Development of a tertiary motion generator for elliptical vibration texturing

► An innovative process is proposed for the fast generation of structured surfaces. ► The new process utilizes controlled elliptical vibrations of the cutting tool. ► The piezo transducer delivers an elliptical trajectory at an ultrasonic frequency. ► The device has two coupled vibration modes at ne...

Full description

Saved in:
Bibliographic Details
Published inPrecision engineering Vol. 37; no. 2; pp. 364 - 371
Main Authors Guo, Ping, Ehmann, Kornel F.
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.04.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ► An innovative process is proposed for the fast generation of structured surfaces. ► The new process utilizes controlled elliptical vibrations of the cutting tool. ► The piezo transducer delivers an elliptical trajectory at an ultrasonic frequency. ► The device has two coupled vibration modes at nearly the same frequency. ► Micro dimple arrays have been created by the developed device. The elliptical vibration texturing process is an innovative machining method for the fast generation of textured surfaces. It adds a tertiary motion component to the tool tip, which introduces deliberate elliptical vibrations between the cutting tool and the workpiece. The elliptical locus lies in the plane that is defined by the cutting direction and the radial direction in the turning operation. This paper proposes a new design for a resonant mode 2D tertiary motion generator (TMG) that can deliver the required elliptical trajectory at an ultrasonic frequency. The device works in the resonant mode, with tangential and normal vibrations at a nearly identical resonant frequency. Simulation and experiments were carried out to perform a modal analysis of the system. Different design parameters were adjusted to achieve large vibration amplitudes in both tangential and normal directions. The elliptical vibration texturing process was implemented by integrating the newly developed TMG into a turning operation. Preliminary test results of dimple array patterns are presented that validate the performance and principle of the proposed design.
AbstractList The elliptical vibration texturing process is an innovative machining method for the fast generation of textured surfaces. It adds a tertiary motion component to the tool tip, which introduces deliberate elliptical vibrations between the cutting tool and the workpiece. The elliptical locus lies in the plane that is defined by the cutting direction and the radial direction in the turning operation. This paper proposes a new design for a resonant mode 2D tertiary motion generator (TMG) that can deliver the required elliptical trajectory at an ultrasonic frequency. The device works in the resonant mode, with tangential and normal vibrations at a nearly identical resonant frequency. Simulation and experiments were carried out to perform a modal analysis of the system. Different design parameters were adjusted to achieve large vibration amplitudes in both tangential and normal directions. The elliptical vibration texturing process was implemented by integrating the newly developed TMG into a turning operation. Preliminary test results of dimple array patterns are presented that validate the performance and principle of the proposed design.
► An innovative process is proposed for the fast generation of structured surfaces. ► The new process utilizes controlled elliptical vibrations of the cutting tool. ► The piezo transducer delivers an elliptical trajectory at an ultrasonic frequency. ► The device has two coupled vibration modes at nearly the same frequency. ► Micro dimple arrays have been created by the developed device. The elliptical vibration texturing process is an innovative machining method for the fast generation of textured surfaces. It adds a tertiary motion component to the tool tip, which introduces deliberate elliptical vibrations between the cutting tool and the workpiece. The elliptical locus lies in the plane that is defined by the cutting direction and the radial direction in the turning operation. This paper proposes a new design for a resonant mode 2D tertiary motion generator (TMG) that can deliver the required elliptical trajectory at an ultrasonic frequency. The device works in the resonant mode, with tangential and normal vibrations at a nearly identical resonant frequency. Simulation and experiments were carried out to perform a modal analysis of the system. Different design parameters were adjusted to achieve large vibration amplitudes in both tangential and normal directions. The elliptical vibration texturing process was implemented by integrating the newly developed TMG into a turning operation. Preliminary test results of dimple array patterns are presented that validate the performance and principle of the proposed design.
Author Ehmann, Kornel F.
