Development of a tertiary motion generator for elliptical vibration texturing
► An innovative process is proposed for the fast generation of structured surfaces. ► The new process utilizes controlled elliptical vibrations of the cutting tool. ► The piezo transducer delivers an elliptical trajectory at an ultrasonic frequency. ► The device has two coupled vibration modes at ne...
Saved in:
Published in | Precision engineering Vol. 37; no. 2; pp. 364 - 371 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.04.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ► An innovative process is proposed for the fast generation of structured surfaces. ► The new process utilizes controlled elliptical vibrations of the cutting tool. ► The piezo transducer delivers an elliptical trajectory at an ultrasonic frequency. ► The device has two coupled vibration modes at nearly the same frequency. ► Micro dimple arrays have been created by the developed device.
The elliptical vibration texturing process is an innovative machining method for the fast generation of textured surfaces. It adds a tertiary motion component to the tool tip, which introduces deliberate elliptical vibrations between the cutting tool and the workpiece. The elliptical locus lies in the plane that is defined by the cutting direction and the radial direction in the turning operation. This paper proposes a new design for a resonant mode 2D tertiary motion generator (TMG) that can deliver the required elliptical trajectory at an ultrasonic frequency. The device works in the resonant mode, with tangential and normal vibrations at a nearly identical resonant frequency. Simulation and experiments were carried out to perform a modal analysis of the system. Different design parameters were adjusted to achieve large vibration amplitudes in both tangential and normal directions. The elliptical vibration texturing process was implemented by integrating the newly developed TMG into a turning operation. Preliminary test results of dimple array patterns are presented that validate the performance and principle of the proposed design. |
---|---|
AbstractList | The elliptical vibration texturing process is an innovative machining method for the fast generation of textured surfaces. It adds a tertiary motion component to the tool tip, which introduces deliberate elliptical vibrations between the cutting tool and the workpiece. The elliptical locus lies in the plane that is defined by the cutting direction and the radial direction in the turning operation. This paper proposes a new design for a resonant mode 2D tertiary motion generator (TMG) that can deliver the required elliptical trajectory at an ultrasonic frequency. The device works in the resonant mode, with tangential and normal vibrations at a nearly identical resonant frequency. Simulation and experiments were carried out to perform a modal analysis of the system. Different design parameters were adjusted to achieve large vibration amplitudes in both tangential and normal directions. The elliptical vibration texturing process was implemented by integrating the newly developed TMG into a turning operation. Preliminary test results of dimple array patterns are presented that validate the performance and principle of the proposed design. ► An innovative process is proposed for the fast generation of structured surfaces. ► The new process utilizes controlled elliptical vibrations of the cutting tool. ► The piezo transducer delivers an elliptical trajectory at an ultrasonic frequency. ► The device has two coupled vibration