Modeling and Analysis of Wave Energy Harvester with Symmetrically Distributed Galfenol Cantilever Beams
In response to the challenges of difficult energy supply and high costs in ocean wireless sensor networks, as well as the limited working cycle of chemical batteries, a cylindrical wave energy harvester with symmetrically distributed multi-cantilever beams was designed with Galfenol sheet as the cor...
Saved in:
Published in | Materials Vol. 16; no. 16; p. 5585 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
11.08.2023
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In response to the challenges of difficult energy supply and high costs in ocean wireless sensor networks, as well as the limited working cycle of chemical batteries, a cylindrical wave energy harvester with symmetrically distributed multi-cantilever beams was designed with Galfenol sheet as the core component. The dynamic equation of the device was established, and ANSYS transient dynamic simulations and Jiles-Atherton hysteresis model analysis were conducted to develop a mathematical model of the induced electromotive force of the Galfenol cantilever beam as a function of deformation. Experimental validation demonstrated that the simulated results of the cantilever beam deformation had an average error of less than 7% compared to the experimental results, while the average error between the theoretical and experimental values of the induced electromotive force of the device was around 15%, which preliminarily verifies the validity of the mathematical model of the device, and should be subject to further research and improvement. |
---|---|
AbstractList | In response to the challenges of difficult energy supply and high costs in ocean wireless sensor networks, as well as the limited working cycle of chemical batteries, a cylindrical wave energy harvester with symmetrically distributed multi-cantilever beams was designed with Galfenol sheet as the core component. The dynamic equation of the device was established, and ANSYS transient dynamic simulations and Jiles-Atherton hysteresis model analysis were conducted to develop a mathematical model of the induced electromotive force of the Galfenol cantilever beam as a function of deformation. Experimental validation demonstrated that the simulated results of the cantilever beam deformation had an average error of less than 7% compared to the experimental results, while the average error between the theoretical and experimental values of the induced electromotive force of the device was around 15%, which preliminarily verifies the validity of the mathematical model of the device, and should be subject to further research and improvement. In response to the challenges of difficult energy supply and high costs in ocean wireless sensor networks, as well as the limited working cycle of chemical batteries, a cylindrical wave energy harvester with symmetrically distributed multi-cantilever beams was designed with Galfenol sheet as the core component. The dynamic equation of the device was established, and ANSYS transient dynamic simulations and Jiles-Atherton hysteresis model analysis were conducted to develop a mathematical model of the induced electromotive force of the Galfenol cantilever beam as a function of deformation. Experimental validation demonstrated that the simulated results of the cantilever beam deformation had an average error of less than 7% compared to the experimental results, while the average error between the theoretical and experimental values of the induced electromotive