Soft sensor method for endpoint carbon content and temperature of BOF based on multi-cluster dynamic adaptive selection ensemble learning
The accurate control of the endpoint in converter steelmaking is of great significance and value for energy saving, emission reduction, and steel quality improvement. The key to endpoint control lies in accurately predicting the carbon content and temperature. Converter steelmaking is a dynamic proc...
Saved in:
Published in | High temperature materials and processes Vol. 42; no. 1; pp. id. 100356 - 88 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin
De Gruyter
01.01.2023
Walter de Gruyter GmbH |
Subjects | |
Online Access | Get full text |
ISSN | 2191-0324 0334-6455 2191-0324 |
DOI | 10.1515/htmp-2022-0287 |
Cover
Abstract | The accurate control of the endpoint in converter steelmaking is of great significance and value for energy saving, emission reduction, and steel quality improvement. The key to endpoint control lies in accurately predicting the carbon content and temperature. Converter steelmaking is a dynamic process with a large fluctuation of samples, and traditional ensemble learning methods ignore the differences among the query samples and use all the sub-models to predict. The different performances of each sub-model lead to the performance degradation of ensemble learning. To address this issue, we propose a soft sensor method based on multi-cluster dynamic adaptive selection (MC-DAS) ensemble learning for converter steelmaking endpoint carbon content and temperature prediction. First, to ensure the diversity of the ensemble learning base model, we propose a clustering algorithm with different data partition characteristics to construct a pool of diverse base models. Second, a model adaptive selection strategy is proposed, which involves constructing diverse similarity regions for individual query samples and assessing the model’s performance in these regions to identify the most suitable model and weight combination for each respective query sample. Compared with the traditional ensemble learning method, the simulation results of actual converter steelmaking process data show that the prediction accuracy of carbon content within ±0.02% error range reaches 92.8%, and temperature within ±10°C error range reaches 91.6%. |
---|---|
AbstractList | The accurate control of the endpoint in converter steelmaking is of great significance and value for energy saving, emission reduction, and steel quality improvement. The key to endpoint control lies in accurately predicting the carbon content and temperature. Converter steelmaking is a dynamic process with a large fluctuation of samples, and traditional ensemble learning methods ignore the differences among the query samples and use all the sub-models to predict. The different performances of each sub-model lead to the performance degradation of ensemble learning. To address this issue, we propose a soft sensor method based on multi-cluster dynamic adaptive selection (MC-DAS) ensemble learning