Soft sensor method for endpoint carbon content and temperature of BOF based on multi-cluster dynamic adaptive selection ensemble learning

The accurate control of the endpoint in converter steelmaking is of great significance and value for energy saving, emission reduction, and steel quality improvement. The key to endpoint control lies in accurately predicting the carbon content and temperature. Converter steelmaking is a dynamic proc...

Full description

Saved in:
Bibliographic Details
Published inHigh temperature materials and processes Vol. 42; no. 1; pp. id. 100356 - 88
Main Authors Shao, Bin, Liu, Hui, Chen, Fu-gang
Format Journal Article
LanguageEnglish
Published Berlin De Gruyter 01.01.2023
Walter de Gruyter GmbH
Subjects
Online AccessGet full text
ISSN2191-0324
0334-6455
2191-0324
DOI10.1515/htmp-2022-0287

Cover

Abstract The accurate control of the endpoint in converter steelmaking is of great significance and value for energy saving, emission reduction, and steel quality improvement. The key to endpoint control lies in accurately predicting the carbon content and temperature. Converter steelmaking is a dynamic process with a large fluctuation of samples, and traditional ensemble learning methods ignore the differences among the query samples and use all the sub-models to predict. The different performances of each sub-model lead to the performance degradation of ensemble learning. To address this issue, we propose a soft sensor method based on multi-cluster dynamic adaptive selection (MC-DAS) ensemble learning for converter steelmaking endpoint carbon content and temperature prediction. First, to ensure the diversity of the ensemble learning base model, we propose a clustering algorithm with different data partition characteristics to construct a pool of diverse base models. Second, a model adaptive selection strategy is proposed, which involves constructing diverse similarity regions for individual query samples and assessing the model’s performance in these regions to identify the most suitable model and weight combination for each respective query sample. Compared with the traditional ensemble learning method, the simulation results of actual converter steelmaking process data show that the prediction accuracy of carbon content within ±0.02% error range reaches 92.8%, and temperature within ±10°C error range reaches 91.6%.
AbstractList The accurate control of the endpoint in converter steelmaking is of great significance and value for energy saving, emission reduction, and steel quality improvement. The key to endpoint control lies in accurately predicting the carbon content and temperature. Converter steelmaking is a dynamic process with a large fluctuation of samples, and traditional ensemble learning methods ignore the differences among the query samples and use all the sub-models to predict. The different performances of each sub-model lead to the performance degradation of ensemble learning. To address this issue, we propose a soft sensor method based on multi-cluster dynamic adaptive selection (MC-DAS) ensemble learning for converter steelmaking endpoint carbon content and temperature prediction. First, to ensure the diversity of the ensemble learning base model, we propose a clustering algorithm with different data partition characteristics to construct a pool of diverse base models. Second, a model adaptive selection strategy is proposed, which involves constructing diverse similarity regions for individual query samples and assessing the model’s performance in these regions to identify the most suitable model and weight combination for each respective query sample. Compared with the traditional ensemble learning method, the simulation results of actual converter steelmaking process data show that the prediction accuracy of carbon content within ±0.02% error range reaches 92.8%, and temperature within ±10°C error range reaches 91.6%.
