Modeling and Analysis of Wave Energy Harvester with Symmetrically Distributed Galfenol Cantilever Beams

In response to the challenges of difficult energy supply and high costs in ocean wireless sensor networks, as well as the limited working cycle of chemical batteries, a cylindrical wave energy harvester with symmetrically distributed multi-cantilever beams was designed with Galfenol sheet as the cor...

Full description

Saved in:
Bibliographic Details
Published inMaterials Vol. 16; no. 16; p. 5585
Main Authors Jin, Sunyangyang, Meng, Aihua, Li, Mingfan, Xu, Zhenlong, Wu, Shuaibing, Chen, Yu
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 11.08.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In response to the challenges of difficult energy supply and high costs in ocean wireless sensor networks, as well as the limited working cycle of chemical batteries, a cylindrical wave energy harvester with symmetrically distributed multi-cantilever beams was designed with Galfenol sheet as the core component. The dynamic equation of the device was established, and ANSYS transient dynamic simulations and Jiles-Atherton hysteresis model analysis were conducted to develop a mathematical model of the induced electromotive force of the Galfenol cantilever beam as a function of deformation. Experimental validation demonstrated that the simulated results of the cantilever beam deformation had an average error of less than 7% compared to the experimental results, while the average error between the theoretical and experimental values of the induced electromotive force of the device was around 15%, which preliminarily verifies the validity of the mathematical model of the device, and should be subject to further research and improvement.
AbstractList In response to the challenges of difficult energy supply and high costs in ocean wireless sensor networks, as well as the limited working cycle of chemical batteries, a cylindrical wave energy harvester with symmetrically distributed multi-cantilever beams was designed with Galfenol sheet as the core component. The dynamic equation of the device was established, and ANSYS transient dynamic simulations and Jiles-Atherton hysteresis model analysis were conducted to develop a mathematical model of the induced electromotive force of the Galfenol cantilever beam as a function of deformation. Experimental validation demonstrated that the simulated results of the cantilever beam deformation had an average error of less than 7% compared to the experimental results, while the average error between the theoretical and experimental values of the induced electromotive force of the device was around 15%, which preliminarily verifies the validity of the mathematical model of the device, and should be subject to further research and improvement.
In response to the challenges of difficult energy supply and high costs in ocean wireless sensor networks, as well as the limited working cycle of chemical batteries, a cylindrical wave energy harvester with symmetrically distributed multi-cantilever beams was designed with Galfenol sheet as the core component. The dynamic equation of the device was established, and ANSYS transient dynamic simulations and Jiles-Atherton hysteresis model analysis were conducted to develop a mathematical model of the induced electromotive force of the Galfenol cantilever beam as a function of deformation. Experimental validation demonstrated that the simulated results of the cantilever beam deformation had an average error of less than 7% compared to the experimental results, while the average error between the theoretical and experimental values of the induced electromotive force of the device was around 15%, which preliminarily verifies the validity of the mathematical model of the device, and should be subject to further research and improvement.In response to the challenges of difficult energy supply and high costs in ocean wireless sensor networks, as well as the limited working cycle of chemical batteries, a cylindrical wave energy harvester with symmetrically distributed multi-cantilever beams was designed with Galfenol sheet as the core component. The dynamic equation of the device was established, and ANSYS transient dynamic simulations and Jiles-Atherton hysteresis model analysis were conducted to develop a mathematical model of the induced electromotive force of the Galfenol cantilever beam as a function of deformation. Experimental validation demonstrated that the simulated results of the cantilever beam deformation had an average error of less than 7% compared to the experimental results, while the average error between the theoretical and experimental values of the induced electromotive force of the device was around 15%, which preliminarily verifies the validity of the mathematical model of the device, and should be subject to further research and improvement.
