The role of iron nitrides in the Fe–N–C catalysis system towards the oxygen reduction reaction

Fe-N-C series catalysts are always attractive for their high catalytic activity towards the oxygen reduction reaction (ORR). However, they usually consist of various components such as iron nitrides, metallic iron, iron carbides, N-doped carbon and Fe-N moieties, leading to controversial contributio...

Full description

Saved in:
Bibliographic Details
Published inNanoscale Vol. 9; no. 22; pp. 7641 - 7649
Main Authors Wang, Min, Yang, Yushi, Liu, Xiaobo, Pu, Zonghua, Kou, Zongkui, Zhu, Peipei, Mu, Shichun
Format Journal Article
LanguageEnglish
Published England 2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Fe-N-C series catalysts are always attractive for their high catalytic activity towards the oxygen reduction reaction (ORR). However, they usually consist of various components such as iron nitrides, metallic iron, iron carbides, N-doped carbon and Fe-N moieties, leading to controversial contributions of these components to the catalysis of the ORR, especially iron nitrides. In this work, to investigate the function of iron nitrides, Fe N nanoparticles (NPs) embedded in mesoporous N-doped carbon without Fe-N moieties are designed and constructed by a simple histidine-assisted method. Herein, the use of histidine can increase the N and Fe contents in the product. The obtained catalyst exhibits excellent ORR catalytic activity which is very close to that of the commercial Pt/C catalyst in alkaline electrolytes. Combining the catalytic activity, structural characterization (especially from Mössbauer spectroscopy), and the results of DFT calculations for adsorption energies of oxygen on the main surfaces of Fe N including ε-Fe N and ζ-Fe N, it can be deduced that Fe N NPs as active species make a contribution to the ORR catalysis, of which ε-Fe N (x ≤ 2.1) is more active than ζ-Fe N. In addition, we find that there exists an obvious synergistic effect between Fe N NPs and N-doped carbon, leading to the greatly enhanced ORR catalytic activity.
AbstractList Fe-N-C series catalysts are always attractive for their high catalytic activity towards the oxygen reduction reaction (ORR). However, they usually consist of various components such as iron nitrides, metallic iron, iron carbides, N-doped carbon and Fe-N moieties, leading to controversial contributions of these components to the catalysis of the ORR, especially iron nitrides. In this work, to investigate the function of iron nitrides, Fe N nanoparticles (NPs) embedded in mesoporous N-doped carbon without Fe-N moieties are designed and constructed by a simple histidine-assisted method. Herein, the use of histidine can increase the N and Fe contents in the product. The obtained catalyst exhibits excellent ORR catalytic activity which is very close to that of the commercial Pt/C catalyst in alkaline electrolytes. Combining the catalytic activity, structural characterization (especially from Mössbauer spectroscopy), and the results of DFT calculations for adsorption energies of oxygen on the main surfaces of Fe N including ε-Fe N and ζ-Fe N, it can be deduced that Fe N NPs as active species make a contribution to the ORR catalysis, of which ε-Fe N (x ≤ 2.1) is more active than ζ-Fe N. In addition, we find that there exists an obvious synergistic effect between Fe N NPs and N-doped carbon, leading to the greatly enhanced ORR catalytic activity.