for converter steelmaking endpoint carbon content and temperature prediction. First, to ensure the diversity of the ensemble learning base model, we propose a clustering algorithm with different data partition characteristics to construct a pool of diverse base models. Second, a model adaptive selection strategy is proposed, which involves constructing diverse similarity regions for individual query samples and assessing the model’s performance in these regions to identify the most suitable model and weight combination for each respective query sample. Compared with the traditional ensemble learning method, the simulation results of actual converter steelmaking process data show that the prediction accuracy of carbon content within ±0.02% error range reaches 92.8%, and temperature within ±10°C error range reaches 91.6%. |
Author | Shao, Bin Chen, Fu-gang Liu, Hui |
Author_xml | – sequence: 1 givenname: Bin surname: Shao fullname: Shao, Bin organization: Yunnan Key Laboratory of Artificial Intelligence, Kunming University of Science and Technology, Kunming 650500, China – sequence: 2 givenname: Hui surname: Liu fullname: Liu, Hui email: liuhui621@126.com organization: Yunnan Key Laboratory of Artificial Intelligence, Kunming University of Science and Technology, Kunming 650500, China – sequence: 3 givenname: Fu-gang surname: Chen fullname: Chen, Fu-gang organization: Yunnan Kungang Electronic Information Technology Co., Ltd, Kunming 650500, China |
BookMark | eNp1UU1v1DAUjFArUdpeOVvinOKvOMkRKgqVKvVAe7ZenJetV44dbAe0P6H_GocFgRD44rE1895o5lV14oPHqnrN6BVrWPP2Kc9LzSnnNeVd-6I646xnNRVcnvyBX1aXKe1pObJnTcvOqufPYcokoU8hkhnzUxjJVCD6cQnWZ2IgDsETE3zG8gQ_kozzghHyGpGEiby_vyEDJBxJ4c2ry7Y2bk0ZIxkPHmZrCIywZPsVyyKHJttCLBtxHhwShxC99buL6nQCl_Dy531ePd58eLj-VN_df7y9fndXG8lFrlugnQKjJqGoRAF8mNB0Y6cawzvWNIoib6Z24LRX3ExCyF60wKiEtu022Xl1e5w7BtjrJdoZ4kEHsPrHR4g7DTFb41ADFYY1VMlOGElVA1RKXlYMgjJWwi6z3hxnLTF8WTFlvQ9r9MW-5p2Sqi9eu8KSR5aJIaWIkzY2w5ZCjmCdZlRvHeqtQ711qLcOi-zqL9kvs_8V9EfBN3Al_RF3cT0U8NvUv4WSM_Edz2m0IA |
CitedBy_id | crossref_primary_10_1007_s11663_024_03374_x crossref_primary_10_1088_1361_6501_ad5749 crossref_primary_10_1515_htmp_2024_0067 |
Cites_doi | 10.1002/srin.201200302 10.1016/j.ijleo.2018.10.041 10.1016/j.ins.2022.04.058 10.1016/j.chemolab.2022.104678 10.1016/S1874-1029(13)60052-X 10.1109/TCST.2016.2631124 10.1016/j.compchemeng.2018.10.022 10.1016/j.cageo.2022.105242 10.1016/j.compchemeng.2005.09.010 10.1007/s00521-004-0451-y 10.1360/jos160496 10.1016/j.jprocont.2023.01.010 10.1016/j.compchemeng.2006.05.030 10.1016/j.jii.2022.100356 |
ContentType | Journal Article |
Copyright | This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 DOA |
DOI | 10.1515/htmp-2022-0287 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2191-0324 |
EndPage | 88 |
ExternalDocumentID | oai_doaj_org_article_a03c1506483c4065a0442556b3011202 10_1515_htmp_2022_0287 10_1515_htmp_2022_0287421 |