modes at nearly the same frequency. ► Micro dimple arrays have been created by the developed device. The elliptical vibration texturing process is an innovative machining method for the fast generation of textured surfaces. It adds a tertiary motion component to the tool tip, which introduces deliberate elliptical vibrations between the cutting tool and the workpiece. The elliptical locus lies in the plane that is defined by the cutting direction and the radial direction in the turning operation. This paper proposes a new design for a resonant mode 2D tertiary motion generator (TMG) that can deliver the required elliptical trajectory at an ultrasonic frequency. The device works in the resonant mode, with tangential and normal vibrations at a nearly identical resonant frequency. Simulation and experiments were carried out to perform a modal analysis of the system. Different design parameters were adjusted to achieve large vibration amplitudes in both tangential and normal directions. The elliptical vibration texturing process was implemented by integrating the newly developed TMG into a turning operation. Preliminary test results of dimple array patterns are presented that validate the performance and principle of the proposed design. |
Author | Ehmann, Kornel F. Guo, Ping |
Author_xml | – sequence: 1 givenname: Ping surname: Guo fullname: Guo, Ping email: Pingguo2009@u.northwestern.edu, steven.guoping@gmail.com organization: Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Room B110, Evanston, IL 60208, USA – sequence: 2 givenname: Kornel F. surname: Ehmann fullname: Ehmann, Kornel F. email: k-ehmann@northwestern.edu organization: Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Room A215, Evanston, IL 60208, USA |
BookMark | eNqNkEtPwzAQhC1UJNrCf4g4cUnwIw-HE6jlJRVxgbPl2pvKVRIH263g3-NQDohTD6uVdmdGo2-GJr3tAaFLgjOCSXm9zQYHyngTz_0mo5jQ-MgwLk7QlPCKpZRVdIKmmOQkLVlRn6GZ91uMccVxPkUvS9hDa4cO-pDYJpFJABeMdF9JZ0OMTTbQg5PBuqSJA21rhmCUbJO9Wcf7KAnwGXbO9JtzdNrI1sPF756j94f7t8VTunp9fF7crVKVUxbSWhLNmzWPG6AuabluZIkJEFLjErhmuOAcU13mSimdE6h1rqDCuqwll0yxObo65A7OfuzAB9EZr2I32YPdeUEYZZTyoqBRenuQKme9d9AIZcJP7eCkaQXBYiQptuIvSTGSHH-RZIy4-RcxONNFRMeZlwczRB57A054ZaBXoE20BKGtOSbmG6Tjm2E |
CitedBy_id | crossref_primary_10_3390_mi9100535 crossref_primary_10_1109_TMECH_2017_2693996 crossref_primary_10_3390_machines11040450 crossref_primary_10_1007_s12206_017_0635_x crossref_primary_10_1121_1_4976340 crossref_primary_10_1115_1_4035390 crossref_primary_10_1007_s00170_018_2359_1 crossref_primary_10_4028_www_scientific_net_AMM_610_23 crossref_primary_10_1063_1_5009027 crossref_primary_10_4028_www_scientific_net_KEM_625_603 crossref_primary_10_1115_1_4027126 crossref_primary_10_1007_s00170_020_05483_8 crossref_primary_10_1016_j_procir_2018_09_026 crossref_primary_10_1109_TIE_2017_2787592 crossref_primary_10_3390_mi10050337 crossref_primary_10_1016_j_ultras_2023_107145 crossref_primary_10_1115_1_4039507 crossref_primary_10_1016_j_optlastec_2021_107615 crossref_primary_10_1364_AO_397448 crossref_primary_10_1016_j_precisioneng_2019_05_005 crossref_primary_10_1016_j_precisioneng_2017_11_004 crossref_primary_10_1080_10426914_2014_901521 crossref_primary_10_1016_j_ymssp_2018_05_025 crossref_primary_10_1109_TIE_2018_2835425 crossref_primary_10_1007_s00500_018_3471_8 crossref_primary_10_1007_s00500_019_03959_8 crossref_primary_10_1016_j_jmatprotec_2019_116424 crossref_primary_10_1016_j_jmapro_2020_09_044 crossref_primary_10_1016_j_precisioneng_2025_01_017 crossref_primary_10_1177_1045389X211038660 crossref_primary_10_1108_ILT_09_2016_0199 