force of the device was around 15%, which preliminarily verifies the validity of the mathematical model of the device, and should be subject to further research and improvement.In response to the challenges of difficult energy supply and high costs in ocean wireless sensor networks, as well as the limited working cycle of chemical batteries, a cylindrical wave energy harvester with symmetrically distributed multi-cantilever beams was designed with Galfenol sheet as the core component. The dynamic equation of the device was established, and ANSYS transient dynamic simulations and Jiles-Atherton hysteresis model analysis were conducted to develop a mathematical model of the induced electromotive force of the Galfenol cantilever beam as a function of deformation. Experimental validation demonstrated that the simulated results of the cantilever beam deformation had an average error of less than 7% compared to the experimental results, while the average error between the theoretical and experimental values of the induced electromotive force of the device was around 15%, which preliminarily verifies the validity of the mathematical model of the device, and should be subject to further research and improvement. |
Audience | Academic |
Author | Meng, Aihua Jin, Sunyangyang Xu, Zhenlong Chen, Yu Li, Mingfan Wu, Shuaibing |
AuthorAffiliation | 1 School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, China 2 School of Mechanical and Automotive Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China |
AuthorAffiliation_xml | – name: 1 School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, China – name: 2 School of Mechanical and Automotive Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China |
Author_xml | – sequence: 1 givenname: Sunyangyang surname: Jin fullname: Jin, Sunyangyang – sequence: 2 givenname: Aihua orcidid: 0000-0001-6509-7649 surname: Meng fullname: Meng, Aihua – sequence: 3 givenname: Mingfan surname: Li fullname: Li, Mingfan – sequence: 4 givenname: Zhenlong orcidid: 0000-0002-4309-8138 surname: Xu fullname: Xu, Zhenlong – sequence: 5 givenname: Shuaibing surname: Wu fullname: Wu, Shuaibing – sequence: 6 givenname: Yu surname: Chen fullname: Chen, Yu |
BookMark | eNptUcFu1DAQtVARLaUXvsASF4S0JY7txDmh7VJapCIOgDhaE2e8deXYxU4W5e_xaouACvvgkfzem3nznpOjEAMS8pJV55x31dsRWMMaKZV8Qk5Y1zUr1glx9Fd9TM5yvqvK4ZypuntGjnnb1J1qmxOy_RQH9C5sKYSBrgP4JbtMo6XfYYf0MmDaLvQa0g7zhIn-dNMt_bKMI07JGfB-oe9dLnU_TzjQK_AWQ_R0A2FyHneFcoEw5hfkqQWf8ezhPSXfPlx-3Vyvbj5ffdysb1ZG1HxaqYpZ29XC9gylZLxpFTdCgGKW99D3aG0rKwVC9IIPloNgplKmYThY2bCWn5J3B937uR9xMBimBF7fJzdCWnQEp__9Ce5Wb-NOs0rIRqquKLx-UEjxx1xc69Flg95DwDhnXSvZKsHaRhToq0fQuzinssMDinHVqrqgzg-oLXjULthYGptyBxydKWnasii9LpEIVdfV3kN1IJgUc05otXETTC7uJ3a-jKr30es_0RfKm0eU347_A_4FTn6v1w |
CitedBy_id | crossref_primary_10_3390_buildings14051482 |
Cites_doi | 10.1063/1.1687200 10.1007/s13344-017-0066-6 10.1109/20.281119 10.1109/ICECENG.2011.6058171 10.1109/20.42480 10.1016/j.nanoen.2012.01.004 10.1016/j.jmmm.2021.168969 10.1016/j.jsv.2016.06.024 10.1103/PhysRevE.72.016209 10.1016/j.energy.2018.08.067 10.1109/OCEANS.2010.5664590 10.1016/j.nanoen.2017.07.045 10.1177/1045389X12436729 10.1016/j.renene.2005.08.021 10.1002/er.4222 10.1016/j.renene.2009.03.014 10.1063/1.2165133 10.1016/j.energy.2019.04.019 10.1088/0143-0807/30/3/011 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
DBID | AAYXX CITATION 7SR 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ JG9 KB. PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.3390/ma16165585 |
DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Research Database Materials Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest Central Korea Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1996-1944 |
ExternalDocumentID | PMC10456589 A762482207 10_3390_ma16165585 |
GrantInformation_xml | – fundername: Zhejiang Province Public Welfare Technology Application Research Project grantid: LGG21F010004 – fundername: Natural Science Foundation of Zhejiang Province grantid: LY17E050026 |
GroupedDBID | 29M 2WC 2XV 53G 5GY 5VS 8FE 8FG AADQD AAFWJ AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR BGLVJ CCPQU CITATION CZ9 D1I E3Z EBS ESX FRP GX1 HCIFZ HH5 HYE I-F IAO ITC KB. KC. KQ8 MK~ MODMG M~E OK1 OVT P2P PDBOC PGMZT PHGZM PHGZT PIMPY PROAC RPM TR2 TUS PMFND 7SR 8FD ABUWG AZQEC DWQXO JG9 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c423t-801ff924fb1e55136783c44a81f3babbeff7508a44b43df3a41c08c61edf56173 |
IEDL.DBID | BENPR |
ISSN | 1996-1944 |
IngestDate | Thu Aug 21 18:36:35 EDT 2025 Fri Jul 11 10:46:29 EDT 2025 Fri Jul 25 10:15:28 EDT 2025 Tue Jun 10 21:20:04 EDT 2025 Thu Apr 24 23:08:44 EDT 2025 Tue Jul 01 04:28:41 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c423t-801ff924fb1e55136783c44a81f3babbeff7508a44b43df3a41c08c61edf56173 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6509-7649 0000-0002-4309-8138 |
OpenAccessLink | https://www.proquest.com/docview/2857138782?pq-origsite=%requestingapplication% |
PMID | 37629876 |
PQID | 2857138782 |
PQPubID | 2032366 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10456589 proquest_miscellaneous_2857841764 proquest_journals_2857138782 gale_infotracacademiconefile_A762482207 crossref_citationtrail_10_3390_ma16165585 crossref_primary_10_3390_ma16165585 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230811 |
PublicationDateYYYYMMDD | 2023-08-11 |
PublicationDate_xml | – month: 8 year: 2023 text: 20230811 day: 11 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Materials |
PublicationYear | 2023 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref_12 ref_10 Wang (ref_19) 2020; 51 Ghodsi (ref_15) 2019; 176 Axell (ref_2) 2016; 9 He (ref_11) 2019; 47 Mirzamohamadi (ref_16) 2022; 553 Zhang (ref_3) 2009; 34 Shao (ref_6) 2017; 39 Masoumi (ref_7) 2016; 381 Shalby (ref_1) 2019; 43 Yoo (ref_14) 2012; 23 Henderson (ref_5) 2006; 31 Jiles (ref_24) 2004; 95 ref_23 ref_22 ref_21 Yang (ref_4) 2017; 31 Zhu (ref_20) 1983; 02 (ref_17) 2009; 30 Jiles (ref_25) 1989; 25 Viet (ref_8) 2018; 162 Lundgren (ref_13) 1993; 29 Ellegaard (ref_18) 2005; 72 Fan (ref_9) 2012; 1 |
References_xml | – volume: 95 start-page: 7058 year: 2004 ident: ref_24 article-title: A new approach to modeling the magnetomechanical effect publication-title: J. Appl. Phys. doi: 10.1063/1.1687200 – volume: 31 start-page: 578 year: 2017 ident: ref_4 article-title: Design, optimization and numerical modelling of a novel floating pendulum wave energy converter with tide adaptation publication-title: China Ocean Eng. doi: 10.1007/s13344-017-0066-6 – volume: 29 start-page: 3150 year: 1993 ident: ref_13 article-title: A magnetostrictive electric generator publication-title: IEEE Trans. Magn. doi: 10.1109/20.281119 – ident: ref_22 doi: 10.1109/ICECENG.2011.6058171 – volume: 25 start-page: 3928 year: 1989 ident: ref_25 article-title: Theory of ferromagnetic hysteresis: Determination of model parameters from experimental hysteresis loops publication-title: IEEE Trans. Magn. doi: 10.1109/20.42480 – volume: 1 start-page: 328 year: 2012 ident: ref_9 article-title: Flexible triboelectric generator publication-title: Nano Energy doi: 