GroupedDBID | -~X 0R~ 0~D 4.4 5GY AAFPC AAFWJ AAQCX AASOL AASQH ABAOT ABAQN ABFKT ABIQR ABSOE ABUVI ABXMZ ACGFS ACIWK ACXLN ACZBO ADGQD ADGYE ADJVZ ADOZN AEJTT AENEX AEQDQ AEXIE AFBAA AFBDD AFCXV AFPKN AFQUK AHGSO AIERV AJATJ AKXKS ALMA_UNASSIGNED_HOLDINGS BAKPI BBCWN CFGNV EBS GROUPED_DOAJ HZ~ IY9 M48 O9- OK1 P2P QD8 RDG SA. SLJYH AAYXX CITATION 7SR 8BQ 8FD JG9 |
ID | FETCH-LOGICAL-c423t-7a086ac6f3604e3a2bfec8d865c2815560e25f7b20962cf334937a104a778c6f3 |
IEDL.DBID | DOA |
ISSN | 2191-0324 0334-6455 |
IngestDate | Wed Aug 27 01:29:44 EDT 2025 Mon Jun 30 10:08:09 EDT 2025 Thu Apr 24 22:55:20 EDT 2025 Tue Jul 01 00:44:35 EDT 2025 Sat Sep 06 16:59:22 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This work is licensed under the Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c423t-7a086ac6f3604e3a2bfec8d865c2815560e25f7b20962cf334937a104a778c6f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doaj.org/article/a03c1506483c4065a0442556b3011202 |
PQID | 2864690868 |
PQPubID | 2030061 |
PageCount | 17 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a03c1506483c4065a0442556b3011202 proquest_journals_2864690868 crossref_citationtrail_10_1515_htmp_2022_0287 crossref_primary_10_1515_htmp_2022_0287 walterdegruyter_journals_10_1515_htmp_2022_0287421 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin |
PublicationPlace_xml | – name: Berlin |
PublicationTitle | High temperature materials and processes |
PublicationYear | 2023 |
Publisher | De Gruyter Walter de Gruyter GmbH |
Publisher_xml | – name: De Gruyter – name: Walter de Gruyter GmbH |
References | 2023091409215511831_j_htmp-2022-0287_ref_008 2023091409215511831_j_htmp-2022-0287_ref_009 2023091409215511831_j_htmp-2022-0287_ref_004 2023091409215511831_j_htmp-2022-0287_ref_005 2023091409215511831_j_htmp-2022-0287_ref_006 2023091409215511831_j_htmp-2022-0287_ref_007 2023091409215511831_j_htmp-2022-0287_ref_022 2023091409215511831_j_htmp-2022-0287_ref_001 2023091409215511831_j_htmp-2022-0287_ref_023 2023091409215511831_j_htmp-2022-0287_ref_002 2023091409215511831_j_htmp-2022-0287_ref_024 2023091409215511831_j_htmp-2022-0287_ref_003 2023091409215511831_j_htmp-2022-0287_ref_025 2023091409215511831_j_htmp-2022-0287_ref_020 2023091409215511831_j_htmp-2022-0287_ref_021 2023091409215511831_j_htmp-2022-0287_ref_019 2023091409215511831_j_htmp-2022-0287_ref_015 2023091409215511831_j_htmp-2022-0287_ref_016 2023091409215511831_j_htmp-2022-0287_ref_017 2023091409215511831_j_htmp-2022-0287_ref_018 2023091409215511831_j_htmp-2022-0287_ref_011 2023091409215511831_j_htmp-2022-0287_ref_012 2023091409215511831_j_htmp-2022-0287_ref_013 2023091409215511831_j_htmp-2022-0287_ref_014 2023091409215511831_j_htmp-2022-0287_ref_010 |