crossref_primary_10_1007_s00170_018_2015_9 crossref_primary_10_1007_s00170_015_7968_3 crossref_primary_10_1088_0960_1317_26_3_035009 crossref_primary_10_1007_s12541_021_00551_9 crossref_primary_10_1016_j_jmatprotec_2022_117797 crossref_primary_10_1177_1687814019883772 crossref_primary_10_1016_j_ijmecsci_2018_12_051 crossref_primary_10_1016_j_jmapro_2019_08_010 crossref_primary_10_1016_j_ijmachtools_2018_11_002 crossref_primary_10_1007_s00170_015_8250_4 crossref_primary_10_1007_s00170_018_3094_3 crossref_primary_10_1016_j_precisioneng_2021_06_006 crossref_primary_10_1016_j_precisioneng_2020_06_008 crossref_primary_10_1299_jamdsm_2024jamdsm0048 crossref_primary_10_1007_s00170_021_06608_3 crossref_primary_10_1016_j_ijmachtools_2016_04_008 crossref_primary_10_1016_j_jma_2022_07_018 crossref_primary_10_1088_1757_899X_324_1_012063 crossref_primary_10_1016_j_measurement_2024_116628 crossref_primary_10_1007_s00170_017_1347_1 crossref_primary_10_4028_www_scientific_net_AMM_789_790_156 crossref_primary_10_1016_j_ymssp_2023_110422 crossref_primary_10_1007_s12541_014_0452_4 crossref_primary_10_1016_j_ijmachtools_2016_12_011 crossref_primary_10_1016_j_ymssp_2025_112526 crossref_primary_10_1016_j_ijmachtools_2020_103594 crossref_primary_10_1007_s00170_018_2452_5 crossref_primary_10_1007_s40436_015_0115_4 crossref_primary_10_1063_1_4967292 crossref_primary_10_1007_s00170_017_1153_9 crossref_primary_10_1364_OE_433720 crossref_primary_10_1007_s12541_019_00126_9 crossref_primary_10_1007_s00170_014_6628_3 crossref_primary_10_1007_s11465_017_0422_5 crossref_primary_10_1016_j_sna_2019_111580 crossref_primary_10_1007_s00170_021_07872_z crossref_primary_10_1016_j_ijmachtools_2015_04_002 crossref_primary_10_1088_1361_665X_aa71f0 crossref_primary_10_1007_s11465_022_0715_1 crossref_primary_10_1007_s00170_024_13862_8 crossref_primary_10_1016_j_addma_2024_103993 crossref_primary_10_1088_2631_7990_ad2c5e crossref_primary_10_1016_j_jmapro_2016_01_008 crossref_primary_10_3390_jmmp5020058 crossref_primary_10_1088_2631_7990_ac1159 crossref_primary_10_3390_app112210737 crossref_primary_10_1177_09544054211011029 crossref_primary_10_1007_s00170_022_10286_0 crossref_primary_10_1016_j_wear_2018_12_040 crossref_primary_10_1016_j_jmapro_2018_02_017 crossref_primary_10_1016_j_apsusc_2017_01_026 crossref_primary_10_1088_2631_7990_ad1bbb crossref_primary_10_1016_j_cirp_2014_03_048 crossref_primary_10_1016_j_jmapro_2024_11_076 crossref_primary_10_1063_1_4963318 crossref_primary_10_1007_s00170_021_06954_2 crossref_primary_10_1115_1_4033605 crossref_primary_10_1016_j_precisioneng_2024_06_020 crossref_primary_10_1109_ACCESS_2018_2889807 crossref_primary_10_1007_s00170_014_6736_0 crossref_primary_10_1016_j_promfg_2018_07_064 crossref_primary_10_1016_j_ultras_2025_107584 crossref_primary_10_1016_j_sna_2023_114707 crossref_primary_10_1007_s00170_016_8596_2 crossref_primary_10_1007_s00170_022_08745_9 crossref_primary_10_1016_j_medengphy_2018_02_005 crossref_primary_10_1007_s00170_016_9716_8 crossref_primary_10_1007_s00170_018_3122_3 crossref_primary_10_1016_j_precisioneng_2021_04_003 crossref_primary_10_1016_j_precisioneng_2014_04_009 crossref_primary_10_1016_j_precisioneng_2017_06_016 crossref_primary_10_1016_j_cirpj_2019_11_006 crossref_primary_10_1016_j_matdes_2023_111660 crossref_primary_10_1016_j_jmapro_2019_10_023 crossref_primary_10_1016_j_ultras_2019_03_012 crossref_primary_10_1016_j_cirp_2021_04_023 crossref_primary_10_1016_j_ijmachtools_2016_03_007 crossref_primary_10_1115_1_4035473 crossref_primary_10_1007_s00339_015_9157_5 crossref_primary_10_1007_s00170_022_10305_0 