The role of iron nitrides in the Fe–N–C catalysis system towards the oxygen reduction reaction
Fe-N-C series catalysts are always attractive for their high catalytic activity towards the oxygen reduction reaction (ORR). However, they usually consist of various components such as iron nitrides, metallic iron, iron carbides, N-doped carbon and Fe-N moieties, leading to controversial contributio...
Saved in:
Published in | Nanoscale Vol. 9; no. 22; pp. 7641 - 7649 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Fe-N-C series catalysts are always attractive for their high catalytic activity towards the oxygen reduction reaction (ORR). However, they usually consist of various components such as iron nitrides, metallic iron, iron carbides, N-doped carbon and Fe-N
moieties, leading to controversial contributions of these components to the catalysis of the ORR, especially iron nitrides. In this work, to investigate the function of iron nitrides, Fe
N nanoparticles (NPs) embedded in mesoporous N-doped carbon without Fe-N
moieties are designed and constructed by a simple histidine-assisted method. Herein, the use of histidine can increase the N and Fe contents in the product. The obtained catalyst exhibits excellent ORR catalytic activity which is very close to that of the commercial Pt/C catalyst in alkaline electrolytes. Combining the catalytic activity, structural characterization (especially from Mössbauer spectroscopy), and the results of DFT calculations for adsorption energies of oxygen on the main surfaces of Fe
N including ε-Fe
N and ζ-Fe
N, it can be deduced that Fe
N NPs as active species make a contribution to the ORR catalysis, of which ε-Fe
N (x ≤ 2.1) is more active than ζ-Fe
N. In addition, we find that there exists an obvious synergistic effect between Fe
N NPs and N-doped carbon, leading to the greatly enhanced ORR catalytic activity. |
---|---|
AbstractList | Fe-N-C series catalysts are always attractive for their high catalytic activity towards the oxygen reduction reaction (ORR). However, they usually consist of various components such as iron nitrides, metallic iron, iron carbides, N-doped carbon and Fe-N
moieties, leading to controversial contributions of these components to the catalysis of the ORR, especially iron nitrides. In this work, to investigate the function of iron nitrides, Fe
N nanoparticles (NPs) embedded in mesoporous N-doped carbon without Fe-N
moieties are designed and constructed by a simple histidine-assisted method. Herein, the use of histidine can increase the N and Fe contents in the product. The obtained catalyst exhibits excellent ORR catalytic activity which is very close to that of the commercial Pt/C catalyst in alkaline electrolytes. Combining the catalytic activity, structural characterization (especially from Mössbauer spectroscopy), and the results of DFT calculations for adsorption energies of oxygen on the main surfaces of Fe
N including ε-Fe
N and ζ-Fe
N, it can be deduced that Fe
N NPs as active species make a contribution to the ORR catalysis, of which ε-Fe
N (x ≤ 2.1) is more active than ζ-Fe
N. In addition, we find that there exists an obvious synergistic effect between Fe