Author Shao, Bin
Chen, Fu-gang
Liu, Hui
Author_xml – sequence: 1
  givenname: Bin
  surname: Shao
  fullname: Shao, Bin
  organization: Yunnan Key Laboratory of Artificial Intelligence, Kunming University of Science and Technology, Kunming 650500, China
– sequence: 2
  givenname: Hui
  surname: Liu
  fullname: Liu, Hui
  email: liuhui621@126.com
  organization: Yunnan Key Laboratory of Artificial Intelligence, Kunming University of Science and Technology, Kunming 650500, China
– sequence: 3
  givenname: Fu-gang
  surname: Chen
  fullname: Chen, Fu-gang
  organization: Yunnan Kungang Electronic Information Technology Co., Ltd, Kunming 650500, China
BookMark eNp1UU1v1DAUjFArUdpeOVvinOKvOMkRKgqVKvVAe7ZenJetV44dbAe0P6H_GocFgRD44rE1895o5lV14oPHqnrN6BVrWPP2Kc9LzSnnNeVd-6I646xnNRVcnvyBX1aXKe1pObJnTcvOqufPYcokoU8hkhnzUxjJVCD6cQnWZ2IgDsETE3zG8gQ_kozzghHyGpGEiby_vyEDJBxJ4c2ry7Y2bk0ZIxkPHmZrCIywZPsVyyKHJttCLBtxHhwShxC99buL6nQCl_Dy531ePd58eLj-VN_df7y9fndXG8lFrlugnQKjJqGoRAF8mNB0Y6cawzvWNIoib6Z24LRX3ExCyF60wKiEtu022Xl1e5w7BtjrJdoZ4kEHsPrHR4g7DTFb41ADFYY1VMlOGElVA1RKXlYMgjJWwi6z3hxnLTF8WTFlvQ9r9MW-5p2Sqi9eu8KSR5aJIaWIkzY2w5ZCjmCdZlRvHeqtQ711qLcOi-zqL9kvs_8V9EfBN3Al_RF3cT0U8NvUv4WSM_Edz2m0IA
CitedBy_id crossref_primary_10_1007_s11663_024_03374_x
crossref_primary_10_1088_1361_6501_ad5749
crossref_primary_10_1515_htmp_2024_0067
Cites_doi 10.1002/srin.201200302
10.1016/j.ijleo.2018.10.041
10.1016/j.ins.2022.04.058
10.1016/j.chemolab.2022.104678
10.1016/S1874-1029(13)60052-X
10.1109/TCST.2016.2631124
10.1016/j.compchemeng.2018.10.022
10.1016/j.cageo.2022.105242
10.1016/j.compchemeng.2005.09.010
10.1007/s00521-004-0451-y
10.1360/jos160496
10.1016/j.jprocont.2023.01.010
10.1016/j.compchemeng.2006.05.030
10.1016/j.jii.2022.100356
ContentType Journal Article
Copyright This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOA
DOI 10.1515/htmp-2022-0287
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList
Materials Research Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2191-0324
EndPage 88
ExternalDocumentID oai_doaj_org_article_a03c1506483c4065a0442556b3011202
10_1515_htmp_2022_0287
10_1515_htmp_2022_0287421
GroupedDBID -~X
0R~
0~D
4.4
5GY
AAFPC
AAFWJ
AAQCX
AASOL
AASQH
ABAOT
ABAQN
ABFKT
ABIQR
ABSOE
ABUVI
ABXMZ
ACGFS
ACIWK
ACXLN
ACZBO
ADGQD
ADGYE
ADJVZ
ADOZN
AEJTT
AENEX
AEQDQ
AEXIE
AFBAA
AFBDD
AFCXV
AFPKN
AFQUK
AHGSO
AIERV
AJATJ
AKXKS
ALMA_UNASSIGNED_HOLDINGS
BAKPI
BBCWN
CFGNV
EBS
GROUPED_DOAJ
HZ~
IY9
M48
O9-
OK1
P2P
QD8
RDG
SA.
SLJYH
AAYXX
CITATION
7SR
8BQ
8FD
JG9
ID FETCH-LOGICAL-c423t-7a086ac6f3604e3a2bfec8d865c2815560e25f7b20962cf334937a104a778c6f3
IEDL.DBID DOA
ISSN 2191-0324
0334-6455
IngestDate Wed Aug 27 01:29:44 EDT 2025
Mon Jun 30 10:08:09 EDT 2025
Thu Apr 24 22:55:20 EDT 2025
Tue Jul 01 00:44:35 EDT 2025
Sat Sep 06 16:59:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This work is licensed under the Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c423t-7a086ac6f3604e3a2bfec8d865c2815560e25f7b20962cf334937a104a778c6f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/a03c1506483c4065a0442556b3011202
PQID 2864690868
PQPubID 2030061
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_a03c1506483c4065a0442556b3011202
proquest_journals_2864690868
crossref_citationtrail_10_1515_htmp_2022_0287
crossref_primary_10_1515_htmp_2022_0287
walterdegruyter_journals_10_1515_htmp_2022_0287421
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
PublicationTitle High temperature materials and processes
PublicationYear 2023
Publisher De Gruyter
Walter de Gruyter GmbH
Publisher_xml – name: De Gruyter
– name: Walter de Gruyter GmbH
References 2023091409215511831_j_htmp-2022-0287_ref_008
2023091409215511831_j_htmp-2022-0287_ref_009
2023091409215511831_j_htmp-2022-0287_ref_004
2023091409215511831_j_htmp-2022-0287_ref_005
2023091409215511831_j_htmp-2022-0287_ref_006
2023091409215511831_j_htmp-2022-0287_ref_007
2023091409215511831_j_htmp-2022-0287_ref_022
2023091409215511831_j_htmp-2022-0287_ref_001
2023091409215511831_j_htmp-2022-0287_ref_023
2023091409215511831_j_htmp-2022-0287_ref_002
2023091409215511831_j_htmp-2022-0287_ref_024
2023091409215511831_j_htmp-2022-0287_ref_003
2023091409215511831_j_htmp-2022-0287_ref_025
2023091409215511831_j_htmp-2022-0287_ref_020
2023091409215511831_j_htmp-2022-0287_ref_021
2023091409215511831_j_htmp-2022-0287_ref_019
2023091409215511831_j_htmp-2022-0287_ref_015
2023091409215511831_j_htmp-2022-0287_ref_016
2023091409215511831_j_htmp-2022-0287_ref_017
2023091409215511831_j_htmp-2022-0287_ref_018
2023091409215511831_j_htmp-2022-0287_ref_011
2023091409215511831_j_htmp-2022-0287_ref_012
2023091409215511831_j_htmp-2022-0287_ref_013
2023091409215511831_j_htmp-2022-0287_ref_014
2023091409215511831_j_htmp-2022-0287_ref_010
References_xml – ident: 2023091409215511831_j_htmp-2022-0287_ref_015
  doi: 10.1002/srin.201200302
– ident: 2023091409215511831_j_htmp-2022-0287_ref_011
– ident: 2023091409215511831_j_htmp-2022-0287_ref_003
  doi: 10.1016/j.ijleo.2018.10.041
– ident: 2023091409215511831_j_htmp-2022-0287_ref_022
  doi: 10.1016/j.ins.2022.04.058
– ident: 2023091409215511831_j_htmp-2022-0287_ref_006
  doi: 10.1016/j.chemolab.2022.104678
– ident: 2023091409215511831_j_htmp-2022-0287_ref_025
  doi: 10.1016/S1874-1029(13)60052-X
– ident: 2023091409215511831_j_htmp-2022-0287_ref_009
  doi: 10.1109/TCST.2016.2631124
– ident: 2023091409215511831_j_htmp-2022-0287_ref_013
– ident: 2023091409215511831_j_htmp-2022-0287_ref_014
  doi: 10.1016/j.compchemeng.2018.10.022
– ident: 2023091409215511831_j_htmp-2022-0287_ref_008
– ident: 2023091409215511831_j_htmp-2022-0287_ref_023
– ident: 2023091409215511831_j_htmp-2022-0287_ref_021
  doi: 10.1016/j.cageo.2022.105242
– ident: 2023091409215511831_j_htmp-2022-0287_ref_002
– ident: 2023091409215511831_j_htmp-2022-0287_ref_004
– ident: 2023091409215511831_j_htmp-2022-0287_ref_010
– ident: 2023091409215511831_j_htmp-2022-0287_ref_019
  doi: 10.1016/j.compchemeng.2005.09.010
– ident: 2023091409215511831_j_htmp-2022-0287_ref_017
– ident: 2023091409215511831_j_htmp-2022-0287_ref_018
  doi: 10.1007/s00521-004-0451-y
– ident: 2023091409215511831_j_htmp-2022-0287_ref_016
– ident: 2023091409215511831_j_htmp-2022-0287_ref_024
  doi: 10.1360/jos160496
– ident: 2023091409215511831_j_htmp-2022-0287_ref_012
– ident: 2023091409215511831_j_htmp-2022-0287_ref_007
  doi: 10.1016/j.jprocont.2023.01.010
– ident: 2023091409215511831_j_htmp-2022-0287_ref_020
– ident: 2023091409215511831_j_htmp-2022-0287_ref_005
  doi: 10.1016/j.compchemeng.2006.05.030
– ident: 2023091409215511831_j_htmp-2022-0287_ref_001
  doi: 10.1016/j.jii.2022.100356
SSID ssj0000491571
Score 2.2824497
Snippet The accurate control of the endpoint in converter steelmaking is of great significance and value for energy saving, emission reduction, and steel quality...
SourceID doaj
proquest
crossref
walterdegruyter
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage id. 100356
SubjectTerms Adaptive control
Algorithms
Basic converters
BOF
Carbon
Carbon content
Clustering
dynamic adaptive selection
Emissions control
endpoint carbon content and temperature prediction
Ensemble learning
Machine learning
Oxygen steel making
Performance degradation
Queries
soft sensor
Steel converters
Teaching methods
SummonAdditionalLinks – databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtQwFLWgbGBR8RQDBd0FEivDxHEcd4EQRYwqpMICRurO8isD1TQZMhlBP4G_5l7H01IoO7bRzUM5ju85jnUOY89K64MuouJBSsuli4FbVyuuA7L1qGUs0nrH0Qd1OJfvj6vji_1P-QWur5R2lCc175cvfnw7e40f_KuU3lNUL78MpytEG1UVNsv6OruBXUmREDvKVP9kZMJFVRfZt_Hv0y71pWTff4lz7n5Pf69DXPSbs2H7tzQ1odlttpvZI7wZ4b7DrsX2Lrv1m6fgPfbzE06ssEZ12vUw5kMDElOIbVh1X9sBvO1d1wLtUceGA7YNQP5U2VwZugYOPs6AulsArEs7DrlfbshRAcIYYA822BVNlLBOOToILt5gHU_dMkIOoljcZ_PZu89vD3nOW-AeSdXAa4v6xnrVlGoqY2mFa6LXQavKC428Q02jqJraCZQ9wjdlKZHbWNRztq41nfaA7bRdGx8yUEIU0e8r2fiKKIKL-yhcUC1ZV9ZBVRPGt2_b-GxGTpkYS0OiBNExhI4hdAyhM2HPz-tXow3HPysPCLzzKrLPTge6fmHy12jstPRkrSh16ZHRVHYqJXmxOZru8FITtreF3myHpBFa0VqCVnrCxB_D4aLq6qeSonj0Px7sMbtJeffjGtAe2xn6TXyCrGhwT9Nw_wXmogt7
  priority: 102
  providerName: Scholars Portal
Title Soft sensor method for endpoint carbon content and temperature of BOF based on multi-cluster dynamic adaptive selection ensemble learning
URI https://www.degruyter.com/doi/10.1515/htmp-2022-0287
https://www.proquest.com/docview/2864690868
https://doaj.org/article/a03c1506483c4065a0442556b3011202
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQJzggSlt1gaI5VOJkkTiO4z1CxQpVoj1QJG6Wv0JbLclqN6uqP4F_3Zk4CwtqxYVLDtFEsTyTzHu29R5jnwrrg86j4kFKy6WLgVtXKa4DovWoZcz79Y7Lr-riWn65KW_WrL7oTFiSB04Td2KzwpMKntSFx-ZT2kxKks1yVJkiyUhm42yNTP1KuDcvq3xQacSeffKju5thSSD1wo5aPelCvVj_E4S587vfqw7xdr780632RvuWM9llOwNWhNM0xjdsIzZ7bHtNQfAtu7_C3ygskIu2c0hu0IAwFGITZu3PpgNv565tgE6kY3sB2wQgNapBShnaGs6-TYB6WQCM688Xcj9dkn4ChGRXDzbYGf0WYdG75mAq8QWLeOemEQbbidt37Hpy_v3zBR_cFbhHCNXxyiKbsV7VhcpkLKxwdfQ6aFV6oRFlqCyKsq4czq4Svi4KiUjGInuzVaXpsfdss2mb-IGBEiKPfqxk7UsCBC6OkaYgN7KuqIIqR4yvZtv4QXqcHDCmhigIZsdQdgxlx1B2Ruz4IX6WRDf-G3lGyXuIIrHs_gaWkBlKyLxUQiN2uEq9Gb7ghRFa0cqBVnrExLNyeIz696ikyPdfY2AHbIvc7dOKzyHb7ObL-BExUOeO-nLH66XUfwHgCQNc
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZgewAOFU-xUGAOSJysbhzHcY8tYlmgj0NbqTfLr2yRtskqm1XVn8C_ZiZJw5bHhWOiceLksz3fTJxvGHufWh90EhUPUlouXQzculxxHZCtRy1j0uY7jo7V7Fx-vcguNv6FoW2VIc7r9U3TKaTuhsqvKVE2aA2gB969bK6WCDAGUugfczpc3GdbCtm_GLGt_dnn05Mh04IcOMnypFds_LP1HY_UCvffYZvb1-1366FTG-5n-pht97wR9jugn7B7sXzKHm2oCT5jP05xSYUVxqVVDV1laEBKCrEMy-p72YC3tatKoN3p-KRgywCkTNXLKkNVwMHJFMivBUC7dq8h94s1aSlA6ErXgw12SUskrNoKOggr3mAVr9wiQl-CYv6cnU8_nX2c8b7SAvdIpxqeW4xsrFdFqiYypla4InodtMq80Mg41CSKrMidwIBH-CJNJbIai5GczXNNzV6wUVmV8SUDJUQS_Z6Shc-IHLi4hyELxknWpXlQ2Zjx27dtfC9DTtUwFobCEUTHEDqG0DGEzph9GOyXnQDHPy0PCLzBioSz2xNVPTf9PDR2knoSVZQ69chlMjuRklTYHC10eKkx27mF3vSzeWWEVpRF0EqPmfhtOPyy-nuvpEhe_U-jd-zB7Ozo0Bx-Of72mj2kKvdd5meHjZp6Hd8gF2rc236w_wSEzAhb
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZgKyE4VDzFQgEfkDhZu3Ecx3tsgWV5tUilEjfLr2yRtkmUZIX4CfxrZhJvaHlcuEbjxMlne76ZjL4h5HlqnFdJkMwLYZiwwTNjc8mUB7YelAhJn-_4eCxXZ-Ldl2xXTdjGskof1s32ezcopM585baYKBu1BsADz867ixoAhkAK_GM-q31xnexJueBqQvYOV29OT8ZEC1DgJMuTKNj45-ArDqnX7b9CNve_9b-txzld8j7L22Q_0kZ6OOB8h1wL5V1y65KY4D3y4xROVNpCWFo1dGgMTYGR0lD6uvpadtSZxlYlxeJ0eFFqSk9RmCqqKtOqoEcnS4puzVOw60sNmdtsUUqB-qFzPTXe1HhC0rZvoAOowgPacGE3gcYOFOv75Gz5-vPLFYuNFpgDNtWx3EBgY5wsUjkXITXcFsEpr2TmuALCIeeBZ0VuOcQ73BVpKoDUGAjkTJ4rHPaATMqqDA8JlZwnwS2kKFyG3MCGBUQsECYZm-ZeZlPCdl9bu6hCjs0wNhqjEUBHIzoa0dGIzpS8GO3rQX_jn5ZHCN5ohbrZ_YWqWeu4DbWZpw41FYVKHVCZzMyFQBE2i-cc3GpKDnbQ67iZW82VxCSCkmpK-G_L4ZfV32clePLofwY9Izc-vVrqD2-P3z8mN7HH_ZD3OSCTrtmGJ8CEOvs0rvWf9f4Hig
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soft+sensor+method+for+endpoint+carbon+content+and+temperature+of+BOF+based+on+multi-cluster+dynamic+adaptive+selection+ensemble+learning&rft.jtitle=High+temperature+materials+and+processes&rft.au=Shao+Bin&rft.au=Liu+Hui&rft.au=Chen+Fu-gang&rft.date=2023-01-01&rft.pub=De+Gruyter&rft.eissn=2191-0324&rft.volume=42&rft.issue=1&rft.spage=id.+100356&rft.epage=88&rft_id=info:doi/10.1515%2Fhtmp-2022-0287&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a03c1506483c4065a0442556b3011202
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2191-0324&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2191-0324&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2191-0324&client=summon