Fe-N-C series catalysts are always attractive for their high catalytic activity towards the oxygen reduction reaction (ORR). However, they usually consist of various components such as iron nitrides, metallic iron, iron carbides, N-doped carbon and Fe-N4 moieties, leading to controversial contributions of these components to the catalysis of the ORR, especially iron nitrides. In this work, to investigate the function of iron nitrides, FexN nanoparticles (NPs) embedded in mesoporous N-doped carbon without Fe-N4 moieties are designed and constructed by a simple histidine-assisted method. Herein, the use of histidine can increase the N and Fe contents in the product. The obtained catalyst exhibits excellent ORR catalytic activity which is very close to that of the commercial Pt/C catalyst in alkaline electrolytes. Combining the catalytic activity, structural characterization (especially from Mössbauer spectroscopy), and the results of DFT calculations for adsorption energies of oxygen on the main surfaces of Fe2N including ε-Fe2N and ζ-Fe2N, it can be deduced that Fe2N NPs as active species make a contribution to the ORR catalysis, of which ε-FexN (x ≤ 2.1) is more active than ζ-Fe2N. In addition, we find that there exists an obvious synergistic effect between Fe2N NPs and N-doped carbon, leading to the greatly enhanced ORR catalytic activity.Fe-N-C series catalysts are always attractive for their high catalytic activity towards the oxygen reduction reaction (ORR). However, they usually consist of various components such as iron nitrides, metallic iron, iron carbides, N-doped carbon and Fe-N4 moieties, leading to controversial contributions of these components to the catalysis of the ORR, especially iron nitrides. In this work, to investigate the function of iron nitrides, FexN nanoparticles (NPs) embedded in mesoporous N-doped carbon without Fe-N4 moieties are designed and constructed by a simple histidine-assisted method. Herein, the use of histidine can increase the N and Fe contents in the product. The obtained catalyst exhibits excellent ORR catalytic activity which is very close to that of the commercial Pt/C catalyst in alkaline electrolytes. Combining the catalytic activity, structural characterization (especially from Mössbauer spectroscopy), and the results of DFT calculations for adsorption energies of oxygen on the main surfaces of Fe2N including ε-Fe2N and ζ-Fe2N, it can be deduced that Fe2N NPs as active species make a contribution to the ORR catalysis, of which ε-FexN (x ≤ 2.1) is more active than ζ-Fe2N. In addition, we find that there exists an obvious synergistic effect between Fe2N NPs and N-doped carbon, leading to the greatly enhanced ORR catalytic activity.
Fe-N-C series catalysts are always attractive for their high catalytic activity towards the oxygen reduction reaction (ORR). However, they usually consist of various components such as iron nitrides, metallic iron, iron carbides, N-doped carbon and Fe-N4 moieties, leading to controversial contributions of these components to the catalysis of the ORR, especially iron nitrides. In this work, to investigate the function of iron nitrides, FexN nanoparticles (NPs) embedded in mesoporous N-doped carbon without Fe-N4 moieties are designed and constructed by a simple histidine-assisted method. Herein, the use of histidine can increase the N and Fe contents in the product. The obtained catalyst exhibits excellent ORR catalytic activity which is very close to that of the commercial Pt/C catalyst in alkaline electrolytes. Combining the catalytic activity, structural characterization (especially from Mossbauer spectroscopy), and the results of DFT calculations for adsorption energies of oxygen on the main surfaces of Fe2N including epsilon -Fe2N and zeta -Fe2N, it can be deduced that Fe2N NPs as active species make a contribution to the ORR catalysis, of which epsilon -FexN (x less than or equal to 2.1) is more active than zeta -Fe2N. In addition, we find that there exists an obvious synergistic effect between Fe2N NPs and N-doped carbon, leading to the greatly enhanced ORR catalytic activity.