N NPs and N-doped carbon, leading to the greatly enhanced ORR catalytic activity. Fe-N-C series catalysts are always attractive for their high catalytic activity towards the oxygen reduction reaction (ORR). However, they usually consist of various components such as iron nitrides, metallic iron, iron carbides, N-doped carbon and Fe-N4 moieties, leading to controversial contributions of these components to the catalysis of the ORR, especially iron nitrides. In this work, to investigate the function of iron nitrides, FexN nanoparticles (NPs) embedded in mesoporous N-doped carbon without Fe-N4 moieties are designed and constructed by a simple histidine-assisted method. Herein, the use of histidine can increase the N and Fe contents in the product. The obtained catalyst exhibits excellent ORR catalytic activity which is very close to that of the commercial Pt/C catalyst in alkaline electrolytes. Combining the catalytic activity, structural characterization (especially from Mössbauer spectroscopy), and the results of DFT calculations for adsorption energies of oxygen on the main surfaces of Fe2N including ε-Fe2N and ζ-Fe2N, it can be deduced that Fe2N NPs as active species make a contribution to the ORR catalysis, of which ε-FexN (x ≤ 2.1) is more active than ζ-Fe2N. In addition, we find that there exists an obvious synergistic effect between Fe2N NPs and N-doped carbon, leading to the greatly enhanced ORR catalytic activity.Fe-N-C series catalysts are always attractive for their high catalytic activity towards the oxygen reduction reaction (ORR). However, they usually consist of various components such as iron nitrides, metallic iron, iron carbides, N-doped carbon and Fe-N4 moieties, leading to controversial contributions of these components to the catalysis of the ORR, especially iron nitrides. In this work, to investigate the function of iron nitrides, FexN nanoparticles (NPs) embedded in mesoporous N-doped carbon without Fe-N4 moieties are designed and constructed by a simple histidine-assisted method. Herein, the use of histidine can increase the N and Fe contents in the product. The obtained catalyst exhibits excellent ORR catalytic activity which is very close to that of the commercial Pt/C catalyst in alkaline electrolytes. Combining the catalytic activity, structural characterization (especially from Mössbauer spectroscopy), and the results of DFT calculations for adsorption energies of oxygen on the main surfaces of Fe2N including ε-Fe2N and ζ-Fe2N, it can be deduced that Fe2N NPs as active species make a contribution to the ORR catalysis, of which ε-FexN (x ≤ 2.1) is more active than ζ-Fe2N. In addition, we find that there exists an obvious synergistic effect between Fe2N NPs and N-doped carbon, leading to the greatly enhanced ORR catalytic activity. Fe-N-C series catalysts are always attractive for their high catalytic activity towards the oxygen reduction reaction (ORR). However, they usually consist of various components such as iron nitrides, metallic iron, iron carbides, N-doped carbon and Fe-N4 moieties, leading to controversial contributions of these components to the catalysis of the ORR, especially iron nitrides. In this work, to investigate the function of iron nitrides, FexN nanoparticles (NPs) embedded in mesoporous N-doped carbon without Fe-N4 moieties are designed and constructed by a simple histidine-assisted method. Herein, the use of histidine can increase the N and Fe contents in the product. The obtained catalyst exhibits excellent ORR catalytic activity