu (bib0095) 2015; 10 Benavente, Martinez-Costas (bib0005) 2006; 309 Guardado, Fox, Hermo Parrado, Llamas-Saiz, Costas, Martínez-Costas, Benavente, van Raaij (bib0075) 2005; 354 Frydman (bib0050) 2001; 70 Kubota, Hynes, Carne, Ashworth, Willison (bib0115) 1994; 4 Chiu, Huang, Liao, Wu, Munir, Shih, Liu (bib0030) 2016; 11 Chi, Huang, Lai, Cheng, Liu (bib0020) 2013; 288 Chi, Huang, Chiu, Li, Nielsen, Liu (bib0025) 2018; 20 Knowlton, Fernandez, Ashbrook, Gestaut, Zamora, Bauer, Forrest, Frydman, Risco, Dermody (bib0110) 2018; 3 Chiu, Huang, Liao, Chi, Nielsen, Liu, Liu (bib0035) 2018; 293 Inoue, Aizaki, Hara, Matsuda, Ando, Shimoji, Murakami, Masaki, Shoji, Homma, Matsuura, Miyamura, Wakita, Suzuki (bib0105) 2011; 410 Borodavka, Ault, Stockley, Tuma, Borodavka (bib0015) 2015; 43 Chiu, Huang, Wang, Li, Liao, Nielsen, Liu (bib0040) 2019; 93 Lewis, Hynes, Zheng, Saibil, Willison (bib0120) 1992; 358 Grande (10.1016/j.vetmic.2021.109277_bib0070) 2002; 83 Chi (10.1016/j.vetmic.2021.109277_bib0020) 2013; 288 Hsu (10.1016/j.vetmic.2021.109277_bib0080) 2006; 35 Rosenberger (10.1016/j.vetmic.2021.109277_bib0145) 1989; 33 Frydman (10.1016/j.vetmic.2021.109277_bib0050) 2001; 70 Chi (10.1016/j.vetmic.2021.109277_bib0025) 2018; 20 Tenorio (10.1016/j.vetmic.2021.109277_bib0160) 2018; 9 Huang (10.1016/j.vetmic.2021.109277_bib0100) 2017; 7 Prodromou (10.1016/j.vetmic.2021.109277_bib0140) 2000; 19 Borkovich (10.1016/j.vetmic.2021.109277_bib0010) 1989; 9 Knowlton (10.1016/j.vetmic.2021.109277_bib0110) 2018; 3 Young (10.1016/j.vetmic.2021.109277_bib0190) 2001; 154 Yin (10.1016/j.vetmic.2021.109277_bib0180) 1998; 79 Yin (10.1016/j.vetmic.2021.109277_bib0185) 2000; 266 Wang (10.1016/j.vetmic.2021.109277_bib0175) 2019; 235 Zamora (10.1016/j.vetmic.2021.109277_bib0195) 2018; 92 Gao (10.1016/j.vetmic.2021.109277_bib0055) 1992; 69 Grande (10.1016/j.vetmic.2021.109277_bib0065) 2000; 274 Patton (10.1016/j.vetmic.2021.109277_bib0135) 2006; 309 Didenko (10.1016/j.vetmic.2021.109277_bib0045) 2012; 1823 Lewis (10.1016/j.vetmic.2021.109277_bib0120) 1992; 358 Guardado (10.1016/j.vetmic.2021.109277_bib0075) 2005; 354 Taipale (10.1016/j.vetmic.2021.109277_bib0155) 2020; 11 Chiu (10.1016/j.vetmic.2021.109277_bib0040) 2019; 93 Chiu (10.1016/j.vetmic.2021.109277_bib0035) 2018; 293 Huang (10.1016/j.vetmic.2021.109277_bib0085) 2005; 332 Touris-Otero (10.1016/j.vetmic.2021.109277_bib0165) 2004; 319 Borodavka (10.1016/j.vetmic.2021.109277_bib0015) 2015; 43 Luo (10.1016/j.vetmic.2021.109277_bib0125) 2016; 1 Huang (10.1016/j.vetmic.2021.109277_bib0090) 2011; 286 Glass (10.1016/j.vetmic.2021.109277_bib0060) 1973; 17 Inoue (10.1016/j.vetmic.2021.109277_bib0105) 2011; 410 Huang (10.1016/j.vetmic.2021.109277_bib0095) 2015; 10 Tourís-Otero (10.1016/j.vetmic.2021.109277_bib0170) 2004; 341 Benavente (10.1016/j.vetmic.2021.109277_bib0005) 2006; 309 Kubota (10.1016/j.vetmic.2021.109277_bib0115) 1994; 4 Shih (10.1016/j.vetmic.2021.109277_bib0150) 2004; 321 Chiu (10.1016/j.vetmic.2021.109277_bib0030) 2016; 11 Neef (10.1016/j.vetmic.2021.109277_bib0130) 2014; 9 |
References_xml | – volume: 43 start-page: 7044 year: 2015 end-page: 7057 ident: bib0015 article-title: Evidence that avian reovirus σNS is an RNA chaperone: implications for genome segment assortment publication-title: Nucle. Acids Res. – volume: 410 start-page: 38 year: 2011 end-page: 47 ident: bib0105 article-title: Chaperonin TRiC/CCT participates in replication of hepatitis C virus genome via interaction with the viral NS5B protein publication-title: Virology – volume: 3 start-page: 481 year: 2018 end-page: 493 ident: bib0110 article-title: The TRiC chaperonin controls reovirus replication through outer-capsid folding publication-title: Nat. Microbiol. – volume: 341 start-page: 361 year: 2004 end-page: 374 ident: bib0170 article-title: Avian reovirus morphogenesis occurs within viral factories and begins with the selective recruitment of sigmaNS and lambdaA to microNS inclusions publication-title: J. Mol. Biol. – volume: 1 start-page: 16068 year: 2016 ident: bib0125 article-title: HIV-host interactome revealed directly from infected cells publication-title: Nat. Microbiol. – volume: 9 start-page: 3919 year: 1989 end-page: 3930 ident: bib0010 article-title: hsp82 is an essential protein that is required in higher concentrations for growth of cells at higher temperatures publication-title: Mol. Cell. Biol. – volume: 288 start-page: 3571 year: 2013 end-page: 3584 ident: bib0020 article-title: The p17 nonstructural protein of avian reovirus triggers autophagy enhancing virus replication via activation of phosphatase and tensin deleted on chromosome 10 (PTEN) and AMP-activated protein kinase (AMPK), as well as dsRNA-dependent protein kinase (PKR)/eIF2alpha signaling pathways publication-title: J. Biol. Chem. – volume: 1823 start-page: 636 year: 2012 end-page: 647 ident: bib0045 article-title: Hsp90 structure and function studied by NMR spectroscopy publication-title: Biochim. Biophys. Acta – volume: 266 start-page: 33 year: 2000 end-page: 41 ident: bib0185 article-title: Synthesis in Escherichia coli of avian reovirus core protein sigmaA and its dsRNA-binding activity publication-title: Virology – volume: 286 start-page: 30780 year: 2011 end-page: 30794 ident: bib0090 article-title: Cell entry of avian reovirus follows a caveolin-1-mediated and dynamin-2-dependent endocytic pathway that requires activation of p38 mitogen-activated protein kinase (MAPK) and Src signaling pathways as well as microtubules and small GTPase Rab5 protein publication-title: J. Biol. Chem. – volume: 9 start-page: 955 year: 2014 end-page: 966 ident: bib0130 article-title: A direct regulatory interaction between chaperonin TRiC and stress-responsive transcription factor HSF1 publication-title: Cell Rep. – volume: 33 start-page: 535 year: 1989 end-page: 544 ident: bib0145 article-title: and publication-title: Avian Dis. – volume: 11 year: 2016 ident: bib0030 article-title: Suppression of vimentin phosphorylation by the avian reovirus p17 through inhibition of CDK1 and Plk1 impacting the G2/M phase of the cell cycle publication-title: PLoS One – volume: 309 start-page: 169 year: 2006 end-page: 187 ident: bib0135 article-title: Rotavirus genome replication and morphogenesis: role of the viroplasm publication-title: Curr. Top. Microbiol. Immunol. – volume: 11 start-page: 515 year: 2020 end-page: 528 ident: bib0155 article-title: HSP90 at the hub of protein homeostasis: emerging mechanistic insights publication-title: Nat. Rev. Mol. Cell Biol. – volume: 319 start-page: 94 year: 2004 end-page: 106 ident: bib0165 article-title: Avian reovirus nonstructural protein microNS forms viroplasm-like inclusions and recruits protein sigmaNS to these structures publication-title: Virology – volume: 79 start-page: 1411 year: 1998 end-page: 1413 ident: bib0180 article-title: Identification and characterization of RNA-binding activities of avian reovirus non-structural protein sigmaNS publication-title: J. Gen. Virol. – volume: 358 start-page: 249 year: 1992 end-page: 252 ident: bib0120 article-title: T-complex polypeptide-1 is a subunit of a heteromeric particle in the eukaryotic cytosol publication-title: Nature – volume: 10 year: 2015 ident: bib0095 article-title: Avian reovirus protein p17 functions as a nucleoporin Tpr suppressor leading to activation of p53, p21 and PTEN and inactivation of PI3K/AKT/mTOR and ERK signaling pathways publication-title: PLoS One – volume: 293 start-page: 12542 year: 2018 end-page: 12562 ident: bib0035 article-title: Mechanistic insights into avian reovirus p17-modulated suppression of cell cycle CDK-cyclin complexes and enhancement of p53 and cyclin H interaction publication-title: J. Biol. Chem. – volume: 93 start-page: e00851 year: 2019 end-page: 19 ident: bib0040 article-title: Heterogeneous nuclear ribonucleoprotein A1 and Lamin A/C modulate nucleocytoplasmic shuttling of avian reovirus p17 publication-title: J. Virol. – volume: 19 start-page: 4383 year: 2000 end-page: 4392 ident: bib0140 article-title: The ATPase cycle of Hsp90 drives a molecular ‘clamp’ via transient dimerization of the N-terminal domains publication-title: EMBO J. – volume: 17 start-page: 415 year: 1973 end-page: 424 ident: bib0060 article-title: Isolation and characterization of a virus associated with arthritis of chickens publication-title: Avian Dis. – volume: 309 start-page: 67 year: 2006 end-page: 85 ident: bib0005 article-title: Early steps in avian reovirus morphogenesis publication-title: Curr. Top. Microbiol. Immunol. – volume: 20 year: 2018 ident: bib0025 article-title: Avian reovirus sigma A-modulated suppression of lactate dehydrogenase and upregulation of glutaminolysis and the mTOC1/eIF4E/HIF-1alpha pathway to enhance glycolysis and the TCA cycle for virus replication publication-title: Cell. Microbiol. – volume: 69 start-page: 1043 year: 1992 end-page: 1050 ident: bib0055 article-title: A cytoplasmic chaperonin that catalyzes beta-actin folding publication-title: Cell – volume: 321 start-page: 65 year: 2004 end-page: 74 ident: bib0150 article-title: Avian reovirus sigma C protein induces apoptosis in cultured cells publication-title: Virology – volume: 83 start-page: 131 year: 2002 end-page: 139 ident: bib0070 article-title: Subunit composition and conformational stability of the oligomeric form of the avian reovirus cell-attachment protein sigma C. J publication-title: Gen. Virol. – volume: 9 start-page: e01253 year: 2018 end-page: 18 ident: bib0160 article-title: Reovirus σNS and μNS proteins remodel the endoplasmic reticulum to build replication neo-organelles publication-title: mBio – volume: 274 start-page: 367 year: 2000 end-page: 377 ident: bib0065 article-title: Oligomerization and cell-binding properties of the avian reovirus cell-attachment protein sigma C publication-title: Virology – volume: 92 start-page: e00563 year: 2018 end-page: 18 ident: bib0195 article-title: Reovirus nonstructural protein σNS acts as an RNA stability factor promoting viral genome replication publication-title: J. Virol. – volume: 35 start-page: 320 year: 2006 end-page: 326 ident: bib0080 article-title: Development and characterization of monoclonal antibodies against avian reovirus sigma C protein and their application in detection of avian reovirus isolates publication-title: Avian Pathol. – volume: 332 start-page: 584 year: 2005 end-page: 595 ident: bib0085 article-title: Epitope mapping and functional analysis of sigma A and sigma NS proteins of avian reovirus publication-title: Virology. – volume: 154 start-page: 267 year: 2001 end-page: 273 ident: bib0190 article-title: Hsp90: a specialized but essential protein-folding tool publication-title: J. Cell Biol. – volume: 70 start-page: 603 year: 2001 end-page: 647 ident: bib0050 article-title: Folding of newly translated proteins in vivo: the role of molecular chaperones publication-title: Annu. Rev. Biochem. – volume: 354 start-page: 137 year: 2005 end-page: 149 ident: bib0075 article-title: Structure of the carboxy-terminal receptor-binding domain of avian reovirus fibre sigma C publication-title: J. Mol. Biol. – volume: 4 start-page: 89 year: 1994 end-page: 99 ident: bib0115 article-title: Identification of six Tcp-1-related genes encoding divergent subunits of the TCP-1-containing chaperonin publication-title: Curr. Biol. – volume: 235 start-page: 151 year: 2019 end-page: 163 ident: bib0175 article-title: Cdc20 and molecular chaperone CCT2 and CCT5 are required for the Muscovy duck reovirus p10.8-induced cell cycle arrest and apoptosis publication-title: Vet. Microbiol. – volume: 7 start-page: 5226 year: 2017 ident: bib0100 article-title: Avian reovirus p17 and sigma A act cooperatively to downregulate Akt by suppressing mTORC2 and CDK2/cyclin A2 and upregulating proteasome PSMB6 publication-title: Sci. Rep. – volume: 3 start-page: 481 year: 2018 ident: 10.1016/j.vetmic.2021.109277_bib0110 article-title: The TRiC chaperonin controls reovirus replication through outer-capsid folding publication-title: Nat. Microbiol. doi: 10.1038/s41564-018-0122-x – volume: 341 start-page: 361 issue: 2 year: 2004 ident: 10.1016/j.vetmic.2021.109277_bib0170 article-title: Avian reovirus morphogenesis occurs within viral factories and begins with the selective recruitment of sigmaNS and lambdaA to microNS inclusions publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2004.06.026 – volume: 154 start-page: 267 year: 2001 ident: 10.1016/j.vetmic.2021.109277_bib0190 article-title: Hsp90: a specialized but essential protein-folding tool publication-title: J. Cell Biol. doi: 10.1083/jcb.200104079 – volume: 274 start-page: 367 year: 2000 ident: 10.1016/j.vetmic.2021.109277_bib0065 article-title: Oligomerization and cell-binding properties of the avian reovirus cell-attachment protein sigma C publication-title: Virology doi: 10.1006/viro.2000.0473 – volume: 410 start-page: 38 issue: 1 year: 2011 ident: 10.1016/j.vetmic.2021.109277_bib0105 article-title: Chaperonin TRiC/CCT participates in replication of hepatitis C virus genome via interaction with the viral NS5B protein publication-title: Virology doi: 10.1016/j.virol.2010.10.026 – volume: 33 start-page: 535 year: 1989 ident: 10.1016/j.vetmic.2021.109277_bib0145 article-title: In vitro and in vivo characterization of avian reoviruses. I. Pathogenicity and antigenic relatedness of several avian reovirus isolates publication-title: Avian Dis. doi: 10.2307/1591118 – volume: 319 start-page: 94 year: 2004 ident: 10.1016/j.vetmic.2021.109277_bib0165 article-title: Avian reovirus nonstructural protein microNS forms viroplasm-like inclusions and recruits protein sigmaNS to these structures publication-title: Virology doi: 10.1016/j.virol.2003.10.034 – volume: 266 start-page: 33 issue: 1 year: 2000 ident: 10.1016/j.vetmic.2021.109277_bib0185 article-title: Synthesis in Escherichia coli of avian reovirus core protein sigmaA and its dsRNA-binding activity publication-title: Virology doi: 10.1006/viro.1999.0020 – volume: 93 start-page: e00851 year: 2019 ident: 10.1016/j.vetmic.2021.109277_bib0040 article-title: Heterogeneous nuclear ribonucleoprotein A1 and Lamin A/C modulate nucleocytoplasmic shuttling of avian reovirus p17 publication-title: J. Virol. doi: 10.1128/JVI.00851-19 – volume: 321 start-page: 65 year: 2004 ident: 10.1016/j.vetmic.2021.109277_bib0150 article-title: Avian reovirus sigma C protein induces apoptosis in cultured cells publication-title: Virology doi: 10.1016/j.virol.2003.12.004 – volume: 10 year: 2015 ident: 10.1016/j.vetmic.2021.109277_bib0095 article-title: Avian reovirus protein p17 functions as a nucleoporin Tpr suppressor leading to activation of p53, p21 and PTEN and inactivation of PI3K/AKT/mTOR and ERK signaling pathways publication-title: PLoS One – volume: 309 start-page: 67 year: 2006 ident: 10.1016/j.vetmic.2021.109277_bib0005 article-title: Early steps in avian reovirus morphogenesis publication-title: Curr. Top. Microbiol. Immunol. – volume: 70 start-page: 603 year: 2001 ident: 10.1016/j.vetmic.2021.109277_bib0050 article-title: Folding of newly translated proteins in vivo: the role of molecular chaperones publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.70.1.603 – volume: 9 start-page: 955 issue: 3 year: 2014 ident: 10.1016/j.vetmic.2021.109277_bib0130 article-title: A direct regulatory interaction between chaperonin TRiC and stress-responsive transcription factor HSF1 publication-title: Cell Rep. doi: 10.1016/j.celrep.2014.09.056 – volume: 288 start-page: 3571 year: 2013 ident: 10.1016/j.vetmic.2021.109277_bib0020 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.390245 – volume: 20 year: 2018 ident: 10.1016/j.vetmic.2021.109277_bib0025 article-title: Avian reovirus sigma A-modulated suppression of lactate dehydrogenase and upregulation of glutaminolysis and the mTOC1/eIF4E/HIF-1alpha pathway to enhance glycolysis and the TCA cycle for virus replication publication-title: Cell. Microbiol. doi: 10.1111/cmi.12946 – volume: 354 start-page: 137 issue: 1 year: 2005 ident: 10.1016/j.vetmic.2021.109277_bib0075 article-title: Structure of the carboxy-terminal receptor-binding domain of avian reovirus fibre sigma C publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2005.09.034 – volume: 69 start-page: 1043 year: 1992 ident: 10.1016/j.vetmic.2021.109277_bib0055 article-title: A cytoplasmic chaperonin that catalyzes beta-actin folding publication-title: Cell doi: 10.1016/0092-8674(92)90622-J – volume: 7 start-page: 5226 year: 2017 ident: 10.1016/j.vetmic.2021.109277_bib0100 article-title: Avian reovirus p17 and sigma A act cooperatively to downregulate Akt by suppressing mTORC2 and CDK2/cyclin A2 and upregulating proteasome PSMB6 publication-title: Sci. Rep. doi: 10.1038/s41598-017-05510-x – volume: 1823 start-page: 636 year: 2012 ident: 10.1016/j.vetmic.2021.109277_bib0045 article-title: Hsp90 structure and function studied by NMR spectroscopy publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamcr.2011.11.009 – volume: 293 start-page: 12542 year: 2018 ident: 10.1016/j.vetmic.2021.109277_bib0035 article-title: Mechanistic insights into avian reovirus p17-modulated suppression of cell cycle CDK-cyclin complexes and enhancement of p53 and cyclin H interaction publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA118.002341 – volume: 358 start-page: 249 year: 1992 ident: 10.1016/j.vetmic.2021.109277_bib0120 article-title: T-complex polypeptide-1 is a subunit of a heteromeric particle in the eukaryotic cytosol publication-title: Nature doi: 10.1038/358249a0 – volume: 92 start-page: e00563 issue: 15 year: 2018 ident: 10.1016/j.vetmic.2021.109277_bib0195 article-title: Reovirus nonstructural protein σNS acts as an RNA stability factor promoting viral genome replication publication-title: J. Virol. doi: 10.1128/JVI.00563-18 – volume: 35 start-page: 320 year: 2006 ident: 10.1016/j.vetmic.2021.109277_bib0080 article-title: Development and characterization of monoclonal antibodies against avian reovirus sigma C protein and their application in detection of avian reovirus isolates publication-title: Avian Pathol. doi: 10.1080/03079450600823386 – volume: 17 start-page: 415 year: 1973 ident: 10.1016/j.vetmic.2021.109277_bib0060 article-title: Isolation and characterization of a virus associated with arthritis of chickens publication-title: Avian Dis. doi: 10.2307/1589226 – volume: 79 start-page: 1411 year: 1998 ident: 10.1016/j.vetmic.2021.109277_bib0180 article-title: Identification and characterization of RNA-binding activities of avian reovirus non-structural protein sigmaNS publication-title: J. Gen. Virol. doi: 10.1099/0022-1317-79-6-1411 – volume: 9 start-page: 3919 year: 1989 ident: 10.1016/j.vetmic.2021.109277_bib0010 article-title: hsp82 is an essential protein that is required in higher concentrations for growth of cells at higher temperatures publication-title: Mol. Cell. Biol. – volume: 1 start-page: 16068 year: 2016 ident: 10.1016/j.vetmic.2021.109277_bib0125 article-title: HIV-host interactome revealed directly from infected cells publication-title: Nat. Microbiol. doi: 10.1038/nmicrobiol.2016.68 – volume: 43 start-page: 7044 issue: 14 year: 2015 ident: 10.1016/j.vetmic.2021.109277_bib0015 article-title: Evidence that avian reovirus σNS is an RNA chaperone: implications for genome segment assortment publication-title: Nucle. Acids Res. doi: 10.1093/nar/gkv639 – volume: 11 year: 2016 ident: 10.1016/j.vetmic.2021.109277_bib0030 article-title: Suppression of vimentin phosphorylation by the avian reovirus p17 through inhibition of CDK1 and Plk1 impacting the G2/M phase of the cell cycle publication-title: PLoS One doi: 10.1371/journal.pone.0162356 – volume: 4 start-page: 89 year: 1994 ident: 10.1016/j.vetmic.2021.109277_bib0115 article-title: Identification of six Tcp-1-related genes encoding divergent subunits of the TCP-1-containing chaperonin publication-title: Curr. Biol. doi: 10.1016/S0960-9822(94)00024-2 – volume: 83 start-page: 131 year: 2002 ident: 10.1016/j.vetmic.2021.109277_bib0070 article-title: Subunit composition and conformational stability of the oligomeric form of the avian reovirus cell-attachment protein sigma C. J publication-title: Gen. Virol. doi: 10.1099/0022-1317-83-1-131 – volume: 286 start-page: 30780 year: 2011 ident: 10.1016/j.vetmic.2021.109277_bib0090 article-title: Cell entry of avian reovirus follows a caveolin-1-mediated and dynamin-2-dependent endocytic pathway that requires activation of p38 mitogen-activated protein kinase (MAPK) and Src signaling pathways as well as microtubules and small GTPase Rab5 protein publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.257154 – volume: 309 start-page: 169 year: 2006 ident: 10.1016/j.vetmic.2021.109277_bib0135 article-title: Rotavirus genome replication and morphogenesis: role of the viroplasm publication-title: Curr. Top. Microbiol. Immunol. – volume: 11 start-page: 515 year: 2020 ident: 10.1016/j.vetmic.2021.109277_bib0155 article-title: HSP90 at the hub of protein homeostasis: emerging mechanistic insights publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2918 – volume: 332 start-page: 584 year: 2005 ident: 10.1016/j.vetmic.2021.109277_bib0085 article-title: Epitope mapping and functional analysis of sigma A and sigma NS proteins of avian reovirus publication-title: Virology. doi: 10.1016/j.virol.2004.12.005 – volume: 19 start-page: 4383 year: 2000 ident: 10.1016/j.vetmic.2021.109277_bib0140 article-title: The ATPase cycle of Hsp90 drives a molecular ‘clamp’ via transient dimerization of the N-terminal domains publication-title: EMBO J. doi: 10.1093/emboj/19.16.4383 – volume: 235 start-page: 151 year: 2019 ident: 10.1016/j.vetmic.2021.109277_bib0175 article-title: Cdc20 and molecular chaperone CCT2 and CCT5 are required for the Muscovy duck reovirus p10.8-induced cell cycle arrest and apoptosis publication-title: Vet. Microbiol. doi: 10.1016/j.vetmic.2019.06.017 – volume: 9 start-page: e01253 issue: 4 year: 2018 ident: 10.1016/j.vetmic.2021.109277_bib0160 article-title: Reovirus σNS and μNS proteins remodel the endoplasmic reticulum to build replication neo-organelles publication-title: mBio doi: 10.1128/mBio.01253-18 |
SSID | ssj0004960 |
Score | 2.3854878 |
Snippet | •TRiC stabilizes the outer-capsid protein σC, inner core protein σA, and the non-structural protein σNS of ARV.•TriC serves as a chaperone of viral proteins... Avian reoviruses (ARVs) are important pathogens that cause considerable economic losses in poultry farming. To date, host factors that control stabilization of... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 109277 |
SubjectTerms | Animals Avian orthoreovirus Avian reovirus Capsid protein Capsid Proteins - metabolism Chaperonin Containing TCP-1 - metabolism Chaperonins Core protein fluorescent antibody technique Immunofluorescence Immunoprecipitation Non-structural protein Σns Orthoreovirus, Avian - genetics Outer and core proteins (σC and σA) poultry Poultry farming precipitin tests proteasome endopeptidase complex Proteasome Endopeptidase Complex - metabolism Proteasomes Proteins Replication RNA-Binding Proteins - metabolism The eukaryotic chaperonin T-complex protein-1 (TCP-1) ring complex (TRiC) Ubiquitin Ubiquitin - metabolism Viral Core Proteins - metabolism viral nonstructural proteins Viral Proteins - metabolism Viral Regulatory and Accessory Proteins - metabolism virus replication Virus Replication - genetics Viruses |
Title | Molecular chaperone TRiC governs avian reovirus replication by protecting outer-capsid protein σC and inner core protein σA and non-structural protein σNS from ubiquitin- proteasome degradation |
URI | https://dx.doi.org/10.1016/j.vetmic.2021.109277 https://www.ncbi.nlm.nih.gov/pubmed/34826648 https://www.proquest.com/docview/2637161115 https://www.proquest.com/docview/2604022462 https://www.proquest.com/docview/2636506265 |
Volume | 264 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIiQuCJbX0lIZiavZJHac-LhaUS2g3QNt0d4iO3YgFU2W7kPqpRf-Gnf-EjN2spRDqcQpUWaSOJnJzDie-YaQN6nJLU-NY3kuBRNKZMyU2jJlc5g8x8pmHmd2NpfTM_FhkS72yKSvhcG0ys72B5vurXV3ZNS9zdGyrkcnEccqSQggYtTUaIEV7CJDLX97_SfNQyhfKYzMDLn78jmf47V164sagQyTGHGVkiy7zT3dFn56N3T8iDzs4kc6DkN8TPZcMyD3Q0fJqwEZfMb0Fl9jS2fdsvkT8nPWN8Gl5VeN0OCNo6ef6gn94lvtrqjegprQS9du68vNCnZ2y9rUXNEOzAG8HG2xBQQr9RK0OByvG_rrx4TqxlLfx4siMOYN0tiTmrZhAasWcT5ukOcnFEtc6MbU3zc13IMFol61F45axLIIbZ-ekrPjd6eTKevaN7ASYrQ105WuXFSCzF1ewryRm8io2MWVlZWyUsVgSiphRCK0MGXCOezqrEqlgRg1sYI_I_swOPeCUJ5EXDklpJVSxCY3qsxhC4Zcu0haNSS8l1pRdtjm2GLjW9EnsZ0XQdYFyroIsh4StjtrGbA97uDPeoUo_tLRAtzPHWce9vpTdDZiVSSSw2QVfE06JK93ZPi6cclGN67dIA8YWcT8S_7FwyHMhokpXOd50M3d4yB0Ebyy_OV_D_2APEiw4sP_dTok-6Ap7hXEYWtz5D-0I3Jv_P7jdP4bG-83SQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NctMwENaUMgxcmBKgBAqIGTiK2JJiWwcOnUAnpU0ONGVyM5IlgxnqhOaHyYULj9RX4M4rsWvZoRxKZ5jpKR6v7Gy0q91VtPstIc-7JrGiaxxLkkgyqWTMTKYtUzaBzXOobFzhzA6GUf9Yvh13xxvkrKmFwbTK2vZ7m15Z6_pOp57NzrQoOkeBwCpJCCBC1NRgXGdWHrjVN9i3zV7tvwYhv-B8782o12d1awGWQfwwZzrXuQsy4MclGexphAmMCl2Y2yhXNlIhqHkujeRSS5NxIeBSx3k3MhA_cSsFvPcauS7BXGDbhJff_-SVSFWVJiN3DNlr6vWqpLKlm58UiJzIQwRy4nF8kT-8KN6t_N7eFrldB6x018_JHbLhyha54VtYrlqk9R7zaaqiXjqoz-nvkp-DpusuzT5pxCIvHR29K3r0Y9Xbd0b1EvSSnrrJsjhdzOBifY5OzYrW6BHgVukEe06wTE9h2fj7RUl__ehRXVpaNQ6jiMR5jrRbkcpJyTw4LgKLnCMPjyjW1NCFKb4uCvgO5ol6Njlx1CJ4hu8zdY8cX4lQ75NNYM49IFTwQCinZGSjSIYmMSpL4BM8h3ZBZFWbiEZqaVaDqWNPjy9pkzX3OfWyTlHWqZd1m7D1U1MPJnLJ-LhRiPSvRZGCv7vkyZ1Gf9LaKM1SHgnYHYNz67bJszUZzAmeEenSTRY4Bqw6ggzyf40RENfDThjes-11c_1zECsJpix5-N-sPyU3-6PBYXq4Pzx4RG5xLDep_vLaIZugNe4xBIFz86RadJR8uOpV_hs0K3Lf |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+chaperone+TRiC+governs+avian+reovirus+replication+by+protecting+outer-capsid+protein+%CF%83C+and+inner+core+protein+%CF%83A+and+non-structural+protein+%CF%83NS+from+ubiquitin-+proteasome+degradation&rft.jtitle=Veterinary+microbiology&rft.au=Huang%2C+Wei-Ru&rft.au=Li%2C+Jyun-Yi&rft.au=Liao%2C+Tsai-Ling&rft.au=Yeh%2C+Chuan-Ming&rft.date=2022-01-01&rft.issn=0378-1135&rft.volume=264&rft.spage=109277&rft_id=info:doi/10.1016%2Fj.vetmic.2021.109277&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_vetmic_2021_109277 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-1135&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-1135&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-1135&client=summon |