Author Mu, Shichun
Yang, Yushi
Pu, Zonghua
Zhu, Peipei
Wang, Min
Kou, Zongkui
Liu, Xiaobo
Author_xml – sequence: 1
  givenname: Min
  surname: Wang
  fullname: Wang, Min
– sequence: 2
  givenname: Yushi
  surname: Yang
  fullname: Yang, Yushi
– sequence: 3
  givenname: Xiaobo
  surname: Liu
  fullname: Liu, Xiaobo
– sequence: 4
  givenname: Zonghua
  surname: Pu
  fullname: Pu, Zonghua
– sequence: 5
  givenname: Zongkui
  orcidid: 0000-0002-5377-2376
  surname: Kou
  fullname: Kou, Zongkui
– sequence: 6
  givenname: Peipei
  surname: Zhu
  fullname: Zhu, Peipei
– sequence: 7
  givenname: Shichun
  orcidid: 0000-0003-3902-0976
  surname: Mu
  fullname: Mu, Shichun
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28540947$$D View this record in MEDLINE/PubMed
BookMark eNqN0ctKxDAUBuAgI85FNz6AZCnCaG5tmqWMjgrDCDKuS9qeaqTTjEkG7c538A19EjsXFcSFi5AfzpfAOaePOrWtAaFDSk4p4epsJKd3hCoWXeygHiOCDDmXrPOdY9FFfe-fCIkVj_ke6rIkEkQJ2UPZ7BGwsxVgW2LjbI1rE5wpwGNT49AWx_Dx9j5tzwjnOuiq8cZj3_gAcxzsi3aFXzv72jxAjR0UyzwYu0p6HfbRbqkrDwfbe4Dux5ez0fVwcnt1MzqfDHPBeBgqqQTEKi9oxqNCMRIVWcIFIZqBLKJI6ITFWQxJmWkQMmMJBypJWdK2zVJLPkDHm38Xzj4vwYd0bnwOVaVrsEufUkUjzpiQyT8oYSJhgq_o0ZYuszkU6cKZuXZN-jXCFpxsQO6s9w7Kb0JJutpP-rOfFpNfODdBr6YUnDbVX08-AYXBkqk
CitedBy_id crossref_primary_10_1007_s12274_019_2415_7
crossref_primary_10_1016_j_carbon_2019_07_044
crossref_primary_10_1088_1361_6528_ac85c4
crossref_primary_10_1039_D3GC04645A
crossref_primary_10_1016_j_electacta_2019_134590
crossref_primary_10_1039_D0TA12504K
crossref_primary_10_1007_s12678_021_00679_2
crossref_primary_10_1002_chem_201802453
crossref_primary_10_1016_j_carbon_2020_09_024
crossref_primary_10_1016_j_ijhydene_2023_02_024
crossref_primary_10_1016_j_ijhydene_2024_02_027
crossref_primary_10_1016_j_electacta_2018_05_206
crossref_primary_10_1016_j_cplett_2018_07_066
crossref_primary_10_3390_nano7110404
crossref_primary_10_1021_acs_est_1c08282
crossref_primary_10_1016_j_ijhydene_2018_12_179
crossref_primary_10_1016_j_jpowsour_2022_232434
crossref_primary_10_1149_2_1031712jes
crossref_primary_10_3390_polym15204064
crossref_primary_10_1007_s11164_022_04682_0
crossref_primary_10_1039_D0CC01517B
crossref_primary_10_1016_j_jiec_2019_01_044
crossref_primary_10_1002_smll_201804524
crossref_primary_10_1002_celc_201800505
crossref_primary_10_1016_j_apcatb_2019_05_037
crossref_primary_10_1016_j_elecom_2019_01_021
crossref_primary_10_1039_D0SE00627K
crossref_primary_10_1166_nnl_2017_2547
crossref_primary_10_1021_acsomega_8b02646
crossref_primary_10_1039_C8NR02573H
crossref_primary_10_1016_j_jpowsour_2018_12_056
crossref_primary_10_1016_j_apsusc_2021_151030
crossref_primary_10_1039_D2NJ03091H
crossref_primary_10_1016_j_cej_2025_159560
crossref_primary_10_1016_j_carbon_2018_05_042
crossref_primary_10_1016_S1872_2067_18_63107_9
crossref_primary_10_1016_S1872_5805_22_60575_4
crossref_primary_10_1016_j_cej_2022_138823
crossref_primary_10_1002_adfm_202215185
crossref_primary_10_1016_j_cej_2018_02_039
crossref_primary_10_1016_j_nanoen_2020_105714
crossref_primary_10_3390_catal8080320
crossref_primary_10_1016_j_carbon_2017_11_051
crossref_primary_10_1007_s12274_021_3827_8
crossref_primary_10_1021_acsaem_1c03956
crossref_primary_10_1016_j_carbon_2018_08_020
crossref_primary_10_1016_j_electacta_2019_134777