which is very close to that of the commercial Pt/C catalyst in alkaline electrolytes. Combining the catalytic activity, structural characterization (especially from Mossbauer spectroscopy), and the results of DFT calculations for adsorption energies of oxygen on the main surfaces of Fe2N including epsilon -Fe2N and zeta -Fe2N, it can be deduced that Fe2N NPs as active species make a contribution to the ORR catalysis, of which epsilon -FexN (x less than or equal to 2.1) is more active than zeta -Fe2N. In addition, we find that there exists an obvious synergistic effect between Fe2N NPs and N-doped carbon, leading to the greatly enhanced ORR catalytic activity. |
Author | Mu, Shichun Yang, Yushi Pu, Zonghua Zhu, Peipei Wang, Min Kou, Zongkui Liu, Xiaobo |
Author_xml | – sequence: 1 givenname: Min surname: Wang fullname: Wang, Min – sequence: 2 givenname: Yushi surname: Yang fullname: Yang, Yushi – sequence: 3 givenname: Xiaobo surname: Liu fullname: Liu, Xiaobo – sequence: 4 givenname: Zonghua surname: Pu fullname: Pu, Zonghua – sequence: 5 givenname: Zongkui orcidid: 0000-0002-5377-2376 surname: Kou fullname: Kou, Zongkui – sequence: 6 givenname: Peipei surname: Zhu fullname: Zhu, Peipei – sequence: 7 givenname: Shichun orcidid: 0000-0003-3902-0976 surname: Mu fullname: Mu, Shichun |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28540947$$D View this record in MEDLINE/PubMed |
BookMark | eNqN0ctKxDAUBuAgI85FNz6AZCnCaG5tmqWMjgrDCDKuS9qeaqTTjEkG7c538A19EjsXFcSFi5AfzpfAOaePOrWtAaFDSk4p4epsJKd3hCoWXeygHiOCDDmXrPOdY9FFfe-fCIkVj_ke6rIkEkQJ2UPZ7BGwsxVgW2LjbI1rE5wpwGNT49AWx_Dx9j5tzwjnOuiq8cZj3_gAcxzsi3aFXzv72jxAjR0UyzwYu0p6HfbRbqkrDwfbe4Dux5ez0fVwcnt1MzqfDHPBeBgqqQTEKi9oxqNCMRIVWcIFIZqBLKJI6ITFWQxJmWkQMmMJBypJWdK2zVJLPkDHm38Xzj4vwYd0bnwOVaVrsEufUkUjzpiQyT8oYSJhgq_o0ZYuszkU6cKZuXZN-jXCFpxsQO6s9w7Kb0JJutpP-rOfFpNfODdBr6YUnDbVX08-AYXBkqk |
CitedBy_id | crossref_primary_10_1007_s12274_019_2415_7 crossref_primary_10_1016_j_carbon_2019_07_044 crossref_primary_10_1088_1361_6528_ac85c4 crossref_primary_10_1039_D3GC04645A crossref_primary_10_1016_j_electacta_2019_134590 crossref_primary_10_1039_D0TA12504K crossref_primary_10_1007_s12678_021_00679_2 crossref_primary_10_1002_chem_201802453 crossref_primary_10_1016_j_carbon_2020_09_024 crossref_primary_10_1016_j_ijhydene_2023_02_024 crossref_primary_10_1016_j_ijhydene_2024_02_027 crossref_primary_10_1016_j_electacta_2018_05_206 crossref_primary_10_1016_j_cplett_2018_07_066 crossref_primary_10_3390_nano7110404 crossref_primary_10_1021_acs_est_1c08282 crossref_primary_10_1016_j_ijhydene_2018_12_179 crossref_primary_10_1016_j_jpowsour_2022_232434 crossref_primary_10_1149_2_1031712jes crossref_primary_10_3390_polym15204064 crossref_primary_10_1007_s11164_022_04682_0 crossref_primary_10_1039_D0CC01517B crossref_primary_10_1016_j_jiec_2019_01_044 crossref_primary_10_1002_smll_201804524 crossref_primary_10_1002_celc_201800505 crossref_primary_10_1016_j_apcatb_2019_05_037 crossref_primary_10_1016_j_elecom_2019_01_021 crossref_primary_10_1039_D0SE00627K crossref_primary_10_1166_nnl_2017_2547 crossref_primary_10_1021_acsomega_8b02646 crossref_primary_10_1039_C8NR02573H crossref_primary_10_1016_j_jpowsour_2018_12_056 crossref_primary_10_1016_j_apsusc_2021_151030 crossref_primary_10_1039_D2NJ03091H crossref_primary_10_1016_j_cej_2025_159560 crossref_primary_10_1016_j_carbon_2018_05_042 