Audience Academic
Author Meng, Aihua
Jin, Sunyangyang
Xu, Zhenlong
Chen, Yu
Li, Mingfan
Wu, Shuaibing
AuthorAffiliation 1 School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
2 School of Mechanical and Automotive Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China
AuthorAffiliation_xml – name: 1 School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
– name: 2 School of Mechanical and Automotive Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China
Author_xml – sequence: 1
  givenname: Sunyangyang
  surname: Jin
  fullname: Jin, Sunyangyang
– sequence: 2
  givenname: Aihua
  orcidid: 0000-0001-6509-7649
  surname: Meng
  fullname: Meng, Aihua
– sequence: 3
  givenname: Mingfan
  surname: Li
  fullname: Li, Mingfan
– sequence: 4
  givenname: Zhenlong
  orcidid: 0000-0002-4309-8138
  surname: Xu
  fullname: Xu, Zhenlong
– sequence: 5
  givenname: Shuaibing
  surname: Wu
  fullname: Wu, Shuaibing
– sequence: 6
  givenname: Yu
  surname: Chen
  fullname: Chen, Yu
BookMark eNptUcFu1DAQtVARLaUXvsASF4S0JY7txDmh7VJapCIOgDhaE2e8deXYxU4W5e_xaouACvvgkfzem3nznpOjEAMS8pJV55x31dsRWMMaKZV8Qk5Y1zUr1glx9Fd9TM5yvqvK4ZypuntGjnnb1J1qmxOy_RQH9C5sKYSBrgP4JbtMo6XfYYf0MmDaLvQa0g7zhIn-dNMt_bKMI07JGfB-oe9dLnU_TzjQK_AWQ_R0A2FyHneFcoEw5hfkqQWf8ezhPSXfPlx-3Vyvbj5ffdysb1ZG1HxaqYpZ29XC9gylZLxpFTdCgGKW99D3aG0rKwVC9IIPloNgplKmYThY2bCWn5J3B937uR9xMBimBF7fJzdCWnQEp__9Ce5Wb-NOs0rIRqquKLx-UEjxx1xc69Flg95DwDhnXSvZKsHaRhToq0fQuzinssMDinHVqrqgzg-oLXjULthYGptyBxydKWnasii9LpEIVdfV3kN1IJgUc05otXETTC7uJ3a-jKr30es_0RfKm0eU347_A_4FTn6v1w
CitedBy_id crossref_primary_10_3390_buildings14051482
Cites_doi 10.1063/1.1687200
10.1007/s13344-017-0066-6
10.1109/20.281119
10.1109/ICECENG.2011.6058171
10.1109/20.42480
10.1016/j.nanoen.2012.01.004
10.1016/j.jmmm.2021.168969
10.1016/j.jsv.2016.06.024
10.1103/PhysRevE.72.016209
10.1016/j.energy.2018.08.067
10.1109/OCEANS.2010.5664590
10.1016/j.nanoen.2017.07.045
10.1177/1045389X12436729
10.1016/j.renene.2005.08.021
10.1002/er.4222
10.1016/j.renene.2009.03.014
10.1063/1.2165133
10.1016/j.energy.2019.04.019
10.1088/0143-0807/30/3/011
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
7SR
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
JG9
KB.
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.3390/ma16165585
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Research Database
Materials Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE - Academic


CrossRef
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1944
ExternalDocumentID PMC10456589
A762482207
10_3390_ma16165585
GrantInformation_xml – fundername: Zhejiang Province Public Welfare Technology Application Research Project
  grantid: LGG21F010004
– fundername: Natural Science Foundation of Zhejiang Province
  grantid: LY17E050026
GroupedDBID 29M
2WC
2XV
53G
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CZ9
D1I
E3Z
EBS
ESX
FRP
GX1
HCIFZ
HH5
HYE
I-F
IAO
ITC
KB.
KC.