crossref_primary_10_1007_s12274_020_3040_1
crossref_primary_10_1021_acsaem_8b00970
crossref_primary_10_1016_j_electacta_2019_05_024
crossref_primary_10_1016_j_jallcom_2022_168107
crossref_primary_10_1016_j_cplett_2021_138769
crossref_primary_10_1016_j_est_2022_106012
crossref_primary_10_1016_j_inoche_2020_107952
crossref_primary_10_12677_MS_2020_109092
crossref_primary_10_1039_C8TA09722D
crossref_primary_10_1016_j_fuel_2021_122985
crossref_primary_10_1021_acsanm_9b00506
crossref_primary_10_1016_j_jallcom_2023_169039
crossref_primary_10_1002_celc_201901144
crossref_primary_10_1149_2_1081912jes
crossref_primary_10_20964_2020_09_26
crossref_primary_10_1016_j_apsusc_2019_03_137
crossref_primary_10_1016_j_jallcom_2020_156605
crossref_primary_10_1002_admi_201701345
crossref_primary_10_1016_j_jcis_2019_09_107
crossref_primary_10_1016_j_electacta_2023_142779
crossref_primary_10_1007_s41918_019_00052_4
crossref_primary_10_1039_C8NR01140K
crossref_primary_10_1016_j_carbon_2023_01_024
crossref_primary_10_1016_j_est_2020_101287
crossref_primary_10_1002_smll_201801239
crossref_primary_10_1016_j_apsusc_2019_06_076
crossref_primary_10_1016_j_watres_2022_119022
crossref_primary_10_1016_j_apsusc_2019_144020
crossref_primary_10_1149_2_0461803jes
crossref_primary_10_1021_acs_chemmater_7b04762
crossref_primary_10_1039_D2TA08737E
crossref_primary_10_1007_s11164_022_04823_5
crossref_primary_10_1016_j_electacta_2021_139074
crossref_primary_10_1002_adfm_201802596
crossref_primary_10_1021_acs_langmuir_2c01130
crossref_primary_10_1016_j_jcis_2020_07_005
crossref_primary_10_1088_1361_6528_ab6471
crossref_primary_10_1038_s41427_018_0063_0
crossref_primary_10_1021_acs_cgd_1c01528
crossref_primary_10_1002_slct_202004709
crossref_primary_10_1016_j_carbon_2018_06_052
crossref_primary_10_1016_j_jcis_2022_02_106
crossref_primary_10_1021_acs_inorgchem_9b03042
crossref_primary_10_1016_j_jpowsour_2019_226770
Cites_doi 10.1039/c3cc40971f
10.1021/acscatal.6b00643
10.1021/acsami.6b02078
10.1021/ja407552k
10.1021/ja3030565
10.1021/acs.jpcc.6b03933
10.1039/c3ta13821f
10.1038/nmat3087
10.1007/BF02646876
10.1039/C4TA02279C
10.1021/am301829u
10.1021/nn302674k
10.1021/jp500781v
10.1002/smll.201503305
10.1016/j.carbon.2013.09.005
10.1021/cm101634k
10.1006/jcat.2002.3615
10.1002/adma.201304147
10.1038/ncomms8343
10.1002/adfm.201303902
10.1021/jacs.6b00757
10.1021/jp400388v
10.1016/j.nanoen.2014.11.019
10.1039/C5EE02903A
10.1002/anie.201606327
10.1039/c2cp41957b
10.1039/C5NR08008H
10.1039/c1ee01428e
10.1103/PhysRevLett.77.3865
10.1002/anie.201405314
10.1021/acs.jpcc.5b10334
10.1002/anie.201500569
10.1016/S0022-3697(73)80229-X
10.1021/nn901850u
10.1002/ange.201502173
10.1039/c3nr34003a
10.1126/science.aaa8765
10.1016/j.carbon.2005.09.010
10.1021/ja410076f
10.1002/anie.201510495
10.1021/jz402717r
10.1016/j.jpowsour.2014.08.038
10.1021/cs500673k
10.1021/ja504696r
10.1039/C4TA01253D
10.1021/jp802456e
10.1039/C4TA06499B
10.1016/j.electacta.2015.01.200
10.1126/science.1168049
10.1002/adma.201505086
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
DOI 10.1039/C7NR01925D
DatabaseName CrossRef
PubMed
MEDLINE - Academic
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
DatabaseTitleList PubMed
MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2040-3372
EndPage 7649
ExternalDocumentID 28540947
10_1039_C7NR01925D
Genre Journal Article
GroupedDBID ---
0-7
0R~
29M
4.4
53G
705
7~J
AAEMU
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
AAYXX
ABASK
ABDVN
ABEMK
ABIQK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ACRPL
ADMRA
ADNMO
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AFVBQ
AGEGJ
AGQPQ
AGRSR
AHGCF
AHGXI
AKBGW
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALSGL
ALUYA
ANBJS
ANLMG
ANUXI
APEMP
ASKNT
ASPBG
AUDPV
AVWKF
AZFZN
BLAPV
BSQNT
C6K
CAG
CITATION
COF
DU5
EBS
ECGLT
EE0
EF-
EJD
F5P
FEDTE
GGIMP
H13
HVGLF
HZ~
H~N
J3G
J3H
J3I
L-8
O-G
O9-
OK1
P2P
R56
RAOCF
RCNCU
RNS
RPMJG
RSCEA
RVUXY
-JG
AGSTE
NPM
RRC
7X8
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
ID FETCH-LOGICAL-c423t-9794e69cd1b35d9205db83400a2e7d554a826b6e8fbae47b283e170ff1204fa73
ISSN 2040-3364
2040-3372
IngestDate Fri Jul 11 10:44:12 EDT 2025
Fri Jul 11 05:00:22 EDT 2025
Wed Feb 19 02:41:35 EST 2025
Tue Jul 01 00:33:45 EDT 2025
Thu Apr 24 23:00:20 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c423t-9794e69cd1b35d9205db83400a2e7d554a826b6e8fbae47b283e170ff1204fa73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5377-2376
0000-0003-3902-0976
PMID 28540947
PQID 1902482438
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_1915322478
proquest_miscellaneous_1902482438
pubmed_primary_28540947
crossref_primary_10_1039_C7NR01925D
crossref_citationtrail_10_1039_C7NR01925D
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Nanoscale
PublicationTitleAlternate Nanoscale
PublicationYear 2017
References Kramm (C7NR01925D-(cit17)/*[position()=1]) 2014; 136
Wu (C7NR01925D-(cit39)/*[position()=1]) 2012; 134
Gong (C7NR01925D-(cit3)/*[position()=1]) 2009; 323
Fujita (C7NR01925D-(cit50)/*[position()=1]) 1977; 8
Yang (C7NR01925D-(cit33)/*[position()=1]) 2016; 8
Yang (C7NR01925D-(cit35)/*[position()=1]) 2011; 4
Wu (C7NR01925D-(cit40)/*[position()=1]) 2014; 26
Zhang (C7NR01925D-(cit27)/*[position()=1]) 2015; 160
Ding (C7NR01925D-(cit21)/*[position()=1]) 2015; 3
Wang (C7NR01925D-(cit13)/*[position()=1]) 2013; 49
Hu (C7NR01925D-(cit8)/*[position()=1]) 2016; 9
Mu (C7NR01925D-(cit34)/*[position()=1]) 2006; 44
Wu (C7NR01925D-(cit26)/*[position()=1]) 2014; 2
Koslowski (C7NR01925D-(cit47)/*[position()=1]) 2008; 112
Li (C7NR01925D-(cit7)/*[position()=1]) 2016; 28
Zhu (C7NR01925D-(cit51)/*[position()=1]) 2014; 53
Zheng (C7NR01925D-(cit4)/*[position()=1]) 2013; 5
Huang (C7NR01925D-(cit1)/*[position()=1]) 2015; 348
Sun (C7NR01925D-(cit23)/*[position()=1]) 2012; 4
Perdew (C7NR01925D-(cit25)/*[position()=1]) 1996; 77
Liu (C7NR01925D-(cit41)/*[position()=1]) 2016; 120
Zhang (C7NR01925D-(cit43)/*[position()=1]) 2016; 120
Zhang (C7NR01925D-(cit30)/*[position()=1]) 2014; 271
Yin (C7NR01925D-(cit12)/*[position()=1]) 2014; 24
Liang (C7NR01925D-(cit31)/*[position()=1]) 2013; 135
Wu (C7NR01925D-(cit37)/*[position()=1]) 2015; 127
Clark (C7NR01925D-(cit24)/*[position()=1]) 2005; 220
Hu (C7NR01925D-(cit15)/*[position()=1]) 2016; 8
Lin (C7NR01925D-(cit48)/*[position()=1]) 2014; 136
Jiang (C7NR01925D-(cit16)/*[position()=1]) 2016; 138
Parvez (C7NR01925D-(cit28)/*[position()=1]) 2012; 6
Bainbridge (C7NR01925D-(cit36)/*[position()=1]) 1973; 34
Strickland (C7NR01925D-(cit19)/*[position()=1]) 2015; 6
He (C7NR01925D-(cit2)/*[position()=1]) 2014; 66
Kramm (C7NR01925D-(cit20)/*[position()=1]) 2012; 14
Liu (C7NR01925D-(cit22)/*[position()=1]) 2016; 12
Wei (C7NR01925D-(cit38)/*[position()=1]) 2016; 55
Choi (C7NR01925D-(cit6)/*[position()=1]) 2016
Bikkarolla (C7NR01925D-(cit10)/*[position()=1]) 2014; 2
Balogun (C7NR01925D-(cit11)/*[position()=1]) 2015; 11
Tylus (C7NR01925D-(cit46)/*[position()=1]) 2014; 118
Qu (C7NR01925D-(cit49)/*[position()=1]) 2010; 4
Kramm (C7NR01925D-(cit18)/*[position()=1]) 2014; 2
Wang (C7NR01925D-(cit29)/*[position()=1]) 2014; 4
Liang (C7NR01925D-(cit9)/*[position()=1]) 2011; 10
Duan (C7NR01925D-(cit44)/*[position()=1]) 2013; 117
Zhang (C7NR01925D-(cit5)/*[position()=1]) 2016; 55
He (C7NR01925D-(cit32)/*[position()=1]) 2010; 22
Kattel (C7NR01925D-(cit14)/*[position()=1]) 2014; 5
Nørskov (C7NR01925D-(cit42)/*[position()=1]) 2002; 209
Masa (C7NR01925D-(cit45)/*[position()=1]) 2015; 54
References_xml – volume: 49
  start-page: 3022
  year: 2013
  ident: C7NR01925D-(cit13)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc40971f
– start-page: 3136
  year: 2016
  ident: C7NR01925D-(cit6)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b00643
– volume: 8
  start-page: 19379
  year: 2016
  ident: C7NR01925D-(cit15)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b02078
– volume: 135
  start-page: 16002
  year: 2013
  ident: C7NR01925D-(cit31)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja407552k
– volume: 134
  start-page: 9082
  year: 2012
  ident: C7NR01925D-(cit39)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja3030565
– volume: 120
  start-page: 15173
  year: 2016
  ident: C7NR01925D-(cit43)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b03933
– volume: 2
  start-page: 2663
  year: 2014
  ident: C7NR01925D-(cit18)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta13821f
– volume: 10
  start-page: 780
  year: 2011
  ident: C7NR01925D-(cit9)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3087
– volume: 8
  start-page: 1727
  year: 1977
  ident: C7NR01925D-(cit50)/*[position()=1]
  publication-title: Metall. Trans. A
  doi: 10.1007/BF02646876
– volume: 2
  start-page: 14493
  year: 2014
  ident: C7NR01925D-(cit10)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA02279C
– volume: 4
  start-page: 6235
  year: 2012
  ident: C7NR01925D-(cit23)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am301829u
– volume: 6
  start-page: 9541
  year: 2012
  ident: C7NR01925D-(cit28)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn302674k
– volume: 118
  start-page: 8999
  year: 2014
  ident: C7NR01925D-(cit46)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp500781v
– volume: 12
  start-page: 1295
  year: 2016
  ident: C7NR01925D-(cit22)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201503305
– volume: 66
  start-page: 312
  year: 2014
  ident: C7NR01925D-(cit2)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2013.09.005
– volume: 22
  start-page: 5054
  year: 2010
  ident: C7NR01925D-(cit32)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm101634k
– volume: 209
  start-page: 275
  year: 2002
  ident: C7NR01925D-(cit42)/*[position()=1]
  publication-title: J. Catal.