10.1016/j.nanoen.2012.01.004 – volume: 553 start-page: 168969 year: 2022 ident: ref_16 article-title: Novel contactless hybrid static magnetostrictive force-torque (chsmft) sensor using galfenol publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2021.168969 – volume: 381 start-page: 192 year: 2016 ident: ref_7 article-title: Repulsive magnetic levitation-based ocean wave energy harvester with variable resonance: Modeling, simulation and experiment publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2016.06.024 – volume: 72 start-page: 016209 year: 2005 ident: ref_18 article-title: Sand ripples under water with complex wave motion publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.72.016209 – volume: 162 start-page: 603 year: 2018 ident: ref_8 article-title: Ocean wave energy pitching harvester with a frequency tuning capability publication-title: Energy doi: 10.1016/j.energy.2018.08.067 – ident: ref_21 – volume: 02 start-page: 11 year: 1983 ident: ref_20 article-title: Analysis of the scope of application of several wave theories publication-title: Coast. Eng. – ident: ref_23 doi: 10.1109/OCEANS.2010.5664590 – volume: 39 start-page: 608 year: 2017 ident: ref_6 article-title: Multifunctional power unit by hybridizing contact-separate triboelectric nanogenerator, electromagnetic generator and solar cell for harvesting blue energy publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.07.045 – volume: 23 start-page: 647 year: 2012 ident: ref_14 article-title: A bending-mode galfenol electric power harvester publication-title: J. Intell. Mater. Syst. Struct. doi: 10.1177/1045389X12436729 – ident: ref_10 – volume: 9 start-page: 235 year: 2016 ident: ref_2 article-title: The copernicus marine environment monitoring service ocean state report publication-title: J. Oper. Oceanogr. – volume: 31 start-page: 271 year: 2006 ident: ref_5 article-title: Design, simulation, and testing of a novel hydraulic power take-off system for the pelamis wave energy converter publication-title: Renew. Energy doi: 10.1016/j.renene.2005.08.021 – volume: 43 start-page: 681 year: 2019 ident: ref_1 article-title: Multi–chamber oscillating water column wave energy converters and air turbines A review publication-title: Int. J. Energy Res. doi: 10.1002/er.4222 – volume: 34 start-page: 2089 year: 2009 ident: ref_3 article-title: Wave energy in China: Current status and perspectives publication-title: Renew. Energy doi: 10.1016/j.renene.2009.03.014 – ident: ref_12 doi: 10.1063/1.2165133 – volume: 47 start-page: 144 year: 2019 ident: ref_11 article-title: Research progress of magnetostrictive vibration energy recovery technology publication-title: Mach. Tools Hydraul. – volume: 176 start-page: 561 year: 2019 ident: ref_15 article-title: Modeling and characterization of permendur cantilever beam for energy harvesting publication-title: Energy doi: 10.1016/j.energy.2019.04.019 – volume: 51 start-page: 1257 year: 2020 ident: ref_19 article-title: Research on the fine survey and distribution characteristics of wave energy resources around sea islands publication-title: Mar. Lakes Marshes – volume: 30 start-page: 549 year: 2009 ident: ref_17 article-title: Harmonic and anharmonic behaviour of a simple oscillator publication-title: Eur. J. Phys. doi: 10.1088/0143-0807/30/3/011 |
SSID | ssj0000331829 |
Score | 2.358564 |
Snippet | In response to the challenges of difficult energy supply and high costs in ocean wireless sensor networks, as well as the limited working cycle of chemical... |
SourceID | pubmedcentral proquest gale crossref |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 5585 |
SubjectTerms | Analysis CAD Cantilever beams Computer aided design Cylindrical waves Deformation Design Efficiency Electric potential Electromotive forces Energy consumption Energy costs Energy harvesting Environmental monitoring Galfenol Hysteresis models Magnetism Mathematical analysis Mathematical models Mechanical properties Power supply Sensors Simulation methods Wave power Wireless sensor networks |
Title | Modeling and Analysis of Wave Energy Harvester with Symmetrically Distributed Galfenol Cantilever Beams |
URI | https://www.proquest.com/docview/2857138782 https://www.proquest.com/docview/2857841764 https://pubmed.ncbi.nlm.nih.gov/PMC10456589 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1RT9swED6N8jIepm0M0Y0hTyChPUTUiZO4TxOwtmgSaBpD9C2ynTOb1CaFlkn997tL3VLQtMcoVhL5znffnePvAzjkZkLpMh2RN9lIOWsjozMVedfF3NISKxUfcL64zM6v1bdhOgwNt2n4rXIZE5tAXdaOe-THsU6pntKU0L5M7iJWjeLd1SChsQGbFII1FV-bp73L7z9WXZZOQj4bdxe8pAnV98djQxgnS1MWT17LRM_j8fN_JNeSTv81vApoUZwszPsGXmD1FrbWOAS34ZbVzPhMuTBVKZYcI6L24sb8QdFrzvYJlgBqOBEEN17F1Xw8ZiktMtBoLr4yeS7rXmEpBmbksapH4oymnCIGebo4RTOevoPrfu_n2XkU1BMiRxBpxqnHe6quvJXIKi6UlRKnlNHSJ9ZYi94TWtBGKauS0idGSdfRLpNYegJVebIDraqucBcEPSSPMfYEzlClNtbInDCoYo9J1vV5Gz4vZ7JwgVqcFS5GBZUYPOvF46y34WA1drIg1PjnqCM2SMGrjJ7kTDgsQN_DfFXFCcVwRdimQ-_eW9qsCMtvWjw6Sxs-rW7TwuHdEFNh_bAYo5XMM9UG_cTWq-9i6u2nd6rfvxoKbtkgYd19__-3f4CXLE_PPWgp96A1u3_AjwRiZnYfNnR_sB_8la4GQ_kX1X73Kg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB615UA5IJ5ioYARIMQh2o3jJM4BodJ2u6WPC63oLdjOGJB2k8JuQfun-I3M5LHdVohbz7Ycy_P0OPN9AK-4mFC4RAekTTZQztrA6EQF3mWYWjKxQnGD8-FRMjpRH0_j0xX40_XC8G-VnU-sHXVROa6R96WO6T6lKaC9P_sRMGsUv652FBqNWuzj_Ddd2abv9rZJvq-lHO4cb42CllUgcJQ6zNgle0-3Dm9DZHYT8taRU8ro0EfWWIveUxTVRimrosJHRoVuoF0SYuEp2UgjWncVbqgoytii9HB3UdMZRGQhMmtQUGl80J8YyqiSOGaq5qW4d9X7X_0jcynEDe_A7TY3FZuNMt2FFSzvwa0lxML78JW507iDXZiyEB2iiai8-Gx-odipOwkFEw7VCAyCy7zi03wyYeIuUofxXGwzVC-zbGEhds3YY1mNxRYJmPwT2ZX4gGYyfQAn13KqD2GtrEp8BIIWSSVKT6kgqthKjYxAg0p6jJLMpz14251k7logc-bTGOd0oeFTzy9OvQcvF3PPGviOf856wwLJ2aZpJWfa1gTaD6Nj5ZsUMRRlUgP69kYns7w19ml-oZo9eLEYJjPltxdTYnXezNEqTBPVA31J1ot9MdD35ZHy-7ca8Dus826dPf7_15_DzdHx4UF-sHe0_wTWJaVjXP0Oww1Ym_08x6eUPs3ss1pnBXy5biP5Cy_fMPQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4anYTgYeIqOgYYAUI8RE1iJ3EeENrWlo1BNQHT9hZsx2ZIbbKt3VD_Gr-Oc3LpugnxtudYTuRzP_H5PoDX1EzITSw91CbtCaO1p2QsPGdSm2g0sVzQgPOXUbxzID4dRUcr8KedhaFrla1PrBx1XhrqkfdCGWE9JTGg9VxzLWK_P_xwcuoRgxT9aW3pNGoV2bPz31i-Td_v9lHWb8JwOPi-veM1DAOewTRiRu7ZOaxAnA4sMZ2g5-ZGCCUDx7XS2jqHEVUqIbTgueNKBMaXJg5s7jDxSDjuewtWE6yK_A6sbg1G-18XHR6fo72EaY2Jynnq9yYK86s4ioi4eSkKXo8F1-9nLgW84T1YazJVtlmr1n1YscUDuLuEX_gQfhKTGs2zM1XkrMU3YaVjh-rCskE1V8iIfqjCY2DU9GXf5pMJ0XihcoznrE_AvcS5ZXP2UY2dLcox20Zxo7dCK2NbVk2mj-DgRs71MXSKsrBPgOEmSWhDh4mhFZEOpSU8GitCZ3mcuqQL79qTzEwDa07sGuMMyxs69ezy1LvwarH2pAbz-OeqtySQjCwcdzKqGVTA7yGsrGwT44fAvMrHd2-0Mssa059ml4rahZeLx2i09CdGFbY8r9dIESSx6IK8IuvFdxHs99Unxa_jCv47qLJwma7__-0v4DYaSPZ5d7T3FO6EmJtRKzwINqAzOzu3zzCXmunnjdIy-HHTdvIXKg02hg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+and+Analysis+of+Wave+Energy+Harvester+with+Symmetrically+Distributed+Galfenol+Cantilever+Beams&rft.jtitle=Materials&rft.au=Jin%2C+Sunyangyang&rft.au=Meng%2C+Aihua&rft.au=Li%2C+Mingfan&rft.au=Xu%2C+Zhenlong&rft.date=2023-08-11&rft.issn=1996-1944&rft.eissn=1996-1944&rft.volume=16&rft.issue=16&rft_id=info:doi/10.3390%2Fma16165585&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1944&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1944&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1944&client=summon |