References_xml | – ident: 2023091409215511831_j_htmp-2022-0287_ref_015 doi: 10.1002/srin.201200302 – ident: 2023091409215511831_j_htmp-2022-0287_ref_011 – ident: 2023091409215511831_j_htmp-2022-0287_ref_003 doi: 10.1016/j.ijleo.2018.10.041 – ident: 2023091409215511831_j_htmp-2022-0287_ref_022 doi: 10.1016/j.ins.2022.04.058 – ident: 2023091409215511831_j_htmp-2022-0287_ref_006 doi: 10.1016/j.chemolab.2022.104678 – ident: 2023091409215511831_j_htmp-2022-0287_ref_025 doi: 10.1016/S1874-1029(13)60052-X – ident: 2023091409215511831_j_htmp-2022-0287_ref_009 doi: 10.1109/TCST.2016.2631124 – ident: 2023091409215511831_j_htmp-2022-0287_ref_013 – ident: 2023091409215511831_j_htmp-2022-0287_ref_014 doi: 10.1016/j.compchemeng.2018.10.022 – ident: 2023091409215511831_j_htmp-2022-0287_ref_008 – ident: 2023091409215511831_j_htmp-2022-0287_ref_023 – ident: 2023091409215511831_j_htmp-2022-0287_ref_021 doi: 10.1016/j.cageo.2022.105242 – ident: 2023091409215511831_j_htmp-2022-0287_ref_002 – ident: 2023091409215511831_j_htmp-2022-0287_ref_004 – ident: 2023091409215511831_j_htmp-2022-0287_ref_010 – ident: 2023091409215511831_j_htmp-2022-0287_ref_019 doi: 10.1016/j.compchemeng.2005.09.010 – ident: 2023091409215511831_j_htmp-2022-0287_ref_017 – ident: 2023091409215511831_j_htmp-2022-0287_ref_018 doi: 10.1007/s00521-004-0451-y – ident: 2023091409215511831_j_htmp-2022-0287_ref_016 – ident: 2023091409215511831_j_htmp-2022-0287_ref_024 doi: 10.1360/jos160496 – ident: 2023091409215511831_j_htmp-2022-0287_ref_012 – ident: 2023091409215511831_j_htmp-2022-0287_ref_007 doi: 10.1016/j.jprocont.2023.01.010 – ident: 2023091409215511831_j_htmp-2022-0287_ref_020 – ident: 2023091409215511831_j_htmp-2022-0287_ref_005 doi: 10.1016/j.compchemeng.2006.05.030 – ident: 2023091409215511831_j_htmp-2022-0287_ref_001 doi: 10.1016/j.jii.2022.100356 |
SSID | ssj0000491571 |
Score | 2.2824497 |
Snippet | The accurate control of the endpoint in converter steelmaking is of great significance and value for energy saving, emission reduction, and steel quality... |
SourceID | doaj proquest crossref walterdegruyter |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | id. 100356 |
SubjectTerms | Adaptive control Algorithms Basic converters BOF Carbon Carbon content Clustering dynamic adaptive selection Emissions control endpoint carbon content and temperature prediction Ensemble learning Machine learning Oxygen steel making Performance degradation Queries soft sensor Steel converters Teaching methods |
SummonAdditionalLinks | – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtQwFLWgbGBR8RQDBd0FEivDxHEcd4EQRYwqpMICRurO8isD1TQZMhlBP4G_5l7H01IoO7bRzUM5ju85jnUOY89K64MuouJBSsuli4FbVyuuA7L1qGUs0nrH0Qd1OJfvj6vji_1P-QWur5R2lCc175cvfnw7e40f_KuU3lNUL78MpytEG1UVNsv6OruBXUmREDvKVP9kZMJFVRfZt_Hv0y71pWTff4lz7n5Pf69DXPSbs2H7tzQ1odlttpvZI7wZ4b7DrsX2Lrv1m6fgPfbzE06ssEZ12vUw5kMDElOIbVh1X9sBvO1d1wLtUceGA7YNQP5U2VwZugYOPs6AulsArEs7DrlfbshRAcIYYA822BVNlLBOOToILt5gHU_dMkIOoljcZ_PZu89vD3nOW-AeSdXAa4v6xnrVlGoqY2mFa6LXQavKC428Q02jqJraCZQ9wjdlKZHbWNRztq41nfaA7bRdGx8yUEIU0e8r2fiKKIKL-yhcUC1ZV9ZBVRPGt2_b-GxGTpkYS0OiBNExhI4hdAyhM2HPz-tXow3HPysPCLzzKrLPTge6fmHy12jstPRkrSh16ZHRVHYqJXmxOZru8FITtreF3myHpBFa0VqCVnrCxB_D4aLq6qeSonj0Px7sMbtJeffjGtAe2xn6TXyCrGhwT9Nw_wXmogt7 priority: 102 providerName: Scholars Portal |
Title | Soft sensor method for endpoint carbon content and temperature of BOF based on multi-cluster dynamic adaptive selection ensemble learning |
URI | https://www.degruyter.com/doi/10.1515/htmp-2022-0287 https://www.proquest.com/docview/2864690868 https://doaj.org/article/a03c1506483c4065a0442556b3011202 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQJzggSlt1gaI5VOJkkTiO4z1CxQpVoj1QJG6Wv0JbLclqN6uqP4F_3Zk4CwtqxYVLDtFEsTyTzHu29R5jnwrrg86j4kFKy6WLgVtXKa4DovWoZcz79Y7Lr-riWn65KW_WrL7oTFiSB04Td2KzwpMKntSFx-ZT2kxKks1yVJkiyUhm42yNTP1KuDcvq3xQacSeffKju5thSSD1wo5aPelCvVj_E4S587vfqw7xdr780632RvuWM9llOwNWhNM0xjdsIzZ7bHtNQfAtu7_C3ygskIu2c0hu0IAwFGITZu3PpgNv565tgE6kY3sB2wQgNapBShnaGs6-TYB6WQCM688Xcj9dkn4ChGRXDzbYGf0WYdG75mAq8QWLeOemEQbbidt37Hpy_v3zBR_cFbhHCNXxyiKbsV7VhcpkLKxwdfQ6aFV6oRFlqCyKsq4czq4Svi4KiUjGInuzVaXpsfdss2mb-IGBEiKPfqxk7UsCBC6OkaYgN7KuqIIqR4yvZtv4QXqcHDCmhigIZsdQdgxlx1B2Ruz4IX6WRDf-G3lGyXuIIrHs_gaWkBlKyLxUQiN2uEq9Gb7ghRFa0cqBVnrExLNyeIz696ikyPdfY2AHbIvc7dOKzyHb7ObL-BExUOeO-nLH66XUfwHgCQNc |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZgewAOFU-xUGAOSJysbhzHcY8tYlmgj0NbqTfLr2yRtskqm1XVn8C_ZiZJw5bHhWOiceLksz3fTJxvGHufWh90EhUPUlouXQzculxxHZCtRy1j0uY7jo7V7Fx-vcguNv6FoW2VIc7r9U3TKaTuhsqvKVE2aA2gB969bK6WCDAGUugfczpc3GdbCtm_GLGt_dnn05Mh04IcOMnypFds_LP1HY_UCvffYZvb1-1366FTG-5n-pht97wR9jugn7B7sXzKHm2oCT5jP05xSYUVxqVVDV1laEBKCrEMy-p72YC3tatKoN3p-KRgywCkTNXLKkNVwMHJFMivBUC7dq8h94s1aSlA6ErXgw12SUskrNoKOggr3mAVr9wiQl-CYv6cnU8_nX2c8b7SAvdIpxqeW4xsrFdFqiYypla4InodtMq80Mg41CSKrMidwIBH-CJNJbIai5GczXNNzV6wUVmV8SUDJUQS_Z6Shc-IHLi4hyELxknWpXlQ2Zjx27dtfC9DTtUwFobCEUTHEDqG0DGEzph9GOyXnQDHPy0PCLzBioSz2xNVPTf9PDR2knoSVZQ69chlMjuRklTYHC10eKkx27mF3vSzeWWEVpRF0EqPmfhtOPyy-nuvpEhe_U-jd-zB7Ozo0Bx-Of72mj2kKvdd5meHjZp6Hd8gF2rc236w_wSEzAhb |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZgKyE4VDzFQgEfkDhZu3Ecx3tsgWV5tUilEjfLr2yRtkmUZIX4CfxrZhJvaHlcuEbjxMlne76ZjL4h5HlqnFdJkMwLYZiwwTNjc8mUB7YelAhJn-_4eCxXZ-Ldl2xXTdjGskof1s32ezcopM585baYKBu1BsADz867ixoAhkAK_GM-q31xnexJueBqQvYOV29OT8ZEC1DgJMuTKNj45-ArDqnX7b9CNve_9b-txzld8j7L22Q_0kZ6OOB8h1wL5V1y65KY4D3y4xROVNpCWFo1dGgMTYGR0lD6uvpadtSZxlYlxeJ0eFFqSk9RmCqqKtOqoEcnS4puzVOw60sNmdtsUUqB-qFzPTXe1HhC0rZvoAOowgPacGE3gcYOFOv75Gz5-vPLFYuNFpgDNtWx3EBgY5wsUjkXITXcFsEpr2TmuALCIeeBZ0VuOcQ73BVpKoDUGAjkTJ4rHPaATMqqDA8JlZwnwS2kKFyG3MCGBUQsECYZm-ZeZlPCdl9bu6hCjs0wNhqjEUBHIzoa0dGIzpS8GO3rQX_jn5ZHCN5ohbrZ_YWqWeu4DbWZpw41FYVKHVCZzMyFQBE2i-cc3GpKDnbQ67iZW82VxCSCkmpK-G_L4ZfV32clePLofwY9Izc-vVrqD2-P3z8mN7HH_ZD3OSCTrtmGJ8CEOvs0rvWf9f4Hig |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soft+sensor+method+for+endpoint+carbon+content+and+temperature+of+BOF+based+on+multi-cluster+dynamic+adaptive+selection+ensemble+learning&rft.jtitle=High+temperature+materials+and+processes&rft.au=Shao+Bin&rft.au=Liu+Hui&rft.au=Chen+Fu-gang&rft.date=2023-01-01&rft.pub=De+Gruyter&rft.eissn=2191-0324&rft.volume=42&rft.issue=1&rft.spage=id.+100356&rft.epage=88&rft_id=info:doi/10.1515%2Fhtmp-2022-0287&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a03c1506483c4065a0442556b3011202 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2191-0324&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2191-0324&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2191-0324&client=summon |