crossref_primary_10_1016_S1872_2067_18_63107_9 crossref_primary_10_1016_S1872_5805_22_60575_4 crossref_primary_10_1016_j_cej_2022_138823 crossref_primary_10_1002_adfm_202215185 crossref_primary_10_1016_j_cej_2018_02_039 crossref_primary_10_1016_j_nanoen_2020_105714 crossref_primary_10_3390_catal8080320 crossref_primary_10_1016_j_carbon_2017_11_051 crossref_primary_10_1007_s12274_021_3827_8 crossref_primary_10_1021_acsaem_1c03956 crossref_primary_10_1016_j_carbon_2018_08_020 crossref_primary_10_1016_j_electacta_2019_134777 crossref_primary_10_1007_s12274_020_3040_1 crossref_primary_10_1021_acsaem_8b00970 crossref_primary_10_1016_j_electacta_2019_05_024 crossref_primary_10_1016_j_jallcom_2022_168107 crossref_primary_10_1016_j_cplett_2021_138769 crossref_primary_10_1016_j_est_2022_106012 crossref_primary_10_1016_j_inoche_2020_107952 crossref_primary_10_12677_MS_2020_109092 crossref_primary_10_1039_C8TA09722D crossref_primary_10_1016_j_fuel_2021_122985 crossref_primary_10_1021_acsanm_9b00506 crossref_primary_10_1016_j_jallcom_2023_169039 crossref_primary_10_1002_celc_201901144 crossref_primary_10_1149_2_1081912jes crossref_primary_10_20964_2020_09_26 crossref_primary_10_1016_j_apsusc_2019_03_137 crossref_primary_10_1016_j_jallcom_2020_156605 crossref_primary_10_1002_admi_201701345 crossref_primary_10_1016_j_jcis_2019_09_107 crossref_primary_10_1016_j_electacta_2023_142779 crossref_primary_10_1007_s41918_019_00052_4 crossref_primary_10_1039_C8NR01140K crossref_primary_10_1016_j_carbon_2023_01_024 crossref_primary_10_1016_j_est_2020_101287 crossref_primary_10_1002_smll_201801239 crossref_primary_10_1016_j_apsusc_2019_06_076 crossref_primary_10_1016_j_watres_2022_119022 crossref_primary_10_1016_j_apsusc_2019_144020 crossref_primary_10_1149_2_0461803jes crossref_primary_10_1021_acs_chemmater_7b04762 crossref_primary_10_1039_D2TA08737E crossref_primary_10_1007_s11164_022_04823_5 crossref_primary_10_1016_j_electacta_2021_139074 crossref_primary_10_1002_adfm_201802596 crossref_primary_10_1021_acs_langmuir_2c01130 crossref_primary_10_1016_j_jcis_2020_07_005 crossref_primary_10_1088_1361_6528_ab6471 crossref_primary_10_1038_s41427_018_0063_0 crossref_primary_10_1021_acs_cgd_1c01528 crossref_primary_10_1002_slct_202004709 crossref_primary_10_1016_j_carbon_2018_06_052 crossref_primary_10_1016_j_jcis_2022_02_106 crossref_primary_10_1021_acs_inorgchem_9b03042 crossref_primary_10_1016_j_jpowsour_2019_226770 |
Cites_doi | 10.1039/c3cc40971f 10.1021/acscatal.6b00643 10.1021/acsami.6b02078 10.1021/ja407552k 10.1021/ja3030565 10.1021/acs.jpcc.6b03933 10.1039/c3ta13821f 10.1038/nmat3087 10.1007/BF02646876 10.1039/C4TA02279C 10.1021/am301829u 10.1021/nn302674k 10.1021/jp500781v 10.1002/smll.201503305 10.1016/j.carbon.2013.09.005 10.1021/cm101634k 10.1006/jcat.2002.3615 10.1002/adma.201304147 10.1038/ncomms8343 10.1002/adfm.201303902 10.1021/jacs.6b00757 10.1021/jp400388v 10.1016/j.nanoen.2014.11.019 10.1039/C5EE02903A 10.1002/anie.201606327 10.1039/c2cp41957b 10.1039/C5NR08008H 10.1039/c1ee01428e 10.1103/PhysRevLett.77.3865 10.1002/anie.201405314 10.1021/acs.jpcc.5b10334 10.1002/anie.201500569 10.1016/S0022-3697(73)80229-X 10.1021/nn901850u 10.1002/ange.201502173 10.1039/c3nr34003a 10.1126/science.aaa8765 10.1016/j.carbon.2005.09.010 10.1021/ja410076f 10.1002/anie.201510495 10.1021/jz402717r 10.1016/j.jpowsour.2014.08.038 10.1021/cs500673k 10.1021/ja504696r 10.1039/C4TA01253D 10.1021/jp802456e 10.1039/C4TA06499B 10.1016/j.electacta.2015.01.200 10.1126/science.1168049 10.1002/adma.201505086 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M |
DOI | 10.1039/C7NR01925D |
DatabaseName | CrossRef PubMed MEDLINE - Academic Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Technology Research Database Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering METADEX |
DatabaseTitleList | PubMed MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2040-3372 |
EndPage | 7649 |
ExternalDocumentID | 28540947 10_1039_C7NR01925D |
Genre | Journal Article |
GroupedDBID | --- 0-7 0R~ 29M 4.4 53G 705 7~J AAEMU AAIWI AAJAE AANOJ AARTK AAWGC AAXHV AAYXX ABASK ABDVN ABEMK ABIQK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ACRPL ADMRA ADNMO ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AFVBQ AGEGJ AGQPQ AGRSR AHGCF AHGXI AKBGW AKMSF ALMA_UNASSIGNED_HOLDINGS ALSGL ALUYA ANBJS ANLMG ANUXI APEMP ASKNT ASPBG AUDPV AVWKF AZFZN BLAPV BSQNT C6K CAG CITATION COF DU5 EBS ECGLT EE0 EF- EJD F5P FEDTE GGIMP H13 HVGLF HZ~ H~N J3G J3H J3I L-8 O-G O9- OK1 P2P R56 RAOCF RCNCU RNS RPMJG RSCEA RVUXY -JG AGSTE NPM RRC 7X8 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M |
ID | FETCH-LOGICAL-c423t-9794e69cd1b35d9205db83400a2e7d554a826b6e8fbae47b283e170ff1204fa73 |
ISSN | 2040-3364 2040-3372 |
IngestDate | Fri Jul 11 10:44:12 EDT 2025 Fri Jul 11 05:00:22 EDT 2025 Wed Feb 19 02:41:35 EST 2025 Tue Jul 01 00:33:45 EDT 2025 Thu Apr 24 23:00:20 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c423t-9794e69cd1b35d9205db83400a2e7d554a826b6e8fbae47b283e170ff1204fa73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-5377-2376 0000-0003-3902-0976 |
PMID | 28540947 |
PQID | 1902482438 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1915322478 proquest_miscellaneous_1902482438 pubmed_primary_28540947 crossref_primary_10_1039_C7NR01925D crossref_citationtrail_10_1039_C7NR01925D |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – year: 2017 text: 2017 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Nanoscale |
PublicationTitleAlternate | Nanoscale |
PublicationYear | 2017 |
References | Kramm (C7NR01925D-(cit17)/*[position()=1]) 2014; 136 Wu (C7NR01925D-(cit39)/*[position()=1]) 2012; 134 Gong (C7NR01925D-(cit3)/*[position()=1]) 2009; 323 Fujita (C7NR01925D-(cit50)/*[position()=1]) 1977; 8 Yang (C7NR01925D-(cit33)/*[position()=1]) 2016; 8 Yang (C7NR01925D-(cit35)/*[position()=1]) 2011; 4 Wu (C7NR01925D-(cit40)/*[position()=1]) 2014; 26 Zhang (C7NR01925D-(cit27)/*[position()=1]) 2015; 160 Ding (C7NR01925D-(cit21)/*[position()=1]) 2015; 3 Wang (C7NR01925D-(cit13)/*[position()=1]) 2013; 49 Hu (C7NR01925D-(cit8)/*[position()=1]) 2016; 9 Mu (C7NR01925D-(cit34)/*[position()=1]) 2006; 44 Wu (C7NR01925D-(cit26)/*[position()=1]) 2014; 2 Koslowski (C7NR01925D-(cit47)/*[position()=1]) 2008; 112 Li (C7NR01925D-(cit7)/*[position()=1]) 2016; 28 Zhu (C7NR01925D-(cit51)/*[position()=1]) 2014; 53 Zheng (C7NR01925D-(cit4)/*[position()=1]) 2013; 5 Huang (C7NR01925D-(cit1)/*[position()=1]) 2015; 348 Sun (C7NR01925D-(cit23)/*[position()=1]) 2012; 4 Perdew (C7NR01925D-(cit25)/*[position()=1]) 1996; 77 Liu (C7NR01925D-(cit41)/*[position()=1]) 2016; 120 Zhang (C7NR01925D-(cit43)/*[position()=1]) 2016; 120 Zhang (C7NR01925D-(cit30)/*[position()=1]) 2014; 271 Yin (C7NR01925D-(cit12)/*[position()=1]) 2014; 24 Liang (C7NR01925D-(cit31)/*[position()=1]) 2013; 135 Wu (C7NR01925D-(cit37)/*[position()=1]) 2015; 127 Clark (C7NR01925D-(cit24)/*[position()=1]) 2005; 220 Hu (C7NR01925D-(cit15)/*[position()=1]) 2016; 8 Lin (C7NR01925D-(cit48)/*[position()=1]) 2014; 136 Jiang (C7NR01925D-(cit16)/*[position()=1]) 2016; 138 Parvez (C7NR01925D-(cit28)/*[position()=1]) 2012; 6 Bainbridge (C7NR01925D-(cit36)/*[position()=1]) 1973; 34 Strickland (C7NR01925D-(cit19)/*[position()=1]) 2015; 6 He (C7NR01925D-(cit2)/*[position()=1]) 2014; 66 Kramm (C7NR01925D-(cit20)/*[position()=1]) 2012; 14 Liu (C7NR01925D-(cit22)/*[position()=1]) 2016; 12 Wei (C7NR01925D-(cit38)/*[position()=1]) 2016; 55 Choi (C7NR01925D-(cit6)/*[position()=1]) 2016 Bikkarolla (C7NR01925D-(cit10)/*[position()=1]) 2014; 2 Balogun (C7NR01925D-(cit11)/*[position()=1]) 2015; 11 Tylus (C7NR01925D-(cit46)/*[position()=1]) 2014; 118 Qu (C7NR01925D-(cit49)/*[position()=1]) 2010; 4 Kramm (C7NR01925D-(cit18)/*[position()=1]) 2014; 2 Wang (C7NR01925D-(cit29)/*[position()=1]) 2014; 4 Liang (C7NR01925D-(cit9)/*[position()=1]) 2011; 10 Duan (C7NR01925D-(cit44)/*[position()=1]) 2013; 117 Zhang (C7NR01925D-(cit5)/*[position()=1]) 2016; 55 He (C7NR01925D-(cit32)/*[position()=1]) 2010; 22 Kattel (C7NR01925D-(cit14)/*[position()=1]) 2014; 5 Nørskov (C7NR01925D-(cit42)/*[position()=1]) 2002; 209 Masa (C7NR01925D-(cit45)/*[position()=1]) 2015; 54 |
References_xml | – volume: 49 start-page: 3022 year: 2013 ident: C7NR01925D-(cit13)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/c3cc40971f – start-page: 3136 year: 2016 ident: C7NR01925D-(cit6)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.6b00643 – volume: 8 start-page: 19379 year: 2016 ident: C7NR01925D-(cit15)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b02078 – volume: 135 start-page: 16002 year: 2013 ident: C7NR01925D-(cit31)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja407552k – volume: 134 start-page: 9082 year: 2012 ident: C7NR01925D-(cit39)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja3030565 – volume: 120 start-page: 15173 year: 2016 ident: C7NR01925D-(cit43)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b03933 – volume: 2 start-page: 2663 year: 2014 ident: C7NR01925D-(cit18)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/c3ta13821f – volume: 10 start-page: 780 year: 2011 ident: C7NR01925D-(cit9)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat3087 – volume: 8 start-page: 1727 year: 1977 ident: C7NR01925D-(cit50)/*[position()=1] publication-title: Metall. Trans. A doi: 10.1007/BF02646876 – volume: 2 start-page: 14493 year: 2014 ident: C7NR01925D-(cit10)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C4TA02279C – volume: 4 start-page: 6235 year: 2012 ident: C7NR01925D-(cit23)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am301829u – volume: 6 start-page: 9541 year: 2012 ident: C7NR01925D-(cit28)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn302674k – volume: 118 start-page: 8999 year: 2014 ident: C7NR01925D-(cit46)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp500781v – volume: 12 start-page: 1295 year: 2016 ident: C7NR01925D-(cit22)/*[position()=1] publication-title: Small doi: 10.1002/smll.201503305 – volume: 66 start-page: 312 year: 2014 ident: C7NR01925D-(cit2)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2013.09.005 – volume: 22 start-page: 5054 year: 2010 ident: C7NR01925D-(cit32)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm101634k – volume: 209 start-page: 275 year: 2002 ident: C7NR01925D-(cit42)/*[position()=1] publication-title: J. Catal. doi: 10.1006/jcat.2002.3615 – volume: 26 start-page: 1450 year: 2014 ident: C7NR01925D-(cit40)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201304147 – volume: 6 year: 2015 ident: C7NR01925D-(cit19)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms8343 – volume: 24 start-page: 2930 year: 2014 ident: C7NR01925D-(cit12)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201303902 – volume: 138 start-page: 3570 year: 2016 ident: C7NR01925D-(cit16)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b00757 – volume: 117 start-page: 6284 year: 2013 ident: C7NR01925D-(cit44)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp400388v – volume: 11 start-page: 348 year: 2015 ident: C7NR01925D-(cit11)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.11.019 – volume: 9 start-page: 107 year: 2016 ident: C7NR01925D-(cit8)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C5EE02903A – volume: 55 start-page: 12470 year: 2016 ident: C7NR01925D-(cit38)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201606327 – volume: 14 start-page: 11673 year: 2012 ident: C7NR01925D-(cit20)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c2cp41957b – volume: 8 start-page: 959 year: 2016 ident: C7NR01925D-(cit33)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C5NR08008H – volume: 4 start-page: 4500 year: 2011 ident: C7NR01925D-(cit35)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/c1ee01428e – volume: 77 start-page: 3865 year: 1996 ident: C7NR01925D-(cit25)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 53 start-page: 10673 year: 2014 ident: C7NR01925D-(cit51)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201405314 – volume: 220 start-page: 567 year: 2005 ident: C7NR01925D-(cit24)/*[position()=1] publication-title: Z. Krist. Mater. – volume: 120 start-page: 1586 year: 2016 ident: C7NR01925D-(cit41)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b10334 – volume: 54 start-page: 10102 year: 2015 ident: C7NR01925D-(cit45)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201500569 – volume: 34 start-page: 1579 year: 1973 ident: C7NR01925D-(cit36)/*[position()=1] publication-title: J. Phys. Chem. Solids doi: 10.1016/S0022-3697(73)80229-X – volume: 4 start-page: 1321 year: 2010 ident: C7NR01925D-(cit49)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn901850u – volume: 127 start-page: 8297 year: 2015 ident: C7NR01925D-(cit37)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.201502173 – volume: 5 start-page: 3283 year: 2013 ident: C7NR01925D-(cit4)/*[position()=1] publication-title: Nanoscale doi: 10.1039/c3nr34003a – volume: 348 start-page: 1230 year: 2015 ident: C7NR01925D-(cit1)/*[position()=1] publication-title: Science doi: 10.1126/science.aaa8765 – volume: 44 start-page: 762 year: 2006 ident: C7NR01925D-(cit34)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2005.09.010 – volume: 136 start-page: 978 year: 2014 ident: C7NR01925D-(cit17)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja410076f – volume: 55 start-page: 2230 year: 2016 ident: C7NR01925D-(cit5)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201510495 – volume: 5 start-page: 452 year: 2014 ident: C7NR01925D-(cit14)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz402717r – volume: 271 start-page: 522 year: 2014 ident: C7NR01925D-(cit30)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.08.038 – volume: 4 start-page: 3928 year: 2014 ident: C7NR01925D-(cit29)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/cs500673k – volume: 136 start-page: 11027 year: 2014 ident: C7NR01925D-(cit48)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja504696r – volume: 2 start-page: 12361 year: 2014 ident: C7NR01925D-(cit26)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C4TA01253D – volume: 112 start-page: 15356 year: 2008 ident: C7NR01925D-(cit47)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp802456e – volume: 3 start-page: 4462 year: 2015 ident: C7NR01925D-(cit21)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C4TA06499B – volume: 160 start-page: 139 year: 2015 ident: C7NR01925D-(cit27)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.01.200 – volume: 323 start-page: 760 year: 2009 ident: C7NR01925D-(cit3)/*[position()=1] publication-title: Science doi: 10.1126/science.1168049 – volume: 28 start-page: 2337 year: 2016 ident: C7NR01925D-(cit7)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201505086 |
SSID | ssj0069363 |
Score | 2.5083039 |
Snippet | Fe-N-C series catalysts are always attractive for their high catalytic activity towards the oxygen reduction reaction (ORR). However, they usually consist of... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 7641 |
SubjectTerms | Carbon Catalysis Catalysts Catalytic activity Iron Iron nitride Nanoparticles Oxygen |
Title | The role of iron nitrides in the Fe–N–C catalysis system towards the oxygen reduction reaction |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28540947 https://www.proquest.com/docview/1902482438 https://www.proquest.com/docview/1915322478 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZge4GHiTsbFxnBC6oykji148dRUSYQfUCb6HiJ4thmkaZkahsJ9rT_wD_kl3B8idtCQYOHRqnlJK3Pl-PP9jmfEXoB_i-WGUmjlKgsyqSkUV7pPKKUCS2YFZgx0RYTenicvZsOp8vlAptdshD71cXGvJL_sSqUgV1Nluw_WDbcFArgHOwLR7AwHK9s4z480KSrDeD9nNXSxlhZRjlWfTADmYSz0cDO2VgpEifkDATUBM_O7TXt12_wwMHMaLpacACtrIL5PI8Fp9zOwbzLlR0_7_yhDmg78UUn3fy0DoE_dWfKpnXZijb4ZVv2uW2-nHbl6jyES7h0jio1UYmEODXyfbVaxtY8LV8BlMtG9m6TUad-5btg-Mo3uveYGHXUEZt8NMzU78C-pqH9S98WIg7tWjvhxfLa62g7haEFOPPtg_ev337q-2_Kid1_L_yrXtSW8FfLq9dpzB_GJpajHN1CO35wgQ8cUm6ja6q5g26uSE7eRQIwgw1mcKuxwQzuMYPrBoP98Vj9uPw-gc8IB5xghxPscWLrOZzggBPc4-QeOh6_ORodRn6fjagCMr2IOPhkRXklE0GGkqfxUIqcgHMvU8Uk8M0SxqCCqlyLUmVMACNVCYu1TqCNdMnIfbTVtI16iLAuhVQ51RXcLKOJ4jKhiuW8SlSs80rsopd9sxWVF6E3e6GcFb8baBc9D3XPnfTKxlrP-tYvwDOa5a6yUW03L4DqplmeZiT_Wx3o8YHFMqjzwJkuPMvkFsc8Y3tX-h2P0A3zVrjZucdoazHr1BPgqwvx1APsJ-_TlTU |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+role+of+iron+nitrides+in+the+Fe%E2%80%93N%E2%80%93C+catalysis+system+towards+the+oxygen+reduction+reaction&rft.jtitle=Nanoscale&rft.au=Wang%2C+Min&rft.au=Yang%2C+Yushi&rft.au=Liu%2C+Xiaobo&rft.au=Pu%2C+Zonghua&rft.date=2017&rft.issn=2040-3364&rft.eissn=2040-3372&rft.volume=9&rft.issue=22&rft.spage=7641&rft.epage=7649&rft_id=info:doi/10.1039%2FC7NR01925D&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C7NR01925D |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon |