Molecular chaperone TRiC governs avian reovirus replication by protecting outer-capsid protein σC and inner core protein σA and non-structural protein σNS from ubiquitin- proteasome degradation

•TRiC stabilizes the outer-capsid protein σC, inner core protein σA, and the non-structural protein σNS of ARV.•TriC serves as a chaperone of viral proteins and prevents their degradation via the ubiquitin-proteasome pathway.•Inhibition of TRiC significantly reduced expression levels of σC, σA, and...

Full description

Saved in:
Bibliographic Details
Published inVeterinary microbiology Vol. 264; p. 109277
Main Authors Huang, Wei-Ru, Li, Jyun-Yi, Liao, Tsai-Ling, Yeh, Chuan-Ming, Wang, Chi-Young, Wen, Hsiao-Wei, Hu, Nien-Jen, Wu, Yi-Ying, Hsu, Chao-Yu, Chang, Yu-Kang, Chang, Ching-Dong, Nielsen, Brent L., Liu, Hung-Jen
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.01.2022
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •TRiC stabilizes the outer-capsid protein σC, inner core protein σA, and the non-structural protein σNS of ARV.•TriC serves as a chaperone of viral proteins and prevents their degradation via the ubiquitin-proteasome pathway.•Inhibition of TRiC significantly reduced expression levels of σC, σA, and σNS proteins of ARV and virus yield. Avian reoviruses (ARVs) are important pathogens that cause considerable economic losses in poultry farming. To date, host factors that control stabilization of ARV proteins remain largely unknown. In this work we determined that the eukaryotic chaperonin T-complex protein-1 (TCP-1) ring complex (TRiC) is essential for avian reovirus (ARV) replication by stabilizing outer-capsid protein σC, inner core protein σA, and the non-structural protein σNS of ARV. TriC serves as a chaperone of viral proteins and prevent their degradation via the ubiquitin-proteasome pathway. Furthermore, reciprocal co-immunoprecipitation assays confirmed the association of viral proteins (σA, σC, and σNS) with TRiC. Immunofluorescence staining indicated that the TRiC chaperonins (CCT2 and CCT5) are colocalized with viral proteins σC, σA, and σNS of ARV. In this study, inhibition of TRiC chaperonins (CCT2 and CCT5) by the inhibitor HSF1A or shRNAs significantly reduced expression levels of the σC, σA, and σNS proteins of ARV as well as virus yield, suggesting that the TRiC complex functions in stabilization of viral proteins and virus replication. This study provides novel insights into TRiC chaperonin governing virus replication via stabilization of outer-capsid protein σC, inner core protein σA, and the non-structural protein σNS of ARV.
AbstractList Avian reoviruses (ARVs) are important pathogens that cause considerable economic losses in poultry farming. To date, host factors that control stabilization of ARV proteins remain largely unknown. In this work we determined that the eukaryotic chaperonin T-complex protein-1 (TCP-1) ring complex (TRiC) is essential for avian reovirus (ARV) replication by stabilizing outer-capsid protein σC, inner core protein σA, and the non-structural protein σNS of ARV. TriC serves as a chaperone of viral proteins and prevent their degradation via the ubiquitin-proteasome pathway. Furthermore, reciprocal co-immunoprecipitation assays confirmed the association of viral proteins (σA, σC, and σNS) with TRiC. Immunofluorescence staining indicated that the TRiC chaperonins (CCT2 and CCT5) are colocalized with viral proteins σC, σA, and σNS of ARV. In this study, inhibition of TRiC chaperonins (CCT2 and CCT5) by the inhibitor HSF1A or shRNAs significantly reduced expression levels of the σC, σA, and σNS proteins of ARV as well as virus yield, suggesting that the TRiC complex functions in stabilization of viral proteins and virus replication. This study provides novel insights into TRiC chaperonin governing virus replication via stabilization of outer-capsid protein σC, inner core protein σA, and the non-structural protein σNS of ARV.Avian reoviruses (ARVs) are important pathogens that cause considerable economic losses in poultry farming. To date, host factors that control stabilization of ARV proteins remain largely unknown. In this work we determined that the eukaryotic chaperonin T-complex protein-1 (TCP-1) ring complex (TRiC) is essential for avian reovirus (ARV) replication by stabilizing outer-capsid protein σC, inner core protein σA, and the non-structural protein σNS of ARV. TriC serves as a chaperone of viral proteins and prevent their degradation via the ubiquitin-proteasome pathway. Furthermore, reciprocal co-immunoprecipitation assays confirmed the association of viral proteins (σA, σC, and σNS) with TRiC. Immunofluorescence staining indicated that the TRiC chaperonins (CCT2 and CCT5) are colocalized with viral proteins σC, σA, and σNS of ARV. In this study, inhibition of TRiC chaperonins (CCT2 and CCT5) by the inhibitor HSF1A or shRNAs significantly reduced expression levels of the σC, σA, and σNS proteins of ARV as well as virus yield, suggesting that the TRiC complex functions in stabilization of viral proteins and virus replication. This study provides novel insights into TRiC chaperonin governing virus replication via stabilization of outer-capsid protein σC, inner core protein σA, and the non-structural protein σNS of ARV.
•TRiC stabilizes the outer-capsid protein σC, inner core protein σA, and the non-structural protein σNS of ARV.•TriC serves as a chaperone of viral proteins and prevents their degradation via the ubiquitin-proteasome pathway.•Inhibition of TRiC significantly reduced expression levels of σC, σA, and σNS proteins of ARV and virus yield. Avian reoviruses (ARVs) are important pathogens that cause considerable economic losses in poultry farming. To date, host factors that control stabilization of ARV proteins remain largely unknown. In this work we determined that the eukaryotic chaperonin T-complex protein-1 (TCP-1) ring complex (TRiC) is essential for avian reovirus (ARV) replication by stabilizing outer-capsid protein σC, inner core protein σA, and the non-structural protein σNS of ARV. TriC serves as a chaperone of viral proteins and prevent their degradation via the ubiquitin-proteasome pathway. Furthermore, reciprocal co-immunoprecipitation assays confirmed the association of viral proteins (σA, σC, and σNS) with TRiC. Immunofluorescence staining indicated that the TRiC chaperonins (CCT2 and CCT5) are colocalized with viral proteins σC, σA, and σNS of ARV. In this study, inhibition of TRiC chaperonins (CCT2 and CCT5) by the inhibitor HSF1A or shRNAs significantly reduced expression levels of the σC, σA, and σNS proteins of ARV as well as virus yield, suggesting that the TRiC complex functions in stabilization of viral proteins and virus replication. This study provides novel insights into TRiC chaperonin governing virus replication via stabilization of outer-capsid protein σC, inner core protein σA, and the non-structural protein σNS of ARV.
Avian reoviruses (ARVs) are important pathogens that cause considerable economic losses in poultry farming. To date, host factors that control stabilization of ARV proteins remain largely unknown. In this work we determined that the eukaryotic chaperonin T-complex protein-1 (TCP-1) ring complex (TRiC) is essential for avian reovirus (ARV) replication by stabilizing outer-capsid protein σC, inner core protein σA, and the non-structural protein σNS of ARV. TriC serves as a chaperone of viral proteins and prevent their degradation via the ubiquitin-proteasome pathway. Furthermore, reciprocal co-immunoprecipitation assays confirmed the association of viral proteins (σA, σC, and σNS) with TRiC. Immunofluorescence staining indicated that the TRiC chaperonins (CCT2 and CCT5) are colocalized with viral proteins σC, σA, and σNS of ARV. In this study, inhibition of TRiC chaperonins (CCT2 and CCT5) by the inhibitor HSF1A or shRNAs significantly reduced expression levels of the σC, σA, and σNS proteins of ARV as well as virus yield, suggesting that the TRiC complex functions in stabilization of viral proteins and virus replication. This study provides novel insights into TRiC chaperonin governing virus replication via stabilization of outer-capsid protein σC, inner core protein σA, and the non-structural protein σNS of ARV.
ArticleNumber 109277
Author Liu, Hung-Jen
Chang, Yu-Kang
Wen, Hsiao-Wei
Wang, Chi-Young
Huang, Wei-Ru
Yeh, Chuan-Ming
Chang, Ching-Dong
Hsu, Chao-Yu
Wu, Yi-Ying
Nielsen, Brent L.
Liao, Tsai-Ling
Hu, Nien-Jen
Li, Jyun-Yi
Author_xml – sequence: 1
  givenname: Wei-Ru
  surname: Huang
  fullname: Huang, Wei-Ru
  organization: Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
– sequence: 2
  givenname: Jyun-Yi
  surname: Li
  fullname: Li, Jyun-Yi
  organization: Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
– sequence: 3
  givenname: Tsai-Ling
  surname: Liao
  fullname: Liao, Tsai-Ling
  organization: Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
– sequence: 4
  givenname: Chuan-Ming
  surname: Yeh
  fullname: Yeh, Chuan-Ming
  organization: Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
– sequence: 5
  givenname: Chi-Young
  surname: Wang
  fullname: Wang, Chi-Young
  organization: The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
– sequence: 6
  givenname: Hsiao-Wei
  surname: Wen
  fullname: Wen, Hsiao-Wei
  organization: Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
– sequence: 7
  givenname: Nien-Jen
  surname: Hu
  fullname: Hu, Nien-Jen
  organization: Institute of Biochemistry, National Chung Hsing University, Taichung, Taiwan
– sequence: 8
  givenname: Yi-Ying
  surname: Wu
  fullname: Wu, Yi-Ying
  organization: Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
– sequence: 9
  givenname: Chao-Yu
  surname: Hsu
  fullname: Hsu, Chao-Yu
  organization: Ph.D Program in Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan
– sequence: 10
  givenname: Yu-Kang
  orcidid: 0000-0001-8456-0125
  surname: Chang
  fullname: Chang, Yu-Kang
  organization: Department of Medical Research, Tung’s Taichung MetroHarbor Hospital, Taichung, Taiwan
– sequence: 11
  givenname: Ching-Dong
  surname: Chang
  fullname: Chang, Ching-Dong
  organization: Department of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
– sequence: 12
  givenname: Brent L.
  orcidid: 0000-0001-6300-4816
  surname: Nielsen
  fullname: Nielsen, Brent L.
  organization: Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
– sequence: 13
  givenname: Hung-Jen
  orcidid: 0000-0002-1460-1494
  surname: Liu
  fullname: Liu, Hung-Jen
  email: hjliu5257@nchu.edu.tw
  organization: Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34826648$$D View this record in MEDLINE/PubMed
BookMark eNqNUsuKFDEUDTLiPPQPRAJuZlNtXpWqdiEMjS8YFXRch1TqVpumKunJo2HW_pp7f8l01wwMs1BXudxz7rmPnFN05LwDhJ5TsqCEylebxQ7SZM2CEUZLasma5hE6oW3DK1YLdoROCG_ailJeH6PTGDeEELGU5Ak65qJlUor2BP365EcwedQBmx96C6E0wVdf7Qqv_Q6Ci1jvrHY4gN_ZkGMJtqM1OlnvcHeDt8EnMMm6NfY5QaiM3kbbz3nr8O-fK6xdj61zUFr4APegiwNU9qpiCtmkHPR4D_78DQ_BTzh39jrb0qOaQR39BLiHddD9YZCn6PGgxwjPbt8z9P3d26vVh-ryy_uPq4vLygjGU6UHPQAxLSfQGkEa3pFuSYEOvRyWvVxSxupBdIIJLTrDOC-hboZadjVpWC_4GTqfdcsY1xliUpONBsZRO_A5Kia5rIlksv4PKhGEMSFZob58QN34HFxZZC_YUEkp3Qu-uGXlboJebYOddLhRd19ZCK9nggk-xgCDMjYdzpOCtqOiRO19ozZq9o3a-0bNvinF4kHxnf4_yt7MZVCuvrMQVDQWnIHehuIK1Xv7d4E_nJ_juw
CitedBy_id crossref_primary_10_1128_jvi_00836_22
crossref_primary_10_1128_spectrum_00009_23
crossref_primary_10_1016_j_vetmic_2022_109545
crossref_primary_10_3389_fcimb_2023_1142172
crossref_primary_10_3390_v16071153
crossref_primary_10_3389_fmicb_2024_1346894
crossref_primary_10_4103_ETMJ_ETMJ_D_24_00040
crossref_primary_10_1128_jvi_00074_22
Cites_doi 10.1038/s41564-018-0122-x
10.1016/j.jmb.2004.06.026
10.1083/jcb.200104079
10.1006/viro.2000.0473
10.1016/j.virol.2010.10.026
10.2307/1591118
10.1016/j.virol.2003.10.034
10.1006/viro.1999.0020
10.1128/JVI.00851-19
10.1016/j.virol.2003.12.004
10.1146/annurev.biochem.70.1.603
10.1016/j.celrep.2014.09.056
10.1074/jbc.M112.390245
10.1111/cmi.12946
10.1016/j.jmb.2005.09.034
10.1016/0092-8674(92)90622-J
10.1038/s41598-017-05510-x
10.1016/j.bbamcr.2011.11.009
10.1074/jbc.RA118.002341
10.1038/358249a0
10.1128/JVI.00563-18
10.1080/03079450600823386
10.2307/1589226
10.1099/0022-1317-79-6-1411
10.1038/nmicrobiol.2016.68
10.1093/nar/gkv639
10.1371/journal.pone.0162356
10.1016/S0960-9822(94)00024-2
10.1099/0022-1317-83-1-131
10.1074/jbc.M111.257154
10.1038/nrm2918
10.1016/j.virol.2004.12.005
10.1093/emboj/19.16.4383
10.1016/j.vetmic.2019.06.017
10.1128/mBio.01253-18
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright © 2021 Elsevier B.V. All rights reserved.
Copyright Elsevier BV Jan 2022
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright © 2021 Elsevier B.V. All rights reserved.
– notice: Copyright Elsevier BV Jan 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7U9
H94
M7N
7X8
7S9
L.6
DOI 10.1016/j.vetmic.2021.109277
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Virology and AIDS Abstracts
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AIDS and Cancer Research Abstracts
Virology and AIDS Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

AGRICOLA
MEDLINE
AIDS and Cancer Research Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Veterinary Medicine
Biology
EISSN 1873-2542
ExternalDocumentID 34826648
10_1016_j_vetmic_2021_109277
S037811352100300X
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
AAAJQ
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AARKO
AATLK
AAXUO
ABBQC
ABFNM
ABFRF
ABGRD
ABJNI
ABKYH
ABLVK
ABMAC
ABMZM
ABRWV
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACPRK
ACRLP
ADBBV
ADEZE
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AESVU
AEXOQ
AFKWA
AFRAH
AFTJW
AFXIZ
AGEKW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CBWCG
CJTIS
CNWQP
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMG
HVGLF
HZ~
IHE
J1W
KOM
LCYCR
LUGTX
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
QYZTP
R2-
RIG
ROL
RPZ
SAB
SDF
SDG
SDP
SES
SEW
SIN
SNL
SPCBC
SSA
SSH
SSI
SSZ
SVS
T5K
WUQ
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ACIEU
ACMHX
ACVFH
ADCNI
ADSLC
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGRNS
AGWPP
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7U9
EFKBS
H94
M7N
7X8
7S9
L.6
ID FETCH-LOGICAL-c423t-afafe0c830e8c4073b0b91e1fd6f9d691225f4b424a4bc233b42a7f56b5072d43
IEDL.DBID .~1
ISSN 0378-1135
1873-2542
IngestDate Fri Jul 11 12:19:09 EDT 2025
Thu Jul 10 18:24:05 EDT 2025
Mon Jul 14 08:22:40 EDT 2025
Wed Feb 19 02:27:50 EST 2025
Tue Jul 01 01:37:02 EDT 2025
Thu Apr 24 22:58:38 EDT 2025
Fri Feb 23 02:43:56 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords HIV-1
Non-structural protein Σns
SDS
Hsp
Vero
ARV
MOI
CDK
DMRT
Avian reovirus
DMEM
Outer and core proteins (σC and σA)
CCT
HEPES
HSF1A
The eukaryotic chaperonin T-complex protein-1 (TCP-1) ring complex (TRiC)
TCP-1
PCR
MDRV
TRiC
Language English
License Copyright © 2021 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c423t-afafe0c830e8c4073b0b91e1fd6f9d691225f4b424a4bc233b42a7f56b5072d43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8456-0125
0000-0001-6300-4816
0000-0002-1460-1494
PMID 34826648
PQID 2637161115
PQPubID 105548
ParticipantIDs proquest_miscellaneous_2636506265
proquest_miscellaneous_2604022462
proquest_journals_2637161115
pubmed_primary_34826648
crossref_citationtrail_10_1016_j_vetmic_2021_109277
crossref_primary_10_1016_j_vetmic_2021_109277
elsevier_sciencedirect_doi_10_1016_j_vetmic_2021_109277
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2022
2022-01-00
2022-Jan
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: January 2022
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
– name: Amsterdam
PublicationTitle Veterinary microbiology
PublicationTitleAlternate Vet Microbiol
PublicationYear 2022
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Huang, Li, Su, Lee, Liu (bib0085) 2005; 332
Shih, Hsu, Liao, Lee, Liu (bib0150) 2004; 321
Zamora, Hu, Knowlton, Lahr, Moreno, Berman, Prasad, Dermody (bib0195) 2018; 92
Prodromou, Panaretou, Chohan, Siligardi, O’Brien, Ladbury, Roe, Piper, Pearl (bib0140) 2000; 19
Taipale, Jarosz, Lindquist (bib0155) 2020; 11
Luo, Jacobs, Greco, Mohammed, Tong, Keegan, Binley, Cristea, Fenyö, Rout, Chait, Muesing (bib0125) 2016; 1
Gao, Thomas, Chow, Lee, Cowan (bib0055) 1992; 69
Neef, Jaeger, Gomez-Pastor, Willmund, Frydman, Thiele (bib0130) 2014; 9
Borkovich, Farrelly, Finkelstein, Taulien, Lindquist (bib0010) 1989; 9
Young, Moarefi, Hartl (bib0190) 2001; 154
Yin, Shien, Lee (bib0185) 2000; 266
Huang, Wang, Chi, Wang, Wang, Lin, Liu (bib0090) 2011; 286
Hsu, Wang, Lee, Shih, Chang, Cheng, Chulu, Ji, Liu (bib0080) 2006; 35
Patton, Silvestri, Tortorici, Vasquez-Del Carpio, Taraporewala (bib0135) 2006; 309
Tenorio, Fernández de, Knowlton, Zamora, Lee, Mainou, Dermody, Risco (bib0160) 2018; 9
Didenko, Duarte, Karagoz, Rudiger (bib0045) 2012; 1823
Yin, Lee (bib0180) 1998; 79
Glass, Naqi, Hall, Kerr (bib0060) 1973; 17
Grande, Rodriguez, Costas, Everitt, Benavente (bib0065) 2000; 274
Grande, Costas, Benavente (bib0070) 2002; 83
Tourís-Otero, Cortez-San Martín, Martínez-Costas, Benavente (bib0170) 2004; 341
Touris-Otero, Martinez-Costas, Vakharia, Benavente (bib0165) 2004; 319
Huang, Chi, Chiu, Hsu, Nielsen, Liao, Liu (bib0100) 2017; 7
Rosenberger, Sterner, Botts, Lee, Margolin (bib0145) 1989; 33
Wang, Huang, Chih, Chuang, Chang, Wu, Huang, Liu (bib0175) 2019; 235
Huang, Chiu, Liao, Chuang, Shih, Liu (bib0095) 2015; 10
Benavente, Martinez-Costas (bib0005) 2006; 309
Guardado, Fox, Hermo Parrado, Llamas-Saiz, Costas, Martínez-Costas, Benavente, van Raaij (bib0075) 2005; 354
Frydman (bib0050) 2001; 70
Kubota, Hynes, Carne, Ashworth, Willison (bib0115) 1994; 4
Chiu, Huang, Liao, Wu, Munir, Shih, Liu (bib0030) 2016; 11
Chi, Huang, Lai, Cheng, Liu (bib0020) 2013; 288
Chi, Huang, Chiu, Li, Nielsen, Liu (bib0025) 2018; 20
Knowlton, Fernandez, Ashbrook, Gestaut, Zamora, Bauer, Forrest, Frydman, Risco, Dermody (bib0110) 2018; 3
Chiu, Huang, Liao, Chi, Nielsen, Liu, Liu (bib0035) 2018; 293
Inoue, Aizaki, Hara, Matsuda, Ando, Shimoji, Murakami, Masaki, Shoji, Homma, Matsuura, Miyamura, Wakita, Suzuki (bib0105) 2011; 410
Borodavka, Ault, Stockley, Tuma, Borodavka (bib0015) 2015; 43
Chiu, Huang, Wang, Li, Liao, Nielsen, Liu (bib0040) 2019; 93
Lewis, Hynes, Zheng, Saibil, Willison (bib0120) 1992; 358
Grande (10.1016/j.vetmic.2021.109277_bib0070) 2002; 83
Chi (10.1016/j.vetmic.2021.109277_bib0020) 2013; 288
Hsu (10.1016/j.vetmic.2021.109277_bib0080) 2006; 35
Rosenberger (10.1016/j.vetmic.2021.109277_bib0145) 1989; 33
Frydman (10.1016/j.vetmic.2021.109277_bib0050) 2001; 70
Chi (10.1016/j.vetmic.2021.109277_bib0025) 2018; 20
Tenorio (10.1016/j.vetmic.2021.109277_bib0160) 2018; 9
Huang (10.1016/j.vetmic.2021.109277_bib0100) 2017; 7
Prodromou (10.1016/j.vetmic.2021.109277_bib0140) 2000; 19
Borkovich (10.1016/j.vetmic.2021.109277_bib0010) 1989; 9
Knowlton (10.1016/j.vetmic.2021.109277_bib0110) 2018; 3
Young (10.1016/j.vetmic.2021.109277_bib0190) 2001; 154
Yin (10.1016/j.vetmic.2021.109277_bib0180) 1998; 79
Yin (10.1016/j.vetmic.2021.109277_bib0185) 2000; 266
Wang (10.1016/j.vetmic.2021.109277_bib0175) 2019; 235
Zamora (10.1016/j.vetmic.2021.109277_bib0195) 2018; 92
Gao (10.1016/j.vetmic.2021.109277_bib0055) 1992; 69
Grande (10.1016/j.vetmic.2021.109277_bib0065) 2000; 274
Patton (10.1016/j.vetmic.2021.109277_bib0135) 2006; 309
Didenko (10.1016/j.vetmic.2021.109277_bib0045) 2012; 1823
Lewis (10.1016/j.vetmic.2021.109277_bib0120) 1992; 358
Guardado (10.1016/j.vetmic.2021.109277_bib0075) 2005; 354
Taipale (10.1016/j.vetmic.2021.109277_bib0155) 2020; 11
Chiu (10.1016/j.vetmic.2021.109277_bib0040) 2019; 93
Chiu (10.1016/j.vetmic.2021.109277_bib0035) 2018; 293
Huang (10.1016/j.vetmic.2021.109277_bib0085) 2005; 332
Touris-Otero (10.1016/j.vetmic.2021.109277_bib0165) 2004; 319
Borodavka (10.1016/j.vetmic.2021.109277_bib0015) 2015; 43
Luo (10.1016/j.vetmic.2021.109277_bib0125) 2016; 1
Huang (10.1016/j.vetmic.2021.109277_bib0090) 2011; 286
Glass (10.1016/j.vetmic.2021.109277_bib0060) 1973; 17
Inoue (10.1016/j.vetmic.2021.109277_bib0105) 2011; 410
Huang (10.1016/j.vetmic.2021.109277_bib0095) 2015; 10
Tourís-Otero (10.1016/j.vetmic.2021.109277_bib0170) 2004; 341
Benavente (10.1016/j.vetmic.2021.109277_bib0005) 2006; 309
Kubota (10.1016/j.vetmic.2021.109277_bib0115) 1994; 4
Shih (10.1016/j.vetmic.2021.109277_bib0150) 2004; 321
Chiu (10.1016/j.vetmic.2021.109277_bib0030) 2016; 11
Neef (10.1016/j.vetmic.2021.109277_bib0130) 2014; 9
References_xml – volume: 43
  start-page: 7044
  year: 2015
  end-page: 7057
  ident: bib0015
  article-title: Evidence that avian reovirus σNS is an RNA chaperone: implications for genome segment assortment
  publication-title: Nucle. Acids Res.
– volume: 410
  start-page: 38
  year: 2011
  end-page: 47
  ident: bib0105
  article-title: Chaperonin TRiC/CCT participates in replication of hepatitis C virus genome via interaction with the viral NS5B protein
  publication-title: Virology
– volume: 3
  start-page: 481
  year: 2018
  end-page: 493
  ident: bib0110
  article-title: The TRiC chaperonin controls reovirus replication through outer-capsid folding
  publication-title: Nat. Microbiol.
– volume: 341
  start-page: 361
  year: 2004
  end-page: 374
  ident: bib0170
  article-title: Avian reovirus morphogenesis occurs within viral factories and begins with the selective recruitment of sigmaNS and lambdaA to microNS inclusions
  publication-title: J. Mol. Biol.
– volume: 1
  start-page: 16068
  year: 2016
  ident: bib0125
  article-title: HIV-host interactome revealed directly from infected cells
  publication-title: Nat. Microbiol.
– volume: 9
  start-page: 3919
  year: 1989
  end-page: 3930
  ident: bib0010
  article-title: hsp82 is an essential protein that is required in higher concentrations for growth of cells at higher temperatures
  publication-title: Mol. Cell. Biol.
– volume: 288
  start-page: 3571
  year: 2013
  end-page: 3584
  ident: bib0020
  article-title: The p17 nonstructural protein of avian reovirus triggers autophagy enhancing virus replication via activation of phosphatase and tensin deleted on chromosome 10 (PTEN) and AMP-activated protein kinase (AMPK), as well as dsRNA-dependent protein kinase (PKR)/eIF2alpha signaling pathways
  publication-title: J. Biol. Chem.
– volume: 1823
  start-page: 636
  year: 2012
  end-page: 647
  ident: bib0045
  article-title: Hsp90 structure and function studied by NMR spectroscopy
  publication-title: Biochim. Biophys. Acta
– volume: 266
  start-page: 33
  year: 2000
  end-page: 41
  ident: bib0185
  article-title: Synthesis in Escherichia coli of avian reovirus core protein sigmaA and its dsRNA-binding activity
  publication-title: Virology
– volume: 286
  start-page: 30780
  year: 2011
  end-page: 30794
  ident: bib0090
  article-title: Cell entry of avian reovirus follows a caveolin-1-mediated and dynamin-2-dependent endocytic pathway that requires activation of p38 mitogen-activated protein kinase (MAPK) and Src signaling pathways as well as microtubules and small GTPase Rab5 protein
  publication-title: J. Biol. Chem.
– volume: 9
  start-page: 955
  year: 2014
  end-page: 966
  ident: bib0130
  article-title: A direct regulatory interaction between chaperonin TRiC and stress-responsive transcription factor HSF1
  publication-title: Cell Rep.
– volume: 33
  start-page: 535
  year: 1989
  end-page: 544
  ident: bib0145
  article-title: and
  publication-title: Avian Dis.
– volume: 11
  year: 2016
  ident: bib0030
  article-title: Suppression of vimentin phosphorylation by the avian reovirus p17 through inhibition of CDK1 and Plk1 impacting the G2/M phase of the cell cycle
  publication-title: PLoS One
– volume: 309
  start-page: 169
  year: 2006
  end-page: 187
  ident: bib0135
  article-title: Rotavirus genome replication and morphogenesis: role of the viroplasm
  publication-title: Curr. Top. Microbiol. Immunol.
– volume: 11
  start-page: 515
  year: 2020
  end-page: 528
  ident: bib0155
  article-title: HSP90 at the hub of protein homeostasis: emerging mechanistic insights
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 319
  start-page: 94
  year: 2004
  end-page: 106
  ident: bib0165
  article-title: Avian reovirus nonstructural protein microNS forms viroplasm-like inclusions and recruits protein sigmaNS to these structures
  publication-title: Virology
– volume: 79
  start-page: 1411
  year: 1998
  end-page: 1413
  ident: bib0180
  article-title: Identification and characterization of RNA-binding activities of avian reovirus non-structural protein sigmaNS
  publication-title: J. Gen. Virol.
– volume: 358
  start-page: 249
  year: 1992
  end-page: 252
  ident: bib0120
  article-title: T-complex polypeptide-1 is a subunit of a heteromeric particle in the eukaryotic cytosol
  publication-title: Nature
– volume: 10
  year: 2015
  ident: bib0095
  article-title: Avian reovirus protein p17 functions as a nucleoporin Tpr suppressor leading to activation of p53, p21 and PTEN and inactivation of PI3K/AKT/mTOR and ERK signaling pathways
  publication-title: PLoS One
– volume: 293
  start-page: 12542
  year: 2018
  end-page: 12562
  ident: bib0035
  article-title: Mechanistic insights into avian reovirus p17-modulated suppression of cell cycle CDK-cyclin complexes and enhancement of p53 and cyclin H interaction
  publication-title: J. Biol. Chem.
– volume: 93
  start-page: e00851
  year: 2019
  end-page: 19
  ident: bib0040
  article-title: Heterogeneous nuclear ribonucleoprotein A1 and Lamin A/C modulate nucleocytoplasmic shuttling of avian reovirus p17
  publication-title: J. Virol.
– volume: 19
  start-page: 4383
  year: 2000
  end-page: 4392
  ident: bib0140
  article-title: The ATPase cycle of Hsp90 drives a molecular ‘clamp’ via transient dimerization of the N-terminal domains
  publication-title: EMBO J.
– volume: 17
  start-page: 415
  year: 1973
  end-page: 424
  ident: bib0060
  article-title: Isolation and characterization of a virus associated with arthritis of chickens
  publication-title: Avian Dis.
– volume: 309
  start-page: 67
  year: 2006
  end-page: 85
  ident: bib0005
  article-title: Early steps in avian reovirus morphogenesis
  publication-title: Curr. Top. Microbiol. Immunol.
– volume: 20
  year: 2018
  ident: bib0025
  article-title: Avian reovirus sigma A-modulated suppression of lactate dehydrogenase and upregulation of glutaminolysis and the mTOC1/eIF4E/HIF-1alpha pathway to enhance glycolysis and the TCA cycle for virus replication
  publication-title: Cell. Microbiol.
– volume: 69
  start-page: 1043
  year: 1992
  end-page: 1050
  ident: bib0055
  article-title: A cytoplasmic chaperonin that catalyzes beta-actin folding
  publication-title: Cell
– volume: 321
  start-page: 65
  year: 2004
  end-page: 74
  ident: bib0150
  article-title: Avian reovirus sigma C protein induces apoptosis in cultured cells
  publication-title: Virology
– volume: 83
  start-page: 131
  year: 2002
  end-page: 139
  ident: bib0070
  article-title: Subunit composition and conformational stability of the oligomeric form of the avian reovirus cell-attachment protein sigma C. J
  publication-title: Gen. Virol.
– volume: 9
  start-page: e01253
  year: 2018
  end-page: 18
  ident: bib0160
  article-title: Reovirus σNS and μNS proteins remodel the endoplasmic reticulum to build replication neo-organelles
  publication-title: mBio
– volume: 274
  start-page: 367
  year: 2000
  end-page: 377
  ident: bib0065
  article-title: Oligomerization and cell-binding properties of the avian reovirus cell-attachment protein sigma C
  publication-title: Virology
– volume: 92
  start-page: e00563
  year: 2018
  end-page: 18
  ident: bib0195
  article-title: Reovirus nonstructural protein σNS acts as an RNA stability factor promoting viral genome replication
  publication-title: J. Virol.
– volume: 35
  start-page: 320
  year: 2006
  end-page: 326
  ident: bib0080
  article-title: Development and characterization of monoclonal antibodies against avian reovirus sigma C protein and their application in detection of avian reovirus isolates
  publication-title: Avian Pathol.
– volume: 332
  start-page: 584
  year: 2005
  end-page: 595
  ident: bib0085
  article-title: Epitope mapping and functional analysis of sigma A and sigma NS proteins of avian reovirus
  publication-title: Virology.
– volume: 154
  start-page: 267
  year: 2001
  end-page: 273
  ident: bib0190
  article-title: Hsp90: a specialized but essential protein-folding tool
  publication-title: J. Cell Biol.
– volume: 70
  start-page: 603
  year: 2001
  end-page: 647
  ident: bib0050
  article-title: Folding of newly translated proteins in vivo: the role of molecular chaperones
  publication-title: Annu. Rev. Biochem.
– volume: 354
  start-page: 137
  year: 2005
  end-page: 149
  ident: bib0075
  article-title: Structure of the carboxy-terminal receptor-binding domain of avian reovirus fibre sigma C
  publication-title: J. Mol. Biol.
– volume: 4
  start-page: 89
  year: 1994
  end-page: 99
  ident: bib0115
  article-title: Identification of six Tcp-1-related genes encoding divergent subunits of the TCP-1-containing chaperonin
  publication-title: Curr. Biol.
– volume: 235
  start-page: 151
  year: 2019
  end-page: 163
  ident: bib0175
  article-title: Cdc20 and molecular chaperone CCT2 and CCT5 are required for the Muscovy duck reovirus p10.8-induced cell cycle arrest and apoptosis
  publication-title: Vet. Microbiol.
– volume: 7
  start-page: 5226
  year: 2017
  ident: bib0100
  article-title: Avian reovirus p17 and sigma A act cooperatively to downregulate Akt by suppressing mTORC2 and CDK2/cyclin A2 and upregulating proteasome PSMB6
  publication-title: Sci. Rep.
– volume: 3
  start-page: 481
  year: 2018
  ident: 10.1016/j.vetmic.2021.109277_bib0110
  article-title: The TRiC chaperonin controls reovirus replication through outer-capsid folding
  publication-title: Nat. Microbiol.
  doi: 10.1038/s41564-018-0122-x
– volume: 341
  start-page: 361
  issue: 2
  year: 2004
  ident: 10.1016/j.vetmic.2021.109277_bib0170
  article-title: Avian reovirus morphogenesis occurs within viral factories and begins with the selective recruitment of sigmaNS and lambdaA to microNS inclusions
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2004.06.026
– volume: 154
  start-page: 267
  year: 2001
  ident: 10.1016/j.vetmic.2021.109277_bib0190
  article-title: Hsp90: a specialized but essential protein-folding tool
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200104079
– volume: 274
  start-page: 367
  year: 2000
  ident: 10.1016/j.vetmic.2021.109277_bib0065
  article-title: Oligomerization and cell-binding properties of the avian reovirus cell-attachment protein sigma C
  publication-title: Virology
  doi: 10.1006/viro.2000.0473
– volume: 410
  start-page: 38
  issue: 1
  year: 2011
  ident: 10.1016/j.vetmic.2021.109277_bib0105
  article-title: Chaperonin TRiC/CCT participates in replication of hepatitis C virus genome via interaction with the viral NS5B protein
  publication-title: Virology
  doi: 10.1016/j.virol.2010.10.026
– volume: 33
  start-page: 535
  year: 1989
  ident: 10.1016/j.vetmic.2021.109277_bib0145
  article-title: In vitro and in vivo characterization of avian reoviruses. I. Pathogenicity and antigenic relatedness of several avian reovirus isolates
  publication-title: Avian Dis.
  doi: 10.2307/1591118
– volume: 319
  start-page: 94
  year: 2004
  ident: 10.1016/j.vetmic.2021.109277_bib0165
  article-title: Avian reovirus nonstructural protein microNS forms viroplasm-like inclusions and recruits protein sigmaNS to these structures
  publication-title: Virology
  doi: 10.1016/j.virol.2003.10.034
– volume: 266
  start-page: 33
  issue: 1
  year: 2000
  ident: 10.1016/j.vetmic.2021.109277_bib0185
  article-title: Synthesis in Escherichia coli of avian reovirus core protein sigmaA and its dsRNA-binding activity
  publication-title: Virology
  doi: 10.1006/viro.1999.0020
– volume: 93
  start-page: e00851
  year: 2019
  ident: 10.1016/j.vetmic.2021.109277_bib0040
  article-title: Heterogeneous nuclear ribonucleoprotein A1 and Lamin A/C modulate nucleocytoplasmic shuttling of avian reovirus p17
  publication-title: J. Virol.
  doi: 10.1128/JVI.00851-19
– volume: 321
  start-page: 65
  year: 2004
  ident: 10.1016/j.vetmic.2021.109277_bib0150
  article-title: Avian reovirus sigma C protein induces apoptosis in cultured cells
  publication-title: Virology
  doi: 10.1016/j.virol.2003.12.004
– volume: 10
  year: 2015
  ident: 10.1016/j.vetmic.2021.109277_bib0095
  article-title: Avian reovirus protein p17 functions as a nucleoporin Tpr suppressor leading to activation of p53, p21 and PTEN and inactivation of PI3K/AKT/mTOR and ERK signaling pathways
  publication-title: PLoS One
– volume: 309
  start-page: 67
  year: 2006
  ident: 10.1016/j.vetmic.2021.109277_bib0005
  article-title: Early steps in avian reovirus morphogenesis
  publication-title: Curr. Top. Microbiol. Immunol.
– volume: 70
  start-page: 603
  year: 2001
  ident: 10.1016/j.vetmic.2021.109277_bib0050
  article-title: Folding of newly translated proteins in vivo: the role of molecular chaperones
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.70.1.603
– volume: 9
  start-page: 955
  issue: 3
  year: 2014
  ident: 10.1016/j.vetmic.2021.109277_bib0130
  article-title: A direct regulatory interaction between chaperonin TRiC and stress-responsive transcription factor HSF1
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2014.09.056
– volume: 288
  start-page: 3571
  year: 2013
  ident: 10.1016/j.vetmic.2021.109277_bib0020
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.390245
– volume: 20
  year: 2018
  ident: 10.1016/j.vetmic.2021.109277_bib0025
  article-title: Avian reovirus sigma A-modulated suppression of lactate dehydrogenase and upregulation of glutaminolysis and the mTOC1/eIF4E/HIF-1alpha pathway to enhance glycolysis and the TCA cycle for virus replication
  publication-title: Cell. Microbiol.
  doi: 10.1111/cmi.12946
– volume: 354
  start-page: 137
  issue: 1
  year: 2005
  ident: 10.1016/j.vetmic.2021.109277_bib0075
  article-title: Structure of the carboxy-terminal receptor-binding domain of avian reovirus fibre sigma C
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2005.09.034
– volume: 69
  start-page: 1043
  year: 1992
  ident: 10.1016/j.vetmic.2021.109277_bib0055
  article-title: A cytoplasmic chaperonin that catalyzes beta-actin folding
  publication-title: Cell
  doi: 10.1016/0092-8674(92)90622-J
– volume: 7
  start-page: 5226
  year: 2017
  ident: 10.1016/j.vetmic.2021.109277_bib0100
  article-title: Avian reovirus p17 and sigma A act cooperatively to downregulate Akt by suppressing mTORC2 and CDK2/cyclin A2 and upregulating proteasome PSMB6
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-05510-x
– volume: 1823
  start-page: 636
  year: 2012
  ident: 10.1016/j.vetmic.2021.109277_bib0045
  article-title: Hsp90 structure and function studied by NMR spectroscopy
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamcr.2011.11.009
– volume: 293
  start-page: 12542
  year: 2018
  ident: 10.1016/j.vetmic.2021.109277_bib0035
  article-title: Mechanistic insights into avian reovirus p17-modulated suppression of cell cycle CDK-cyclin complexes and enhancement of p53 and cyclin H interaction
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.RA118.002341
– volume: 358
  start-page: 249
  year: 1992
  ident: 10.1016/j.vetmic.2021.109277_bib0120
  article-title: T-complex polypeptide-1 is a subunit of a heteromeric particle in the eukaryotic cytosol
  publication-title: Nature
  doi: 10.1038/358249a0
– volume: 92
  start-page: e00563
  issue: 15
  year: 2018
  ident: 10.1016/j.vetmic.2021.109277_bib0195
  article-title: Reovirus nonstructural protein σNS acts as an RNA stability factor promoting viral genome replication
  publication-title: J. Virol.
  doi: 10.1128/JVI.00563-18
– volume: 35
  start-page: 320
  year: 2006
  ident: 10.1016/j.vetmic.2021.109277_bib0080
  article-title: Development and characterization of monoclonal antibodies against avian reovirus sigma C protein and their application in detection of avian reovirus isolates
  publication-title: Avian Pathol.
  doi: 10.1080/03079450600823386
– volume: 17
  start-page: 415
  year: 1973
  ident: 10.1016/j.vetmic.2021.109277_bib0060
  article-title: Isolation and characterization of a virus associated with arthritis of chickens
  publication-title: Avian Dis.
  doi: 10.2307/1589226
– volume: 79
  start-page: 1411
  year: 1998
  ident: 10.1016/j.vetmic.2021.109277_bib0180
  article-title: Identification and characterization of RNA-binding activities of avian reovirus non-structural protein sigmaNS
  publication-title: J. Gen. Virol.
  doi: 10.1099/0022-1317-79-6-1411
– volume: 9
  start-page: 3919
  year: 1989
  ident: 10.1016/j.vetmic.2021.109277_bib0010
  article-title: hsp82 is an essential protein that is required in higher concentrations for growth of cells at higher temperatures
  publication-title: Mol. Cell. Biol.
– volume: 1
  start-page: 16068
  year: 2016
  ident: 10.1016/j.vetmic.2021.109277_bib0125
  article-title: HIV-host interactome revealed directly from infected cells
  publication-title: Nat. Microbiol.
  doi: 10.1038/nmicrobiol.2016.68
– volume: 43
  start-page: 7044
  issue: 14
  year: 2015
  ident: 10.1016/j.vetmic.2021.109277_bib0015
  article-title: Evidence that avian reovirus σNS is an RNA chaperone: implications for genome segment assortment
  publication-title: Nucle. Acids Res.
  doi: 10.1093/nar/gkv639
– volume: 11
  year: 2016
  ident: 10.1016/j.vetmic.2021.109277_bib0030
  article-title: Suppression of vimentin phosphorylation by the avian reovirus p17 through inhibition of CDK1 and Plk1 impacting the G2/M phase of the cell cycle
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0162356
– volume: 4
  start-page: 89
  year: 1994
  ident: 10.1016/j.vetmic.2021.109277_bib0115
  article-title: Identification of six Tcp-1-related genes encoding divergent subunits of the TCP-1-containing chaperonin
  publication-title: Curr. Biol.
  doi: 10.1016/S0960-9822(94)00024-2
– volume: 83
  start-page: 131
  year: 2002
  ident: 10.1016/j.vetmic.2021.109277_bib0070
  article-title: Subunit composition and conformational stability of the oligomeric form of the avian reovirus cell-attachment protein sigma C. J
  publication-title: Gen. Virol.
  doi: 10.1099/0022-1317-83-1-131
– volume: 286
  start-page: 30780
  year: 2011
  ident: 10.1016/j.vetmic.2021.109277_bib0090
  article-title: Cell entry of avian reovirus follows a caveolin-1-mediated and dynamin-2-dependent endocytic pathway that requires activation of p38 mitogen-activated protein kinase (MAPK) and Src signaling pathways as well as microtubules and small GTPase Rab5 protein
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.257154
– volume: 309
  start-page: 169
  year: 2006
  ident: 10.1016/j.vetmic.2021.109277_bib0135
  article-title: Rotavirus genome replication and morphogenesis: role of the viroplasm
  publication-title: Curr. Top. Microbiol. Immunol.
– volume: 11
  start-page: 515
  year: 2020
  ident: 10.1016/j.vetmic.2021.109277_bib0155
  article-title: HSP90 at the hub of protein homeostasis: emerging mechanistic insights
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2918
– volume: 332
  start-page: 584
  year: 2005
  ident: 10.1016/j.vetmic.2021.109277_bib0085
  article-title: Epitope mapping and functional analysis of sigma A and sigma NS proteins of avian reovirus
  publication-title: Virology.
  doi: 10.1016/j.virol.2004.12.005
– volume: 19
  start-page: 4383
  year: 2000
  ident: 10.1016/j.vetmic.2021.109277_bib0140
  article-title: The ATPase cycle of Hsp90 drives a molecular ‘clamp’ via transient dimerization of the N-terminal domains
  publication-title: EMBO J.
  doi: 10.1093/emboj/19.16.4383
– volume: 235
  start-page: 151
  year: 2019
  ident: 10.1016/j.vetmic.2021.109277_bib0175
  article-title: Cdc20 and molecular chaperone CCT2 and CCT5 are required for the Muscovy duck reovirus p10.8-induced cell cycle arrest and apoptosis
  publication-title: Vet. Microbiol.
  doi: 10.1016/j.vetmic.2019.06.017
– volume: 9
  start-page: e01253
  issue: 4
  year: 2018
  ident: 10.1016/j.vetmic.2021.109277_bib0160
  article-title: Reovirus σNS and μNS proteins remodel the endoplasmic reticulum to build replication neo-organelles
  publication-title: mBio
  doi: 10.1128/mBio.01253-18
SSID ssj0004960
Score 2.3854878
Snippet •TRiC stabilizes the outer-capsid protein σC, inner core protein σA, and the non-structural protein σNS of ARV.•TriC serves as a chaperone of viral proteins...
Avian reoviruses (ARVs) are important pathogens that cause considerable economic losses in poultry farming. To date, host factors that control stabilization of...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 109277
SubjectTerms Animals
Avian orthoreovirus
Avian reovirus
Capsid protein
Capsid Proteins - metabolism
Chaperonin Containing TCP-1 - metabolism
Chaperonins
Core protein
fluorescent antibody technique
Immunofluorescence
Immunoprecipitation
Non-structural protein Σns
Orthoreovirus, Avian - genetics
Outer and core proteins (σC and σA)
poultry
Poultry farming
precipitin tests
proteasome endopeptidase complex
Proteasome Endopeptidase Complex - metabolism
Proteasomes
Proteins
Replication
RNA-Binding Proteins - metabolism
The eukaryotic chaperonin T-complex protein-1 (TCP-1) ring complex (TRiC)
Ubiquitin
Ubiquitin - metabolism
Viral Core Proteins - metabolism
viral nonstructural proteins
Viral Proteins - metabolism
Viral Regulatory and Accessory Proteins - metabolism
virus replication
Virus Replication - genetics
Viruses
Title Molecular chaperone TRiC governs avian reovirus replication by protecting outer-capsid protein σC and inner core protein σA and non-structural protein σNS from ubiquitin- proteasome degradation
URI https://dx.doi.org/10.1016/j.vetmic.2021.109277
https://www.ncbi.nlm.nih.gov/pubmed/34826648
https://www.proquest.com/docview/2637161115
https://www.proquest.com/docview/2604022462
https://www.proquest.com/docview/2636506265
Volume 264
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIiQuCJbX0lIZiavZJHac-LhaUS2g3QNt0d4iO3YgFU2W7kPqpRf-Gnf-EjN2spRDqcQpUWaSOJnJzDie-YaQN6nJLU-NY3kuBRNKZMyU2jJlc5g8x8pmHmd2NpfTM_FhkS72yKSvhcG0ys72B5vurXV3ZNS9zdGyrkcnEccqSQggYtTUaIEV7CJDLX97_SfNQyhfKYzMDLn78jmf47V164sagQyTGHGVkiy7zT3dFn56N3T8iDzs4kc6DkN8TPZcMyD3Q0fJqwEZfMb0Fl9jS2fdsvkT8nPWN8Gl5VeN0OCNo6ef6gn94lvtrqjegprQS9du68vNCnZ2y9rUXNEOzAG8HG2xBQQr9RK0OByvG_rrx4TqxlLfx4siMOYN0tiTmrZhAasWcT5ukOcnFEtc6MbU3zc13IMFol61F45axLIIbZ-ekrPjd6eTKevaN7ASYrQ105WuXFSCzF1ewryRm8io2MWVlZWyUsVgSiphRCK0MGXCOezqrEqlgRg1sYI_I_swOPeCUJ5EXDklpJVSxCY3qsxhC4Zcu0haNSS8l1pRdtjm2GLjW9EnsZ0XQdYFyroIsh4StjtrGbA97uDPeoUo_tLRAtzPHWce9vpTdDZiVSSSw2QVfE06JK93ZPi6cclGN67dIA8YWcT8S_7FwyHMhokpXOd50M3d4yB0Ebyy_OV_D_2APEiw4sP_dTok-6Ap7hXEYWtz5D-0I3Jv_P7jdP4bG-83SQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NctMwENaUMgxcmBKgBAqIGTiK2JJiWwcOnUAnpU0ONGVyM5IlgxnqhOaHyYULj9RX4M4rsWvZoRxKZ5jpKR6v7Gy0q91VtPstIc-7JrGiaxxLkkgyqWTMTKYtUzaBzXOobFzhzA6GUf9Yvh13xxvkrKmFwbTK2vZ7m15Z6_pOp57NzrQoOkeBwCpJCCBC1NRgXGdWHrjVN9i3zV7tvwYhv-B8782o12d1awGWQfwwZzrXuQsy4MclGexphAmMCl2Y2yhXNlIhqHkujeRSS5NxIeBSx3k3MhA_cSsFvPcauS7BXGDbhJff_-SVSFWVJiN3DNlr6vWqpLKlm58UiJzIQwRy4nF8kT-8KN6t_N7eFrldB6x018_JHbLhyha54VtYrlqk9R7zaaqiXjqoz-nvkp-DpusuzT5pxCIvHR29K3r0Y9Xbd0b1EvSSnrrJsjhdzOBifY5OzYrW6BHgVukEe06wTE9h2fj7RUl__ehRXVpaNQ6jiMR5jrRbkcpJyTw4LgKLnCMPjyjW1NCFKb4uCvgO5ol6Njlx1CJ4hu8zdY8cX4lQ75NNYM49IFTwQCinZGSjSIYmMSpL4BM8h3ZBZFWbiEZqaVaDqWNPjy9pkzX3OfWyTlHWqZd1m7D1U1MPJnLJ-LhRiPSvRZGCv7vkyZ1Gf9LaKM1SHgnYHYNz67bJszUZzAmeEenSTRY4Bqw6ggzyf40RENfDThjes-11c_1zECsJpix5-N-sPyU3-6PBYXq4Pzx4RG5xLDep_vLaIZugNe4xBIFz86RadJR8uOpV_hs0K3Lf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+chaperone+TRiC+governs+avian+reovirus+replication+by+protecting+outer-capsid+protein+%CF%83C+and+inner+core+protein+%CF%83A+and+non-structural+protein+%CF%83NS+from+ubiquitin-+proteasome+degradation&rft.jtitle=Veterinary+microbiology&rft.au=Huang%2C+Wei-Ru&rft.au=Li%2C+Jyun-Yi&rft.au=Liao%2C+Tsai-Ling&rft.au=Yeh%2C+Chuan-Ming&rft.date=2022-01-01&rft.issn=0378-1135&rft.volume=264&rft.spage=109277&rft_id=info:doi/10.1016%2Fj.vetmic.2021.109277&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_vetmic_2021_109277
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-1135&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-1135&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-1135&client=summon