crossref_primary_10_1007_s41871_018_0022_y crossref_primary_10_1016_j_procir_2017_03_335 crossref_primary_10_1080_10426914_2015_1004692 crossref_primary_10_1016_j_apacoust_2021_107971 crossref_primary_10_1007_s00170_022_10362_5 crossref_primary_10_1007_s00170_017_0366_2 crossref_primary_10_3390_machines12060379 crossref_primary_10_1016_j_precisioneng_2021_07_015 crossref_primary_10_1063_1_4978262 crossref_primary_10_1109_TMECH_2019_2906904 crossref_primary_10_1016_j_apsusc_2016_07_064 crossref_primary_10_1063_5_0038358 crossref_primary_10_1007_s00170_017_0790_3 crossref_primary_10_1063_1_5025498 crossref_primary_10_1007_s00170_020_05552_y crossref_primary_10_1016_j_precisioneng_2018_09_006 crossref_primary_10_3390_mi8100305 crossref_primary_10_1007_s40684_021_00358_z crossref_primary_10_1109_ACCESS_2018_2814010 crossref_primary_10_1016_j_jmatprotec_2019_116369 crossref_primary_10_1016_j_ymssp_2022_109470 crossref_primary_10_1115_1_4049965 crossref_primary_10_1016_j_precisioneng_2023_12_006 crossref_primary_10_1016_j_ultras_2015_12_016 crossref_primary_10_1016_j_ultras_2022_106713 crossref_primary_10_1115_1_4029610 crossref_primary_10_1016_j_jmapro_2024_02_018 crossref_primary_10_1007_s00170_015_7645_6 crossref_primary_10_1016_j_ultsonch_2019_104722 crossref_primary_10_1016_j_precisioneng_2016_06_012 crossref_primary_10_1016_j_ultras_2021_106662 crossref_primary_10_1177_0954406218796033 crossref_primary_10_1088_0964_1726_25_7_075026 crossref_primary_10_1007_s00170_014_6384_4 crossref_primary_10_1007_s00170_016_9133_z crossref_primary_10_1016_j_precisioneng_2014_07_009 crossref_primary_10_1016_j_ijmecsci_2022_107375 |
Cites_doi | 10.1016/j.cirp.2006.10.006 10.1007/s00170-009-2451-7 10.1016/S0007-8506(07)63222-3 10.1109/58.726442 10.1080/05698190490440902 10.1016/S0924-0136(01)01262-6 10.1016/0890-6955(94)00114-Y 10.1109/TUFFC.2005.1397358 10.1016/S0007-8506(07)62053-8 10.1016/j.jmatprotec.2008.10.047 10.1016/S0007-8506(07)61528-5 10.1016/S0007-8506(07)62158-1 10.1016/j.jmatprotec.2006.05.007 10.1016/S0007-8506(07)61171-8 10.1016/S0007-8506(07)62269-0 10.1016/j.precisioneng.2007.08.003 10.1016/j.cirp.2008.09.003 |
ContentType | Journal Article |
Copyright | 2012 Elsevier Inc. |
Copyright_xml | – notice: 2012 Elsevier Inc. |
DBID | AAYXX CITATION 7TB 8FD FR3 |
DOI | 10.1016/j.precisioneng.2012.10.005 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database |
DatabaseTitle | CrossRef Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-2372 |
EndPage | 371 |
ExternalDocumentID | 10_1016_j_precisioneng_2012_10_005 S0141635912001638 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 29O 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SSM SST SSZ T5K TN5 UHS WH7 WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN ANKPU APXCP BNPGV CITATION SSH 7TB 8FD FR3 |
ID | FETCH-LOGICAL-c423t-9a1d8fb89a1ee9626bfa601e11906e8d3058802d64cccd41e9d4ce70d69a8a3c3 |
IEDL.DBID | .~1 |
ISSN | 0141-6359 |
IngestDate | Fri Jul 11 02:14:07 EDT 2025 Thu Apr 24 22:59:18 EDT 2025 Tue Jul 01 02:12:53 EDT 2025 Fri Feb 23 02:23:47 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Langevin transducer Elliptical vibration texturing Piezo actuator Tertiary motion generator Modal analysis Elliptical vibration cutting |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c423t-9a1d8fb89a1ee9626bfa601e11906e8d3058802d64cccd41e9d4ce70d69a8a3c3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 1323228552 |
PQPubID | 23500 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1323228552 crossref_citationtrail_10_1016_j_precisioneng_2012_10_005 crossref_primary_10_1016_j_precisioneng_2012_10_005 elsevier_sciencedirect_doi_10_1016_j_precisioneng_2012_10_005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2013 2013-04-00 20130401 |
PublicationDateYYYYMMDD | 2013-04-01 |
PublicationDate_xml | – month: 04 year: 2013 text: April 2013 |
PublicationDecade | 2010 |
PublicationTitle | Precision engineering |
PublicationYear | 2013 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Kim, Loh (bib0065) 2010; 49 Nath, Rahman, Neo (bib0070) 2009; 209 Brehl, Dow (bib0045) 2008; 32 Cerniway M. Elliptical diamond milling: kinematics, force, and tool wear. MS thesis. North Carolina State University; 2001. Li, Zhang (bib0035) 2006; 180 Moriwaki, Shamoto (bib0030) 1995; 44 Zhang, Chen, Lin, Wang (bib0080) 2005; 52 Shamoto, Moriwaki (bib0040) 1999; 48 Zhou, Wang, Ngoi, Gan (bib0060) 2002; 121 Asumi, Fukunaga, Fujimura, Kurosawa (bib0085) 2009 Bruzzone, Costa, Lonardo, Lucca (bib0005) 2008; 57 Dornfeld, Min, Takeuchi (bib0010) 2006; 55 Hong, Ehmann (bib0015) 1995; 35 Moriwaki, Shamoto, Inoue (bib0055) 1992; 41 Moriwaki, Shamoto (bib0020) 1991; 40 Shamoto, Moriwaki (bib0025) 1994; 43 Kovalchenko, Ajayi, Erdemir, Fenske, Etsion (bib0090) 2004; 47 Shamoto, Suzuki, Moriwaki, Naoi (bib0095) 2002; 51 Kuribayashi Kurosawa, Kodaira, Tsuchitoi, Higuchi (bib0075) 1998; 45 Kim (10.1016/j.precisioneng.2012.10.005_bib0065) 2010; 49 Nath (10.1016/j.precisioneng.2012.10.005_bib0070) 2009; 209 Brehl (10.1016/j.precisioneng.2012.10.005_bib0045) 2008; 32 Zhou (10.1016/j.precisioneng.2012.10.005_bib0060) 2002; 121 Hong (10.1016/j.precisioneng.2012.10.005_bib0015) 1995; 35 Bruzzone (10.1016/j.precisioneng.2012.10.005_bib0005) 2008; 57 Moriwaki (10.1016/j.precisioneng.2012.10.005_bib0030) 1995; 44 Shamoto (10.1016/j.precisioneng.2012.10.005_bib0025) 1994; 43 Kovalchenko (10.1016/j.precisioneng.2012.10.005_bib0090) 2004; 47 Li (10.1016/j.precisioneng.2012.10.005_bib0035) 2006; 180 Shamoto (10.1016/j.precisioneng.2012.10.005_bib0095) 2002; 51 Dornfeld (10.1016/j.precisioneng.2012.10.005_bib0010) 2006; 55 Shamoto (10.1016/j.precisioneng.2012.10.005_bib0040) 1999; 48 Moriwaki (10.1016/j.precisioneng.2012.10.005_bib0055) 1992; 41 Zhang (10.1016/j.precisioneng.2012.10.005_bib0080) 2005; 52 Kuribayashi Kurosawa (10.1016/j.precisioneng.2012.10.005_bib0075) 1998; 45 Moriwaki (10.1016/j.precisioneng.2012.10.005_bib0020) 1991; 40 10.1016/j.precisioneng.2012.10.005_bib0050 Asumi (10.1016/j.precisioneng.2012.10.005_bib0085) 2009 |
References_xml | – volume: 48 start-page: 441 year: 1999 end-page: 444 ident: bib0040 article-title: Ultaprecision diamond cutting of hardened steel by applying elliptical vibration cutting publication-title: CIRP Annals – Manufacturing Technology – volume: 51 start-page: 327 year: 2002 end-page: 330 ident: bib0095 article-title: Development of ultrasonic elliptical vibration controller for elliptical vibration cutting publication-title: CIRP Annals – Manufacturing Technology – volume: 209 start-page: 4459 year: 2009 end-page: 4464 ident: bib0070 article-title: A study on ultrasonic elliptical vibration cutting of tungsten carbide publication-title: Journal of Materials Processing Technology – volume: 121 start-page: 243 year: 2002 end-page: 251 ident: bib0060 article-title: Brittle–ductile transition in the diamond cutting of glasses with the aid of ultrasonic vibration publication-title: Journal of Materials Processing Technology – volume: 40 start-page: 559 year: 1991 end-page: 562 ident: bib0020 article-title: Ultraprecision diamond turning of stainless steel by applying ultrasonic vibration publication-title: CIRP Annals – Manufacturing Technology – reference: Cerniway M. Elliptical diamond milling: kinematics, force, and tool wear. MS thesis. North Carolina State University; 2001. – start-page: 48 year: 2009 ident: bib0085 article-title: Miniaturization of a V-shape transducer ultrasonic motor publication-title: Japanese Journal of Applied Physics – volume: 55 start-page: 745 year: 2006 end-page: 768 ident: bib0010 article-title: Recent advances in mechanical micromachining publication-title: CIRP Annals – Manufacturing Technology – volume: 49 start-page: 961 year: 2010 end-page: 968 ident: bib0065 article-title: Machining of micro-channels and pyramid patterns using elliptical vibration cutting publication-title: The International Journal of Advanced Manufacturing Technology – volume: 45 start-page: 1188 year: 1998 end-page: 1195 ident: bib0075 article-title: Transducer for high speed and large thrust ultrasonic linear motor using two sandwich-type vibrators publication-title: IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control – volume: 57 start-page: 750 year: 2008 end-page: 769 ident: bib0005 article-title: Advances in engineered surfaces for functional performance publication-title: CIRP Annals – Manufacturing Technology – volume: 43 start-page: 35 year: 1994 end-page: 38 ident: bib0025 article-title: Study on elliptical vibration cutting publication-title: CIRP Annals – Manufacturing Technology – volume: 41 start-page: 141 year: 1992 end-page: 144 ident: bib0055 article-title: Ultraprecision ductile cutting of glass by applying ultrasonic vibration publication-title: CIRP Annals – Manufacturing Technology – volume: 47 start-page: 299 year: 2004 end-page: 307 ident: bib0090 article-title: The effect of laser texturing of steel surfaces and speed-load parameters on the transition of lubrication regime from boundary to hydrodynamic publication-title: Tribology Transactions – volume: 44 start-page: 31 year: 1995 end-page: 34 ident: bib0030 article-title: Ultrasonic elliptical vibration cutting publication-title: CIRP Annals – Manufacturing Technology – volume: 180 start-page: 91 year: 2006 end-page: 95 ident: bib0035 article-title: Ultrasonic elliptical vibration transducer driven by single actuator and its application in precision cutting publication-title: Journal of Materials Processing Technology – volume: 32 start-page: 153 year: 2008 end-page: 172 ident: bib0045 article-title: Review of vibration-assisted machining publication-title: Precision Engineering – volume: 52 start-page: 134 year: 2005 end-page: 138 ident: bib0080 article-title: Bidirectional linear ultrasonic motor using longitudinal vibrating transducers publication-title: IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control – volume: 35 start-page: 1269 year: 1995 end-page: 1290 ident: bib0015 article-title: Generation of engineered surfaces by the surface-shaping system publication-title: International Journal of Machine Tools and Manufacture – volume: 55 start-page: 745 year: 2006 ident: 10.1016/j.precisioneng.2012.10.005_bib0010 article-title: Recent advances in mechanical micromachining publication-title: CIRP Annals – Manufacturing Technology doi: 10.1016/j.cirp.2006.10.006 – volume: 49 start-page: 961 year: 2010 ident: 10.1016/j.precisioneng.2012.10.005_bib0065 article-title: Machining of micro-channels and pyramid patterns using elliptical vibration cutting publication-title: The International Journal of Advanced Manufacturing Technology doi: 10.1007/s00170-009-2451-7 – start-page: 48 year: 2009 ident: 10.1016/j.precisioneng.2012.10.005_bib0085 article-title: Miniaturization of a V-shape transducer ultrasonic motor publication-title: Japanese Journal of Applied Physics – volume: 48 start-page: 441 year: 1999 ident: 10.1016/j.precisioneng.2012.10.005_bib0040 article-title: Ultaprecision diamond cutting of hardened steel by applying elliptical vibration cutting publication-title: CIRP Annals – Manufacturing Technology doi: 10.1016/S0007-8506(07)63222-3 – volume: 45 start-page: 1188 year: 1998 ident: 10.1016/j.precisioneng.2012.10.005_bib0075 article-title: Transducer for high speed and large thrust ultrasonic linear motor using two sandwich-type vibrators publication-title: IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control doi: 10.1109/58.726442 – volume: 47 start-page: 299 year: 2004 ident: 10.1016/j.precisioneng.2012.10.005_bib0090 article-title: The effect of laser texturing of steel surfaces and speed-load parameters on the transition of lubrication regime from boundary to hydrodynamic publication-title: Tribology Transactions doi: 10.1080/05698190490440902 – volume: 121 start-page: 243 year: 2002 ident: 10.1016/j.precisioneng.2012.10.005_bib0060 article-title: Brittle–ductile transition in the diamond cutting of glasses with the aid of ultrasonic vibration publication-title: Journal of Materials Processing Technology doi: 10.1016/S0924-0136(01)01262-6 – volume: 35 start-page: 1269 year: 1995 ident: 10.1016/j.precisioneng.2012.10.005_bib0015 article-title: Generation of engineered surfaces by the surface-shaping system publication-title: International Journal of Machine Tools and Manufacture doi: 10.1016/0890-6955(94)00114-Y – volume: 52 start-page: 134 year: 2005 ident: 10.1016/j.precisioneng.2012.10.005_bib0080 article-title: Bidirectional linear ultrasonic motor using longitudinal vibrating transducers publication-title: IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control doi: 10.1109/TUFFC.2005.1397358 – volume: 40 start-page: 559 year: 1991 ident: 10.1016/j.precisioneng.2012.10.005_bib0020 article-title: Ultraprecision diamond turning of stainless steel by applying ultrasonic vibration publication-title: CIRP Annals – Manufacturing Technology doi: 10.1016/S0007-8506(07)62053-8 – volume: 209 start-page: 4459 year: 2009 ident: 10.1016/j.precisioneng.2012.10.005_bib0070 article-title: A study on ultrasonic elliptical vibration cutting of tungsten carbide publication-title: Journal of Materials Processing Technology doi: 10.1016/j.jmatprotec.2008.10.047 – volume: 51 start-page: 327 year: 2002 ident: 10.1016/j.precisioneng.2012.10.005_bib0095 article-title: Development of ultrasonic elliptical vibration controller for elliptical vibration cutting publication-title: CIRP Annals – Manufacturing Technology doi: 10.1016/S0007-8506(07)61528-5 – volume: 43 start-page: 35 year: 1994 ident: 10.1016/j.precisioneng.2012.10.005_bib0025 article-title: Study on elliptical vibration cutting publication-title: CIRP Annals – Manufacturing Technology doi: 10.1016/S0007-8506(07)62158-1 – volume: 180 start-page: 91 year: 2006 ident: 10.1016/j.precisioneng.2012.10.005_bib0035 article-title: Ultrasonic elliptical vibration transducer driven by single actuator and its application in precision cutting publication-title: Journal of Materials Processing Technology doi: 10.1016/j.jmatprotec.2006.05.007 – ident: 10.1016/j.precisioneng.2012.10.005_bib0050 – volume: 41 start-page: 141 year: 1992 ident: 10.1016/j.precisioneng.2012.10.005_bib0055 article-title: Ultraprecision ductile cutting of glass by applying ultrasonic vibration publication-title: CIRP Annals – Manufacturing Technology doi: 10.1016/S0007-8506(07)61171-8 – volume: 44 start-page: 31 year: 1995 ident: 10.1016/j.precisioneng.2012.10.005_bib0030 article-title: Ultrasonic elliptical vibration cutting publication-title: CIRP Annals – Manufacturing Technology doi: 10.1016/S0007-8506(07)62269-0 – volume: 32 start-page: 153 year: 2008 ident: 10.1016/j.precisioneng.2012.10.005_bib0045 article-title: Review of vibration-assisted machining publication-title: Precision Engineering doi: 10.1016/j.precisioneng.2007.08.003 – volume: 57 start-page: 750 year: 2008 ident: 10.1016/j.precisioneng.2012.10.005_bib0005 article-title: Advances in engineered surfaces for functional performance publication-title: CIRP Annals – Manufacturing Technology doi: 10.1016/j.cirp.2008.09.003 |
SSID | ssj0007804 |
Score | 2.4280899 |
Snippet | ► An innovative process is proposed for the fast generation of structured surfaces. ► The new process utilizes controlled elliptical vibrations of the cutting... The elliptical vibration texturing process is an innovative machining method for the fast generation of textured surfaces. It adds a tertiary motion component... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 364 |
SubjectTerms | Arrays Design engineering Elliptical vibration cutting Elliptical vibration texturing Generators Langevin transducer Modal analysis Piezo actuator Tertiary motion generator Texturing Turning Turning (machining) Vibration |
Title | Development of a tertiary motion generator for elliptical vibration texturing |
URI | https://dx.doi.org/10.1016/j.precisioneng.2012.10.005 https://www.proquest.com/docview/1323228552 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KvehBfGJ9lBW8pm022TwOHkpRqmJPFnpbsq9SkTTUVvDib3dmk2gVhIKnQLJLwuzsNzPZb2YIuYpkrELb414MtgACFM4BB6X2tDKB0VHETEmQHUXDcXg_4ZMGGdS5MEirrLC_xHSH1tWdbiXNbjGbdZGWBM4ET32kBYEaYQZ7GKOWdz6-aR5YYKekMfoejq4LjzqOV7GoG9nkU6R5sY5jevG_jNQvuHY26HaP7FbOI-2X37dPGiY_IDtrJQUPyeMaC4jOLc0oHvrPssU7LRv20KkrNA2hNgV_lWI9zsL9z6ZvGDm7IcgGcemLR2R8e_M0GHpVywRPgV-09NLM14mVCVyNSSFYkTaDkMv4YPcjk2jY3bBhmY5CpZQOfZPqUJm4p6M0S7JABcekmYM4TghlPWs0OHdaBjy0QSKZljJlscWWk0FsWiStZSRUVU8c21q8iJo49izW5StQvvgM5NsiwdfcoqyqsdGs63opxA8dEQD_G82_rNdPwCbCk5EsN_PVq4CQHIAt4Zyd_vMdZ2SbuYYZyO05J83lYmUuwG1ZyrbTyzbZ6t89DEefYr_wpg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5qe1AP4hPfruA1tnlsHgcPpVha-zi10NuSfUQqUkttBf-9M5ukVEEQPAWSDAmzu9_MZL98A3AXykgFWYM7EcYCLFA4RxyU2tHK-EaHoWdyguww7IyDpwmfVKBV_gtDtMoC-3NMt2hdnKkX3qzPp9M60ZIwmeCJS7QgnEZbUCN1Kl6FWrPb6wzXgEwaOzmT0XXIoNQetTSv-aLsZTN7JqaXd2_JXvy3OPUDsW0Yau_DXpE_smb-igdQMbND2N1QFTyCwQYRiL1lLGW07z9NF58s79nDnq3WNFbbDFNWRpKcc_tJm31Q8WxvIUKI_YPxGMbtx1Gr4xRdExyFqdHSSVJXx5mM8WhMgvWKzFKsuoyLoT80scYFjmvW02GglNKBaxIdKBM1dJikceor_wSqM3THKTCvkRmN-Z2WPg8yP5aeljLxooy6TvqROYOk9JFQhaQ4dbZ4FSV37EVs-leQf-ka-vcM_LXtPBfW-JPVQzkU4ts0ERgB_mR_W46fwHVEmyPpzLyt3gVW5YhtMefe-T-fcQPbndGgL_rdYe8CdjzbP4OoPpdQXS5W5gqzmKW8LmbpF5nY81c |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+a+tertiary+motion+generator+for+elliptical+vibration+texturing&rft.jtitle=Precision+engineering&rft.au=Guo%2C+Ping&rft.au=Ehmann%2C+Kornel+F.&rft.date=2013-04-01&rft.pub=Elsevier+Inc&rft.issn=0141-6359&rft.eissn=1873-2372&rft.volume=37&rft.issue=2&rft.spage=364&rft.epage=371&rft_id=info:doi/10.1016%2Fj.precisioneng.2012.10.005&rft.externalDocID=S0141635912001638 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-6359&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-6359&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-6359&client=summon |