Guo, Ping
Author_xml – sequence: 1
  givenname: Ping
  surname: Guo
  fullname: Guo, Ping
  email: Pingguo2009@u.northwestern.edu, steven.guoping@gmail.com
  organization: Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Room B110, Evanston, IL 60208, USA
– sequence: 2
  givenname: Kornel F.
  surname: Ehmann
  fullname: Ehmann, Kornel F.
  email: k-ehmann@northwestern.edu
  organization: Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Room A215, Evanston, IL 60208, USA
BookMark eNqNkEtPwzAQhC1UJNrCf4g4cUnwIw-HE6jlJRVxgbPl2pvKVRIH263g3-NQDohTD6uVdmdGo2-GJr3tAaFLgjOCSXm9zQYHyngTz_0mo5jQ-MgwLk7QlPCKpZRVdIKmmOQkLVlRn6GZ91uMccVxPkUvS9hDa4cO-pDYJpFJABeMdF9JZ0OMTTbQg5PBuqSJA21rhmCUbJO9Wcf7KAnwGXbO9JtzdNrI1sPF756j94f7t8VTunp9fF7crVKVUxbSWhLNmzWPG6AuabluZIkJEFLjErhmuOAcU13mSimdE6h1rqDCuqwll0yxObo65A7OfuzAB9EZr2I32YPdeUEYZZTyoqBRenuQKme9d9AIZcJP7eCkaQXBYiQptuIvSTGSHH-RZIy4-RcxONNFRMeZlwczRB57A054ZaBXoE20BKGtOSbmG6Tjm2E
CitedBy_id crossref_primary_10_3390_mi9100535
crossref_primary_10_1109_TMECH_2017_2693996
crossref_primary_10_3390_machines11040450
crossref_primary_10_1007_s12206_017_0635_x
crossref_primary_10_1121_1_4976340
crossref_primary_10_1115_1_4035390
crossref_primary_10_1007_s00170_018_2359_1
crossref_primary_10_4028_www_scientific_net_AMM_610_23
crossref_primary_10_1063_1_5009027
crossref_primary_10_4028_www_scientific_net_KEM_625_603
crossref_primary_10_1115_1_4027126
crossref_primary_10_1007_s00170_020_05483_8
crossref_primary_10_1016_j_procir_2018_09_026
crossref_primary_10_1109_TIE_2017_2787592
crossref_primary_10_3390_mi10050337
crossref_primary_10_1016_j_ultras_2023_107145
crossref_primary_10_1115_1_4039507
crossref_primary_10_1016_j_optlastec_2021_107615
crossref_primary_10_1364_AO_397448
crossref_primary_10_1016_j_precisioneng_2019_05_005
crossref_primary_10_1016_j_precisioneng_2017_11_004
crossref_primary_10_1080_10426914_2014_901521
crossref_primary_10_1016_j_ymssp_2018_05_025
crossref_primary_10_1109_TIE_2018_2835425
crossref_primary_10_1007_s00500_018_3471_8
crossref_primary_10_1007_s00500_019_03959_8
crossref_primary_10_1016_j_jmatprotec_2019_116424
crossref_primary_10_1016_j_jmapro_2020_09_044
crossref_primary_10_1016_j_precisioneng_2025_01_017
crossref_primary_10_1177_1045389X211038660
crossref_primary_10_1108_ILT_09_2016_0199
crossref_primary_10_1007_s00170_018_2015_9
crossref_primary_10_1007_s00170_015_7968_3
crossref_primary_10_1088_0960_1317_26_3_035009
crossref_primary_10_1007_s12541_021_00551_9
crossref_primary_10_1016_j_jmatprotec_2022_117797
crossref_primary_10_1177_1687814019883772
crossref_primary_10_1016_j_ijmecsci_2018_12_051
crossref_primary_10_1016_j_jmapro_2019_08_010
crossref_primary_10_1016_j_ijmachtools_2018_11_002
crossref_primary_10_1007_s00170_015_8250_4
crossref_primary_10_1007_s00170_018_3094_3
crossref_primary_10_1016_j_precisioneng_2021_06_006
crossref_primary_10_1016_j_precisioneng_2020_06_008
crossref_primary_10_1299_jamdsm_2024jamdsm0048
crossref_primary_10_1007_s00170_021_06608_3
crossref_primary_10_1016_j_ijmachtools_2016_04_008
crossref_primary_10_1016_j_jma_2022_07_018
crossref_primary_10_1088_1757_899X_324_1_012063
crossref_primary_10_1016_j_measurement_2024_116628
crossref_primary_10_1007_s00170_017_1347_1
crossref_primary_10_4028_www_scientific_net_AMM_789_790_156
crossref_primary_10_1016_j_ymssp_2023_110422
crossref_primary_10_1007_s12541_014_0452_4
crossref_primary_10_1016_j_ijmachtools_2016_12_011
crossref_primary_10_1016_j_ymssp_2025_112526
crossref_primary_10_1016_j_ijmachtools_2020_103594
crossref_primary_10_1007_s00170_018_2452_5
crossref_primary_10_1007_s40436_015_0115_4
crossref_primary_10_1063_1_4967292
crossref_primary_10_1007_s00170_017_1153_9
crossref_primary_10_1364_OE_433720
crossref_primary_10_1007_s12541_019_00126_9
crossref_primary_10_1007_s00170_014_6628_3
crossref_primary_10_1007_s11465_017_0422_5
crossref_primary_10_1016_j_sna_2019_111580
crossref_primary_10_1007_s00170_021_07872_z
crossref_primary_10_1016_j_ijmachtools_2015_04_002
crossref_primary_10_1088_1361_665X_aa71f0
crossref_primary_10_1007_s11465_022_0715_1
crossref_primary_10_1007_s00170_024_13862_8
crossref_primary_10_1016_j_addma_2024_103993
crossref_primary_10_1088_2631_7990_ad2c5e
crossref_primary_10_1016_j_jmapro_2016_01_008
crossref_primary_10_3390_jmmp5020058
crossref_primary_10_1088_2631_7990_ac1159
crossref_primary_10_3390_app112210737
crossref_primary_10_1177_09544054211011029
crossref_primary_10_1007_s00170_022_10286_0
crossref_primary_10_1016_j_wear_2018_12_040
crossref_primary_10_1016_j_jmapro_2018_02_017
crossref_primary_10_1016_j_apsusc_2017_01_026
crossref_primary_10_1088_2631_7990_ad1bbb
crossref_primary_10_1016_j_cirp_2014_03_048
crossref_primary_10_1016_j_jmapro_2024_11_076
crossref_primary_10_1063_1_4963318
crossref_primary_10_1007_s00170_021_06954_2
crossref_primary_10_1115_1_4033605
crossref_primary_10_1016_j_precisioneng_2024_06_020
crossref_primary_10_1109_ACCESS_2018_2889807
crossref_primary_10_1007_s00170_014_6736_0
crossref_primary_10_1016_j_promfg_2018_07_064
crossref_primary_10_1016_j_ultras_2025_107584
crossref_primary_10_1016_j_sna_2023_114707
crossref_primary_10_1007_s00170_016_8596_2
crossref_primary_10_1007_s00170_022_08745_9
crossref_primary_10_1016_j_medengphy_2018_02_005
crossref_primary_10_1007_s00170_016_9716_8
crossref_primary_10_1007_s00170_018_3122_3
crossref_primary_10_1016_j_precisioneng_2021_04_003
crossref_primary_10_1016_j_precisioneng_2014_04_009
crossref_primary_10_1016_j_precisioneng_2017_06_016
crossref_primary_10_1016_j_cirpj_2019_11_006
crossref_primary_10_1016_j_matdes_2023_111660
crossref_primary_10_1016_j_jmapro_2019_10_023
crossref_primary_10_1016_j_ultras_2019_03_012
crossref_primary_10_1016_j_cirp_2021_04_023
crossref_primary_10_1016_j_ijmachtools_2016_03_007
crossref_primary_10_1115_1_4035473
crossref_primary_10_1007_s00339_015_9157_5
crossref_primary_10_1007_s00170_022_10305_0
crossref_primary_10_1007_s41871_018_0022_y
crossref_primary_10_1016_j_procir_2017_03_335
crossref_primary_10_1080_10426914_2015_1004692
crossref_primary_10_1016_j_apacoust_2021_107971
crossref_primary_10_1007_s00170_022_10362_5
crossref_primary_10_1007_s00170_017_0366_2
crossref_primary_10_3390_machines12060379
crossref_primary_10_1016_j_precisioneng_2021_07_015
crossref_primary_10_1063_1_4978262
crossref_primary_10_1109_TMECH_2019_2906904
crossref_primary_10_1016_j_apsusc_2016_07_064
crossref_primary_10_1063_5_0038358
crossref_primary_10_1007_s00170_017_0790_3
crossref_primary_10_1063_1_5025498
crossref_primary_10_1007_s00170_020_05552_y
crossref_primary_10_1016_j_precisioneng_2018_09_006
crossref_primary_10_3390_mi8100305
crossref_primary_10_1007_s40684_021_00358_z
crossref_primary_10_1109_ACCESS_2018_2814010
crossref_primary_10_1016_j_jmatprotec_2019_116369
crossref_primary_10_1016_j_ymssp_2022_109470
crossref_primary_10_1115_1_4049965
crossref_primary_10_1016_j_precisioneng_2023_12_006
crossref_primary_10_1016_j_ultras_2015_12_016
crossref_primary_10_1016_j_ultras_2022_106713
crossref_primary_10_1115_1_4029610
crossref_primary_10_1016_j_jmapro_2024_02_018
crossref_primary_10_1007_s00170_015_7645_6
crossref_primary_10_1016_j_ultsonch_2019_104722
crossref_primary_10_1016_j_precisioneng_2016_06_012
crossref_primary_10_1016_j_ultras_2021_106662
crossref_primary_10_1177_0954406218796033
crossref_primary_10_1088_0964_1726_25_7_075026
crossref_primary_10_1007_s00170_014_6384_4
crossref_primary_10_1007_s00170_016_9133_z
crossref_primary_10_1016_j_precisioneng_2014_07_009
crossref_primary_10_1016_j_ijmecsci_2022_107375
Cites_doi 10.1016/j.cirp.2006.10.006
10.1007/s00170-009-2451-7
10.1016/S0007-8506(07)63222-3
10.1109/58.726442
10.1080/05698190490440902
10.1016/S0924-0136(01)01262-6
10.1016/0890-6955(94)00114-Y
10.1109/TUFFC.2005.1397358
10.1016/S0007-8506(07)62053-8
10.1016/j.jmatprotec.2008.10.047
10.1016/S0007-8506(07)61528-5
10.1016/S0007-8506(07)62158-1
10.1016/j.jmatprotec.2006.05.007
10.1016/S0007-8506(07)61171-8
10.1016/S0007-8506(07)62269-0
10.1016/j.precisioneng.2007.08.003
10.1016/j.cirp.2008.09.003
ContentType Journal Article
Copyright 2012 Elsevier Inc.
Copyright_xml – notice: 2012 Elsevier Inc.
DBID AAYXX
CITATION
7TB
8FD
FR3
DOI 10.1016/j.precisioneng.2012.10.005
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-2372
EndPage 371
ExternalDocumentID 10_1016_j_precisioneng_2012_10_005
S0141635912001638
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
29O
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSM
SST
SSZ
T5K
TN5
UHS
WH7
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
ANKPU
APXCP
BNPGV
CITATION
SSH
7TB
8FD
FR3
ID FETCH-LOGICAL-c423t-9a1d8fb89a1ee9626bfa601e11906e8d3058802d64cccd41e9d4ce70d69a8a3c3
IEDL.DBID .~1
ISSN 0141-6359
IngestDate Fri Jul 11 02:14:07 EDT 2025
Thu Apr 24 22:59:18 EDT 2025
Tue Jul 01 02:12:53 EDT 2025
Fri Feb 23 02:23:47 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Langevin transducer
Elliptical vibration texturing
Piezo actuator
Tertiary motion generator
Modal analysis
Elliptical vibration cutting
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c423t-9a1d8fb89a1ee9626bfa601e11906e8d3058802d64cccd41e9d4ce70d69a8a3c3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1323228552
PQPubID 23500
PageCount 8
ParticipantIDs proquest_miscellaneous_1323228552
crossref_citationtrail_10_1016_j_precisioneng_2012_10_005
crossref_primary_10_1016_j_precisioneng_2012_10_005
elsevier_sciencedirect_doi_10_1016_j_precisioneng_2012_10_005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2013
2013-04-00
20130401
PublicationDateYYYYMMDD 2013-04-01
PublicationDate_xml – month: 04
  year: 2013
  text: April 2013
PublicationDecade 2010
PublicationTitle Precision engineering
PublicationYear 2013
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Kim, Loh (bib0065) 2010; 49
Nath, Rahman, Neo (bib0070) 2009; 209
Brehl, Dow (bib0045) 2008; 32
Cerniway M. Elliptical diamond milling: kinematics, force, and tool wear. MS thesis. North Carolina State University; 2001.
Li, Zhang (bib0035) 2006; 180
Moriwaki, Shamoto (bib0030) 1995; 44
Zhang, Chen, Lin, Wang (bib0080) 2005; 52
Shamoto, Moriwaki (bib0040) 1999; 48
Zhou, Wang, Ngoi, Gan (bib0060) 2002; 121
Asumi, Fukunaga, Fujimura, Kurosawa (bib0085) 2009
Bruzzone, Costa, Lonardo, Lucca (bib0005) 2008; 57
Dornfeld, Min, Takeuchi (bib0010) 2006; 55
Hong, Ehmann (bib0015) 1995; 35
Moriwaki, Shamoto, Inoue (bib0055) 1992; 41
Moriwaki, Shamoto (bib0020) 1991; 40
Shamoto, Moriwaki (bib0025) 1994; 43
Kovalchenko, Ajayi, Erdemir, Fenske, Etsion (bib0090) 2004; 47
Shamoto, Suzuki, Moriwaki, Naoi (bib0095) 2002; 51
Kuribayashi Kurosawa, Kodaira, Tsuchitoi, Higuchi (bib0075) 1998; 45
Kim (10.1016/j.precisioneng.2012.10.005_bib0065) 2010; 49
Nath (10.1016/j.precisioneng.2012.10.005_bib0070) 2009; 209
Brehl (10.1016/j.precisioneng.2012.10.005_bib0045) 2008; 32
Zhou (10.1016/j.precisioneng.2012.10.005_bib0060) 2002; 121
Hong (10.1016/j.precisioneng.2012.10.005_bib0015) 1995; 35
Bruzzone (10.1016/j.precisioneng.2012.10.005_bib0005) 2008; 57
Moriwaki (10.1016/j.precisioneng.2012.10.005_bib0030) 1995; 44
Shamoto (10.1016/j.precisioneng.2012.10.005_bib0025) 1994; 43
Kovalchenko (10.1016/j.precisioneng.2012.10.005_bib0090) 2004; 47
Li (10.1016/j.precisioneng.2012.10.005_bib0035) 2006; 180
Shamoto (10.1016/j.precisioneng.2012.10.005_bib0095) 2002; 51
Dornfeld (10.1016/j.precisioneng.2012.10.005_bib0010) 2006; 55
Shamoto (10.1016/j.precisioneng.2012.10.005_bib0040) 1999; 48
Moriwaki (10.1016/j.precisioneng.2012.10.005_bib0055) 1992; 41
Zhang (10.1016/j.precisioneng.2012.10.005_bib0080) 2005; 52
Kuribayashi Kurosawa (10.1016/j.precisioneng.2012.10.005_bib0075) 1998; 45
Moriwaki (10.1016/j.precisioneng.2012.10.005_bib0020) 1991; 40
10.1016/j.precisioneng.2012.10.005_bib0050
Asumi (10.1016/j.precisioneng.2012.10.005_bib0085) 2009
References_xml – volume: 48
  start-page: 441
  year: 1999
  end-page: 444
  ident: bib0040
  article-title: Ultaprecision diamond cutting of hardened steel by applying elliptical vibration cutting
  publication-title: CIRP Annals – Manufacturing Technology
– volume: 51
  start-page: 327
  year: 2002
  end-page: 330
  ident: bib0095
  article-title: Development of ultrasonic elliptical vibration controller for elliptical vibration cutting
  publication-title: CIRP Annals – Manufacturing Technology
– volume: 209
  start-page: 4459
  year: 2009
  end-page: 4464
  ident: bib0070
  article-title: A study on ultrasonic elliptical vibration cutting of tungsten carbide
  publication-title: Journal of Materials Processing Technology
– volume: 121
  start-page: 243
  year: 2002
  end-page: 251
  ident: bib0060
  article-title: Brittle–ductile transition in the diamond cutting of glasses with the aid of ultrasonic vibration
  publication-title: Journal of Materials Processing Technology
– volume: 40
  start-page: 559
  year: 1991
  end-page: 562
  ident: bib0020
  article-title: Ultraprecision diamond turning of stainless steel by applying ultrasonic vibration
  publication-title: CIRP Annals – Manufacturing Technology
– reference: Cerniway M. Elliptical diamond milling: kinematics, force, and tool wear. MS thesis. North Carolina State University; 2001.
– start-page: 48
  year: 2009
  ident: bib0085
  article-title: Miniaturization of a V-shape transducer ultrasonic motor
  publication-title: Japanese Journal of Applied Physics
– volume: 55
  start-page: 745
  year: 2006
  end-page: 768
  ident: bib0010
  article-title: Recent advances in mechanical micromachining
  publication-title: CIRP Annals – Manufacturing Technology
– volume: 49
  start-page: 961
  year: 2010
  end-page: 968
  ident: bib0065
  article-title: Machining of micro-channels and pyramid patterns using elliptical vibration cutting
  publication-title: The International Journal of Advanced Manufacturing Technology
– volume: 45
  start-page: 1188
  year: 1998
  end-page: 1195
  ident: bib0075
  article-title: Transducer for high speed and large thrust ultrasonic linear motor using two sandwich-type vibrators
  publication-title: IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control
– volume: 57
  start-page: 750
  year: 2008
  end-page: 769
  ident: bib0005
  article-title: Advances in engineered surfaces for functional performance
  publication-title: CIRP Annals – Manufacturing Technology
– volume: 43
  start-page: 35
  year: 1994
  end-page: 38
  ident: bib0025
  article-title: Study on elliptical vibration cutting
  publication-title: CIRP Annals – Manufacturing Technology
– volume: 41
  start-page: 141
  year: 1992
  end-page: 144
  ident: bib0055
  article-title: Ultraprecision ductile cutting of glass by applying ultrasonic vibration
  publication-title: CIRP Annals – Manufacturing Technology
– volume: 47
  start-page: 299
  year: 2004
  end-page: 307
  ident: bib0090
  article-title: The effect of laser texturing of steel surfaces and speed-load parameters on the transition of lubrication regime from boundary to hydrodynamic
  publication-title: Tribology Transactions
– volume: 44
  start-page: 31
  year: 1995
  end-page: 34
  ident: bib0030
  article-title: Ultrasonic elliptical vibration cutting
  publication-title: CIRP Annals – Manufacturing Technology
– volume: 180
  start-page: 91
  year: 2006
  end-page: 95
  ident: bib0035
  article-title: Ultrasonic elliptical vibration transducer driven by single actuator and its application in precision cutting
  publication-title: Journal of Materials Processing Technology
– volume: 32
  start-page: 153
  year: 2008
  end-page: 172
  ident: bib0045
  article-title: Review of vibration-assisted machining
  publication-title: Precision Engineering
– volume: 52
  start-page: 134
  year: 2005
  end-page: 138
  ident: bib0080
  article-title: Bidirectional linear ultrasonic motor using longitudinal vibrating transducers
  publication-title: IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control
– volume: 35
  start-page: 1269
  year: 1995
  end-page: 1290
  ident: bib0015
  article-title: Generation of engineered surfaces by the surface-shaping system
  publication-title: International Journal of Machine Tools and Manufacture
– volume: 55
  start-page: 745
  year: 2006
  ident: 10.1016/j.precisioneng.2012.10.005_bib0010
  article-title: Recent advances in mechanical micromachining
  publication-title: CIRP Annals – Manufacturing Technology
  doi: 10.1016/j.cirp.2006.10.006
– volume: 49
  start-page: 961
  year: 2010
  ident: 10.1016/j.precisioneng.2012.10.005_bib0065
  article-title: Machining of micro-channels and pyramid patterns using elliptical vibration cutting
  publication-title: The International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-009-2451-7
– start-page: 48
  year: 2009
  ident: 10.1016/j.precisioneng.2012.10.005_bib0085
  article-title: Miniaturization of a V-shape transducer ultrasonic motor
  publication-title: Japanese Journal of Applied Physics
– volume: 48
  start-page: 441
  year: 1999
  ident: 10.1016/j.precisioneng.2012.10.005_bib0040
  article-title: Ultaprecision diamond cutting of hardened steel by applying elliptical vibration cutting
  publication-title: CIRP Annals – Manufacturing Technology
  doi: 10.1016/S0007-8506(07)63222-3
– volume: 45
  start-page: 1188
  year: 1998
  ident: 10.1016/j.precisioneng.2012.10.005_bib0075
  article-title: Transducer for high speed and large thrust ultrasonic linear motor using two sandwich-type vibrators
  publication-title: IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control
  doi: 10.1109/58.726442
– volume: 47
  start-page: 299
  year: 2004
  ident: 10.1016/j.precisioneng.2012.10.005_bib0090
  article-title: The effect of laser texturing of steel surfaces and speed-load parameters on the transition of lubrication regime from boundary to hydrodynamic
  publication-title: Tribology Transactions
  doi: 10.1080/05698190490440902
– volume: 121
  start-page: 243
  year: 2002
  ident: 10.1016/j.precisioneng.2012.10.005_bib0060
  article-title: Brittle–ductile transition in the diamond cutting of glasses with the aid of ultrasonic vibration
  publication-title: Journal of Materials Processing Technology
  doi: 10.1016/S0924-0136(01)01262-6
– volume: 35
  start-page: 1269
  year: 1995
  ident: 10.1016/j.precisioneng.2012.10.005_bib0015
  article-title: Generation of engineered surfaces by the surface-shaping system
  publication-title: International Journal of Machine Tools and Manufacture
  doi: 10.1016/0890-6955(94)00114-Y
– volume: 52
  start-page: 134
  year: 2005
  ident: 10.1016/j.precisioneng.2012.10.005_bib0080
  article-title: Bidirectional linear ultrasonic motor using longitudinal vibrating transducers
  publication-title: IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control
  doi: 10.1109/TUFFC.2005.1397358
– volume: 40
  start-page: 559
  year: 1991
  ident: 10.1016/j.precisioneng.2012.10.005_bib0020
  article-title: Ultraprecision diamond turning of stainless steel by applying ultrasonic vibration
  publication-title: CIRP Annals – Manufacturing Technology
  doi: 10.1016/S0007-8506(07)62053-8
– volume: 209
  start-page: 4459
  year: 2009
  ident: 10.1016/j.precisioneng.2012.10.005_bib0070
  article-title: A study on ultrasonic elliptical vibration cutting of tungsten carbide
  publication-title: Journal of Materials Processing Technology
  doi: 10.1016/j.jmatprotec.2008.10.047
– volume: 51
  start-page: 327
  year: 2002
  ident: 10.1016/j.precisioneng.2012.10.005_bib0095
  article-title: Development of ultrasonic elliptical vibration controller for elliptical vibration cutting
  publication-title: CIRP Annals – Manufacturing Technology
  doi: 10.1016/S0007-8506(07)61528-5
– volume: 43
  start-page: 35
  year: 1994
  ident: 10.1016/j.precisioneng.2012.10.005_bib0025
  article-title: Study on elliptical vibration cutting
  publication-title: CIRP Annals – Manufacturing Technology
  doi: 10.1016/S0007-8506(07)62158-1
– volume: 180
  start-page: 91
  year: 2006
  ident: 10.1016/j.precisioneng.2012.10.005_bib0035
  article-title: Ultrasonic elliptical vibration transducer driven by single actuator and its application in precision cutting
  publication-title: Journal of Materials Processing Technology
  doi: 10.1016/j.jmatprotec.2006.05.007
– ident: 10.1016/j.precisioneng.2012.10.005_bib0050
– volume: 41
  start-page: 141
  year: 1992
  ident: 10.1016/j.precisioneng.2012.10.005_bib0055
  article-title: Ultraprecision ductile cutting of glass by applying ultrasonic vibration
  publication-title: CIRP Annals – Manufacturing Technology
  doi: 10.1016/S0007-8506(07)61171-8
– volume: 44
  start-page: 31
  year: 1995
  ident: 10.1016/j.precisioneng.2012.10.005_bib0030
  article-title: Ultrasonic elliptical vibration cutting
  publication-title: CIRP Annals – Manufacturing Technology
  doi: 10.1016/S0007-8506(07)62269-0
– volume: 32
  start-page: 153
  year: 2008
  ident: 10.1016/j.precisioneng.2012.10.005_bib0045
  article-title: Review of vibration-assisted machining
  publication-title: Precision Engineering
  doi: 10.1016/j.precisioneng.2007.08.003
– volume: 57
  start-page: 750
  year: 2008
  ident: 10.1016/j.precisioneng.2012.10.005_bib0005
  article-title: Advances in engineered surfaces for functional performance
  publication-title: CIRP Annals – Manufacturing Technology
  doi: 10.1016/j.cirp.2008.09.003
SSID ssj0007804
Score 2.4280899
Snippet ► An innovative process is proposed for the fast generation of structured surfaces. ► The new process utilizes controlled elliptical vibrations of the cutting...
The elliptical vibration texturing process is an innovative machining method for the fast generation of textured surfaces. It adds a tertiary motion component...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 364
SubjectTerms Arrays
Design engineering
Elliptical vibration cutting
Elliptical vibration texturing
Generators
Langevin transducer
Modal analysis
Piezo actuator
Tertiary motion generator
Texturing
Turning
Turning (machining)
Vibration
Title Development of a tertiary motion generator for elliptical vibration texturing
URI https://dx.doi.org/10.1016/j.precisioneng.2012.10.005
https://www.proquest.com/docview/1323228552
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KvehBfGJ9lBW8pm022TwOHkpRqmJPFnpbsq9SkTTUVvDib3dmk2gVhIKnQLJLwuzsNzPZb2YIuYpkrELb414MtgACFM4BB6X2tDKB0VHETEmQHUXDcXg_4ZMGGdS5MEirrLC_xHSH1tWdbiXNbjGbdZGWBM4ET32kBYEaYQZ7GKOWdz6-aR5YYKekMfoejq4LjzqOV7GoG9nkU6R5sY5jevG_jNQvuHY26HaP7FbOI-2X37dPGiY_IDtrJQUPyeMaC4jOLc0oHvrPssU7LRv20KkrNA2hNgV_lWI9zsL9z6ZvGDm7IcgGcemLR2R8e_M0GHpVywRPgV-09NLM14mVCVyNSSFYkTaDkMv4YPcjk2jY3bBhmY5CpZQOfZPqUJm4p6M0S7JABcekmYM4TghlPWs0OHdaBjy0QSKZljJlscWWk0FsWiStZSRUVU8c21q8iJo49izW5StQvvgM5NsiwdfcoqyqsdGs63opxA8dEQD_G82_rNdPwCbCk5EsN_PVq4CQHIAt4Zyd_vMdZ2SbuYYZyO05J83lYmUuwG1ZyrbTyzbZ6t89DEefYr_wpg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5qe1AP4hPfruA1tnlsHgcPpVha-zi10NuSfUQqUkttBf-9M5ukVEEQPAWSDAmzu9_MZL98A3AXykgFWYM7EcYCLFA4RxyU2tHK-EaHoWdyguww7IyDpwmfVKBV_gtDtMoC-3NMt2hdnKkX3qzPp9M60ZIwmeCJS7QgnEZbUCN1Kl6FWrPb6wzXgEwaOzmT0XXIoNQetTSv-aLsZTN7JqaXd2_JXvy3OPUDsW0Yau_DXpE_smb-igdQMbND2N1QFTyCwQYRiL1lLGW07z9NF58s79nDnq3WNFbbDFNWRpKcc_tJm31Q8WxvIUKI_YPxGMbtx1Gr4xRdExyFqdHSSVJXx5mM8WhMgvWKzFKsuoyLoT80scYFjmvW02GglNKBaxIdKBM1dJikceor_wSqM3THKTCvkRmN-Z2WPg8yP5aeljLxooy6TvqROYOk9JFQhaQ4dbZ4FSV37EVs-leQf-ka-vcM_LXtPBfW-JPVQzkU4ts0ERgB_mR_W46fwHVEmyPpzLyt3gVW5YhtMefe-T-fcQPbndGgL_rdYe8CdjzbP4OoPpdQXS5W5gqzmKW8LmbpF5nY81c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+a+tertiary+motion+generator+for+elliptical+vibration+texturing&rft.jtitle=Precision+engineering&rft.au=Guo%2C+Ping&rft.au=Ehmann%2C+Kornel+F.&rft.date=2013-04-01&rft.pub=Elsevier+Inc&rft.issn=0141-6359&rft.eissn=1873-2372&rft.volume=37&rft.issue=2&rft.spage=364&rft.epage=371&rft_id=info:doi/10.1016%2Fj.precisioneng.2012.10.005&rft.externalDocID=S0141635912001638
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-6359&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-6359&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-6359&client=summon