KQ8
MK~
MODMG
M~E
OK1
OVT
P2P
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
TR2
TUS
PMFND
7SR
8FD
ABUWG
AZQEC
DWQXO
JG9
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c423t-801ff924fb1e55136783c44a81f3babbeff7508a44b43df3a41c08c61edf56173
IEDL.DBID BENPR
ISSN 1996-1944
IngestDate Thu Aug 21 18:36:35 EDT 2025
Fri Jul 11 10:46:29 EDT 2025
Fri Jul 25 10:15:28 EDT 2025
Tue Jun 10 21:20:04 EDT 2025
Thu Apr 24 23:08:44 EDT 2025
Tue Jul 01 04:28:41 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c423t-801ff924fb1e55136783c44a81f3babbeff7508a44b43df3a41c08c61edf56173
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6509-7649
0000-0002-4309-8138
OpenAccessLink https://www.proquest.com/docview/2857138782?pq-origsite=%requestingapplication%
PMID 37629876
PQID 2857138782
PQPubID 2032366
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10456589
proquest_miscellaneous_2857841764
proquest_journals_2857138782
gale_infotracacademiconefile_A762482207
crossref_citationtrail_10_3390_ma16165585
crossref_primary_10_3390_ma16165585
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230811
PublicationDateYYYYMMDD 2023-08-11
PublicationDate_xml – month: 8
  year: 2023
  text: 20230811
  day: 11
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Materials
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_12
ref_10
Wang (ref_19) 2020; 51
Ghodsi (ref_15) 2019; 176
Axell (ref_2) 2016; 9
He (ref_11) 2019; 47
Mirzamohamadi (ref_16) 2022; 553
Zhang (ref_3) 2009; 34
Shao (ref_6) 2017; 39
Masoumi (ref_7) 2016; 381
Shalby (ref_1) 2019; 43
Yoo (ref_14) 2012; 23
Henderson (ref_5) 2006; 31
Jiles (ref_24) 2004; 95
ref_23
ref_22
ref_21
Yang (ref_4) 2017; 31
Zhu (ref_20) 1983; 02
(ref_17) 2009; 30
Jiles (ref_25) 1989; 25
Viet (ref_8) 2018; 162
Lundgren (ref_13) 1993; 29
Ellegaard (ref_18) 2005; 72
Fan (ref_9) 2012; 1
References_xml – volume: 95
  start-page: 7058
  year: 2004
  ident: ref_24
  article-title: A new approach to modeling the magnetomechanical effect
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1687200
– volume: 31
  start-page: 578
  year: 2017
  ident: ref_4
  article-title: Design, optimization and numerical modelling of a novel floating pendulum wave energy converter with tide adaptation
  publication-title: China Ocean Eng.
  doi: 10.1007/s13344-017-0066-6
– volume: 29
  start-page: 3150
  year: 1993
  ident: ref_13
  article-title: A magnetostrictive electric generator
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/20.281119
– ident: ref_22
  doi: 10.1109/ICECENG.2011.6058171
– volume: 25
  start-page: 3928
  year: 1989
  ident: ref_25
  article-title: Theory of ferromagnetic hysteresis: Determination of model parameters from experimental hysteresis loops
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/20.42480
– volume: 1
  start-page: 328
  year: 2012
  ident: ref_9
  article-title: Flexible triboelectric generator
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2012.01.004
– volume: 553
  start-page: 168969
  year: 2022
  ident: ref_16
  article-title: Novel contactless hybrid static magnetostrictive force-torque (chsmft) sensor using galfenol
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2021.168969
– volume: 381
  start-page: 192
  year: 2016
  ident: ref_7
  article-title: Repulsive magnetic levitation-based ocean wave energy harvester with variable resonance: Modeling, simulation and experiment
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2016.06.024
– volume: 72
  start-page: 016209
  year: 2005
  ident: ref_18
  article-title: Sand ripples under water with complex wave motion
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.72.016209
– volume: 162
  start-page: 603
  year: 2018
  ident: ref_8
  article-title: Ocean wave energy pitching harvester with a frequency tuning capability
  publication-title: Energy
  doi: 10.1016/j.energy.2018.08.067
– ident: ref_21
– volume: 02
  start-page: 11
  year: 1983
  ident: ref_20
  article-title: Analysis of the scope of application of several wave theories
  publication-title: Coast. Eng.
– ident: ref_23
  doi: 10.1109/OCEANS.2010.5664590
– volume: 39
  start-page: 608
  year: 2017
  ident: ref_6
  article-title: Multifunctional power unit by hybridizing contact-separate triboelectric nanogenerator, electromagnetic generator and solar cell for harvesting blue energy
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.07.045
– volume: 23
  start-page: 647
  year: 2012
  ident: ref_14
  article-title: A bending-mode galfenol electric power harvester
  publication-title: J. Intell. Mater. Syst. Struct.
  doi: 10.1177/1045389X12436729
– ident: ref_10
– volume: 9
  start-page: 235
  year: 2016
  ident: ref_2
  article-title: The copernicus marine environment monitoring service ocean state report
  publication-title: J. Oper. Oceanogr.
– volume: 31
  start-page: 271
  year: 2006
  ident: ref_5
  article-title: Design, simulation, and testing of a novel hydraulic power take-off system for the pelamis wave energy converter
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2005.08.021
– volume: 43
  start-page: 681
  year: 2019
  ident: ref_1
  article-title: Multi–chamber oscillating water column wave energy converters and air turbines A review
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.4222
– volume: 34
  start-page: 2089
  year: 2009
  ident: ref_3
  article-title: Wave energy in China: Current status and perspectives
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2009.03.014
– ident: ref_12
  doi: 10.1063/1.2165133
– volume: 47
  start-page: 144
  year: 2019
  ident: ref_11
  article-title: Research progress of magnetostrictive vibration energy recovery technology
  publication-title: Mach. Tools Hydraul.
– volume: 176
  start-page: 561
  year: 2019
  ident: ref_15
  article-title: Modeling and characterization of permendur cantilever beam for energy harvesting
  publication-title: Energy
  doi: 10.1016/j.energy.2019.04.019
– volume: 51
  start-page: 1257
  year: 2020
  ident: ref_19
  article-title: Research on the fine survey and distribution characteristics of wave energy resources around sea islands
  publication-title: Mar. Lakes Marshes
– volume: 30
  start-page: 549
  year: 2009
  ident: ref_17
  article-title: Harmonic and anharmonic behaviour of a simple oscillator
  publication-title: Eur. J. Phys.
  doi: 10.1088/0143-0807/30/3/011
SSID ssj0000331829
Score 2.358564
Snippet In response to the challenges of difficult energy supply and high costs in ocean wireless sensor networks, as well as the limited working cycle of chemical...
SourceID pubmedcentral
proquest
gale
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 5585
SubjectTerms Analysis
CAD
Cantilever beams
Computer aided design
Cylindrical waves
Deformation
Design
Efficiency
Electric potential
Electromotive forces
Energy consumption
Energy costs
Energy harvesting
Environmental monitoring
Galfenol
Hysteresis models
Magnetism
Mathematical analysis
Mathematical models
Mechanical properties
Power supply
Sensors
Simulation methods
Wave power
Wireless sensor networks
Title Modeling and Analysis of Wave Energy Harvester with Symmetrically Distributed Galfenol Cantilever Beams
URI https://www.proquest.com/docview/2857138782
https://www.proquest.com/docview/2857841764
https://pubmed.ncbi.nlm.nih.gov/PMC10456589
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1RT9swED6N8jIepm0M0Y0hTyChPUTUiZO4TxOwtmgSaBpD9C2ynTOb1CaFlkn997tL3VLQtMcoVhL5znffnePvAzjkZkLpMh2RN9lIOWsjozMVedfF3NISKxUfcL64zM6v1bdhOgwNt2n4rXIZE5tAXdaOe-THsU6pntKU0L5M7iJWjeLd1SChsQGbFII1FV-bp73L7z9WXZZOQj4bdxe8pAnV98djQxgnS1MWT17LRM_j8fN_JNeSTv81vApoUZwszPsGXmD1FrbWOAS34ZbVzPhMuTBVKZYcI6L24sb8QdFrzvYJlgBqOBEEN17F1Xw8ZiktMtBoLr4yeS7rXmEpBmbksapH4oymnCIGebo4RTOevoPrfu_n2XkU1BMiRxBpxqnHe6quvJXIKi6UlRKnlNHSJ9ZYi94TWtBGKauS0idGSdfRLpNYegJVebIDraqucBcEPSSPMfYEzlClNtbInDCoYo9J1vV5Gz4vZ7JwgVqcFS5GBZUYPOvF46y34WA1drIg1PjnqCM2SMGrjJ7kTDgsQN_DfFXFCcVwRdimQ-_eW9qsCMtvWjw6Sxs-rW7TwuHdEFNh_bAYo5XMM9UG_cTWq-9i6u2nd6rfvxoKbtkgYd19__-3f4CXLE_PPWgp96A1u3_AjwRiZnYfNnR_sB_8la4GQ_kX1X73Kg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB615UA5IJ5ioYARIMQh2o3jJM4BodJ2u6WPC63oLdjOGJB2k8JuQfun-I3M5LHdVohbz7Ycy_P0OPN9AK-4mFC4RAekTTZQztrA6EQF3mWYWjKxQnGD8-FRMjpRH0_j0xX40_XC8G-VnU-sHXVROa6R96WO6T6lKaC9P_sRMGsUv652FBqNWuzj_Ddd2abv9rZJvq-lHO4cb42CllUgcJQ6zNgle0-3Dm9DZHYT8taRU8ro0EfWWIveUxTVRimrosJHRoVuoF0SYuEp2UgjWncVbqgoytii9HB3UdMZRGQhMmtQUGl80J8YyqiSOGaq5qW4d9X7X_0jcynEDe_A7TY3FZuNMt2FFSzvwa0lxML78JW507iDXZiyEB2iiai8-Gx-odipOwkFEw7VCAyCy7zi03wyYeIuUofxXGwzVC-zbGEhds3YY1mNxRYJmPwT2ZX4gGYyfQAn13KqD2GtrEp8BIIWSSVKT6kgqthKjYxAg0p6jJLMpz14251k7logc-bTGOd0oeFTzy9OvQcvF3PPGviOf856wwLJ2aZpJWfa1gTaD6Nj5ZsUMRRlUgP69kYns7w19ml-oZo9eLEYJjPltxdTYnXezNEqTBPVA31J1ot9MdD35ZHy-7ca8Dus826dPf7_15_DzdHx4UF-sHe0_wTWJaVjXP0Oww1Ym_08x6eUPs3ss1pnBXy5biP5Cy_fMPQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4anYTgYeIqOgYYAUI8RE1iJ3EeENrWlo1BNQHT9hZsx2ZIbbKt3VD_Gr-Oc3LpugnxtudYTuRzP_H5PoDX1EzITSw91CbtCaO1p2QsPGdSm2g0sVzQgPOXUbxzID4dRUcr8KedhaFrla1PrBx1XhrqkfdCGWE9JTGg9VxzLWK_P_xwcuoRgxT9aW3pNGoV2bPz31i-Td_v9lHWb8JwOPi-veM1DAOewTRiRu7ZOaxAnA4sMZ2g5-ZGCCUDx7XS2jqHEVUqIbTgueNKBMaXJg5s7jDxSDjuewtWE6yK_A6sbg1G-18XHR6fo72EaY2Jynnq9yYK86s4ioi4eSkKXo8F1-9nLgW84T1YazJVtlmr1n1YscUDuLuEX_gQfhKTGs2zM1XkrMU3YaVjh-rCskE1V8iIfqjCY2DU9GXf5pMJ0XihcoznrE_AvcS5ZXP2UY2dLcox20Zxo7dCK2NbVk2mj-DgRs71MXSKsrBPgOEmSWhDh4mhFZEOpSU8GitCZ3mcuqQL79qTzEwDa07sGuMMyxs69ezy1LvwarH2pAbz-OeqtySQjCwcdzKqGVTA7yGsrGwT44fAvMrHd2-0Mssa059ml4rahZeLx2i09CdGFbY8r9dIESSx6IK8IuvFdxHs99Unxa_jCv47qLJwma7__-0v4DYaSPZ5d7T3FO6EmJtRKzwINqAzOzu3zzCXmunnjdIy-HHTdvIXKg02hg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+and+Analysis+of+Wave+Energy+Harvester+with+Symmetrically+Distributed+Galfenol+Cantilever+Beams&rft.jtitle=Materials&rft.au=Jin%2C+Sunyangyang&rft.au=Meng%2C+Aihua&rft.au=Li%2C+Mingfan&rft.au=Xu%2C+Zhenlong&rft.date=2023-08-11&rft.issn=1996-1944&rft.eissn=1996-1944&rft.volume=16&rft.issue=16&rft_id=info:doi/10.3390%2Fma16165585&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1944&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1944&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1944&client=summon