  doi: 10.1006/jcat.2002.3615
– volume: 26
  start-page: 1450
  year: 2014
  ident: C7NR01925D-(cit40)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201304147
– volume: 6
  year: 2015
  ident: C7NR01925D-(cit19)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8343
– volume: 24
  start-page: 2930
  year: 2014
  ident: C7NR01925D-(cit12)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201303902
– volume: 138
  start-page: 3570
  year: 2016
  ident: C7NR01925D-(cit16)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b00757
– volume: 117
  start-page: 6284
  year: 2013
  ident: C7NR01925D-(cit44)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp400388v
– volume: 11
  start-page: 348
  year: 2015
  ident: C7NR01925D-(cit11)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.11.019
– volume: 9
  start-page: 107
  year: 2016
  ident: C7NR01925D-(cit8)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE02903A
– volume: 55
  start-page: 12470
  year: 2016
  ident: C7NR01925D-(cit38)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201606327
– volume: 14
  start-page: 11673
  year: 2012
  ident: C7NR01925D-(cit20)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c2cp41957b
– volume: 8
  start-page: 959
  year: 2016
  ident: C7NR01925D-(cit33)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C5NR08008H
– volume: 4
  start-page: 4500
  year: 2011
  ident: C7NR01925D-(cit35)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c1ee01428e
– volume: 77
  start-page: 3865
  year: 1996
  ident: C7NR01925D-(cit25)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 53
  start-page: 10673
  year: 2014
  ident: C7NR01925D-(cit51)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201405314
– volume: 220
  start-page: 567
  year: 2005
  ident: C7NR01925D-(cit24)/*[position()=1]
  publication-title: Z. Krist. Mater.
– volume: 120
  start-page: 1586
  year: 2016
  ident: C7NR01925D-(cit41)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b10334
– volume: 54
  start-page: 10102
  year: 2015
  ident: C7NR01925D-(cit45)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201500569
– volume: 34
  start-page: 1579
  year: 1973
  ident: C7NR01925D-(cit36)/*[position()=1]
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/S0022-3697(73)80229-X
– volume: 4
  start-page: 1321
  year: 2010
  ident: C7NR01925D-(cit49)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn901850u
– volume: 127
  start-page: 8297
  year: 2015
  ident: C7NR01925D-(cit37)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.201502173
– volume: 5
  start-page: 3283
  year: 2013
  ident: C7NR01925D-(cit4)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/c3nr34003a
– volume: 348
  start-page: 1230
  year: 2015
  ident: C7NR01925D-(cit1)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aaa8765
– volume: 44
  start-page: 762
  year: 2006
  ident: C7NR01925D-(cit34)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2005.09.010
– volume: 136
  start-page: 978
  year: 2014
  ident: C7NR01925D-(cit17)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja410076f
– volume: 55
  start-page: 2230
  year: 2016
  ident: C7NR01925D-(cit5)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201510495
– volume: 5
  start-page: 452
  year: 2014
  ident: C7NR01925D-(cit14)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz402717r
– volume: 271
  start-page: 522
  year: 2014
  ident: C7NR01925D-(cit30)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.08.038
– volume: 4
  start-page: 3928
  year: 2014
  ident: C7NR01925D-(cit29)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/cs500673k
– volume: 136
  start-page: 11027
  year: 2014
  ident: C7NR01925D-(cit48)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja504696r
– volume: 2
  start-page: 12361
  year: 2014
  ident: C7NR01925D-(cit26)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA01253D
– volume: 112
  start-page: 15356
  year: 2008
  ident: C7NR01925D-(cit47)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp802456e
– volume: 3
  start-page: 4462
  year: 2015
  ident: C7NR01925D-(cit21)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA06499B
– volume: 160
  start-page: 139
  year: 2015
  ident: C7NR01925D-(cit27)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2015.01.200
– volume: 323
  start-page: 760
  year: 2009
  ident: C7NR01925D-(cit3)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1168049
– volume: 28
  start-page: 2337
  year: 2016
  ident: C7NR01925D-(cit7)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201505086
SSID ssj0069363
Score 2.5083039
Snippet Fe-N-C series catalysts are always attractive for their high catalytic activity towards the oxygen reduction reaction (ORR). However, they usually consist of...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 7641
SubjectTerms Carbon
Catalysis
Catalysts
Catalytic activity
Iron
Iron nitride
Nanoparticles
Oxygen
Title The role of iron nitrides in the Fe–N–C catalysis system towards the oxygen reduction reaction
URI https://www.ncbi.nlm.nih.gov/pubmed/28540947
https://www.proquest.com/docview/1902482438
https://www.proquest.com/docview/1915322478
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZge4GHiTsbFxnBC6oykji148dRUSYQfUCb6HiJ4thmkaZkahsJ9rT_wD_kl3B8idtCQYOHRqnlJK3Pl-PP9jmfEXoB_i-WGUmjlKgsyqSkUV7pPKKUCS2YFZgx0RYTenicvZsOp8vlAptdshD71cXGvJL_sSqUgV1Nluw_WDbcFArgHOwLR7AwHK9s4z480KSrDeD9nNXSxlhZRjlWfTADmYSz0cDO2VgpEifkDATUBM_O7TXt12_wwMHMaLpacACtrIL5PI8Fp9zOwbzLlR0_7_yhDmg78UUn3fy0DoE_dWfKpnXZijb4ZVv2uW2-nHbl6jyES7h0jio1UYmEODXyfbVaxtY8LV8BlMtG9m6TUad-5btg-Mo3uveYGHXUEZt8NMzU78C-pqH9S98WIg7tWjvhxfLa62g7haEFOPPtg_ev337q-2_Kid1_L_yrXtSW8FfLq9dpzB_GJpajHN1CO35wgQ8cUm6ja6q5g26uSE7eRQIwgw1mcKuxwQzuMYPrBoP98Vj9uPw-gc8IB5xghxPscWLrOZzggBPc4-QeOh6_ORodRn6fjagCMr2IOPhkRXklE0GGkqfxUIqcgHMvU8Uk8M0SxqCCqlyLUmVMACNVCYu1TqCNdMnIfbTVtI16iLAuhVQ51RXcLKOJ4jKhiuW8SlSs80rsopd9sxWVF6E3e6GcFb8baBc9D3XPnfTKxlrP-tYvwDOa5a6yUW03L4DqplmeZiT_Wx3o8YHFMqjzwJkuPMvkFsc8Y3tX-h2P0A3zVrjZucdoazHr1BPgqwvx1APsJ-_TlTU
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+role+of+iron+nitrides+in+the+Fe%E2%80%93N%E2%80%93C+catalysis+system+towards+the+oxygen+reduction+reaction&rft.jtitle=Nanoscale&rft.au=Wang%2C+Min&rft.au=Yang%2C+Yushi&rft.au=Liu%2C+Xiaobo&rft.au=Pu%2C+Zonghua&rft.date=2017&rft.issn=2040-3364&rft.eissn=2040-3372&rft.volume=9&rft.issue=22&rft.spage=7641&rft.epage=7649&rft_id=info:doi/10.1039%2FC7NR01925D&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C7NR01925D
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon